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Abstract
Data races complicate programming language semantics, and
a data race is often a bug. Existing techniques detect data
races and define their semantics by detecting conflicts be-
tween synchronization-free regions (SFRs). However, such
techniques either modify hardware or slow programs dramat-
ically, preventing always-on use today.

This paper describes Valor, a sound, precise, software-
only region conflict detection analysis that achieves high
performance by eliminating the costly analysis on each
read operation that prior approaches require. Valor instead
logs a region’s reads and lazily detects conflicts for logged
reads when the region ends. As a comparison, we have
also developed FastRCD, a conflict detector that leverages
the epoch optimization strategy of the FastTrack data race
detector.

We evaluate Valor, FastRCD, and FastTrack, showing
that Valor dramatically outperforms FastRCD and FastTrack.
Valor is the first region conflict detector to provide strong
semantic guarantees for racy program executions with under
2X slowdown. Overall, Valor advances the state of the art in
always-on support for strong behavioral guarantees for data
races.

Categories and Subject Descriptors D.2.5 [Software Engi-
neering]: Testing and Debugging—monitors, testing tools;
D.3.4 [Programming Languages]: Processors—compilers,
run-time environments

Keywords Conflict exceptions; data races; dynamic analysis;
region serializability

∗ This material is based upon work supported by the National Science
Foundation under Grants CSR-1218695, CAREER-1253703, and CCF-
1421612.

1. Introduction
Data races are a fundamental barrier to providing well-
defined programming language specifications and to writing
correct shared-memory, multithreaded programs. A data race
occurs when two accesses to the same memory location are
conflicting—executed by different threads and at least one
is a write—and concurrent—not ordered by synchronization
operations [4].

Data races can cause programs to exhibit confusing and
incorrect behavior. They can lead to sequential consistency
(SC), atomicity, and order violations [42, 54] that may corrupt
data, cause a crash, or prevent forward progress [28, 36, 52].
The Northeastern electricity blackout of 2003 [66], which
was caused by a data race, is a testament to the danger posed
by data races.

The complexity and risk associated with data races moti-
vate this work. The thesis of our work is that systems should
furnish programming language implementations with a mech-
anism that gives data races clear, simple semantics. However,
building a system that efficiently provides strong semantic
guarantees for data races is complex and challenging—and
has remained elusive. As a case in point: Java and C++ sup-
port variants of DRF0, which provides essentially no useful
guarantees about the semantics of data races [2, 3, 10, 11, 44,
70] (Section 2). These languages remain useful, nonetheless,
by providing clear, intuitive semantics for programs that are
free of data races. For data-race-free programs, DRF0 guar-
antees not only SC but also serializability of synchronization-
free regions (SFRs) [3, 12, 44, 45, 54]. Our goal in this work
is to develop a mechanism that equips present and future
languages with similarly clear, intuitive semantics even for
programs that permit data races.

One way to deal with data races is to detect problematic
data races and halt the execution with an exception when
one occurs [24, 44, 47]. Problematic data races are ones that
may violate a useful semantic property, like sequential consis-
tency [24] or SFR serializability [44]. Exceptional semantics
for data races have several benefits [44]. First, they simplify
programming language specifications because data races have
clear semantics, and an execution is either correct or it throws
an exception. Second, they make software safer by limiting
the possible effects of data races. Third, they permit aggres-
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sive optimizations within SFRs that might introduce incorrect
behavior with weaker data race semantics. Fourth, they help
debug problematic data races by making them a fail-stop con-
dition. Treating problematic data races as exceptions requires
a mechanism that dynamically detects those races precisely
(no false positives) and is efficient enough for always-on
use. In this work, we develop a mechanism that meets this
requirement by detecting problematic races efficiently and
precisely.

Existing approaches. Existing sound1 and precise dynamic
data race detectors slow program executions by an order
of magnitude or more in order to determine which con-
flicting accesses are concurrent according to the happens-
before relation [24, 27, 38, 55] (Section 2). Other prior tech-
niques avoid detecting happens-before races soundly, instead
detecting conflicts only between operations in concurrent
SFRs [23, 44, 47]. Every SFR conflict corresponds to a data
race, but not every data race corresponds to an SFR conflict.
Detecting SFR conflicts provides the useful property that an
execution with no region conflicts corresponds to a serializa-
tion of SFRs. This guarantee extends to executions with data
races the strong property that DRF0 already provides for data-
race-free executions [2, 3, 12, 45]. Unfortunately, existing
region conflict detectors are impractical, relying on custom
hardware or slowing programs substantially [23, 44, 47].

Our Approach
This work aims to provide a practical, efficient, software-
only region conflict detector that is useful for giving data
races clear semantics. Our key insight is that tracking the
last readers of each shared variable is not necessary for
sound and precise region conflict detection. As a result of
this insight, we introduce a novel sound and precise region
conflict detection analysis called Valor. Valor records the
last region to write each shared variable, but it does not
record the last region(s) to read each variable. Instead, it
logs information about each read in thread-local logs, so
that each thread can later validate its logged reads to ensure
that no conflicting writes occurred in the meantime. Valor
thus detects write–write and write–read conflicts eagerly (i.e.,
at the second conflicting access), but it detects read–write
conflicts lazily.

We note that some software transactional memory (STM)
systems make use of similar insights about eager and lazy
conflict detection, although STM mechanisms need not be
precise (Section 7.3). Our work shows how to apply insights
about mixed eager–lazy conflict detection to precise region
conflict detection.

To better understand the characteristics and performance
of Valor, we have also developed FastRCD, which is an
adaptation of the efficient FastTrack happens-before data
race detector [27] for region conflict detection. FastRCD

1 In this paper, a dynamic analysis is sound if it never incurs false negatives
for the analyzed execution.

does not track the happens-before relation; instead it tracks
regions that last wrote and read each shared variable. As such,
FastRCD provides somewhat lower overhead than FastTrack
but still incurs most of FastTrack’s costs by tracking the last
reader(s) to each shared variable.

We have implemented FastRCD and Valor, as well as
the state-of-the-art FastTrack analysis [27], in a Java virtual
machine (JVM) that has performance competitive with com-
mercial JVMs (Appendix E). We evaluate and compare the
performance, runtime characteristics, data race detection cov-
erage, scalability, and space overheads of these three analyses
on a variety of large, multithreaded Java benchmarks. Valor
incurs the lowest overheads of any sound, precise, software
conflict detection system that we are aware of, adding only
99% average overhead.

By contrast, our implementation of FastTrack adds 342%
average overhead over baseline execution, which is com-
parable to 750% overhead reported by prior work [27]—
particularly in light of implementation differences (Sec-
tion 6.2 and Appendix D). FastRCD incurs most but not
all of FastTrack’s costs, adding 267% overhead on average.

Valor is not only substantially faster than existing ap-
proaches that provide strong semantic guarantees,2 but its
<2X average slowdown is fast enough for pervasive use dur-
ing development and testing, including end-user alpha and
beta tests, and potentially in some production systems. Valor
thus represents a significant advancement of the state of the
art: the first approach with under 100% time overhead on
commodity systems that provides useful, strong semantic
guarantees to existing and future languages for executions
both with and without data races.

2. Background and Motivation
Assuming system support for sound, precise data race detec-
tion enables a language specification to clearly and simply
define the semantics of data races, but sound and precise dy-
namic data race detection adds high run-time overhead [27].
An alternative is to detect conflicts between synchronization-
free regions (SFRs), which also provides guarantees about
the behavior of executions with data races, but existing ap-
proaches rely on custom hardware [44, 47, 65] or add high
overhead [23].

Providing a strong execution model. Modern programming
languages including Java and C++ have memory models
that are variants of the data-race-free-0 (DRF0) memory
model [3, 12, 45], ensuring data-race-free (DRF) executions
are sequentially consistent [39] (SC). As a result, DRF0
also provides the stronger guarantee that DRF executions
correspond to a serialization of SFRs [2, 3, 44].

Unfortunately, DRF0 provides no semantics for executions
with data races; the behavior of a C++ program with a

2 In fairness, FastTrack’s guarantees and goals differ from Valor and Fast-
RCD’s: unlike Valor and FastRCD, FastTrack detects every data race in an
execution.
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data race is undefined [12]. A recent study emphasizes the
difficulty of reasoning about data races, showing that a C/C++
program with seemingly “benign” data races may behave
incorrectly due to compiler transformations or architectural
changes [10]. Java attempts to preserve memory and type
safety for executions with data races by avoiding “out-of-
thin-air” values [45], but researchers have shown that it is
difficult to prohibit such values without precluding common
compiler optimizations [13, 70].

These deficiencies of DRF0 create an urgent need for
systems to clearly and simply define the semantics of exe-
cutions with data races and provide strong guarantees about
their behavior [2, 11, 18]. Recent work gives fail-stop se-
mantics to data races, treating a data race as an excep-
tion [18, 24, 44, 47, 65]. Our work is motivated by these
efforts, and our techniques also give data races fail-stop se-
mantics.

Detecting data races soundly and precisely. Sound and pre-
cise dynamic data race detection enables a language to define
the semantics of data races by throwing an exception for
every data race. To detect races soundly and precisely, an
analysis must track the happens-before relation [38]. Analy-
ses typically track happens-before using vector clocks; each
vector clock operation takes time proportional to the number
of threads. In addition to tracking happens-before, an analysis
must track when each thread last wrote and read each shared
variable, in order to check that each access happens after
every earlier conflicting access. FastTrack reduces the cost
of tracking last accesses, without missing any data races, by
tracking a single last writer and, in many cases, a single last
reader [27].

Despite this optimization, FastTrack still slows executions
by nearly an order of magnitude on average [27]. Its high
run-time overhead is largely due to the cost of tracking shared
variable accesses, especially reads. A program’s threads
may perform reads concurrently, but FastTrack requires each
thread to update shared metadata on each read. These updates
effectively convert the reads into writes that cause remote
cache misses. Moreover, FastTrack must synchronize to
ensure that its happens-before checks and metadata updates
happen atomically. These per-read costs fundamentally limit
FastTrack and related analyses.

Detecting region conflicts. Given the high cost of sound,
precise happens-before data race detection, prior work has
sought to detect the subset of data races that may violate seri-
alizability of an execution’s SFRs—SFR serializability being
the same guarantee provided by DRF0 for DRF executions.
Several techniques detect conflicts between operations in
SFRs that overlap in time [23, 44, 47]. SFR conflict detection
yields the following guarantees: a DRF execution produces
no conflicts; any conflict is a data race; and a conflict-free
execution is a serialization of SFRs.

Prior work on Conflict Exceptions detects conflicts be-
tween overlapping SFRs [44] and treats conflicts as excep-

tions; these guarantees are essentially the same as those pro-
vided by our work. Conflict Exceptions achieves high per-
formance via hardware support for conflict detection that
augments existing cache coherence mechanisms. However,
its hardware support has several drawbacks. First, it adds
complexity to the cache coherence mechanism. Second, each
cache line incurs a high space overhead for storing meta-
data. Third, sending larger coherence messages that include
metadata leads to coherence network congestion and requires
more bandwidth. Fourth, cache evictions and synchronization
operations for regions with evictions become more expensive
because of the need to preserve metadata by moving it to and
from memory. Fifth, requiring new hardware precludes use
in today’s systems.

DRFx detects conflicts between regions that are syn-
chronization free but also bounded, i.e., every region has
a bounded maximum number of instructions that it may exe-
cute [47]. Bounded regions allow DRFx to use simpler hard-
ware than Conflict Exceptions [47, 65], but DRFx cannot
detect all violations of SFR serializability, although it guaran-
tees SC for conflict-free executions. Like Conflict Exceptions,
DRFx is inapplicable to today’s systems because it requires
hardware changes.

IFRit detects data races by detecting conflicts between
overlapping interference-free regions (IFRs) [23]. An IFR is
a region of one thread’s execution that is associated with a
particular variable, during which another thread’s read and/or
write to that variable is a data race. IFRit relies on whole-
program static analysis to place IFR boundaries conserva-
tively, so IFRit is precise (i.e., no false positives). Conser-
vatism in placing boundaries at data-dependent branches,
external functions calls, and other points causes IFRit to miss
some IFR conflicts. In contrast to our work, IFRit does not
aim to provide execution model guarantees, instead focusing
on precisely detecting as many races as possible.

The next section introduces our analyses that are entirely
software based (like IFRit) and detect conflicts between full
SFRs (like Conflict Exceptions).

3. Efficient Region Conflict Detection
The goal of this work is to develop a region conflict detection
mechanism that is useful for providing guarantees to a pro-
gramming language implementation, and is efficient enough
for always-on use. (We defer discussing what defines a re-
gion’s boundaries until Section 3.3.1. Briefly, our analyses
can use regions demarcated by all synchronization operations,
or by synchronization “release” operations only.)

We explore two different approaches for detecting region
conflicts. The first approach is FastRCD, which, like Fast-
Track [27], uses epoch optimizations and eagerly detects
conflicts at conflicting accesses. We have developed Fast-
RCD in order to better understand the characteristics and
performance of a region conflict detector based on Fast-
Track’s approach. Despite FastRCD being a natural extension
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of the fastest known sound and precise dynamic data race
detection analysis, Section 6.2 experimentally shows that
FastRCD’s need to track last readers imposes overheads that
are similar to FastTrack’s.

In response to FastRCD’s high overhead, we develop
Valor,3 which is the main contribution of this work. Valor
detects write–write and write–read conflicts eagerly as in Fast-
RCD. The key to Valor is that it detects read–write conflicts
lazily, effectively avoiding the high cost of tracking last-
reader information. In Valor, each thread logs read operations
locally. At the end of a region, the thread validates its read log,
checking for read–write conflicts between its reads and any
writes in other threads’ ongoing regions. By lazily checking
for these conflicts, Valor can provide fail-stop semantics
without hardware support and with overheads far lower than
even our optimized FastRCD implementation.

Section 3.1 describes the details of FastRCD and the
fundamental sources of high overhead that eager conflict
detection imposes. Section 3.2 then describes Valor and
the implications of lazy conflict detection. Sections 3.3 and
4 describe extensions and optimizations for FastRCD and
Valor.

3.1 FastRCD: Detecting Conflicts Eagerly in Software
This section presents FastRCD, a new software-only dynamic
analysis for detecting region conflicts. FastRCD reports a
conflict when a memory access executed by one thread
conflicts with a memory access that was executed by another
thread in a region that is ongoing. It provides essentially
the same semantics as Conflict Exceptions [44] but without
hardware support.

In FastRCD, each thread keeps track of a clock c that starts
at 0 and is incremented at every region boundary. This clock
is analogous to the logical clocks maintained by FastTrack to
track the happens-before relation [27, 38].

FastRCD uses epoch optimizations based on FastTrack’s
optimizations [27] for efficiently tracking read and write
metadata. It keeps track of the single last region to write
each shared variable, and the last region or regions to read
each shared variable. For each shared variable x, FastRCD
maintains x’s last writer region using an epoch c@t: the thread
t and clock c that last wrote to x. When x has no concurrent
reads from overlapping regions, FastRCD represents the last
reader as an epoch c@t. Otherwise, FastRCD keeps track of
last readers in the form of a read map that maps threads to
the clock values c of their last read to x. We use the following
notations to help with exposition:

clock(T) – Returns the current clock c of thread T.

epoch(T) – Returns an epoch c@T, where c represents the
ongoing region in thread T.

Wx – Represents last writer information for variable x in
the form of an epoch c@t.

3 Valor is an acronym for Validating anti-dependences lazily on release.

Rx – Represents a read map for variable x of entries t→ c.
Rx[T] returns the clock value c when T last read x (or 0
if not present in the read map).

Our algorithms use T for the current thread, and t and t’ for
other threads. For clarity, we use a common notation for read
epochs and read maps; a one-entry read map is a read epoch,
and an empty read map is the initial-state epoch 0@0.

Algorithms 1 and 2 show FastRCD’s analysis at program
writes and reads, respectively. At a write by thread T to
program variable x, the analysis first checks if the last writer
epoch matches the current epoch, indicating an earlier write
in the same region, in which case the analysis does nothing
(line 1). Otherwise, it checks for conflicts with the previous
write (lines 3–4) and reads (lines 5–7). Finally, it updates the
metadata to reflect the current write (lines 8–9).

Algorithm 1 WRITE [FastRCD]: thread T writes variable x
1: ifWx 6= epoch(T) then . Write in same region
2: let c@t←Wx

3: if c = clock(t) then . t’s region is ongoing
4: Conflict! . Write–write conflict detected

5: for all t’→ c’ ∈ Rx do
6: if c’ = clock(t’) then
7: Conflict! . Read–write conflict detected

8: Wx ← epoch(T) . Update write metadata
9: Rx ← ∅ . Clear read metadata

At a read, the instrumentation first checks for an earlier
read in the same region, in which case the analysis does
nothing (line 1). Otherwise, it checks for a conflict with a
prior write by checking if the last writer thread t is still
executing its region c (lines 3–4). Finally, the instrumentation
updates T’s clock in the read map (line 5).

Algorithm 2 READ [FastRCD]: thread T reads variable x
1: ifRx[T] 6= clock(T) then . Read in same region
2: let c@t←Wx

3: if c = clock(t) then . t’s region is ongoing
4: Conflict! . Write–read conflict detected

5: Rx[T]← clock(T) . Update read map

FastRCD’s analysis at a read or write must execute atom-
ically. Whenever the analysis needs to update x’s metadata
(Wx and/orRx), it “locks” x’s metadata for the duration of
the action (not shown in the algorithms). Because the analy-
ses presented in Algorithms 1 and 2 read and write multiple
metadata words, the analyses are not amenable to a “lock-free”
approach that updates the metadata using a single atomic op-
eration.4 Note that the analysis and program memory access

4 Recent Intel processors provide Transactional Synchronization Extensions
(TSX) instructions, which support multi-word atomic operations via hard-
ware transactional memory [73]. However, recent work shows that existing
TSX implementations incur high per-transaction costs [48, 60].
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need not execute together atomically because the analysis
need not detect the order in which conflicting accesses occur,
just that they conflict.

FastRCD soundly and precisely detects every region con-
flict just before the conflicting access executes. FastRCD
guarantees that region-conflict-free executions are region se-
rializable, and that every region conflict is a data race. It
suffers from high overheads (Section 6.2) because it unavoid-
ably performs expensive analysis at reads. Multiple threads’
concurrent regions commonly read the same shared variable;
updating per-variable metadata at program reads leads to
communication and synchronization costs not incurred by the
original program execution.

3.2 Valor: Detecting Read–Write Conflicts Lazily
This section describes the design of Valor, a novel, software-
only region conflict detector that eliminates the costly analy-
sis on read operations that afflicts FastRCD (and FastTrack).
Like FastRCD, Valor reports a conflict when a memory access
executed by one thread conflicts with a memory access previ-
ously executed by another thread in a region that is ongoing.
Valor soundly and precisely detects conflicts that correspond
to data races and provides the same semantic guarantees as
FastRCD. Valor detects write–read and write–write conflicts
exactly as in FastRCD, but detects read–write conflicts differ-
ently. Each thread locally logs its current region’s reads and
detects read–write conflicts lazily when the region ends. Valor
eliminates the need to track the last reader of each shared
variable explicitly, avoiding high overhead.

3.2.1 Overview
During a region’s execution, Valor tracks each shared vari-
able’s last writer only. Last writer tracking is enough to ea-
gerly detect write–write and write–read conflicts. Valor does
not track each variable’s last readers, so it cannot detect a
read–write conflict at the conflicting write. Instead, Valor de-
tects a read–write conflict lazily, when the (conflicting read’s)
region ends.

This section presents Valor so that it tracks each shared
variable’s last writer using an epoch, just as for FastRCD.
Section 4 presents an alternate design of Valor that represents
the last writer differently using ownership information (for
implementation reasons). Conceptually, the two designs work
in the same way, e.g., the examples in this section apply to
the design in Section 4.

Write–write and write–read conflicts. Figure 1(a) shows an
example execution with a write–read conflict on the shared
variable x. Dashed lines indicate region boundaries, and the
labels j-1, j, k-1, etc. indicate threads’ clocks, incremented
at each region boundary. The grey text above and below
each program memory access (e.g., 〈v, p@T0〉) shows x’s last
writer metadata. Valor stores a tuple 〈v, c@t〉 that consists of
a version, v, which the analysis increments on a region’s first
write to x, and the epoch c@t of the last write to x. Valor needs
versions to detect conflicts precisely, as we explain shortly.

Thread T1 Thread T2
j-1

j

wr x
<v+1, j@T1>

wr/rd x

k-1

k

conflict 
detected

<v, p@T0>

<v+1, j@T1>

(a)

Thread T1 Thread T2

j-1

j

rd x
<v, p@T0>

wr x

j+1

k-1

k

conflict on x 
detected

<v, p@T0>

<v, p@T0>

<v+1, k@T2>

log <x, v>

read
validation

(b)

Figure 1. (a) Like FastRCD, Valor eagerly detects a conflict at
T2’s access because the last region to write x is ongoing. (b) Unlike
FastRCD, Valor detects read–write conflicts lazily. During read
validation, T1 detects a write to x since T1’s read of x.

In the example, T1’s write to x triggers an update of its last
writer metadata to 〈v+1, j@T1〉. (The analysis does not detect
a write–write conflict at T1’s write because the example
assumes that T0’s region p, which is not shown, has ended.)
At T2’s write or read to x, the analysis detects that T1’s
current region is j and that x’s last writer epoch is j@T1.
These conditions imply that T2’s access conflicts with T1’s
ongoing region, so T2 reports a conflict.

Read–write conflicts. Figure 1(b) shows an example read–
write conflict. At the read of x, T1 records the read in its
thread-local read log. A read log entry, 〈x, v〉, consists of the
address of variable x and x’s current version, v.

T2 then writes x, which is a read–write conflict because
T1’s region j is ongoing. However, the analysis cannot detect
the conflict at T2’s write, because Valor does not track x’s last
readers. Instead, the analysis updates the last writer metadata
for x, including incrementing its version to v+1.

When T1’s region j ends, Valor validates j’s reads to
lazily detect read–write conflicts. Read validation compares
each entry 〈x, v〉 in T1’s read log with x’s current version.
In the example, x’s version has changed to v+1, and the
analysis detects a read–write conflict. Note that even with
lazy read–write conflict detection, Valor guarantees that each
conflict-free execution is region serializable. In contrast to
eager detection, Valor’s lazy detection cannot deliver precise
exceptions. An exception for a read–write conflict is only
raised at the end of the region executing the read, not at the
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Thread T1 Thread T2

j-1

j

rd x
<v, p@T0>

j+1

k-1

k

no conflict

<v, p@T0>

<v+1, j@T1>

wr x
<v, p@T0>

log <x, v>

k+1

read
validation

(a)

Thread T1 Thread T2

j-1

j

rd x
<v, p@T0>

wr x

j+1

k-1

k

conflict 
detected

<v, p@T0>

<v, p@T0>

<v+1, k@T2>

<v+2, j@T1>

wr x
<v+1, k@T2>

log <x, v>

k+1

read
validation

(b)

Figure 2. Valor relies on versions to detect conflicts soundly and
precisely.

conflicting write, which Section 3.2.3 argues is acceptable
for providing strong behavior guarantees.

Valor requires versions. Tracking epochs alone is insuffi-
cient: Valor’s metadata must include versions. Let us assume
for exposition’s sake that Valor tracked only epochs and not
versions, and it recorded epochs instead of versions in read
logs, e.g., 〈x, p@T0〉 in Figure 1(b). In this particular case,
Valor without versions correctly detects the read–write con-
flict in Figure 1(b).

However, in the general case, Valor without versions is
either unsound or imprecise. Figures 2(a) and 2(b) illustrate
why epochs alone are insufficient. In Figure 2(a), no conflict
exists. The analysis should not report a conflict during read
validation, because even though x’s epoch has changed from
the value recorded in the read log, T1 itself is the last writer.

In Figure 2(b), T1 is again the last writer of x, but in this
case, T1 should report a read–write conflict because of T2’s
intervening write. (No write–write conflict exists: T2’s region
k ends before T1’s write.) However, using epochs alone, Valor
cannot differentiate these two cases during read validation.

Thus, Valor uses versions to differentiate cases like Fig-
ures 2(a) and 2(b). Read validation detects a conflict for x if
(1) its version has changed and its last writer thread is not the
current thread or (2) its version has changed at least twice,5

definitely indicating intervening write(s) by other thread(s).
Read validation using versions detects the read–write

conflict in Figure 2(b). Although the last writer is the current
region (j@T1), the version has changed from v recorded in
the read log to v+2, indicating an intervening write from a
remote thread. Read validation (correctly) does not detect a
conflict in Figure 2(a) because the last writer is the current
region, and the version has only changed from v to v+1.

The rest of this section describes the Valor algorithm in detail:
its actions at reads and writes and at region end, and the
guarantees it provides.

3.2.2 Analysis Details
Our presentation of Valor uses the following notations, some
of which are the same as or similar to FastRCD’s notations:

clock(T) – Represents the current clock c of thread T.

epoch(T) – Represents the epoch c@T, where c is the
current clock of thread T.

Wx – Represents last writer metadata for variable x, as a
tuple 〈v, c@t〉 consisting of the version v and epoch c@t.

T.readLog – Represents thread T’s read log. The read log
contains entries of the form 〈x, v〉, where x is the address
of a shared variable and v is a version. The read log affords
flexibility in its implementation and it can be implemented
as a sequential store buffer (permitting duplicates) or as a
set (prohibiting duplicates).

As in Section 3.1, we use T for the current thread, and t and
t’ for other threads.

Analysis at writes. Algorithm 3 shows the analysis that
Valor performs at a write. It does nothing if x’s last writer
epoch matches the current thread T’s current epoch (line 2),
indicating that T has already written to x. Otherwise, the
analysis checks for a write–write conflict (lines 3–4) by
checking if c = clock(t), indicating that x was last written by
an ongoing region in another thread (note that this situation
implies t 6= T). Finally, the analysis updates Wx with an
incremented version and the current thread’s epoch (line 5).

Algorithm 3 WRITE [Valor]: thread T writes variable x
1: let 〈v, c@t〉 ←Wx

2: if c@t 6= epoch(T) then . Write in same region
3: if c = clock(t) then
4: Conflict! . Write–write conflict detected
5: Wx ← 〈v+1, epoch(T)〉 . Update write metadata

5 Note that a region increments x’s version only the first time it writes to x
(line 2 in Algorithm 3).
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Analysis at reads. Algorithm 4 shows Valor’s read analysis.
The analysis first checks for a conflict with a prior write
in another thread’s ongoing region (lines 2–3). Then, the
executing thread adds an entry to its read log (line 4).

Algorithm 4 READ [Valor]: thread T reads variable x
1: let 〈v, c@t〉 ←Wx

2: if t 6= T ∧ c = clock(t) then
3: Conflict! . Write–read conflict detected
4: T.readLog← T.readLog ∪ {〈x, v〉}

Unlike FastRCD’s analysis at reads (Algorithm 2), which
updates FastRCD’s read map Rx, Valor’s analysis at reads
does not update any shared metadata. Valor thus avoids
the synchronization and communication costs that FastRCD
incurs updating read metadata.

Analysis at region end. Valor detects read–write conflicts
lazily at region boundaries, as shown in Algorithm 5. For
each entry 〈x, v〉 in the read log, the analysis compares v with
x’s current version v’. Differing versions are a necessary but
insufficient condition for a conflict. If x was last written by
the thread ending the region, then a difference of more than
one (i.e., v’ ≥ v+2) is necessary for a conflict (line 3).

Algorithm 5 REGION END [Valor]: thread T executes
region boundary

1: for all 〈x, v〉 ∈ T.readLog do
2: let 〈v’, c@t〉 ←Wx

3: if (v’ 6= v ∧ t 6= T) ∨ v’ ≥ v + 2 then
4: Conflict! . Read–write conflict detected
5: T.readLog← ∅

We note that when Valor detects a write–write or write–
read conflict, it is not necessarily the first conflict to occur:
there may be an earlier read–write conflict waiting to be
detected lazily. To report such read–write conflicts first, Valor
triggers read validation before reporting a detected write–
write or write–read conflict.

Atomicity of analysis operations. Similar to FastTrack and
FastRCD, Valor’s analysis at writes, reads, and region bound-
aries must execute atomically in order to avoid missing con-
flicts and corrupting analysis metadata. Unlike FastTrack and
FastRCD, Valor can use a lock-free approach because the
analysis accesses a single piece of shared state, Wx. The
write analysis updatesWx (line 5 in Algorithm 3) using an
atomic operation (not shown). If the atomic operation fails
because another thread updatesWx concurrently, the write
analysis restarts from line 1. At reads and at region end, the
analysis does not update shared state, so it does not need
atomic operations.

3.2.3 Providing Valor’s Guarantees
Like FastRCD, Valor soundly and precisely detects region
conflicts. Appendix A proves that Valor is sound and precise.

Since Valor detects read–write conflicts lazily, it cannot
provide precise exceptions. A read–write conflict will not be
detected at the write, but rather at the end of the region that
performed the read.

Deferred detection does not compromise Valor’s semantic
guarantees as long as the effects of conflicting regions do not
become externally visible. A region that performs a read that
conflicts with a later write can behave in a way that would
be impossible in any unserializable execution. We refer to
such regions as “zombie” regions, borrowing terminology
from software transactional memory (STM) systems that
experience similar issues by detecting conflicts lazily [34].
To prevent external visibility, Valor must validate a region’s
reads before all sensitive operations, such as system calls
and I/O. Similarly, a zombie region might never end (e.g.,
might get stuck in an infinite loop), even if such behavior
is impossible under any region serializable execution. To
account for this possibility, Valor must periodically validate
reads in a long-running region. Other conflict and data race
detectors have detected conflicts asynchronously [21, 47, 65],
providing imprecise exceptions and similar guarantees.

In an implementation for a memory- and type-unsafe
language such as C or C++, a zombie region could perform
arbitrary behavior such as corrupting arbitrary memory. This
issue is problematic for lazy STMs that target C/C++, since
a transaction can corrupt memory arbitrarily, making it
impossible to preserve serializability [20]. The situation is
not so dire for Valor, which detects region conflicts in order
to throw conflict exceptions, rather than to preserve region
serializability. As long as a zombie region does not actually
corrupt Valor’s analysis state, read validation will be able to
detect the conflict when it eventually executes—either when
the region ends, at a system call, or periodically (in case of
an infinite loop).

Our implementation targets a safe language (Java), so a
zombie region’s possible effects are safely limited.

3.3 Extending the Region Conflict Detectors
This section describes extensions that apply to both FastRCD
and Valor.

3.3.1 Demarcating Regions
The descriptions of FastRCD and Valor so far do not define
the exact boundaries of regions. Synchronization-free regions
(SFRs) are one possible definition that treats each synchro-
nization operation as a region boundary [44, 47]. We observe
that it is also correct to bound regions only at synchroniza-
tion release operations (e.g., lock release, monitor wait, and
thread fork) because region conflicts are still guaranteed to
be true data races. We call these regions release-free regions
(RFRs).

Figure 3 illustrates the difference between SFRs and RFRs.
We note that the boundaries of SFRs and RFRs are determined
dynamically (at run time) by the synchronization operations
that execute, as opposed to being determined statically at
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Figure 3. Synchronization- and release-free regions.

compile time. An RFR is at least as large as an SFR, so an
RFR conflict detector detects at least as many conflicts as
an SFR conflict detector. Larger regions potentially reduce
fixed per-region costs, particularly the cost of updating writer
metadata on the first write in each region.

There are useful analogies between RFR conflict detection
and prior work. Happens-before data race detectors increment
their epochs at release operations only [27, 55], and some
prior work extends redundant instrumentation analysis past
acquire, but not release, operations [30].

Correctness of RFR conflict detection. Recall that Valor
and FastRCD define a region conflict as an access executed
by one thread that conflicts with an already-executed access
by another thread in an ongoing region. This definition is in
contrast to an overlap-based region conflict definition that
reports a conflict whenever two regions that contain conflict-
ing accesses overlap at all. Both of these definitions support
conflict detection between SFRs with no false positives. How-
ever, only the definition that we use for Valor and FastRCD
supports conflict detection between RFRs without false data
races; an overlap-based definition of RFR conflicts would
yield false races. Appendix B proves the absence of false data
races for our RFR conflict detection scheme.

3.3.2 Reporting Conflicting Sites
When a program executing under the “region conflict excep-
tion” memory model generates an exception, developers may
want to know more about the conflict. We extend FastRCD
and Valor to (optionally) report the source-level sites, which
consist of the method and bytecode index (or line number),
of both accesses involved in a conflict.

Data race detectors such as FastTrack report sites involved
in data races by recording the access site alongside every
thread–clock entry. Whenever FastTrack detects a conflict,
it reports the corresponding recorded site as the first access
and reports the current thread’s site as the second access.
Similarly, FastRCD can record the site for every thread–clock
entry, and reports the corresponding site for a region conflict.

By recording sites for the last writer, Valor can report the
sites for write–write and write–read conflicts. To report sites
for read–write conflicts, Valor stores the read site with each
entry in the read log. When it detects a conflict, Valor reports
the conflicting read log entry’s site and the last writer’s site.

4. Alternate Metadata and Analysis for Valor
As presented in the last section, Valor maintains an epoch c@t
(as well as a version v) for each variable x. An epoch enables
a thread to query whether an ongoing region has written x.
An alternate way to support that query is to track ownership:
for each variable x, maintain the thread t, if any, that has an
ongoing region that has written x.

This section proposes an alternate design for Valor that
tracks ownership instead of using epochs. For clarity, the
rest of this paper refers to the design of Valor described
in Section 3.2 as Valor-E (Epoch) and the alternate design
introduced here as Valor-O (Ownership).

We implement and evaluate Valor-O for implementation-
specific reasons: (1) our implementation targets IA-32 (Sec-
tion 5); (2) metadata accesses must be atomic (Section 3.2.2);
and (3) Valor-O enables storing metadata (ownership and
version) in 32 bits.

We do not expect either design to perform better in
general. Valor-O consumes less space and uses slightly
simpler conflict checks, but it incurs extra costs to maintain
ownership: in order to clear each written variable’s ownership
at region end, each thread must maintain a “write set” of
variables written by its current region.

Metadata representation. Valor-O maintains a last writer
tuple 〈v, t〉 for each shared variable x. The version v is the
same as Valor-E’s version. The thread t is the “owner” thread,
if any, that is currently executing a region that has written x;
otherwise t is φ.

Analysis at writes. Algorithm 6 shows Valor-O’s analysis at
program writes. If T is already x’s owner, it can skip the rest
of the analysis since the current region has already written
x (line 2). Otherwise, if x is owned by a concurrent thread,
it indicates a region conflict (lines 3–4). T updates x’s write
metadata to indicate ownership by T and to increment the
version number (line 5).

Algorithm 6 WRITE [Valor-O]: thread T writes variable x
1: let 〈v, t〉 ←Wx

2: if t 6= T then . Write in same region
3: if t 6= φ then
4: Conflict! . Write–write conflict detected
5: Wx ← 〈v+1,T〉 . Update write metadata
6: T.writeSet← T.writeSet ∪ {x}

A thread relinquishes ownership of a variable only at the
next region boundary. To keep track of all variables owned by
a thread’s region, each thread T maintains a write set, denoted
by T.writeSet (line 6), which contains all shared variables
written by T’s current region.

Analysis at reads. Algorithm 7 shows Valor-O’s analysis
at program reads, which checks for write–read conflicts by
checking x’s write ownership (lines 2– 3), but otherwise is
the same as Valor-E’s analysis (Algorithm 4).
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Algorithm 7 READ [Valor-O]: thread T reads variable x
1: let 〈v, t〉 ←Wx

2: if t 6= φ ∧ t 6= T then
3: Conflict! . Write–read conflict detected
4: T.readLog← T.readLog ∪ {〈x, v〉}

Analysis at region end. Algorithm 8 shows Valor-O’s anal-
ysis for validating reads at the end of a region. To check for
read–write conflicts, the analysis resembles Valor-E’s analy-
sis except that it checks each variable’s owner thread, if any,
rather than its epoch (line 3).

Algorithm 8 REGION END [Valor-O]: thread T executes
region boundary

1: for all 〈x, v〉 ∈ T.readLog do
2: let 〈v’, t〉 ←Wx

3: if (v’ 6= v ∧ t 6= T) ∨ v’ ≥ v + 2 then
4: Conflict! . Read–write conflict detected
5: T.readLog← ∅
6: for all x ∈ T.writeSet do
7: let 〈v, t〉 ←Wx . Can assert t = T
8: Wx ← 〈v, φ〉 . Remove ownership by T
9: T.writeSet← ∅

Finally, the analysis at region end processes the write set
by setting the ownership of each owned variable to φ (lines 6–
8) and then clearing the write set (line 9).

5. Implementation
We have implemented FastTrack, FastRCD, and Valor in
Jikes RVM 3.1.3 [6],6 a Java virtual machine that performs
competitively with commercial JVMs (Appendix E). Our
implementations share features as much as possible: they
instrument the same accesses, and FastRCD and Valor demar-
cate regions in the same way. As Section 4 mentioned, we
implement the Valor-O design of Valor.

We have made our implementations publicly available.7

5.1 Features Common to All Implementations
The implementations target IA-32 and extend Jikes RVM’s
baseline and optimizing dynamic compilers, to instrument
synchronization operations and memory accesses. The im-
plementations instrument all code in the application context,
including application code and library code (e.g., java.*)
called from application code.8

Instrumenting program operations. Each implementation
instruments synchronization operations to track happens-
before (FastTrack) or to demarcate regions (FastRCD and

6 http://www.jikesrvm.org
7 http://www.jikesrvm.org/Resources/ResearchArchive/
8 Jikes RVM is itself written in Java, so both its code and the application
code call the Java libraries. We have modified Jikes RVM to compile and
invoke separate versions of the libraries for application and JVM contexts.

Valor). Acquire operations are lock acquire, monitor resume,
thread start and join, and volatile read. Release operations
are lock release, monitor wait, thread fork and terminate, and
volatile write. By default, FastRCD and Valor detect conflicts
between release-free regions (RFRs; Section 3.3.1) and add
no instrumentation at acquires.

The compilers instrument each load and store to a scalar
object field, array element, or static field, except in a few
cases: (1) final fields, (2) volatile accesses (which we treat as
synchronization operations), (3) accesses to a few immutable
library types (e.g., String and Integer), and (4) redundant
instrumentation points, as described next.

Eliminating redundant instrumentation. We have imple-
mented an intraprocedural dataflow analysis to identify re-
dundant instrumentation points. Instrumentation on an access
to x is redundant if it is definitely preceded by an access to x
in the same region (cf. [15, 30]). Specifically, instrumentation
at a write is redundant if preceded by a write, and instrumen-
tation at a read is redundant if preceded by a read or write.
The implementations eliminate redundant instrumentation
by default, which we find reduces the run-time overheads
added by FastTrack, FastRCD, and Valor by 3%, 4%, and
5%, respectively (results not shown).

Tracking last accesses and sites. The implementations add
last writer and/or reader information to each scalar object
field, array element, and static field. The implementations lay
out a field’s metadata alongside the fields; they store an array
element’s metadata in a metadata array reachable from the
array’s header.

The implementations optionally include site tracking in-
formation with the added metadata. We evaluate data race
coverage with site tracking enabled, and performance with
site tracking disabled.

5.2 FastTrack and FastRCD
The FastRCD implementation shares many features with
our FastTrack implementation, which is faithful to prior
work’s implementation [27]. Both implementations incre-
ment a thread’s logical clock at each synchronization release
operation, and they track last accesses similarly. Both main-
tain each shared variable’s last writer and last reader(s) using
FastTrack’s epoch optimizations. In FastTrack, if the prior
read is an epoch that happens before the current read, the al-
gorithm continues using an epoch, and if not, it upgrades to a
read map. FastRCD uses a read epoch if the last reader region
has ended, and if not, it upgrades to a read map. Each read
map is an efficient, specialized hash table that maps threads
to clocks. We modify garbage collection (GC) to check each
variable’s read metadata and, if it references a read map, to
trace the read map.

We represent FastTrack’s epochs with two (32-bit) words.
We use 9 bits for thread identifiers, and 1 bit to differentiate a
read epoch from a read map. Encoding the per-thread clock
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with 22 bits to fit the epoch in one word would cause the
clock to overflow, requiring a separate word for the clock.

FastRCD represents epochs using a single 32-bit word.
FastRCD avoids overflow by leveraging the fact that it is
always correct to reset all clocks to either 0, which represents
a completed region, or 1, which represents an ongoing region.
To accommodate this strategy, we modify GC in two ways.
(1) Each full-heap GC sets every variable’s clock to 1 if it
was accessed in an ongoing region and to 0 otherwise. (2)
Each full-heap GC resets each thread’s clock to 1. Note that
FastTrack cannot use this optimization.

Despite FastRCD resetting clocks at every full-heap GC, a
thread’s clock may still exceed 22 bits. FastRCD could handle
overflow by immediately triggering a full-heap collection, but
we have not implemented that extension.

Atomicity of instrumentation. To improve performance, our
implementations of FastTrack and FastRCD eschew synchro-
nization on analysis operations that do not modify the last
writer or reader metadata. When metadata must be modified,
the instrumentation ensures atomicity of analysis operations
by locking one of the variable’s metadata words, by atomi-
cally setting it to a special value.

Tracking happens-before. In addition to instrumenting ac-
quire and release synchronization operations as described
in Section 5.1, FastTrack tracks the happens-before edge
from each static field initialization in a class initializer to
corresponding uses of that static field [41]. The FastTrack
implementation instruments static (including final) field loads
as an acquire of the same lock used for class initialization, in
order to track those happens-before edges.

5.3 Valor
We implement the Valor-O design of Valor described in
Section 4.

Tracking the last writer. Valor tracks the last writer in a
single 32-bit metadata per variable: 23 bits for the version
and 9 bits for the thread. Versions are unlikely to overflow
because variables’ versions are independent, unlike overflow-
prone clocks, which are updated at every region boundary.
We find that versions overflow in only two of our evaluated
programs. A version overflow could lead to a missed conflict
(i.e., a false negative) if the overflowed version happened to
match some logged version. To mitigate version overflow,
Valor could reset versions at full-heap GCs, as FastRCD
resets its clocks (Section 5.2).

Access logging. We implement each per-thread read log as
a sequential store buffer (SSB), so read logs may contain
duplicate entries. Each per-thread write set is also an SSB,
which is naturally duplicate free because only a region’s first
write to a variable updates the write set. To allow GC to trace
read log and write set entries, Valor records each log entry’s
variable x as a base object address plus a metadata offset.

Handling large regions. A region’s read log can become
arbitrarily long because an executed region’s length is not
bounded. Our Valor implementation limits a read log’s length
to 216 entries. When the log becomes full, Valor does read
validation and resets the log.

The write set can also overflow, which is uncommon since
it is duplicate free. When the write set becomes full (>216

elements), Valor conceptually splits the region by validating
and resetting the read log (necessary to avoid false positives)
and relinquishing ownership of variables in the write set.

6. Evaluation
This section evaluates and compares the performance and
other characteristics of our implementations of FastTrack,
FastRCD, and Valor.

6.1 Methodology
Benchmarks. We evaluate our implementations using large,
realistic, benchmarked applications: the DaCapo bench-
marks [8] with the large workload size, versions 2006-10-
MR2 and 9.12-bach (distinguished with names suffixed by
6 and 9); and fixed-workload versions of SPECjbb2000 and
SPECjbb2005.9 We omit single-threaded programs and pro-
grams that Jikes RVM 3.1.3 cannot execute.

Experimental setup. Each detector is built into a high-
performance JVM configuration that optimizes application
code adaptively and uses the default, high-performance, gen-
erational garbage collector (GC). All experiments use a 64
MB nursery for generational GC, instead of the default 32
MB, because the larger nursery improves performance of all
three detectors. The baseline (unmodified JVM) is negligibly
improved on average by using a 64 MB nursery.

We limit the GC to 4 threads instead of the default 64
because of a known scalability bottleneck in Jikes RVM’s
memory management toolkit (MMTk) [22]. Using 4 GC
threads improves performance for all configurations and the
baseline. This change leads to reporting higher overheads
for FastTrack, FastRCD, and Valor than with 64 GC threads,
since less time is spent in GC, so the time added for conflict
detection is a greater fraction of baseline execution time.

Platform. The experiments execute on an AMD Opteron
6272 system with eight 8-core 2.0-GHz processors (64 cores
total), running RedHat Enterprise Linux 6.6, kernel 2.6.32.

We have also measured performance on an Intel Xeon
platform with 32 cores, as summarized in Appendix C.

6.2 Run-Time Overhead
Figure 4 shows the overhead added over unmodified Jikes
RVM by the different implementations. Each bar is the
average of 10 trials and has a 95% confidence interval that
is centered at the mean. The main performance result in this
paper is that Valor incurs only 99% run-time overhead on

9 http://users.cecs.anu.edu.au/~steveb/research/
research-infrastructure/pjbb2005
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Figure 4. Run-time overhead added to unmodified Jikes RVM by our implementations of FastTrack, FastRCD, and Valor.

average, far exceeding the performance of any prior conflict
detection technique. We discuss Valor’s performance result
in context by comparing it to FastTrack and FastRCD.

FastTrack. Our FastTrack implementation adds 342% over-
head on average (i.e., 4.4X slowdown). Prior work reports an
8.5X average slowdown, but for a different implementation
and evaluation [27]. In Appendix D, we compare the two
FastTrack implementations in our evaluation setting.

FastRCD. Figure 4 shows that FastRCD adds 267% over-
head on average. FastRCD tracks accesses similarly to Fast-
Track, but has lower overhead than FastTrack because it does
not track happens-before. We measured that around 70% of
FastRCD’s cost comes from tracking last readers; the remain-
der comes from tracking last writers, demarcating regions,
and bloating objects with per-variable metadata. Observing
the high cost of last reader tracking motivates Valor’s lazy
read validation mechanism.

Valor. Valor adds only 99% overhead on average, which is
substantially lower than the overheads of any prior software-
only technique, including our FastTrack and FastRCD imple-
mentations. The most important reason for this improvement
is that Valor completely does away with expensive updates
and synchronization on last reader metadata. Valor consis-
tently outperforms FastTrack and FastRCD for all programs
except avrora9, for which FastTrack and FastRCD add partic-
ularly low overhead (for unknown reasons). Valor slightly out-
performs the baseline for xalan9; we believe this unintuitive
behavior is a side effect of reactive Linux thread scheduling
decisions, as others have observed [7].

6.3 Scalability
This section evaluates how the run-time overhead of Valor,
compared with FastRCD and FastTrack, varies with addi-

tional application threads—an important property as systems
increasingly provide more cores. We use the three evalu-
ated programs that support spawning a configurable num-
ber of application threads: lusearch9, sunflow9, and xalan9
(Table 1). Figure 5 shows the overhead for each program
over the unmodified JVM for 1–64 application threads, using
the configurations from Figure 4. Figure 5 shows that all
three techniques’ overheads scale with increasing numbers
of threads. Valor in particular provides similar or decreasing
overhead as the number of threads increases.

6.4 Space Overhead
This section evaluates the space overhead added by FastTrack,
FastRCD, and Valor. We measure an execution’s space usage
as the maximum memory used after any full-heap garbage
collection (GC). Our experiments use Jikes RVM configured
with the default, high-performance, generational GC and let
the GC adjust the heap size automatically (Section 6.1).

Figure 6 shows the space overhead, relative to baseline
(unmodified JVM) execution for the same configurations
as in Figure 4. We omit luindex9 since the unmodified
JVM triggers no full-heap GCs, although each of the three
analyses does. FastTrack, FastRCD, and Valor add 180%,
112%, and 98%, respectively. Unsurprisingly, FastTrack uses
more space than FastRCD since it maintains more metadata.
Valor sometimes adds less space than FastRCD; other times
it adds more. This result is due to the analyses’ different
approaches for maintaining read information: FastRCD uses
per-variable shared metadata, whereas Valor logs reads in
per-thread buffers. On average, Valor uses less memory than
FastRCD and a little more than half as much memory as
FastTrack.

251



1 2 4 8 16 32 64

0

100

200

300

400

500

600

O
v
e
r
h

e
a
d

 (
%

)

FastTrack

FastRCD

Valor

(a) lusearch9

1 2 4 8 16 32 64

0

100

200

300

400

500

600

700

800

(b) sunflow9

1 2 4 8 16 32 64

0

100

200

300

400

500

600

700

800

900

(c) xalan9

Figure 5. Run-time overheads of the configurations from Figure 4, for 1–64 application threads. The legend applies to all graphs.

eclipse6

hsqldb6

lusearch6

xalan6

avrora9

jython9

lusearch9

pmd9
sunflow9

xalan9

pjbb2000

pjbb2005

geomean

0

100

200

300

M
a

x
im

u
m

 m
em

o
ry

 o
v

er
h

ea
d

 (
%

)

FastTrack

FastRCD

Valor

Figure 6. Space overheads of the configurations from Figure 4.

6.5 Run-Time Characteristics
Table 1 characterizes the evaluated programs’ behavior. Each
value is the mean of 10 trials of a statistics-gathering version
of one of the implementations. The first two columns report
the total threads created and the maximum active threads at
any time.

The next columns, labeled Reads and Writes, report in-
strumented, executed read and write operations (in millions).
The No metadata updates columns show the percentage of
instrumented accesses for which instrumentation need not
update or synchronize on any metadata. For FastTrack, these
are its “read/write same epoch” and “read shared same epoch”
cases [27]. For FastRCD and Valor, these are the cases where
the analysis does not update any per-variable metadata. Note
that Valor has no Reads column because it does not update
per-variable metadata on a program read.

For three programs, FastTrack and FastRCD differ signifi-
cantly in how many reads require metadata updates (minor
differences for other programs are not statistically signifi-
cant). These differences occur because the analyses differ in
when they upgrade from a read epoch to a read map (Sec-

tion 5.2). For per-write metadata updates, the analyses report
very similar percentages, so we report a single percentage
(the percentage reported by FastTrack).

The last two columns report (1) how many release-free
regions (RFRs), in thousands, each program executes and (2)
the average number of memory accesses executed in each
RFR. The RFR count is the same as the number of synchro-
nization release operations executed and FastTrack’s number
of epoch increments. Most programs perform synchronization
on average at least every 1,500 memory accesses. The outlier
is sunflow9: its worker threads perform mostly independent
work, with infrequent synchronization.

6.6 Data Race Detection Coverage
FastTrack detects every data race in an execution. In contrast,
Valor and FastRCD focus on supporting conflict exceptions,
so they detect only region conflicts, not all data races. That
said, an interesting question is how many data races Valor
and FastRCD detect compared with a fully sound data race
detector like FastTrack. That is, how many data races manifest
as region conflicts in typical executions?

Table 2 shows how many data races each analysis detects.
A data race is defined as an unordered pair of static program
locations. If the same race is detected multiple times in
an execution, we count it only once. The first number for
each detector is the average number of races (rounded to
the nearest whole number) reported across 10 trials. Run-to-
run variation is typically small: 95% confidence intervals are
consistently smaller than ±10% of the reported mean, except
for xalan9, which varies by ±35% of the mean. The number
in parentheses is the count of races reported at least once
across all 10 trials.

As expected, FastTrack reports more data races than Fast-
RCD and Valor. On average across the programs, one run of
either FastRCD or Valor detects 58% of the true data races.
Counting data races reported at least once across 10 trials,
the percentage increases to 63% for FastRCD and 73% for
Valor, respectively. Compared to FastTrack, FastRCD and
Valor represent lower coverage, higher performance points
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Threads Reads Writes No metadata updates (%) Dyn. RFRs Avg. accessesReads Writes per RFRTotal Max live (×106) (×106) FastTrack FastRCD (×103)

eclipse6 18 12 11,200 3,250 80.4 74.4 64.2 196,000 71
hsqldb6 402 102 575 79 41.5 41.6 13.8 7,600 86
lusearch6 65 65 2,300 798 83.4 83.5 79.4 9,880 311
xalan6 9 9 10,100 2,150 43.4 42.1 23.4 288,000 41
avrora9 27 27 4,790 2,430 88.6 88.7 91.9 6,340 1,133
jython9 3 3 4,660 1,370 59.1 48.9 38.3 199,000 28
luindex9 2 2 326 98 86.3 85.0 70.6 267 1,480
lusearch9* 64 64 2,360 692 84.3 84.5 77.3 6,050 494
pmd9 5 5 570 188 85.4 85.4 72.1 2,130 346
sunflow9* 128 64 19,000 2,050 95.4 95.4 47.9 10 2,140,000
xalan9* 64 64 9,317 2,100 52.0 51.2 28.2 108,000 106
pjbb2000 37 9 1,380 537 32.9 33.8 9.2 128,000 15
pjbb2005 9 9 6,140 2,660 54.9 37.6 9.7 283,000 30

Table 1. Run-time characteristics of the evaluated programs, executed by implementations of FastTrack, FastRCD, and Valor. Counts are
rounded to three significant figures and the nearest whole number. Percentages are rounded to the nearest 0.1%. *Three programs by default
spawn threads in proportion to the number of cores (64 in most of our experiments).

FastTrack FastRCD Valor

eclipse6 37 (46) 3 (7) 4 (21)
hsqldb6 10 (10) 10 (10) 9 (9)
lusearch6 0 (0) 0 (0) 0 (0)
xalan6 12 (16) 11 (15) 12 (16)
avrora9 7 (7) 7 (7) 7 (8)
jython9 0 (0) 0 (0) 0 (0)
luindex9 1 (1) 0 (0) 0 (0)
lusearch9 3 (4) 3 (5) 4 (5)
pmd9 96 (108) 43 (56) 50 (67)
sunflow9 10 (10) 2 (2) 2 (2)
xalan9 33 (39) 32 (40) 20 (39)
pjbb2000 7 (7) 0 (1) 1 (4)
pjbb2005 28 (28) 30 (30) 31 (31)

Table 2. Data races reported by FastTrack, FastRCD, and Valor.
For each analysis, the first number is average distinct races reported
across 10 trials. The second number (in parentheses) is distinct races
reported at least once over all trials.

in the performance–coverage tradeoff space. We note that
FastRCD and Valor are able to detect any data race, because
any data race can manifest as a region conflict [23].

We emphasize that although FastRCD and Valor miss
some data races, the reported races involve accesses that are
dynamically “close enough” together to jeopardize region
serializability (Section 2). We (and others [23, 44, 47]) argue
that region conflicts are therefore more harmful than other
data races, and it is more important to fix them.

Although FastRCD and Valor both report RFR conflicts
soundly and precisely, they may report different pairs of sites.
For a read–write race, FastRCD reports the first read in a
region to race, along with the racing write. If more than two
memory accesses race, Valor reports the site of all reads
that race, along with the racing write. As a result, Valor
reports more races than FastTrack in a few cases because

Valor reports multiple races between one region’s write and
another region that has multiple reads to the same variable x,
whereas FastTrack reports only the read–write race involving
the region’s first read to x.

Comparing SFR and RFR conflict detection. FastRCD and
Valor bound regions at releases only, potentially detecting
more races at lower cost as a result. We have evaluated
the benefits of using RFRs in Valor by comparing with a
version of Valor that uses SFRs. For every evaluated program,
there is no statistically significant difference in races detected
between SFR- and RFR-based conflict detection (10 trials
each; 95% confidence). RFR-based conflict detection does,
however, outperform SFR-based conflict detection, adding
99% versus 104% overhead on average, respectively. This
difference is due to RFRs being larger and thus incurring
fewer metadata and write set updates (Section 3.3.1).

6.7 Summary
Overall, Valor substantially outperforms both FastTrack and
FastRCD, adding, on average, just a third of FastRCD’s
overhead. Valor’s overhead is potentially low enough for
use in alpha, beta, and in-house testing environments and
potentially even some production settings, enabling more
widespread use of applying sound and precise region conflict
detection to provide semantics to racy executions.

7. Related Work
Section 2 covered the closest related work [23, 24, 27, 44, 47].
This section compares our work to other approaches.

7.1 Detecting and Eliminating Data Races
Software-based dynamic analysis. Happens-before analysis
soundly and precisely detects an execution’s data races, but
it slows programs by about an order of magnitude (Sec-
tion 2) [27]. An alternative is lockset analysis, which de-
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tects violations of a locking discipline (e.g., [19, 62, 67]).
However, lockset analysis reports false data races, so it is
unsuitable for providing a strong execution model. Hybrids
of happens-before and lockset analysis tend to report false
positives (e.g., [53]).

Goldilocks [24] detects races soundly and precisely and
provides exceptional, fail-stop data race semantics. The
Goldilocks paper reports 2X average slowdowns, but the
authors of FastTrack argue that a realistic implementation
would incur an estimated 25X average slowdown [27].

In concurrent work, Clean detects write–write and write–
read data races but does not detect read–write races [63].
Like Valor, Clean exploits the insight that detecting read–
write conflicts eagerly is expensive. Unlike Valor, Clean does
not detect read–write conflicts at all, but instead argues that
detecting write–write and write–read data races is sufficient
to provide certain execution guarantees such as freedom from
out-of-thin-air values [45].

Other race detection approaches give up soundness en-
tirely, missing data races in exchange for performance, usu-
ally in order to target production systems. Sampling and
crowdsourcing approaches trade coverage for performance
by instrumenting only some accesses [14, 26, 37, 46]. These
approaches incur the costs of tracking the happens-before
relation [14, 37, 46] and/or provide limited coverage guaran-
tees [26, 46]. Since they miss data races, they are unsuitable
for providing a strong execution model.

Hardware support. Custom hardware can accelerate data
race detection by adding on-chip memory for tracking vector
clocks and extending cache coherence to identify shared
accesses [4, 21, 49, 63, 72, 74]. However, manufacturers
have been reluctant to change already-complex cache and
memory subsystems substantially to support race detection.

Static analysis. Whole-program static analysis considers all
possible program behaviors (e.g., inputs, environments, and
thread interleavings) and thus can avoid false negatives [25,
50, 51, 56, 69]. However, static analysis abstracts data and
control flow conservatively, leading to imprecision and false
positives. Furthermore, its imprecision and performance tend
to scale poorly with increasing program size and complexity.

Leveraging static analysis. Whole-program static analysis
can soundly identify definitely data-race-free accesses, which
dynamic race detectors need not instrument. Prior work that
takes this approach can reduce the cost of dynamic analysis
somewhat but not enough to make it practical for always-on
use [19, 24, 40, 68]. These techniques typically use static
analyses such as thread escape analysis and thread fork–join
analysis. Whole-program static analysis is not well suited for
dynamically loaded languages such as Java, since all of the
code may not be available in advance.

Our FastTrack, FastRCD, and Valor implementations cur-
rently employ intraprocedural static redundancy analysis
to identify accesses that do not need instrumentation (Sec-

tion 5.1). These implementations could potentially benefit
from more powerful static analyses, although practical con-
siderations (e.g., dynamic class loading and reflection) and
inherent high imprecision for large, complex applications,
limit the real-world opportunity for using static analysis to
optimize dynamic analysis substantially.

Languages and types. New languages can eliminate data
races, but they require writing programs in these potentially
restrictive languages [9, 59]. Type systems can ensure data
race freedom, but they typically require adding annotations
and modifying code [1, 16].

Exposing effects of data races. Prior work exposes erro-
neous behavior due to data races, often under non-SC memory
models [17, 28, 36, 52]. We note that every data race is poten-
tially harmful because DRF0-based memory models provide
no or very weak semantics for data races [2, 11, 52].

7.2 Enforcing Region Serializability
An alternative to detecting region conflicts is to enforce
end-to-end region serializability. Existing approaches either
enforce serializability of full synchronization-free regions
(SFRs) [54] or bounded regions [5, 64]. They rely on sup-
port for expensive speculation that often requires complex
hardware support.

Other dynamic approaches can tolerate the effects of data
races by providing isolation from them [57, 58], but the
guarantees are limited.

7.3 Detecting Conflicts
Software transactional memory (STM) detects conflicts be-
tween programmer-specified regions [33, 34]. To avoid the
cost of tracking each variable’s last readers, many STMs use
so-called “invisible readers” and detect read–write conflicts
lazily [34]. In particular, McRT-STM and Bartok-STM detect
write–write and write–read conflicts eagerly and read–write
conflicts lazily [35, 61]. These STMs validate reads differ-
ently from Valor: if a thread detects a version mismatch for
an object that it last wrote, it detects a write by an interven-
ing transaction either by looking up the version in a write
log [61], or by waiting to update versions until a transaction
ends (which requires read validation to check each object’s
ownership) [35].

In contrast, Valor avoids the costs of maintaining this
data by checking if the version has increased by at least
2. Another difference is that Valor must detect conflicts
precisely, whereas STMs do not (a false conflict triggers
an unnecessary abort and retry). As a result, STMs typically
track conflicts at the granularity of objects or cache lines.
More generally, STMs have not introduced designs that target
region conflict detection or precise exceptions. In some sense,
our work applies insights from STMs to the context of data
race exceptions.

RaceTM uses hardware TM to detect conflicts that are data
races [32]. RaceTM is thus closest to existing hardware-based
conflict detection mechanisms [44, 47, 65].
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Last writer slicing (LWS) tracks data provenance, record-
ing only the last writers of data [43]. LWS and our work
share the intuition that to achieve low run-time overheads, a
dynamic analysis should track only the last writer of each
shared memory location. LWS is considerably different from
our work in its purpose, focusing on understanding concur-
rency bugs by directly exposing last writer information in
a debugger. LWS cannot detect read–write conflicts, and it
does not detect races or provide execution model guarantees.

8. Conclusion
This work introduces two new software-based region conflict
detectors, one of which, Valor, has overheads low enough to
provide practical semantic guarantees to a language specifica-
tion. The key insight behind Valor is that detecting read–write
conflicts lazily retains necessary semantic guarantees and has
better performance than eager conflict detection. Overall,
Valor represents an advance in the state of the art for pro-
viding strong guarantees for racy executions. This advance
helps make it practical to use all-the-time conflict exceptions
in various settings, from in-house testing to alpha and beta
testing to even some production systems.
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A. Valor Is Sound and Precise
This section proves that Valor detects region conflicts soundly
and precisely.10 That is, it reports a conflict if and only if an
execution has a region conflict, which is defined as an access
that conflicts with an access executed in an ongoing region
(Section 3). Here we assume that the relatively straightfor-
ward FastRCD algorithm detects region conflicts soundly and
precisely.

Theorem. Valor is sound: if an execution has a region
conflict, Valor reports a conflict.

Proof. We prove the claim by contradiction. Suppose an
execution has a region conflict and Valor reports no conflict.

Valor detects write–write and write–read conflicts identi-
cally to FastRCD, which we assume is sound, so Valor detects
all write–write and write–read conflicts. Thus, the undetected
conflict must be a read–write conflict. Without loss of gener-
ality, suppose thread T2 writes a variable x that conflicts with
a region executed by thread T1. By the definition of region
conflict, T2’s write happens between T1’s read to x and T1’s
region end:

10 The theorems and proofs apply to both Valor-E and Valor-O.
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Thread T1 Thread T2

rd x

wr x

where the dashed line indicates the earliest region boundary
after T1’s read, and the write is T2’s first write to x after
T1’s read. Henceforth, “T1’s region” and “T2’s region” refer
to the regions that contain the conflicting read and write,
respectively.

At T1’s read to x, let v be x’s version (fromWx). T1 logs
〈x, v〉 at the read (Algorithms 4 and 7). When T1’s region
ends, it performs read validation, which checks the following
condition for the read log entry 〈x, v〉 (Algorithms 5 and 8):

(v’ 6= v ∧ t 6= T1) ∨ v’ ≥ v+ 2

where v’ and t are x’s version and last-writer thread (from
Wx), respectively, at the time of validation.

Since our initial assumption was that Valor does not report
a conflict, the condition must be false, i.e.,

v’ = v ∨ (t = T1 ∧ v’ < v+ 2)

We consider each of the disjunction’s predicates in turn.

Case 1: v’ = v
Since Valor increments versions monotonically, v’ =
v only if T2’s write does not increment x’s version,
which happens only if T2’s region has already written
x (Algorithms 3 and 6). We assumed that T2’s write to
x is the first write since T1’s read, so T2’s region must
have written x before T1’s read. By definition of region
conflict, a write–read region conflict exists, which Valor
detects, contradicting the initial assumption.

Case 2: t = T1 ∧ v’ < v+ 2
Since t = T1, T1 must be the last writer to x before
read validation (Algorithms 3 and 6). The earliest such
write must increment x’s version unless T1 wrote x prior
to T2’s write—but that would be a write–write conflict,
contradicting the initial assumption. Similar to Case 1,
T2’s write must increment x’s version unless its region
wrote x prior to T1’s read—but that would be a write–
read conflict, contradicting the initial assumption. Thus,
Valor must have incremented x’s version at least twice, so
v’ ≥ v+ 2, contradicting this case’s premise.

Both cases lead to contradictions, so the assumption that
Valor misses a conflict is false.

Theorem. Valor is precise: it reports a conflict only for an
execution that has a region conflict.

Proof. We prove the claim by contradiction. Suppose Valor
reports a conflict for an execution that has no region conflict.

Valor detects and reports write–write and write–read con-
flicts identically to FastRCD, which we assume is precise, so
the conflict must be a read–write conflict. Valor detects read–
write conflicts only during read validation (Algorithms 5 and
8). Without loss of generality, suppose that thread T reports
a conflict during read validation when validating a read log
entry 〈x, v〉:

Thread T

rd x

where the dashed line represents the earliest region boundary
following the read.

Since read validation reports a conflict, the following
condition must be satisfied:

(v’ 6= v ∧ t 6= T) ∨ v’ ≥ v+ 2

where v’ and t are x’s version and last-writer thread (from
Wx), respectively, at the time of validation.

At least one of the two predicates of the disjunction must
be satisfied:

Case 1: v’ 6= v ∧ t 6= T
Because v’ 6= v (and only Valor’s write analysis updates
Wx), there must have been a write by t to x between
T’s read and the region end that updatedWx to 〈v’, c@t〉
(Valor-E’s representation; Algorithm 3) or 〈v’, t〉 (Valor-
O’s representation; Algorithm 6). Based on our initial
assumption of region conflict freedom, this write must
have been executed by T. Thus, t = T, contradicting this
case’s premise.

Case 2: v’ ≥ v+ 2
In order to increment x’s version at least twice between
T’s read and region end, at least two writes in distinct
regions must have written x (Algorithms 3 and 6). Only
one of these writes can be in T’s read’s region, so the other
write must be by a different thread, which by definition is
a read–write region conflict, which contradicts the initial
assumption.

Both cases lead to contradictions, so the assumption that
Valor reports a false region conflict is false.

B. RFR Conflicts Are Data Races
This section proves the following theorem from Section 3.3.1,
which applies to all of our region conflict detectors (FastRCD,
Valor-E, and Valor-O):

Theorem. Every release-free region (RFR) conflict is a true
data race.

Proof. We prove this claim by contradiction. Suppose that
an RFR conflict exists in a data-race-free (DRF) execution.
Recall that, by definition, an RFR conflict exists when an
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access conflicts with another access executed by an ongoing
RFR. Without loss of generality, we assume that a read by
thread T2 conflicts with a write in an ongoing RFR in T1:

Thread T1 Thread T2

wr x

rd x

where the dashed line represents the end of the RFR that
contains wr x.

Because we have assumed that the execution is DRF, T1’s
write must happen before T2’s read:

wr x ≺HB rd x

where ≺HB is the happens-before relation, a partial order
that is the union of program order (i.e., intra-thread order)
≺PO and synchronization order ≺SO [38, 45].

Since wr x and rd x execute on different threads, they
must be ordered in part by ≺SO . Since ≺SO orders only
synchronization operations, not ordinary reads and writes, wr
x and rd x must also be ordered in part by≺PO . Furthermore,
≺SO can only order a release operation before an acquire
operation (i.e., rel ≺SO acq). Thus, there must exist a release
operation rel and an acquire operation acq such that

wr x ≺PO rel ≺SO acq ≺HB rd x

Note that acq and rd x may be executed by different threads
and/or be ordered by additional operations, so we cannot say
anything more specific than acq ≺HB rd x.

The above ordering implies that rel is executed by T1 and
that rel ≺HB rd x. Thus rd x does not overlap with the RFR
that contains wr x, contradicting the initial assumption of an
RFR conflict.

C. Architectural Sensitivity
This section evaluates the sensitivity of our experiments to the
CPU architecture by repeating our performance experiments
on an Intel Xeon E5-4620 system with four 8-core processors
(32 cores total). Otherwise, the methodology is the same
as in Section 6.2. Figure 7 shows the overhead added over
unmodified Jikes RVM by our implementations. FastTrack
adds an overhead of 408%, while FastRCD adds 303%
overhead. Valor continues to substantially outperform the
other techniques, adding an overhead of only 116%.

The relative performance of Valor compared to FastTrack
and FastRCD is similar on both platforms. On the Xeon
platform, Valor adds 3.5X and 2.6X less overhead than Fast-
Track and FastRCD, respectively, on average. On the (default)
Opteron platform, Valor adds 3.4X and 2.7X less overhead
on average.
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Figure 7. Run-time overhead added to unmodified Jikes RVM by
our implementations of FastTrack, FastRCD, and Valor on an Intel
Xeon E5-4620 system. Other than the platform, the methodology is
the same as for Figure 4.
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Figure 8. Performance comparison of FastTrack implementations.
The last two configurations correspond to the baseline and FastTrack
configurations in Figure 4.

D. Comparing FastTrack Implementations
To fairly and directly compare FastTrack, FastRCD, and
Valor, we have implemented all three approaches in Jikes
RVM (Section 5). This section seeks to better understand the
performance differences between our FastTrack implementa-
tion and Flanagan and Freund’s publicly available FastTrack
implementation [27].11 Their FastTrack implementation is
built on the RoadRunner dynamic bytecode instrumentation
framework, which alone slows programs by 4–5X on aver-
age [27, 29]. We execute the RoadRunner FastTrack imple-
mentation on a different JVM, Open JDK 1.7, because Jikes
RVM would not execute it correctly. RoadRunner does not
fully support instrumenting the Java libraries (e.g., java.*),
and it does not support the class loading pattern used by the
DaCapo harness [31], so we are only able to execute a few
programs successfully, and we exclude library instrumenta-
tion. (Recent work runs the DaCapo benchmarks successfully

11 https://github.com/stephenfreund/RoadRunner
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with RoadRunner by running the programs after extracting
them from the harness [71].)

Figure 8 shows how the implementations compare for the
programs that RoadRunner executes. For each program, the
first two configurations execute with OpenJDK, and the last
two execute with Jikes RVM. The results are normalized to
the first configuration, which is unmodified OpenJDK. The
second configuration, RR + FT, shows the slowdown that
FastTrack (including RoadRunner) adds to OpenJDK. This
slowdown is 9.3X, which is close to the 8.5X slowdown
reported by the FastTrack authors [27] in their experiments
(with different programs on a different platform).

The last two configurations, Jikes RVM and FT (Jikes),
are the baseline and FastTrack configurations, respectively,
from Figure 4. Note that this experiment keeps library instru-
mentation enabled for the last configuration, FT (Jikes). Our
FastTrack implementation in Jikes RVM adds significantly
less overhead than the RoadRunner implementation, presum-
ably because the Jikes RVM implementation is inside the
JVM, so it can add efficient per-field and per-object metadata,
modify the garbage collector, and control the compilation of
instrumentation. In contrast, RoadRunner is a general frame-
work that is implemented on top of the JVM using dynamic
bytecode instrumentation.

For these four programs, unmodified Jikes RVM is about
54% slower than unmodified OpenJDK. The next section
compares the JVMs’ performance across all programs.

E. Evaluating Competitiveness of Jikes RVM
This section compares the run-time performance of the two
JVMs evaluated in Appendix D, Jikes RVM 3.1.3 and Open-
JDK 1.7. We use the same configurations as for the OpenJDK
and Jikes RVM configurations from Appendix D. Figure 9
shows the relative performance of OpenJDK and Jikes RVM
on two platforms: (a) the 64-core AMD system that most of
this paper’s experiments use (Section 6 and Appendix D) and
(b) the 32-core Intel system used in Appendix C.

As Figure 9 shows, overall Jikes RVM performs com-
petitively with OpenJDK with one significant exception:
pjbb2005, which performs 16.7X slower on both platforms,
for reasons that are unknown to us. On average, Jikes RVM
is 47% and 16% slower than OpenJDK on the AMD and
Intel platforms, respectively. Excluding pjbb2005 from the
geomean, Jikes RVM is 20% slower (AMD) and 7% faster
(Intel) than OpenJDK.
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(a) Performance on the 64-core AMD system (Section 6.1).
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(b) Performance on the 32-core Intel system (Appendix C).

Figure 9. Relative performance of OpenJDK and Jikes RVM on
two platforms. In each graph, the two geomean bars for Jikes RVM
are the geomean including and excluding pjbb2005.

By limiting execution to 32 cores (using the Linux taskset
command) on the 64-core AMD machine (results not shown),
we have concluded that most of the overhead difference
between the two platforms is due to differences other than
the core count, such as architectural differences.

These experiments suggest that although Jikes RVM was
originally designed for research, it usually performs com-
petitively with modern commercial JVMs, at least for our
evaluated programs and platform.

259


	Introduction
	Background and Motivation
	Efficient Region Conflict Detection
	FastRCD: Detecting Conflicts Eagerly in Software
	Valor: Detecting Read–Write Conflicts Lazily
	Overview
	Analysis Details
	Providing Valor's Guarantees

	Extending the Region Conflict Detectors
	Demarcating Regions
	Reporting Conflicting Sites


	Alternate Metadata and Analysis for Valor
	Implementation
	Features Common to All Implementations
	FastTrack and FastRCD
	Valor

	Evaluation
	Methodology
	Run-Time Overhead
	Scalability
	Space Overhead
	Run-Time Characteristics
	Data Race Detection Coverage
	Summary

	Related Work
	Detecting and Eliminating Data Races
	Enforcing Region Serializability
	Detecting Conflicts

	Conclusion
	Valor Is Sound and Precise
	RFR Conflicts Are Data Races
	Architectural Sensitivity
	Comparing FastTrack Implementations
	Evaluating Competitiveness of Jikes RVM

