
Swarnendu Biswas, Minjia Zhang, and
Michael D. Bond
Ohio State University

Brandon Lucia
Carnegie Mellon University

OOPSLA 2015

Valor: Efficient, Software-Only Region Conflict
Exceptions

A Simple C++ Program

x = new X();
done = true;

if (done) {
x->func();

}

X* x = NULL;
bool done= false;

Thread T1 Thread T2

A Simple C++ Program

x = new X();
done = true;

if (done) {
x->func();

}

X* x = NULL;
bool done= false;

Thread T1 Thread T2

Data Races

x = new X();
done = true;

if (done) {
x->func();

}

X* x = NULL;
bool done= false;

Thread T1

Data
race

Thread T2

Data Races are Evil

Lack of semantic guarantees make software unsafeNo semantic guarantees

Challenging to reason about correctness for racy executions Complicates language
specifications

Leads to atomicity, order or sequential consistency violations
Indicates other concurrency

errors

Catch-Fire Semantics

x = new X();
done = true;

if (done) {
x->func();

}

X* x = NULL;
bool done= false;

Thread T1 Thread T2

C++ treats data races as errors

Catch-Fire Semantics

x = new X();
done = true;

if (done) {
x->func();

}

X* x = NULL;
bool done= false;

Thread T1 Thread T2

C++ treats data races as errors

Catch-Fire Semantics

x = new X();
done = true;

if (done) {
x->func();

}

X* x = NULL;
bool done= false;

Thread T1 Thread T2

C++ treats data races as errors

A Java Example

X = new Object();
done = true;

while (!done) {}
X.compute();

Thread T1 Thread T2

A Java Example

X = new Object();
done = true;

while (!done) {}
X.compute();

Thread T1 Thread T2

Java tries to assign semantics,
which are unsatisfactory

C++ and Java Memory Models

Data-race-free
execution

Strong semantics

C++ and Java Memory Models

Data-race-free
execution

Strong semantics

Execution is sequentially consistent

C++ and Java Memory Models

Data-race-free
execution

Strong semantics

Execution is sequentially consistent

Synchronization-free regions execute atomically

C++ and Java Memory Models

Data-race-free
execution

Strong semantics

Execution is sequentially consistent

Synchronization-free regions execute atomically

lock(l)

lock(m)

unlock(m)

unlock(l)

SFR

C++ and Java Memory Models
But what

about data
races?

C++ and Java Memory Models

Racy execution ???

But what
about data

races?

Need for Stronger Memory Models

Adve and Boehm, CACM 2010

“The inability to define reasonable semantics for programs with data
races is not just a theoretical shortcoming, but a fundamental hole in

the foundation of our languages and systems.”

Need for Stronger Memory Models

Adve and Boehm, CACM 2010

“The inability to define reasonable semantics for programs with data
races is not just a theoretical shortcoming, but a fundamental hole in

the foundation of our languages and systems.”

“We call upon software and hardware communities to develop
languages and systems that enforce data-race-freedom, ...”

• Programming language memory models and data races

• Data race and region conflict exceptions model

• Valor: Our contribution

• Evaluation

Outline

Data Race

Thread T1 Thread T2

X = new Object();
done = true;

while (!done) {}
X.compute();

Data Race Exceptions

Thread T1 Thread T2

X = new Object();
done = true;

while (!done) {}
X.compute();

EXCEPTION

REGION CONFLICT EXCEPTIONS MODEL

Region Conflict

Thread T1 Thread T2

Region Conflict

wr x

Thread T1 Thread T2

Region Conflict

rd/wr x

wr x

Thread T1 Thread T2

Region Conflict

rd/wr x

wr x

Thread T1

Conflict

Thread T2

Region Conflict

rd/wr x

wr x

Thread T1

Conflict

Thread T2

Reports a subset of true data races that
violate region serializability

Execution Models

rd/wr x

wr x

Thread T1

Conflict

Thread T2

Reports a subset of true data races that
violate region serializabilitysequentially

consistent

region-conflict-
free

region
serializable

data-race-free

Region Conflict Exception Model

Develop a practical region conflict
detection technique

GOAL

Region Conflict Detection

Hardware customizations required for good performance

 Limited by resources and applicability
o Needs extensive modifications and is unscalable1

o Detects serializability violations of bounded regions2

1. Lucia et al. Conflict Exceptions: Simplifying Concurrent Language Semantics With Precise Hardware Exceptions for
Data-Races. ISCA 2010.

2. Marino et al. DRFx: A Simple and Efficient Memory Model for Concurrent Programming Languages. PLDI 2010.

• Programming language memory models and data races

• Data race and region conflict exceptions model

• Valor: Our contribution

• Evaluation

Outline

Valor: Efficient, Software-Only Region Conflict Detector

Elides tracking last readers, only tracks last writer

Detect read-write conflicts lazily

• Tracking last writers

• Detecting read-write conflicts lazily

• Impact of lazy conflict detection

Tracking Last Writer

Per-Variable Metadata

j@T1

Epoch

Has an ongoing
region updated x?

Thread T1

j

wr x

Tracking Last Writer

Thread T1 Thread T2

x p@T0

Tracking Last Writer

Thread T1 Thread T2

wr x
j

x p@T0

Tracking Last Writer

wr x

Thread T1

j

Track last writer
Thread T2

x p@T0

Tracking Last Writer

wr x

Thread T1

j

Track last writer
Thread T2

update
metadata

x j@T1

Tracking Last Writer

rd/wr x

wr x

Thread T1

j

Track last writer
Thread T2

x j@T1

Tracking Last Writer

rd/wr x

wr x

Thread T1

j

Conflict

Track last writer
Thread T2

x j@T1

Tracking Last Writer

rd/wr x

wr x

Thread T1

j

Conflict

Track last writer
 Allows precisely detecting

write-write and write-read
conflicts

Thread T2

x j@T1

• Tracking last writers

• Detecting read-write conflicts lazily

• Impact of lazy conflict detection

Detecting Read-Write Conflicts

rd x

Thread T1

wr x

Thread T2

Detecting Read-Write Conflicts

rd x

Thread T1

j

Thread T2

x p@T0

Detecting Read-Write Conflicts

rd x

Thread T1

j

Thread T2

update read
metadata

x j@T1

Detecting Read-Write Conflicts

rd x

Thread T1

j

wr x

Thread T2

x j@T1

Detecting Read-Write Conflicts

rd x

Thread T1

j

wr x

Conflict

Thread T2

x j@T1

Detecting Read-Write Conflicts

rd x

Thread T1

j

wr x

Conflict

Thread T2

This simple mechanism used in prior work has problems

x j@T1

Remote Cache Misses Due to Tracking of Metadata

Thread T1

rd x

j

Leads to remote
cache misses

Write
operation

update
metadata

Metadata Updates

Thread T1

rd/wr x

j

Metadata Updates

Thread T1

rd/wr x

j

update
metadata

Synchronization on Metadata Updates

Thread T1

rd/wr x

lock l
j

Synchronization on Metadata Updates

Thread T1

rd/wr x

lock l
j

update
metadata

Synchronization on Metadata Updates

Thread T1

rd/wr x

unlock l

lock l
j

update
metadata

Synchronization on Metadata Updates

Thread T1

rd/wr x

unlock l

lock l
j

Bad for mostly
read-only data

update
metadata

Elide Tracking Last Readers

Elide Tracking Last Readers

rd x

Thread T1

wr x

Thread T2

?

Elide Tracking Last Readers

rd x

Thread T1 Thread T2Detect read-write conflicts lazily

wr x

Elide Tracking Last Readers

rd x

Thread T1 Thread T2Detect read-write conflicts lazily

 Log read accesses in thread-
local buffers

 Validate reads at region
boundaries

1. Saha et al. McRT-STM: A High Performance Software Transactional
Memory System for a Multi-Core Runtime. PPoPP 2006.

wr x

Per-Variable Metadata

<v, j@T1>

Version, Epoch

Has an ongoing
region updated x?

Thread T1

j

wr x

Elide Tracking Last Readers

rd x

Thread T1

j

Thread T2Detect read-write conflicts lazily

write
metadata

 Log read accesses in thread-
local buffers

 Validate reads at region
boundaries

x <v, p@T0>

Elide Tracking Last Readers

rd x

Thread T1 Thread T2Detect read-write conflicts lazily

log <x, v>
 Log read accesses in thread-

local buffers
 Validate reads at region

boundaries

j

x <v, p@T0>

Elide Tracking Last Readers

rd x

Thread T1 Thread T2Detect read-write conflicts lazily

log <x, v>
kj

wr x

x <v, p@T0>

Elide Tracking Last Readers

rd x

Thread T1 Thread T2Detect read-write conflicts lazily

log <x, v>
kj

wr x

x <v+1, k@T2>

Elide Tracking Last Readers

rd x

Thread T1 Thread T2Detect read-write conflicts lazily

log <x, v>

read
validation

kj

wr x

x <v+1, k@T2>

Elide Tracking Last Readers

rd x

Thread T1 Thread T2Detect read-write conflicts lazily

log <x, v>

read
validation

T1 is not the last
writer

Version read is
outdated

kj

wr x

x <v+1, k@T2>

Elide Tracking Last Readers

rd x

Thread T1 Thread T2Detect read-write conflicts lazily

log <x, v>

read
validation

T1 is not the last
writer

Version read is
outdated

Conflict

j k

wr x

x <v+1, k@T2>

Elide Tracking Last Readers

Avoids

• Remote cache misses

• Synchronization overhead

• Tracking last writers

• Detecting read-write conflicts lazily

• Impact of lazy conflict detection

Precise Conflict Detection

Thread T1

rd x

Thread T2

wr x

Conflict

Precise vs Lazy Conflict Detection

Thread T1

rd x

Thread T2

wr x

Conflict

Thread T1

rd x

Thread T2

wr x

read
validation

Conflict

delayed
exception

Precise vs Lazy Conflict Detection

Thread T1

rd x

Thread T2

wr x

Conflict

Thread T1

rd x

Thread T2

wr x

read
validation

Conflict

delayed
exception

Delayed exceptions

Delayed Exceptions

Thread T1

rd x

Thread T2

wr x

Conflict

Thread T1

rd x

Thread T2

wr x

read
validation

Conflict

delayed
exception

Delayed exceptions

Do not compromise semantic
guarantees

Effects should not be externally visible

Delayed Exceptions

Thread T1

rd x

Thread T2

wr x

Conflict

Thread T1

rd x

Thread T2

wr x

read
validation

Conflict

delayed
exception

Debugging might be slightly harder

Exception will be thrown at the next
region boundary from the reader thread

But does not compromise on soundness
and precision

• Programming language memory models and data races

• Data race and region conflict exceptions model

• Valor: Our contribution

• Evaluation

Outline

IMPLEMENTATION

Implementation

Developed on top of Jikes RVM 3.1.3

Implementation

1. Flanagan and Freund. FastTrack: Efficient and Precise Dynamic Data Race Detection. PLDI 2009.

Developed on top of Jikes RVM 3.1.3

Implemented FastTrack, state-of-art
happens-before analysis based data

race detector

Implementation

Developed on top of Jikes RVM 3.1.3

Implemented FastTrack, state-of-art
happens-before analysis based data

race detector

Shared on Jikes RVM Research Archive
and ACM DL

EVALUATION

• Benchmarks
▫ Large workload sizes of DaCapo 2006 and 9.12-bach suite

▫ Fixed-workload versions of SPECjbb2000 and SPECjbb2005

• Platform
▫ 64-core AMD Opteron 6272

Experimental Methodology

Performance Comparison

1006

342

99

0

200

400

600

800

1000

eclipse6 hsqldb6 lusearch6 xalan6 avrora9 jython9 luindex9 lusearch9 pmd9 sunflow9 xalan9 pjbb2000 pjbb2005 geomean

Overheads (%) Over Unmodified Jikes RVM

FastTrack Valor

Performance Comparison

1006

342

267

99

0

200

400

600

800

1000

eclipse6 hsqldb6 lusearch6 xalan6 avrora9 jython9 luindex9 lusearch9 pmd9 sunflow9 xalan9 pjbb2000 pjbb2005 geomean

Overheads (%) Over Unmodified Jikes RVM

FastTrack Eager conflict detection Valor

Performance Comparison

1006

342

267

99

0

200

400

600

800

1000

eclipse6 hsqldb6 lusearch6 xalan6 avrora9 jython9 luindex9 lusearch9 pmd9 sunflow9 xalan9 pjbb2000 pjbb2005 geomean

Overheads (%) Over Unmodified Jikes RVM

FastTrack Eager conflict detection Valor

First software-only
region conflict detector

with less than 100%
overhead

Performance Comparison: Intel Xeon

1016

408

303

115

0

200

400

600

800

1000

eclipse6 hsqldb6 lusearch6 xalan6 avrora9 jython9 luindex9 lusearch9 pmd9 sunflow9 xalan9 pjbb2000 pjbb2005 geomean

Overheads (%) Over Unmodified Jikes RVM

FastTrack Eager conflict detection Valor

Relative performance remains comparable on
an Intel Xeon architecture

Please check the paper

Space
overheads

Characterization
of FastTrack and

Jikes RVM

Data race
coverage

Additional Experiments

Valor: Contributions

Strong execution guarantees in software

Exception-free
execution

Strong semantics

Detects all violations of region serializability

Advances state-of-art
 Provides strong semantics in software at less than 100%

overhead

New Opportunities with Valor

Language runtimes could integrate thisSemantic guarantees

Can be used to detect problematic data racesDebugging

All-the-time monitoring in certain environmentsConflict exceptions

Aggressive optimizations
Reorder and eliminate redundant loads and stores within synchronization-
free regions

Swarnendu Biswas, Minjia Zhang, and
Michael D. Bond
Ohio State University

Brandon Lucia
Carnegie Mellon University

OOPSLA 2015

Valor: Efficient, Software-Only Region Conflict
Exceptions

