
Thermal Load-aware Adaptive Scheduling for
Heterogeneous Platforms

Srijeeta Maity, Anirban Ghose, Soumyajit Dey
Department of Computer Science and Engineering, IIT Kharagpur

srijeeta.maity@iitkgp.ac.in, {anirban.ghose,soumya}@cse.iitkgp.ernet.in

Swarnendu Biswas
Indian Institute of Technology Kanpur

swarnendu@cse.iitk.ac.in

Abstract—Modern-day heterogeneous embedded computing
platforms integrate processing elements (PE) with varying com-
pute capabilities on the same die. While such platforms help in
delivering high-throughput computation with low power budgets,
it also exposes the possibility of violating the thermal envelope.
Sustained thermal envelope violation degrades the reliability of
the PEs. This work presents an OpenCL run-time extension
which adaptively tunes parameters of heterogeneous multicores in
order to respect a given temperature constraint without violating
real-time deadlines. The feedback-oriented iterative behavior of
the proposed run-time extension helps in cancelling out core-
level temperature constraint violations which may happen due
to dynamic task injection in plug-n-play embedded computing
platforms.

Index Terms—thermal envelope, heterogeneous MPSoCs,
OpenCL, DVFS, adaptive scheduling

I. INTRODUCTION

Heterogeneous multiprocessor system-on-chip (MPSoC) is

an attempt to address the tradeoffs in performance, power

dissipation, and energy consumption. MPSoCs, such as Sam-

sung Exynos 5422, provide processing elements (PEs) with

different configurations, compute capability, and power dissi-

pation tradeoffs. This can lead to thermal imbalance among the

different cores in such heterogeneous MPSoCs. Maintaining

temperature constraints for different PEs is important on MP-

SoCs, otherwise sustained violation of the thermal envelope

will degrade the reliability of the PEs [13]. Maximizing

performance while meeting the temperature constraint on the

MPSoCs is a challenging problem.

Existing power capping techniques in the firmware primarily

analyze hardware’s current state and scale tunable architectural

features, such as frequency and number of active cores, to

adjust to the change in power dissipation, while trying to

minimize the loss in performance [15]. However, the number

of knobs to tune performance and power consumption on mod-

ern architectures are too many. For example, an application

executing on a CPU-GPU system has the choice of tuning the

thread distribution per core, dynamic voltage and frequency

scaling (DVFS) setting on each core, and DRAM frequency.

Furthermore, the impact of such architectural features on

applications in terms of performance and power consumption

and core temperature is highly nonlinear, and also depend on

the phase of execution of the application [11].

This work considers the problem of software-level online

thermal management of heterogeneous MPSoCs executing

The authors acknowledge generous support from DST SERB grant no.
ECR/2016/001235, and research grants from Intel, and Qualcomm.

multiple real-time tasks. This work proposes methodologies

that allow run-time schedulers to accommodate high-level

requests, such as task injection and increasing the frequency

of execution of existing tasks running on a heterogeneous

platform, while ensuring that the core temperatures do not

violate their respective thermal constraints. Support for such

adaptive run-time schedulers is important in many scenarios.

For example, there may be an over-the-air update of an

automotive platform with a new task getting added. Similarly,

given poor lighting conditions, vehicular cameras may have to

increase the sampling rate adaptively in a future automobile

with the platform task manager being asked to execute CNN-

based inferencing of tasks for image recognition at a higher

rate. Such high sampling rates may be schedulable as peak

system load, but they may violate the thermal envelope leading

to reliability issues in the long-term. Thus, the onus is on the

platform scheduler and task manager to react to the changes

and find a suitable task mapping.

Processor-specific and working-set-aware thermal models

are hard to build for every new heterogeneous MPSoC. Hence,

we opt for a control-theoretic approach which does not depend

on availability of chip-level thermal models. Our proposed

approach assumes temperature as an observable quantity with

unmodeled dynamics, periodically samples temperature sen-

sors for every core, and tunes architectural as well as appli-

cation knobs, such as core frequency and thread mapping,

which have nonlinear relationships with core temperatures.

Our proposed adaptive run-time is thermal-model-agnostic,

and is not constrained to a fixed heterogeneous platform.

There exist several approaches with similar goals (Sec-

tion II). Given the intricate dependence of application-level

power consumption and thermal characteristics on architec-

tural parameters, there exists both machine learning (ML) as

well as control-theoretic auto-tuning techniques for finding the

optimal mapping of single application on architectures. Most

existing work rely on multiple profiling runs to characterize

application power and performance, and create a ML model

with respect to architectural features like core frequency. These

performance prediction models and control-theoretic dynami-

cal equations for application speedup and power consumption

are employed for tuning architectural parameters online. In

this regard, several control schemes like Model Predictive

Control (MPC) [1], Supervisory control [2], and state-space-

based control [8] have been employed. Compared to existing

approaches, we summarize our contributions as follows.

125

2020 33rd International Conference on VLSI Design and 2020 19th International Conference on Embedded Systems (VLSID)

2380-6923/20/$31.00 ©2020 IEEE
DOI 10.1109/VLSID49098.2020.00039

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on October 02,2021 at 16:32:23 UTC from IEEE Xplore. Restrictions apply.

• We consider multiple soft real-time tasks executing on a

heterogeneous MPSoC instead of a single task.

• We assume a steady state of operation of the system

where the run-time scheduler has already found a suitable

task-platform mapping with satisfactory thermal charac-

teristics, before external disturbances are received. Exam-

ples of external disturbances are arrival of a new task and

high-level system requests to increase the frequency of an

existing task. In such scenarios, our intelligent platform

manager controls core frequency and thread migration

for temperature-aware real-time task scheduling. Our

technique leverages existing methods of learning-based

platform-specific task characteristic discovery.

• We build a thermal-load-aware control-theoretic online

task scheduler on top of the OpenCL run-time system

for easy platform adaptation and porting. Our tool is

useful for any heterogeneous multicore platform with

core-level temperature sensors and OpenCL support for

vector instruction processing (see Section V).

II. RELATED WORK

Of late, there has been significant interest and research in

intelligent trade-offs of thermal and power dissipation while

minimizing the detrimental impact on performance [3]–[7].

In the following, we focus our discussion on thermal and

power management for heterogeneous platforms only. Much

prior work [3], [4] focus on energy efficiency and ignore

temperature control which can negatively impact performance,

reliability and lifespan of the device. Prior work has used

design-time thermal optimization using DVFS, but has ignored

concurrent utilization of CPU and GPU devices [5]–[7]. Other

techniques [9] have considered thermal and energy efficient

mapping at run-time using OpenCL on heterogeneous SoC,

but ignored dynamic changes in the system such as increase

in temperature and injection of new tasks. Such dynamic

change in behavior often leads to a considerable difference

in temperature across cores.

Control-theoretic techniques provide mechanisms for main-

taining desired behavior in dynamic systems with formal

guarantees, and are now increasingly being used to develop

adaptive controllers and self-tuning regulators for handling

the trade-off between performance and power on heteroge-

neous SoC [8]. These techniques have generalized adaptive

control design that exposes the model parameters to the user

but do not consider the thermal condition of the platform

which can accelerate chip failure and reduce reliability. Power,

temperature, and reliability management control strategies

for heterogeneous SoCs have been evaluated by [12] on a

simulation platform, but not on real hardware.

Several other approaches have turned to Machine Learning

(ML) for predicting an optimal energy- or power-efficient

configuration within a complicated configuration space [10],

[13], [16]. These techniques use ML models to find the

optimal resource mapping and thread-partitioning of applica-

tions across available cores. These approaches do not consider

multiple tasks running at different periods on different cores

with their respective soft real-time deadlines, along with the

facility of dynamic task injection.

III. FORMAL PROBLEM STATEMENT

We consider a heterogeneous integrated CPU-GPU process-

ing platform P comprising of different classes of compute

cores. All the compute cores on such integrated platforms

reside on the same die and share a common Last-Level Cache

(LLC). The platform is considered heterogeneous because each

compute core may be of varying computational power in terms

of SIMD support, cache size, and clock frequency. We assume

that for the platform P , there exists a set of K temperature

bands K = {[x0, x1], · · · , [xK−1, xK]} = {B1, B2, · · · , BK},
∀i, xi−1 < xi < xi+1.

Let T = {T1, T2, · · ·Tn} denote the set of periodic real-

time data-parallel tasks executing with periods {p1, p2, · · · pn}.
From a power consumption and reliability perspective, we con-

sider that a thermal load specification for the mapping of task

set T on platform P is expressed as follows. Over the hyper-

period H(p1, · · · , , pn) (which is the l.c.m of the periods), the

time spent by a core Cj ∈ P in the temperature bands of K is

considered to be upper bounded by 〈u1 ·H, · · · , uK ·H〉 where

ui represents the fraction of time spent by the compute cores

of the platform in the temperature band Bi considering the

total window of observation as H . If during a hyper-period

H , the time spent in a temperature band Bi is greater than

ui · H , we consider it as a thermal violation where our run-

time controller needs to execute.

In the steady-state of system operations, we assume that

the thermal specification is satisfied by each core until some

new task Tnew is introduced. Tnew is mapped to P using the

initial mapping which simply finds the “best-fit” of Tnew on

a subset of cores in P that satisfy the deadline constraints of

T ∪ {Tnew}. This is done by considering the available idle

slots in cores or increasing the frequency of core(s) to allow

the execution of the modified task set. However, such mapping

decisions are thermal-agnostic leading to potential violation

of K. Considering this violation as an input disturbance to

the system, we propose the design of an online controller

that runs periodically and executes suitable thread partitioning

and frequency tuning decisions such that the violation of the

thermal specification is minimized.

IV. METHODOLOGY

Given a task-to-core allocation and mapping for the existing

task set in a steady state, let us consider that task Tnew has

been injected for execution on the heterogeneous platform.

As depicted in Fig. 1, the new task undergoes a profiling

phase for certain runs until an initial mapping is determined

which satisfies its deadline constraints. A temperature monitor

continuously surveys the core temperatures of the platform by

discretely sampling the temperature readings of different core

sensors at different points of time during the hyper-period H .

If a violation in K is detected, our proposed methodology

invokes a temperature band analysis routine which determines,

for each core Cj , the time intervals when Cj operates in

different thermal bands. Using this, a working set of intervals

126

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on October 02,2021 at 16:32:23 UTC from IEEE Xplore. Restrictions apply.

W is identified which represents the operating region of the

controller. The controller decides suitable control actions for

tasks executing during the intervals identified in W and modi-

fies the mapping within W . The controller executes iteratively

while consulting with the temperature monitor and attempts

to minimize the violation scenario for the chosen working set.

Once either a timeout is reached or the violation is resolved,

the system resorts to steady state of operations. This entire

process of interval identification followed by iterative control

is instantiated every time a violation scenario is detected. Next,

we explain each routine in detail.

Fig. 1: Methodology Overview

Temperature Band Analysis: The temperature monitor

returns a set of discrete temperature readings tCj =

{tj1, tj2, · · · , tjn} for each core Cj over the course of an entire

hyper-period H , where n = �Hh � with h being the sampling

period of the sensor. Each such set is used to construct a

thermal band sequence for each core by labelling each discrete

reading tjk with the corresponding thermal band Bi to which

that reading belongs. This sequence of thermal bands is first

processed to group contiguously occurring identical bands.

From this sequence, we obtain a set of temperature band

intervals IBi

Cj
for a compute core Cj (as shown in Fig. 2).

From this global thermal band information, we greedily choose

the highest non-empty band (BN in Fig. 2) for constructing

the operating region of the controller using the working set

selection routine discussed next.

Fig. 2: Thermal Band Generation

Fig. 3: Working Set Selection
Working Set Selection: This routine creates a set of global

intervals spanning across all cores in which the controller will

take scheduling decisions. Thermal band intervals generated

across all cores that correspond to the highest non-empty

temperature band BN obtained in the aforementioned routine

are typically merged in order to reduce the total number of

operating regions of the controller. Intervals belonging to each

set IBN

Cj
for cores Cj ∈ P are selected and a union operation is

performed following the method discussed as follows. In every

iteration, the largest interval Imax is first selected from all

the sets. This is followed by selecting intervals which overlap

with Imax. An union operation is applied to these intervals to

generate one global interval that will belong to the working

set. From the remaining set of intervals, again the largest

interval and corresponding overlapping intervals are selected

to generate another global interval. This process of selection

and union is carried on until no more global intervals can be

created. We present an illustrative example in this regard in

Fig. 3 where we consider a heterogeneous platform comprising

four cores C1, C2, C3, and C4.

Controller: The controller routine takes control-theoretic

scheduling decisions in intervals belonging to the working set

W and accordingly i) reconfigures the starting times of tasks,

ii) changes the frequency of cores, and iii) migrates threads

of tasks across cores in the heterogeneous platform. In every

case, the controller considers task sets whose execution span

overlaps with the global thermal band intervals obtained in the

working set W . Let T Cj = {TCj

1 , · · · , TCj
m } denote the set

of all such task sets where each task set T
Cj

i comprises those

tasks executing on core Cj whose execution span overlaps

with some global thermal band interval Ii ∈ W . The set of all

tasks on Cj during the entire hyper-period is denoted by TCj .

The controller functions in three distinct modes each carrying

out one of the three possible scheduling decisions discussed

above. The decision of mode selection by the controller is

carried out by inspecting the number of tasks executing on a

core in a global interval as well as the percentage of time a

core is idle in the hyper-period. The number of tasks executing

during Ii ∈ W on core Cj is given by |TC
i |. The idleness

of a core during H is given by the idle slots between every

pair of consecutive tasks belonging to TCj . Let us denote

the starting time and finishing time of a task Tr ∈ TCj as

s(Tr) and f(Tr) respectively. The idle slot between a pair of

consecutive tasks Tr and Tr+1 is denoted by idle(Tr, Tr+1) =
s(Tr+1) − f(Tr). The idleness of a core Cj is therefore

idleness(TCj) =
∑

Tr,Tr+1∈TCj idle(Tr, Tr+1). When there

is a thermal violation, the controller will appropriately start

127

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on October 02,2021 at 16:32:23 UTC from IEEE Xplore. Restrictions apply.

execution in one of the three modes.

The primary working principle of the controller is depicted

in Fig. 4. The controller is activated the moment a violation in

K is detected followed by W selection. Note that the control

strategy is greedy in the sense that the controller attempts to

minimize the usage of the maximum temperature band which

should potentially lead to removal of violation occurring in

the highest band. In terms of specification, we assume careful

and logical choice of u1, · · · , uk from the user in this work,

i.e., the higher the temperature band, the lower has to be the

value of u. In that case, the greedy control strategy is expected

to mitigate potential band violations while prioritizing the

higher bands. For an interval Ii ∈ W , the number of tasks

and core idleness is analyzed to determine in which mode the

controller should start execution. The controller continues to

execute in a particular mode until the violation is mitigated or

the controller exceeds the permissible time limit for executing

in that mode. The conditions that determine which mode the

controller should be running in are discussed next with the

help of Table I.

Fig. 4: Controller Automata

We consider a target heterogeneous MPSoC with two dis-

tinct compute cores C1 and C2, each corresponding to a CPU

device and a GPU device respectively. The idea is easy to

generalize for more number of heterogeneous devices. Given

an interval Ii, the number of tasks in T
Cj

i is considered

high (H) if |TCj

i | ≥ x and low (L) when |TCj

i | < x.

Similarly, the idleness of a core Cj is considered high (H)

when idleness(TCj) ≥ y% of H and low (L) vice-versa;

x, y being threshold parameters. Different possible Boolean

combinations of number of tasks being H/L and idleness being

H/L is denoted by predicates P1, P2, P3 in Table I.

Intuition for Control Action: If it is observed that the core

idleness for both the cores in the heterogeneous platform

is low, the controller aborts, since the system is completely

loaded and it is unable to modify task core mappings without

violating deadline constraints. The controller enters into the

Task Shifter mode if it observes that core idleness is high for

both the cores but the number of tasks is small for both the

cores in a given interval Ii (i.e., predicate P1 is True as shown

in Table I). This may be attributed to the fact that since the

number of tasks is low, shifting one or all of the tasks without

violating each of their deadline constraints could potentially

increase core idleness leading to a decrease in temperature.

The controller enters into the Frequency Tuner mode if it

observes that both the number of tasks as well as the core

idleness for both the cores are high in a given interval Ii (i.e.,

predicate P2 is True as shown in Table I). Since the number

of tasks is greater here, shifting while maintaining deadline

constraints for each and every task becomes cumbersome.

Rather it makes sense to reduce core frequency for increasing

execution time per task in order to leverage the core idleness

during that interval. This reduction in core frequency may

potentially lead to a decrease in core temperature thereby

removing the thermal violation caused in Ii. Finally, the

controller enters into the Task Migrator mode if it observes that

there exists an imbalance with respect to the number of tasks

and idleness between the cores of the heterogeneous platform

(i.e. predicate P3 is True as shown in Table I). The predicate

P3 becomes true for a total of four different combinations of

boolean values of core idleness and number of tasks. Given

that core idleness is high for both the cores, if it is observed

that the number of tasks is low for one and high for the other

(the first two combinations for predicate P3 in Table I), the

controller tries to remove this imbalance by migrating some of

the threads of tasks executing on the core with more number

of tasks to the other core. Again, if it is observed that the

core idleness is high for one core and low for the other core,

then irrespective of the number of tasks executing in both the

cores (the last two combinations for predicate P3 in Table I),

the controller tries to migrate some threads until the violation

is mitigated. In all the cases, the final objective is to make

the thread distribution of tasks uniform across all the cores of

heterogeneous platform. We next discuss the algorithms used

by the controller once it enters in each of the three modes.

TABLE I: Predicates and Controller Modes

Predicate
C1

|TC1
i |, idleness(TC1

i)

C2

|TC2
i |, idleness(TC2

i)
Controller

Mode

, L , L

P1: L, H L, H Task Shifter

P2: H, H H, H Frequency Tuner

P3:

H, H L, H

Task Migrator
L, H H, H

, L , H

, H , L

A. Task Shifter Mode: In this mode, the algorithm (Algo-

rithm 1) used by the controller considers for each compute

core Cj , every pair of consecutive tasks (Tr, Tr+1) belonging

to each task set T
Cj

i for every interval Ii ∈ W and tries to

increase the idle slot size between them.

1: for each core Cj ∈ P do
2: for T

Cj
i ∈ T Cj do

3: for a pair of consecutive tasks (Tr, Tr+1) ∈ T
Cj
i do

4: slack(Tr)← deadline(Tr)− f(Tr)
5: shift(Tr)← min(idle(Tr, Tr+1), slack(Tr))
6: s(Tr)← s(Tr) + shift(Tr)

Algorithm 1: Task Shifter Mode

The slack time available for a task Tr is first calculated

by considering its deadline and finishing time (line 4). The

128

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on October 02,2021 at 16:32:23 UTC from IEEE Xplore. Restrictions apply.

variable shift(Tr) represents the allowable shift for a task Tr

and is the minimum of slack(Tr) and idle(Tr, Tr+1) (line 5).

The task is finally shifted by offsetting the starting timestamp

of the task by shift(Tr) (line 6). This process of shifting is

repeated for each pair of tasks in T
Cj

i whenever possible for

every interval Ii in the hyper-period H .

B. Frequency Tuner Mode: The algorithm used (Algorithm

2) in this mode considers for each compute core Cj , every

pair of tasks (Tr, Tr+1) belonging to each task set T
Cj

i for

every interval Ii ∈ W and alters the core frequency for the

duration of task Tr.

1: for each core Cj ∈ P do
2: for T

Cj
i ∈ T Cj do

3: for a pair of consecutive tasks (Tr, Tr+1) ∈ T
Cj
i do

4: sp′ ← get speedup(s(Tr), f(Tr), idle(Tr, Tr+1))
5: freq ← get frequency(sp′, Tr)
6: if freq! = NULL then
7: Set frequency of core Cj to freq for task Tr

Algorithm 2: Frequency Tuner Mode

The algorithm in this mode leverages the current state of

the art pole-based self-tuning control techniques [8], [14],

which dynamically model speedup of a task as a function of

core clock frequency values. Lookup tables that store speedup

values of a task T corresponding to clock frequencies of a

core Cj are constructed during the profiling phase for each

task Tr executing on some core Cj . Given such lookup tables,

the control techniques leverage speedup equations of the form

sp(k) = sp(k−1)+(1−ρ)/b ·e(k), where the speedup sp(k)
of a task at time instant k is a function of sp(k− 1), the pole

of the controller ρ, the base speed of the task b, and error

observed e(k). Base speed represents the execution time for

a task on a core C operating in minimum clock frequency.

The observed error e(k) is basically the difference between

desired target speedup and measured target speedup at the k-

th time instant. The controller iteratively tries to minimize e(k)
by selecting appropriate core clock frequency values in each

iteration by referencing the corresponding lookup tables.

In Algorithm 2, for every task Tr, the required target

speedup is calculated using the get frequency function

which considers how much the execution time of task Tr can

be increased by considering the idle slot idle(Tr, Tr+1) (line

4). Given this target speedup value sp′, the controller uses

the get frequency function to access the lookup table and

the speedup equation pertaining to task Tr and core Cj and

determines a frequency value freq. The controller sets the

frequency of core Cj to freq for the execution of task Tr in

the next hyper-period. This process of core frequency selection

is executed for each task in T
Cj

i for each interval Ii ∈ W .

C. Task Migrator Mode: The algorithm for the controller

in this mode (Algorithm 3) ascertains from the predicate P3,

which core has a higher utilization i.e. which core has either

a higher number of tasks and/or lesser idleness. Let us denote

this core as Cmax. The controller considers migrating partially

or completely the threads of tasks belonging to TCmax
i during

Ii ∈ W to the other compute core. For each task Tr ∈ TCmax
i

during interval Ii, the controller determines the amount of free

slots avail available in the other core during the execution

span of task Tr in interval Ii. Given the available bandwidth

avail, the controller uses the get partition function to de-

termine the tuple th = 〈th1, th2〉 where thj specifies what

fraction of the total number of threads of task Tr should be

mapped to Cj .

1: for each interval Ii ∈ W do
2: Cmax ← Core with higher utilization as per P3

3: for Tr ∈ TCmax
i do

4: avail ← free slots in the other core during Ii
5: th← get partition(Tr, avail)
6: if th! = NULL then
7: Set thread allocation of task Tr to th

Algorithm 3: Task Migrator Mode

During the profiling phase for a task, lookup tables are

constructed which store the different execution times taken to

run different fractions of the total number of threads required

for task Tr executing on some core Cj . Using this, the

algorithm determines what fraction of the total number of

threads can be migrated to fit in the available bandwidth of the

other core. This process is repeated for each task executing in

TCmax
i for each interval in Ii ∈ W .

V. EXPERIMENTAL RESULTS

We have implemented our run-time extension on the

ODROID XU4 embedded heterogeneous platform executing

on an Ubuntu 18.04 LTS operating system. The ODROID

platform comprises three distinct types of compute cores:

(i) quad-core ARM Cortex-A7 (little) CPU, (ii) quad-core

ARM Cortex-A15 (big) CPU, and (iii) ARM Mali-T628 GPU.

The platform supports a range of operating frequencies and

temperature sensors for each of these three devices. For the

execution of our control based scheduler, we map the OS to

three cores of the quad-core ARM little CPU device, with

our scheduler executing on the fourth core. Additionally, we

have a temperature monitor executing on the second core

of the little CPU which discretely samples the temperature

readings from the sensors with a sampling period of 50 ms.

For each device, DVFS commands set same frequency for

all constituent cores together. The scheduler leverages the

asynchronous event-driven programming model supported in

OpenCL to (i) dispatch tasks to the big CPU and the GPU

based on the respective arrival times of the tasks, and (ii)

ascertain device availability through asynchronous callback

functions which are instantiated when a device becomes free.

Once a violation in K is detected, the interval analysis and

working set selection routines execute and provide operating

regions for the control scheme. Next the controller executes

and provides task-core settings for the next hyper-period, Hi

say. The temperature readings gathered in Hi+1 are fed back

to the controller based on which control decisions are again

effected in Hi+2. The controller update rate is effectively 2H
here. The iterations continue until the violation is mitigated or

a pre-specified timeout is reached.

For our experimental results, we use instances of a stan-

dard tiled single-precision general matrix multiply program

(SGEMM) with different square matrix input sizes N ∈

129

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on October 02,2021 at 16:32:23 UTC from IEEE Xplore. Restrictions apply.

{128, 256, 512, 1024} for generating tasks mimicking multiple

heterogeneous workload scenerios. We create different tasksets

by choosing among these task instances and assigning them

periods in the range [500 ms, 10 s]. Given space constraints,

we report here only three specific thermal violation scenarios

which establish the usefulness of our mode based control tech-

nique. We first consider a scenario where the Task Migrator
mode executes and plot the respective temperature profiles

after the controller starts execution for both the big CPU and

GPU devices (shown in Fig. 5). For both the subplots, the

x-axis denotes the time elapsed (in seconds) and the y-axis

denotes the temperature of the core (in ◦C). The light blue

lines in both the subplots denote the core peak temperatures

of the respective devices.

Fig. 5: Temperature Profile for Task Migration

A significantly large SGEMM task processing a large matrix

(N = 1024) is mapped to the CPU thereby causing the

core temperature for the CPU to reach 90◦C whereas two

SGEMM tasks processing smaller matrices of size N = 256
and N = 512 are mapped to the GPU device raising the core

temperature to around 65◦C. The controller moves into the

Task Migrator mode at time 10 s (shown by the arrow in

Fig. 5) and migrates threads of tasks executing on the CPU

to the GPU successfully reducing the temperature of the CPU

to around 70◦C, while the increase in the temperature of the

GPU is also limited to 70◦C.

Fig. 6: Temperature Profile for Frequency Tuning

For scenarios where the Frequency Tuner and Task Shifter
modes of the controller execute, we plot the temperature pro-

files in Figs. 6 and 7 respectively. The plots render temperature

profiles for the big CPU device only from the time points when

the violations occur. In both scenarios, core idleness is high,

while the number of tasks is high for Fig. 6 and low for Fig.

7 resulting in respective modes getting activated. It can be

observed for both the cases that the core peak temperatures

decrease as the controller starts execution.

Fig. 7: Temperature Profile for Task Shifting

VI. CONCLUSION

We provide a control-theoretic methodology for thermal

load-aware task management on heterogeneous platforms. Our

proposed methodology explores multiple control modes amid

the presence of a set of periodic tasks and disturbances that can

potentially violate the thermal envelope. We plan to generalize

our proposed control scheme by augmenting online learning

techniques and control-theoretic decisions [14] and exploring

the memory aware thermal management [17], similar to related

work on heterogeneous scheduling.

REFERENCES

[1] A. Majumdar et al. “Dynamic GPGPU Power Management Using Adap-
tive Model Predictive Control”, HPCA 2017.

[2] A. Rahmani et al. “SPECTR: Formal Supervisory Control and Coordina-
tion for Many-core Systems Resource Management”, ASPLOS 2018.

[3] A. Prakash et al. “Energy-efficient Execution of Data-parallel Applica-
tions on Heterogeneous Mobile Platforms”, ICCD 2015.

[4] A. Singh et al. “Energy-Efficient Run-time Mapping and Thread Parti-
tioning of Concurrent OpenCL applications on CPU-GPU MPSoCs”, TECS
2017.

[5] Y. Liu et al. “Thermal vs Energy Optimization for DVFS-enabled Pro-
cessors in Embedded Systems”, ISQED 2007.

[6] S. Saha et al. “Thermal-constrained Energy-aware Partitioning for Het-
erogeneous Multi-core Multiprocessor Real-time Systems”, RTCSA 2012.

[7] J. Zhou et al. “Thermal-Aware Correlated Two-level Scheduling of Real-
time tasks with Reduced Processor Energy on Heterogeneous MPSoCs”,
JSA 2018.

[8] C. Imes et al. “POET: a portable approach to minimizing energy under
soft real-time constraints”, RTAS 2015.

[9] E. Wachter et al. “Reliable Mapping and Partitioning of performance-
constrained OpenCL applications on CPU-GPU MPSoCs”, ESRTM 2017.

[10] S. Isuwa et al. “TEEM: Online Thermal-and Energy-Efficiency Man-
agement on CPU-GPU MPSoCs”, DATE 2019.

[11] S. Mitra et al. “Phase-Aware Optimization in Approximate Computing”,
CGO 2017.

[12] A. Bartolini et al. “A Virtual Platform Environment for Exploring
Power, Thermal and Reliability Management Control Strategies in High-
performance Multicores”, GLSVLSI 2010.

[13] S. Dey et al. “EdgeCoolingMode: An Agent based Thermal Management
Mechanism for DVFS enabled Heterogeneous MPSoCs”, VLSID 2019.

[14] N. Mishra et al. “CALOREE: Learning Control for Predictable Latency
and Low Energy”, ASPLOS 2018.

[15] E. Rotem et al. “Power-Management Architecture of the Intel Microar-
chitecture Code-Named Sandy Bridge”, IEEE Micro 2012.

[16] S. Wang et al. “OPTiC: Optimizing Collaborative CPU–GPU Computing
on Mobile Devices With Thermal Constraints”, CADICS 2018.

[17] M. Rapp et al. “Pareto-Optimal Power-and Cache-Aware Task Mapping
for Many-Cores with Distributed Shared Last-Level Cache”, ISLPED 2018.

130

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on October 02,2021 at 16:32:23 UTC from IEEE Xplore. Restrictions apply.

