
Efficient Software-Based Detection of Region Conflicts

Swarnendu Biswas
PhD Student, Department of Computer Science and Engineering

Ohio State University
biswass@cse.ohio-state.edu

1. Problem and Motivation
Data races are not only indicative of concurrency errors [12],
they also present a fundamental barrier to writing correct
shared-memory, multithreaded programs and complicate
programming language specifications [13, 14]. Modern lan-
guages such as Java and C++ provide strong semantics—
serializability of synchronization-free regions (SFRs)—in
the absence of data races [5, 14]. However, they provide few
or no guarantees if there is a data race [1, 4, 17]. The void
between these two extremes motivates the need for strong se-
mantics even for programs with data races. Providing strong
semantic guarantees for data races will only become more
important as software becomes more parallel to exploit the
proliferation of increasingly parallel hardware. The com-
plexity and risk associated with data races provide two main
motivations for this work: (1) systems should provide strong
data race semantics that programming languages can rely
on, and (2) developers require efficient tools for detecting
data races.

2. Background and Related Work
There is a long history of research into detecting data
races [6, 8–10, 15]. These prior efforts have demonstrated a
fundamental tradeoff between coverage (detecting as many
data races as possible), precision (producing no false pos-
itives), and efficiency. Dynamic analyses that track the
happens-before relation are precise and find all data races
in an observed execution [6, 10, 15]. But even with clever
optimizations [10], software happens-before data race detec-
tion imposes a high run time cost (e.g., 8.5X slowdown [10])
because it must track (1) “last access” information at ev-
ery memory access and (2) the happens-before relation at
every synchronization access. The cost of maintaining in-
formation about prior accesses is especially expensive for
mostly read-shared data; updating metadata at concurrent
reads trigger remote cache misses. Furthermore, the analysis
must perform synchronization to ensure that happens-before
race checks and metadata updates are atomic. Such high
overheads of happens-before checking prohibit their use as
a basis for programming language semantics and limit their
use as a debugging tool [3, 15].

Detecting and fixing all data races seem intractable, and
eliminating them entirely from current programming lan-

guages presents other impediments. A promising, recent ap-
proach to providing strong semantics for program executions
with data races is to detect and throw so-called data race
exceptions when a data race occurs [9, 13, 16]. Prior work
avoids the expense of detecting all happens-before races by
instead detecting conflicts between SFRs [11, 13, 16]. Every
SFR conflict is a true data race, but not every data race is a
conflict. As long as regions are full SFRs or larger [8, 13],
these approaches provide a strong guarantee: if they do not
detect a conflict, the execution is guaranteed to achieve seri-
alizability of its SFRs—the same guarantee provided by the
DRF0 memory model for data-race-free executions [1, 5,
14]. However, existing region conflict detectors are imprac-
tical: they either rely on custom hardware support or slow
programs substantially [8, 13].

3. Valor: Mixing Eager and Lazy Conflict
Detection

We have adapted prior work called Conflict Exceptions [13]
to design a software-only conflict detector called FastRCD
that eagerly detects conflicts among overlapping SFRs. Fast-
RCD obviates the need for custom hardware, and reduces
analysis overheads by using FastTrack’s epoch optimiza-
tions for tracking read and write metadata. FastRCD pro-
vides strong guarantees similar to prior work [13]: it either
throws a data-race exception at the precise point when a racy
access is about to happen, or the execution guarantees seri-
alizability of SFRs. However, FastRCD continues to suffer
from high overheads for similar reasons as sound happens-
before detectors (Section 2) since it needs to perform expen-
sive analysis at reads.

We now briefly overview our proposed software-based
region-conflict detector called Valor.1 Valor soundly and
precisely detects each access that conflicts with another ac-
cess in an ongoing region, that correspond to true data races.
The key insight of Valor is to elide tracking of each shared
variable’s last reads, thus avoiding the high cost, incurred
by existing analyses, of maintaining last reader information.
This allows Valor to achieve high performance unlike Fast-
Track and FastRCD.

Valor only keeps track of each shared variable’s last writer
in the form of a tuple 〈v, c@t〉 that includes the epoch c@t of

1 Valor is an acronym for Validating Anti-dependences Lazily On Release.

1



Thread T1 Thread T2
j-1

j

wr x
<v+1, j@T1>

wr/rd x

k-1

k

conflict 
detected

<v, p@T0>

<v+1, j@T1>

(a)

Thread T1 Thread T2

j-1

j

rd x
<v, p@T0>

wr x

j+1

k-1

k

conflict on x 
detected

<v, p@T0>

<v, p@T0>

<v+1, k@T2>

log <x, v>

read
validation

(b)

Thread T1 Thread T2

j-1

j

rd x
<v, p@T0>

wr x

j+1

k-1

k

conflict 
detected

<v, p@T0>

<v, p@T0>

<v+1, k@T2>

<v+2, j@T1>

wr x
<v+1, k@T2>

log <x, v>

k+1

read
validation

(c)

Figure 1: (a) Valor eagerly detects a conflict at T2’s access because the last region to write x is ongoing. (b) Valor detects
read–write conflicts lazily. During read validation, T1 detects that at least one write conflicts with x since T1 read x.

the last region c from thread t to write x, and a version v that
the analysis increments whenever a new region writes to x.
Tracking last writer allows Valor to detect write–write and
write–read conflicts eagerly, as shown in Figure 1(a). The
dashed lines in Figure 1 indicate region boundaries, and the
labels j-1, j, etc. indicate a thread’s clocks incremented at
each region boundary. The grey text above and below each
program memory access (e.g., 〈v, p@T0〉) shows shared vari-
able x’s last writer metadata. Since Valor does not track each
shared variable’s last readers, it cannot detect read–write
conflicts at the conflicting write (shown in Figure 1(b)). In-
stead, each region maintains information about its reads in
a read validation log, and detects read–write conflicts lazily
when it ends. When a region ends, read validation compares
each entry 〈x, v〉 in T1’s read log with x’s current version,
in order to detect conflicts. In Figure 1(b), x’s version has
changed to v+1, so the analysis detects a read–write con-
flict. Figure 1(c) motivates the need for Valor to track both
epoch and version to soundly and precisely detect read–write
conflicts when there are remote write(s) interleaved before a
write by the current thread.

Guarantees. If regions are at least as large as SFRs, then
Valor provides a strong execution model that either reports
a true data race or guarantees serializability of SFRs [13].
Since Valor detects read–write conflicts lazily it cannot pro-
vide precise exceptions, which is acceptable as long as the
effects of potentially conflicting regions do not become ex-
ternally visible. Thus, before a thread performs sensitive op-
erations (for e.g., perform a system call), Valor validates the
current region’s reads so far. Other conflict and data race de-
tectors have detected conflicts asynchronously and have pro-
vided similar guarantees [7, 16].

Detecting data races. Prior work has proposed detecting
conflicts among SFRs to catch true data races [13]. Valor de-
tects conflicts among release-free regions (RFRs)—regions
which are bounded only by synchronization release opera-
tions. Since RFRs are always at least as large as an SFR, this
design allows Valor to potentially detect more conflicts and
thus true data races.

4. Results
We have implemented a prototype of Valor in Jikes RVM
3.1.3 [2]. For comparison purposes, we have implemented
current state-of-art happens-before analysis called Fast-
Track [10] and FastRCD. For our evaluation, we used bench-
marks from the DaCapo 2006 and 9.12-bach suite, and fixed-
workload versions of SPECjbb2000 and SPECjbb2005.

We evaluate the data race coverage of Valor and com-
pared with FastTrack and FastRCD, by collecting data races
reported at least once in ten trials. Overall FastRCD and
Valor detect fewer races than FastTrack, but can still expose
67% of the known data races. We and others [8, 13, 16] ar-
gue that region-conflict detection techniques detect the more
important races, i.e., data races that can violate sequential
consistency. We also evaluate the performance of the three
implementations. FastTrack adds 340% overhead, whereas
FastRCD introduces an overhead of 270%. In contrast, Valor
incurs an overhead of only 108%. Thus, the overhead added
by Valor is 3.2X less than FastTrack and 2.5X less than Fast-
RCD, respectively. The overhead added by Valor is poten-
tially low enough to enable its use in different alpha, beta and
in-house testing environments and potentially to even certain
production settings, thus enabling a wider outreach of using
precise dynamic analysis tools to deal with data races.

5. Contributions
This work proposes the first software-based region conflict
detector, called Valor, that has overheads low enough to be
considered practical for providing programming language
guarantees. The key insight behind Valor is that region con-
flict detectors need not track “last reader(s)” of shared vari-
ables. Tracking only the last write information and using
lazy validation techniques for reads allows Valor to still
soundly and precisely detect region conflicts. Valor guar-
antees that every execution will either report a data race
or is region-serializable. We apply Valor to detect conflicts
among release-free regions, which naturally extend to true
data races. Our performance experiments show that Valor
substantially outperforms current state-of-art.

2



References
[1] S. V. Adve and H.-J. Boehm. Memory Models: A Case for

Rethinking Parallel Languages and Hardware. CACM, 53:90–
101, 2010.

[2] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi,
P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKin-
ley, M. Mergen, J. E. B. Moss, T. Ngo, and V. Sarkar. The
Jikes Research Virtual Machine Project: Building an Open-
Source Research Community. IBM Systems Journal, 44:399–
417, 2005.

[3] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A Few
Billion Lines of Code Later: Using Static Analysis to Find
Bugs in the Real World. CACM, 53(2):66–75, 2010.

[4] H.-J. Boehm. Position paper: Nondeterminism is Unavoid-
able, but Data Races are Pure Evil. In RACES, pages 9–14,
2012.

[5] H.-J. Boehm and S. V. Adve. Foundations of the C++ Con-
currency Memory Model. In PLDI, pages 68–78, 2008.

[6] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer:
Proportional Detection of Data Races. In PLDI, pages 255–
268, 2010.

[7] J. Devietti, B. P. Wood, K. Strauss, L. Ceze, D. Grossman,
and S. Qadeer. RADISH: Always-On Sound and Complete
Race Detection in Software and Hardware. In ISCA, pages
201–212, 2012.

[8] L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, and H.-J.
Boehm. IFRit: Interference-Free Regions for Dynamic Data-

Race Detection. In OOPSLA, pages 467–484, 2012.

[9] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A Race and
Transaction-Aware Java Runtime. In PLDI, pages 245–255,
2007.

[10] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise
Dynamic Race Detection. In PLDI, pages 121–133, 2009.

[11] K. Gharachorloo and P. B. Gibbons. Detecting Violations of
Sequential Consistency. In SPAA, pages 316–326, 1991.

[12] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mistakes:
A Comprehensive Study on Real World Concurrency Bug
Characteristics. In ASPLOS, pages 329–339, 2008.

[13] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm.
Conflict Exceptions: Simplifying Concurrent Language Se-
mantics with Precise Hardware Exceptions for Data-Races. In
ISCA, pages 210–221, 2010.

[14] J. Manson, W. Pugh, and S. V. Adve. The Java Memory
Model. In POPL, pages 378–391, 2005.

[15] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace:
Effective Sampling for Lightweight Data-Race Detection. In
PLDI, pages 134–143, 2009.

[16] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and
S. Narayanasamy. DRFx: A Simple and Efficient Memory
Model for Concurrent Programming Languages. In PLDI,
pages 351–362, 2010.

[17] J. Ševčík and D. Aspinall. On Validity of Program Transfor-
mations in the Java Memory Model. In ECOOP, pages 27–51,
2008.

3


	Problem and Motivation
	Background and Related Work
	Valor: Mixing Eager and Lazy Conflict Detection
	Results
	Contributions

