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Recent trends in real-time applications have raised the demand for high-throughput embedded platforms

with integrated CPU-GPU based Systems-On-Chip (SoCs). The enhanced performance of such SoCs, how-

ever, comes at the cost of increased power consumption, resulting in significant heat dissipation and high on-

chip temperatures. The prolonged occurrences of high on-chip temperature can cause accelerated in-circuit

ageing, which severely degrades the long-term performance and reliability of the chip. Violation of thermal

constraints leads to on-board dynamic thermal management kicking-in, which may result in timing unpre-

dictability for real-time tasks due to transient performance degradation. Recent work in adaptive software

design have explored this issue from a control theoretic stand-point, striving for smooth thermal envelopes

by tuning the core frequency.

Existing techniques do not handle thermal violations for periodic real-time task sets in the presence of

dynamic events like change of task periodicity, more so in the context of heterogeneous SoCs with integrated

CPU-GPUs. This work presents an OpenCL runtime extension for thermal-aware scheduling of periodic, real-

time tasks on heterogeneous multi-core platforms. Our framework mitigates dynamic thermal violations by

adaptively tuning task mapping parameters, with the eventual control objective of satisfying both platform-

level thermal constraints and task-level deadline constraints. We consider multiple platform-level control

actions like task migration, frequency tuning and idle slot insertion as the task mapping parameters. To the

best of our knowledge, this is the first work that considers such a variety of task mapping control actions in

the context of heterogeneous embedded platforms. We evaluate the proposed framework on an Odroid-XU4

board using OpenCL benchmarks and demonstrate its effectiveness in reducing thermal violations.
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ware→ Thermal issues;
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1 INTRODUCTION

Modern embedded platforms like automotive systems, mobile platforms, and gaming consoles
often need to execute a variety of workloads with different computational characteristics under
stringent power and timing budgets. Due to this, Multiprocessor System-on-Chips (MPSoCs), com-
monly used for low-power but high-performance embedded systems, have become increasingly
heterogeneous in nature. Such MPSoCs are comprised of multiple processing elements (PEs) like
general purpose CPU cores, accelerators such as graphic processing units (GPUs), and special func-
tion cores like digital signal processors (DSPs) and neural processing units (NPUs). Co-existence of
such cores with complex functionalities, coupled with the fact that shrinking technologies increase
chip density, results in higher chip-level power density leading to high on-chip temperatures in
modern MPSoCs. Repeated occurrences of high on-chip temperatures (i.e., a thermal violation)
shorten the lifetime of such MPSoCs and accelerate in-circuit ageing [2]. Also, this may severely
degrade the performance and reliability of the chip, sometimes even risking the safety of the sys-
tem leading to catastrophic consequences for driving, medical and wearable applications, where
such embedded heterogeneous MPSoCs are extensively used.

The problem: Dynamic Thermal Management (DTM) methods provide different power cap-
ping capabilities to the MPSoCs. When the temperature of any PE exceeds some predefined thresh-
old, the power consumption of the PE is forcibly reduced by DTM techniques [49]. Common DTM
methods include processor level techniques like clock or fetch gating [44] and software-directed
Dynamic Frequency/Voltage Scaling (DVFS) [5, 21, 28]. Such techniques are supported at the hard-
ware level by almost all modern processors having multiple power domains and the ability to
operate at different frequency/voltage settings. DVFS support is an intrinsic feature of all popular
operating system distributions for server, desktop as well as mobile systems. Henceforth, we refer
to this as default DTM. However, for such default DTM techniques, the focus remains solely on
reducing the chip temperature which can affect the application performance resulting in degraded
Quality of Service (QoS). This is also true for other high-level DTM techniques like temperature-
oriented task migration approaches proposed for many-core systems [13, 26]. For latency-sensitive
applications such as real-time tasks, latency-unaware DTM can thus be fatal. Hence, there is a need
for platform resource managers that allocate compute resources with suitably tuned configurations
such that both application level latency and platform level thermal requirements are met.

There is an increasing demand for supporting dynamic task scheduling primitives in adaptive
software systems. This essentially requires accommodating new tasks (e.g., task injection) or new
instances of existing tasks with reduced periodicity (i.e., job injection) in the current schedule. As
an example, the real-time workloads executing in an automotive platform can be a mix of time-
driven periodic tasks and event-driven sporadic tasks. Automobiles that implement perception
systems consist of inferencing pipelines for detecting traffic signs and pedestrians [16]. The peri-
ods of such tasks need to be adjusted to accommodate dynamic frame sampling rates so that the
detection accuracy remains above a threshold irrespective of the lighting condition and the local-
ity [45]. Alternatively, the frame resolutions may be adaptive leading to varying execution time of
the inference pipeline when the period is kept constant [48]. Vehicular control loops can also have
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scenario-based modification in sampling rates based on control performance and co-scheduling re-
quirements [18]. Monitoring tasks can also get triggered by correlating multiple sensor values in
an event driven manner for attack detection, mitigation, general diagnostics, and prognostics [17].

Dynamic modification of executing task sets, changes in periodicity and execution time
demand adaptive resource management strategies for satisfying both thermal and real-time
constraints. The problem of task-to-core allocation under such multi-dimensional constraints
is complex. Firstly, the task-to-core mapping configuration space is overly large due to the
heterogeneous nature of modern embedded multi-cores [46]. Also, the nonlinear relationship
among the performance of concurrent tasks due to the interference created by shared resource
accesses (e.g., shared L2 cache) makes performance modeling complex [47]. Trying to figure
out resource mappings which ensure schedulability at peak system load can lead to thermal
envelope violation causing reliability issues in the long-term [6]. Another solution is to calculate
suitable resource mapping options for all possible changes in the workload scenario in an offline
phase and applying it online. But such static resource mapping fails to scale for large scale
dynamic systems with multiple applications with different occurrence rate, mapping choices and
multiple constraints. Such static scheduling solutions are also overly pessimistic [36]. So, there
is an inherent need for adaptive, lightweight scheduling mechanisms that can perform dynamic
mapping by online resource analysis and re-configure scheduling decisions as and when required
in a thermally aware manner for heterogeneous many-cores.

Our Approach: Designing an efficient thermal-aware, adaptive resource manager, that is cog-
nizant of the application performance, as well as the thermal profile, is a challenging problem
for heterogeneous multi-cores. Different dynamic resource mapping methodologies for CPU-GPU
platforms have been explored that optimize performance mainly in terms of latency and power.
These approaches employ heuristic based, greedy, ML and control theoretic techniques [34, 35, 39,
46]. However, most approaches ignore potential thermal violations in the system and the effects of
thermal throttling. Prior work does not address the issue of real-time task scheduling in CPU-GPU
integrated systems while handling thermal violations in case of dynamic workload modifications.

Our work provides a run-time platform manager which aims precisely at filling up these lacunae.
We try to address the aforementioned problem by formulating lightweight heuristic-guided sched-
uling solutions which perform online thermal management of heterogeneous CPU-GPU platforms
executing multiple real-time tasks. We consider a combination of runtime task partitioning, migra-
tion, idleness insertion, and control theoretic DVFS as scheduling moves. Existing work consider
only one of these approaches for CPU-GPU systems [38, 42], or a subset of these approaches but
for homogeneous multi-cores [30].

We have implemented an adaptive framework capable of supporting dynamic workload sce-
narios that keep on changing the scheduling status-quo of an existing real-time task set. The
framework is generic and can be extended to any heterogeneous multi-core platform equipped
with core level temperature sensors and OpenCL programming support. The efficacy of the pro-
posed heuristics used by the framework is established on a real embedded CPU-GPU platform
(Section 7.1) through extensive experimentation involving a variety of workload scenarios with dif-
ferent choices of periodic and event-driven job injections and different arrival rates of constituent
tasks. We have observed that our approach exhibits positive results in terms of dynamically reduc-
ing peak temperature and deadline violations in comparison to other existing approaches.

2 BACKGROUND

In the following, we briefly discuss concepts that are relevant to this work.
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Heterogeneous Computing: Modern embedded computing platforms have seen a paradigm
shift in their architectures and have become increasingly heterogeneous. For example, recent mo-
bile and automotive platforms consist of multiple processing elements, such as high-throughput
power-consuming ‘big’ CPU cores, low-power low-throughput ‘LITTLE’ CPU cores, and GPU
cores integrated on the same die with a shared memory unit. Instead of using fixed (i.e., static)
roles for each kind of device (e.g., CPUs for sequential and management tasks and GPUs for par-
allel work), heterogeneous programming models, such as OpenCL (by Khronos [37]), oneAPI (by
Intel), and HetCompute (by Qualcomm), allow for efficient execution of a single data parallel kernel
using all the available devices.

OpenCL Programming Model: OpenCL (Open Computing Language) is a framework for writ-
ing programs that execute across heterogeneous platforms [37]. It provides a standard interface
for parallel computing using task and data level parallelism on different compute devices such as
CPU, GPU, FPGA and DSP. An OpenCL program typically consists of two distinct entities: (i) the
host code which is a single-threaded serial program that executes on the host device (a CPU) and
orchestrates the entire process of data transfer and issuing directives for parallel execution, and
(ii) kernel code which executes the actual data parallel computation on compute devices.

Each compute device comprises multiple compute units (e.g., shader cores in case of GPUs) and
each compute unit consists of multiple processing elements (e.g., arithmetic pipelines). A process-
ing element executes a kernel instance called work-item that operates on a single data point. A
group of work-items form a work-group and these items execute concurrently on the processing
elements of a single compute unit. The OpenCL memory model demands memory consistency
among work-items within the same work-group but not across different work-groups. Different
work-groups of the same kernel can be launched on different devices without worrying about
maintaining memory consistency among compute devices. This allows scheduling of tasks on a
heterogeneous platform to be done asynchronously at the granularity of work-groups.

OpenCL Task partitioning: Partitioning tasks in the context of OpenCL applications entail
splitting the data space to be processed by the task/kernel into segments and processing the seg-
ments concurrently using the devices of the heterogeneous system. In contrast to the traditional
approach of executing tasks on a single accelerator device in its entirety, partitioning allows for
optimum resource utilization of the different processing elements in a heterogeneous platform
leading to reduced execution times. Several partitioning based methodologies have been proposed
over the years that advocate such collaborative execution of data parallel tasks on CPU/GPU plat-
forms [14, 15, 20, 27, 29, 46]. Such approaches typically decide upon a partitioning ratio that would
determine how the data space can be distributed for processing across the CPU and GPU devices
concurrently such that overall execution time is minimized.

Task partitioning in this context occurs at the work-group granularity and is orchestrated by
the host program. The host is configured to launch a subset of the total number of work-groups
on the CPU device while the remaining work-groups are launched on the GPU device. As an
illustrative example consider the OpenCL vector addition kernel depicted in Figure 1 executing
on a CPU-GPU platform. The kernel takes as input two buffers input1 and input2, performs
element wise addition and returns the result in output. We assume the number of elements of the
buffers to be n = 256. The total number of work-items launched would be thus 256 where each
work-item i is designated with a single addition operation: output[i]=input1[i]+input2[i].
Assuming a work-group size of 4, the total number of work-groups required for executing the
kernel is 256/4 = 64. The example depicted in Figure 1 considers a partitioning ratio of 1 : 3,
i.e., 1/4 ∗ 64 = 16 out of 64 work-groups (work-groups with ids 0 − 15) are mapped to the CPU
device. The remaining 48 (work-groups with ids 16 − 63) are mapped to the GPU device. We note
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Fig. 1. Partitioning OpenCL Vector Addition.

that partitioning OpenCL tasks only require configuring the kernel launch commands from the
host program and does not require modifying the source code of the kernels. The overhead of
partitioning is thus in issuing extra kernel launch directives, which is negligible when compared
to the overall execution time of the kernel. However, kernels with inter-thread data dependencies
(e.g., reduction kernels) may require more careful choice of partitioning ratio and extra merging
steps in the host program.

3 MOTIVATING EXAMPLE

We first conduct experiments that analyse the performance of different thermal management
schemes which involve scheduling moves/actions like DVFS, task migration, and idle slot inser-
tion. Our experiments constitute iteratively executing multiple instances of the data parallel SIMD
style OpenCL task, GESUMMV (Scalar Vector and Matrix Multiplication), on the heterogeneous
Odroid XU-4 platform. Figure 2(a) illustrates the working principle of different thermal manage-
ment schemes that leverage the aforementioned moves/actions (both task and device level) for
scheduling OpenCL tasks on CPU-GPU platforms.

Each small sub-figure in Figure 2(a) pictorially depicts the latency of the task subject to different
schemes used in our experiments. The OpenCL task GESUMMV is represented as a collection
of multiple threads, where the thread length is proportional to the task latency. The rectangular
blocks represent the device to which the task is mapped (red for CPU and green for GPU). The
impact of these different schemes on the chip temperature (peak and average) and the task latency
is illustrated in Figure 2(b). Here, the x-axis shows the latency and the y-axis plots the temperature.
The orange crosses in Figure 2(b) represent the peak temperature versus the latency plot. The blue
circles represent the average temperature versus the latency plot for each case.

We first describe our observations on three DVFS-based DTM schemes (top row of Figure 2(a)).
Aggressive thermal throttling (Case A): In our platform, if the peak temperature of the CPU
exceeds 90◦C (trip point), the OS applies thermal throttling [46] that automatically underclocks the
processor. The frequency reduces from 2GHz to 0.9GHz and stays there until the temperature drops
to 82◦C. The frequency is raised to 2GHz thereafter. This action is irrespective of task deadline
characteristics. In the figure, the high/low frequency regions of thread execution are denoted by
corresponding frequency modulation of the threads.
Constant low frequency (Case B): Given a (task, device) pair, this scheme sets the processor
frequency to a constant low value (1.2GHz in our experiments) for the entire lifetime of the appli-
cation so that default thermal throttling is not triggered. In the figure, thread execution is denoted
by a constant frequency modulation with increased length of the threads due to increased latency.
Online frequency tuner (Case C): In this scheme, a simple control logic observes the core-
level temperatures at regular intervals while executing tasks on the CPU. If the peak temperature
reaches 88◦C, it decreases the frequency in steps of 0.2 GHz in each sensor sampling interval. If
the temperature goes below a threshold 84◦C, the frequency is increased in steps of 0.1 GHz. For
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Fig. 2. Variation in task mapping and their effect on temperature and latency.

our example, the task executes on the CPU initially set at frequency 2GHz and gradually reduces
and remains in the range 1.5–1.8GHz.

In Figure 2(b), we observe the peak CPU temperature in Case A reaches 95◦C and then drops
quickly leading to increased latency due to thermal throttling, whereas the average temperature is
82◦C. For Case B and Case C, the peak temperature reaches 84◦C and 88◦C (below the trip point)
respectively, whereas the average temperatures are 77 and 79◦C. Even though the task is mapped
at the highest frequency on the CPU for Case A, its observed latency is more than Case C (12%)
where the task executes at a comparatively lower frequency. The reason is, once the temperature
reaches the trip point, the frequency drops drastically due to thermal throttling in Case A.

Next, we summarise some of the schemes that exploit task level actions like device choice, task
partitioning, and tuning of idle slots as depicted in the bottom row of Figure 2(a).
Whole task migration (Case D): This scheme explores task migration by launching all SIMD
threads pertaining to the task computation on a cooler device and keeping the hotter device idle.
Thus, the chip temperature can be reduced without relying on DVFS. In our example, the task is
initially mapped to the CPU, and then mapped to the cooler GPU in the next iteration of the task.
Partitioned task migration (Case E): This scheme partitions a data parallel task into smaller
sub-tasks by appropriately distributing SIMD threads of the data parallel task across multiple het-
erogeneous processors. In this example, the task is partitioned into two sub-tasks, one executing
on the CPU and the other on the GPU, in two possible ways. In Case E(i), the partitioned sub-tasks
are executed serially but on different devices. Once the first sub-task finishes its execution on the
CPU, the second sub-task starts execution on the GPU. In Case E(ii), the two sub-tasks are exe-
cuted concurrently on CPU and GPU devices. The frequency setting is set to maximum for both
devices.
Idleness insertion (Case F): Instead of executing the task continuously on a device, the scheme
partitions the task into sub-tasks and inserts an idle slot between consecutive sub-tasks. Idle slots
refer to time intervals when the device is kept idle. In our example, the task is partitioned into two
sub-tasks and both execute on the CPU serially with an idle slot of 1 second between them.

Note from Figure 2(b) that Case D and Case E(ii) exhibit two extreme cases. The peak and average
temperatures in Case D are the least and latency is maximum compared to all other cases. Case
E(ii) exhibits the minimum latency but maximum average temperature and second-highest peak
temperature. It has both cores occupied during task execution, leading to lesser latency but high
power dissipation due to thermal coupling of cores. In our target platform, ARM Cortex A15 cores
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Fig. 3. Peak temperatures for different scenarios.

have greater compute capability than ARM Mali GPU and the maximum allowed frequency for the
CPU and GPU are 2GHz and 0.6 GHz respectively. Case D is the only mapping option where we
have the CPU completely left idle as the task instance has been migrated to the GPU. This explains
the increased execution time. In Case B also, due to continuous use of low operating frequency,
execution time is quite high. Case C, E(i) and F have similar performance in terms of both latency
and reducing peak temperature, and also have better trade-offs between these two parameters.
We observe Case E(i) and F have similar average temperature characteristics also. So, we consider
these three schemes in our proposed framework as control actions for reducing thermal violations.

Given the promising results for Case C (frequency tuning), Case E (task migration) and Case
F (idle slot insertion), we next investigate how synergistically executing combinations of these
three schemes impact the reduction of peak temperatures. For this, we construct three relevant
scheduling scenarios, each with different initial chip temperature, device utilization and target
latency goals. For each scenario, our objective is to maintain the peak temperature below an upper
threshold (85◦C). If temperature is above 85◦C (thermal violation), the schemes discussed should
reduce the temperature below the threshold without violating the target latency goal. The peak
temperatures achieved by different combinations of the schemes in each scenario is highlighted in
Figure 3 where the x-axis plots the three scenarios and y-axis plots the peak temperature.
Scenario 1: We map the task to the CPU at the highest frequency setting while keeping the GPU
idle. The target latency goal is relaxed. In such a scenario, frequency tuning (Case C) alone can
reduce the peak temperature below the given threshold, as depicted in Figure 3.
Scenario 2: We map the task to the CPU at the highest frequency setting while keeping the GPU
idle. The target latency goal is highly conservative. In such a scenario, sufficient frequency reduc-
tion (Case C) or task shifting (Case F) in isolation are not feasible for meeting deadline constraints.
In contrast, partitioned task migration to GPU (Case E) and then applying frequency tuning (Case
C) results in lower peak temperatures compared to individual schemes as depicted in Figure 3.
Scenario 3: We map the task to CPU at the highest frequency setting while keeping the GPU
heavily engaged. The target latency goal is relaxed, but the initial chip temperature before the
starting of the CPU bound task is high. Here, migration (Case E) is not an option since the GPU
is busy. We observe from Figure 3, that rather than applying frequency tuning (Case C) alone, a
combination of idle slot insertion (Case F) and frequency tuning (Case C) ensures better thermal
management. This is because the idle slot inserted before executing the CPU task helps to reduce
the initial high chip temperature such that it is manageable by frequency reduction.

The above scheduling experiments thus motivate scenario-based usage of DTM schemes for
thermal-aware scheduling while maintaining target latency goals.

4 PROBLEM FORMULATION

In the following, we discuss the platform model, the task model, and the thermal model for our
proposed framework, and then present our problem statement.
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Platform Model: There exist multiple processing elements or devices with different compute
capabilities in a heterogeneous integrated processing platform P. Each device δi ∈ P is potentially
distinct from another device δ j ∈ P, j � i , in terms of the architecture, computational power, and
memory structure. The devices reside on the same die and share a common DRAM. Without loss
of generality, we have considered one CPU and one GPU device on our platform, i.e., P = {δC ,δG },
where δC and δG denote the CPU and the GPU devices, respectively. The trip point at which OS-
governed thermal throttling takes place for the device δ j is denoted as Tδj

. In our work, the trip
point for both δC and δG are considered the same and denoted by Ttr ip .

Task Model: We assume the input task setT = T p∪T s comprises both time-triggered periodic
tasks (T p ) and event-triggered sporadic tasks (T s ). Once started, any sporadic task executes for
a bounded number of instances with some periodicity. Each periodic task τi ∈ T p executes with
some period ∈ [pl

i ,p
h
i ] depending on the dynamic performance requirement of the subsystems

(e.g., detection pipelines and control modules pertaining to various vehicle domains). At any point
of time, the currently executing job set J thus comprises multiple instances (jobs) of both periodic
and sporadic tasks inside a hyper-period following their respective specification of period values.
A new scheduling epoch starts due to possible modifications in J . The currently executing job set
J can get modified to some J ′ in a new scheduling epoch in the following ways.

(1) The period specification for some periodic task τi ∈ Tp can change from period pi to some p ′i
as dictated by the performance requirements of the underlying subsystems. Note that both
pi , p

′
i ∈ [pl

i ,p
h
i ].

(2) The set of sporadic tasks T ′s ⊆ Ts to be run may change. Job instances corresponding to
each new sporadic task τi ∈ T ′s are then added to J ′ following their period specification,
and sporadic tasks that expire are removed from the job set.

A real-time data parallel OpenCL task τi is characterized by the tuple (Wi , wi , Ei , [pl
i ,p

h
i ], di ).

The quantitiesWi andwi represent the number of OpenCL work-groups and the number of work-
items per work-group to be launched, respectively. The set Ei represents the set of worst-case
execution times (WCET) of τi for all possible combinations of devices in P and their respective
frequency settings. An element ei, j,f ∈ Ei represents the maximum time to complete τi on device
δ j at frequency f . In our framework, each element ei, j,f is measured offline over multiple runs
while running suitable tasks in other devices so that maximum possible memory interference is
created for τi . We maintain a data structure denoted by WCET lookup table for all the OpenCL
tasks considered in the framework in an offline stage such that for any executing OpenCL task,
the corresponding set of worst-case execution times (WCET) can be readily accessed during online
scheduling. For any task, a choice of period p ∈ [pl

i ,p
h
i ] is associated with a related choice of

deadline d (d ≤ p).
We note that these periodic OpenCL tasks (new or existing) are non-preemptive in nature, i.e.

once the task is dispatched to the command queue, the device choice cannot be changed by issuing
directives from the host program. The problem of non-preemption can be handled by partitioning
data parallel OpenCL tasks into suitable smaller sized sub-tasks. Each sub-task is a subset of work-
groups used in the original task, operating on a subset of the input data space. Let τ k

ip
denotes

the kth sub-task of the pth job instance of the task τi . If the number of sub-tasks for a task τi

is denoted by Ki where 1 ≤ Ki ≤ Wi , then the value of Ki decides how frequently scheduling
decisions for a task can be modified. The local deadline of each such sub-task τ k

ip
is denoted as dk

ip
.

This is estimated from the relative deadline di of the whole task τi and the fraction (f rack
ip

) of total

work-groups in τi present in the sub-task (dk
ip
= f rack

ip
× di ). Let ek

i, j,f
denote the maximum time
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for executing sub-task τ k
ip

on the device δ j at frequency f . This is estimated from ei, j,f and the

fraction of work-groups present in τ k
ip

.

Definition 4.1. The task mapping triplet mk
ip
= (δ j , f , ts ) denotes the sub-task τ k

ip
is mapped to

the device δ j at frequency f where ts is the relative start time of the sub-task, i.e. after the arrival

of τ k
ip

, the execution starts after time ts . By default, it is set to 0. The mapping is valid if ts + e
k
i, j,f

≤ di where ek
i, j,k

is the estimated worst-case execution time for finishing sub-task τ k
ip

.

Definition 4.2. The schedule S for the job set J in some hyper-period H on the platform P is
the set of all task mappings for all sub-tasks of all jobs in J . S is said to be valid if the mapping
decisionmk

ip
is valid for every sub-task in every job in J .

The mapping triplet for a (sub)task can be altered by the following well-defined control actions.

(1) Frequency tuning of sub-task τ k
ip

can change the core frequency from f to some f ′ resulting

in a modified mapping,mk
ip
= (δ j , f , ts ) →m′kip

= (δ j , f
′, ts ).

(2) Task migration of sub-task τ k
ip

can alter the assigned device δ j to some cooler device δ ′j result-

ing in a modified mapping,mk
ip
= (δ j , f , ts ) →m′kip

= (δ ′j , f , ts ).

(3) Idle slot insertion for sub-task τ k
ip

can alter the start time by inserting some delay t resulting

in a modified mapping,mk
ip
= (δ j , f , ts ) →m′kip

= (δ j , f , t
′
s ) such that t ′s = ts + t .

We have used device utilization as a quantitative measure of the idleness present at a given time
interval during a schedule. It gives a fair idea about the amount and type of computation handled
by each device. For any given time interval Ia , we have classified the utilization (U (Ia , j )) of a
device δ j as either low (Lo) if U (Ia , j ) < α j or high (Hi) if α j ≤ U (Ia , j ) ≤ 1, where α j ∈ [0, 1] is
an experimentally derived threshold parameter for device utilization calculated offline. Similarly,
we have also defined a threshold parameter βj by conducting extensive experimentation, which
would dictate whether the frequency setting is high (Hi) or low (Lo) for the device δ j .

Thermal Model: We have set two different thermal thresholds for each device: (i) major thresh-
old (Tmajor < Tδj

) where Tδj
is the trip point of the device δ j and (ii) minor threshold (Tminor <

Tmajor ). For simplicity, we have considered the same value for Tmajor for both δC and δG and the
same value for Tminor for both devices. The values of Tmajor , Tminor and Tδj

considered for our
platform is specified in Section 7.1. During run time, the temperature of both the devices are moni-
tored at regular intervals of time (h) using the on-board temperature sensors to check whether core
temperatures exceed the thermal thresholds. Whenever the temperature exceeds Tminor but not
Tmajor , it is considered as a minor thermal violation. In case the temperature exceeds Tmajor , it is
considered as a major thermal violation. A sub-task is marked unstable if major thermal violation
is detected during its execution.

Our proposed framework targets to reduce the operating temperature for both kinds of vio-
lations. The primary reason for setting a range of lower values for thermal thresholds instead
of considering the OS specified trip point is to ensure that immediate recovery actions can be
taken before reaching the trip point. This would prevent the OS-governed thermal throttling rou-
tine from kicking in which would drastically alter core frequency leading to potential deadline
violations.

In the steady state of system operations, we assume that the platform is thermally stable until
thermal violations are detected due to some change(s) in the current job set J . A platform P
is said to be thermally stable with respect to a given job set J iff for a valid schedule S for a
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Fig. 4. Workflow overview.

hyper-period H , the peak temperature in all the devices in P remains below a given threshold
value Tmajor throughout the schedule.

Problem Statement: Our objective is to solve the following design problem in this work: Given

a job set J running on a heterogeneous embedded platform P equipped with thermal sensors and

following a feasible thermally stable schedule S, in case of thermal violations caused due to change in

J to J ′ at run time, our proposed framework decides how a new feasible thermally stable schedule

S′ can be reached adaptively.

We propose the design of an intelligent scheduler that runs periodically and minimizes thermal
violations adaptively using control theoretic approaches and heuristics. The thermal-aware control
actions executed by the scheduler are task migration, frequency tuning and idle slot insertion,
performed iteratively in a feedback loop.

5 METHODOLOGY OVERVIEW

Figure 4 depicts the workflow involved in both offline and online phases of our proposed frame-
work. In the offline phase, our objective is to populate the WCET lookup table for the set of tasks in
T . This is done by profiling every kth sub-task of τi ∈ T for every possible combination of device
j and frequency setting f to yield ek

i, j,f
. To determine what should be a suitable task-size for each

sub-task and consequently the number of sub-tasks for any given task, a single work-group of τi is
initially profiled in all the devices at both the highest and lowest frequency settings. The average
execution time (exavд) for a single work-group is computed after multiple profiling runs. Based on
exavд , τi is suitably partitioned into Ki sub-tasks. We set Ki =Wi/((z · h)/exavд ) whereWi is the
number of OpenCL work-groups in τi , h is the sampling period of thermal sensors for the platform
and z ∈ Z+. Note that for z = 1, Kn will be such that each sub-task will take (approximately) one
sensor sampling period to execute. For larger z (i.e., smaller Ki ), sub-tasks will be lesser but each
sub-task will take around z · h amount of time to execute, empirically speaking. Since individual
sub-tasks take longer time to execute, control actions in the recovery mode cannot be applied fast
enough for avoiding thermal violation. For smaller z (i.e. larger Ki ), the system will have higher
task dispatch overhead. After partitioning, sub-tasks are profiled on each device at all possible
frequencies. We follow the co-degradation-based approach [50] that ensures maximum memory
interference while profiling the kth sub-task of τi on device j at frequency f to obtain ek

i, j,f
. The

profiling information thus derived is used in populating the WCET lookup table discussed earlier
and are leveraged in subsequent hyper-periods for refining the task mapping of the task set when
required.
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In the online phase, let us consider that the currently executing job set J gets modified to
J ′ in a new scheduling epoch. Let Jr el and Jnew denote the job instances released and added
in the system so that J ′ = J � Jr el ∪ Jnew . If Jr el is nonempty, device utilization is reduced,
thus allowing jobs in Jnew more resource bandwidth to exploit. As depicted in Figure 4, an initial

mapping is first constructed to update the schedule of the job set J ′.
For each job instance jobi in Jnew , the initial mapping is chosen greedily using the Worst-Fit

Decreasing (WFD) algorithm [7]. This is done by mapping jobi in the hyper-periodH to the device
(δl ) with the lowest device utilization in the time interval between the arrival and deadline of the
jobi . The frequency of the device under consideration is then greedily chosen as the maximum
value (fM ) to minimize the latency requirement so that the deadline of the job is satisfied. If the
deadline constraint is not satisfied at the maximum frequency, then it cannot be scheduled at any
lower configuration.

The relative start time (ts ) of the jobi is set to 0 by default, i.e., jobi can be dispatched right after
its arrival. Here, start times of consecutive sub-tasks of the same task mapped to the same device
and frequency setting are set with the assumption that the variation in latency of such sub-tasks is
negligible. For all sub-tasks of jobi , the initial task mapping needs to be set to the greedily chosen
device and frequency setting.

The initial task mapping (mk
jobi

) for each sub-task (jobk
i ) is denoted by the triplet (δl , fM , (ts +k ·

ek
n,l,fM

)) where k is the index of the sub-task and ek
n,l,fM

is the estimated worst-case execution time

to finish kth sub-task of jobi on δl at frequency fM . IfM denotes the set of the initial mappings
of all sub-tasks of all job instances in Jnew in a hyper-period H , the updated schedule S′ over
each hyper-period is given as S′ = S � Sr el ∪ M where S � Sr el is the schedule at the end of
last epoch without the mapping of each job in Jr el . The framework will next dispatch sub-tasks

following S′ and monitor the thermal profile at the end of executing each sub-task. In case of
thermal violations, our proposed framework triggers a recovery controller which adaptively tries
to mitigate the thermal violations. The recovery controller chooses appropriate thermal recovery
actions (discussed in the next section) that modify the task mapping to reduce peak temperature
while satisfying the deadline constraints of the tasks with the help of the WCET lookup table
created offline. The new mappings are updated in the schedule and the process continues for the
whole epoch or until the platform is thermally stable again.

6 THERMAL VIOLATION AND RECOVERY MECHANISM

The work flow of the thermal recovery mechanism is depicted in Figure 5. Let us consider that in
a given hyper-period a sub-task τ k

ip
is dispatched with task mappingmk

ip
= (δ j , f , ts ) in platform P

following schedule S. The thermal profile during the execution of the sub-task τ k
ip

is analysed to

identify the peak temperature Tj in the device δ j . If there is no thermal violation, i.e. Tj ≤ Tminor ,
the framework does not take any action and continues with the existing task mapping decisions in
S. If there is any kind of thermal violation, the temperature is reduced by the recovery controller
that work in two distinct modes - local and global recovery mode.

If a major thermal violation is observed (i.e.,Tj > Tmajor ), the global recovery mode is activated
and the sub-task is marked unstable. A closed feedback loop is used to adaptively change the
task mapping of the unstable sub-task τ k

ip
by taking suitable control actions discussed earlier in

Section 4. In this context, feedback refers to the difference in expected and the actual performance
with respect to peak temperature and latency of τ k

ip
. Based on the observed feedback, the current

thermal behaviour and the resource availability of the platform P, a control action is selected
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Fig. 5. Thermal Recovery Mechanism.

such that the peak temperature drops below Tmajor while ensuring there is no deadline violation.

The resultant task mapping m′kip
is updated in schedule S to yield a new schedule S′ which is

followed in the next hyper-period. We note that while such task mapping modification decisions
are adaptive and accurate in mitigating thermal violation, the changes are reflected at an interval of
one hyper-period. In the case of a minor thermal violation (i.e,Tmajor ≥ Tj > Tminor ), the recovery
controller activates the local recovery mode in the device δ j . It changes the task mapping of the next

sub-task (τ k ′
ip

) scheduled in δ j after τ k
ip

. In contrast to global recovery mode, changes made in local

recovery mode are reflected immediately in the same hyper-period, i.e., it does not get updated
in the existing schedule S. We note that such task mapping modification decisions may not be
accurate in mitigating thermal violation. However, this mode is lightweight when compared to
global recovery and initiates an instantaneous cooling effect on the relevant device. The recovery
controller thus chooses local recovery mode when the peak temperature is high but not at the risk
of overshooting the trip point that will trigger OS induced thermal throttling leading to increase
in deadline violations.

6.1 Global Recovery Mode

The following three steps are performed in global recovery mode to reduce the peak temperature
in the upcoming hyper-period.

Interval detection: At the end of a hyper-period H , the operating regions of the recovery con-
troller in global recovery mode is identified by constructing a set of intervalsIH as follows. Initially,
for each unstable sub-task identified, an interval Iq = (sq , eq ) is created where sq denotes the start-
ing time and eq denotes the local deadline of the sub-task. A pair of intervals Iq = (sq , eq ) and
Ir = (sr , er ) can be overlapped if sr ≤ eq . Since there can exist multiple such intervals for different
sub-tasks that can overlap, we merge such intervals so that the number of operating regions is
reduced. The set IH contains the set of such merged intervals only.

Resource Analysis: In the resource analysis phase, the resource availability, device utilization,
frequency settings and peak temperatures are analysed for each identified interval in IH . Device
utilization gives a fair idea about the amount and type of computation handled by the device, and
a quantitative measure of idleness present in the given interval. For each interval Ia = (sa , ea ),
we denote device utilization for each device δ j as U (Ia , j ). This represents the fraction of time
δ j was busy executing sub-tasks in the duration of Ia . For any given interval Ia , the utilization
and frequency setting of a device δ j is classified as either low (Lo) depending on experimentally
derived threshold parameters α and βj calculated offline. This binary classification with respect to
frequency and utilization is done to simplify run-time decisions. Each device in the platform can
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Table 1. Recovery Action Selection

Thermal
violation in

(Utilization,
Frequency) in δG

(Utilization, Frequency) in δC

(Lo, Lo) (Lo, Hi ) (Hi, Lo) (Hi, Hi )

δC

(Lo, Lo)

No action Frequency tuning in δC

Migrate task to δG(Lo, Hi )
(Hi, Lo)

Insert idle slot in δC Frequency tuning in δC(Hi, Hi )

δG

(Lo, Lo) No action
(Lo, Hi ) Frequency tuning in δG

(Hi, Lo)
Migrate task to δC

Insert idle slot in δC

(Hi, Hi ) Frequency tuning in δG

Both

(Lo, Lo) No action Frequency tuning in δC Migrate task to δG

(Lo, Hi ) Frequency tuning in δG Frequency tuning in both Frequency tuning in δG Frequency tuning in both

(Hi, Lo)
Migrate task to δC

Insert idle slot in both
Insert idle slot in δG ,
Frequency tuning in δC

(Hi, Hi )
Insert idle slot in δC

Frequency tuning in δG
Insert idle slot in both

have a total of 2 × 2 possible configurations of device utilization and frequency settings. For our
case, since there are two devices, we require examining 22×2 = 16 different scenarios.

Control action selection: We design a controller routine that takes control theoretic schedul-
ing decisions to choose appropriate recovery actions to be applied for the next hyper-period. These
are chosen based on the observed values of device utilization and frequency settings identified by
the resource analysis phase in each of the intervals in IH . Table 1 summarises the recovery actions
taken by the controller for each of the sixteen different scenarios discussed above. The table layout
is designed such that each control action will be chosen depending on the device where the major
thermal violation is detected. There can be three possible thermal violation options, occurring in
δC or δG or both. They are given in the first column of the table. For each of the three possible
Utilization violation scenarios, the GPU configuration can be selected from sub-rows in Column 2,
four possibilities of (Utilization, Frequency) for each violation scenario. The corresponding CPU vi-
olation scenario (again four possibilities) can be selected from the rest of columns. Thus, for any of
the three thermal violation conditions (in Column 1), each intermediate cell in the table represents
a recovery action taken for a pair of possible configurations pertaining to the devices δG and δC .

In all scenarios, the final objective is to reduce the peak temperature and thus mitigate thermal
violations while respecting deadline constraints. We next explain the intuitions behind the choice
of each recovery action taken. If both device utilization and frequency settings in interval I are
low for a device where a major thermal violation has occurred, we do not change the current task
mapping, since its effect on the peak temperature would be negligible.

If one device has high utilization whereas another device has low utilization i.e. the load distribu-
tion is not uniform, then irrespective of the frequency setting the controller opts for task migration
and suitably changes the task mapping to balance the device utilization across devices. Task mi-
gration is preferred over frequency tuning in this case, since there is an opportunity of sharing
the load on the device in the interval where the utilization is low. Decreasing the frequency of the
device in this case might result in a potential deadline violation.

If the device utilization is high in all available devices, i.e., we cannot perform task migration,
we either perform frequency tuning or idle slot insertion. If the frequency setting is high for the
device where thermal violation occurred, the controller applies frequency tuning. The choice of
frequency tuning over idle slot insertion here may be attributed to the fact that reducing frequency
leads to more temperature reduction compared to task shifting for similar latency performance. If
the frequency setting is already low, an idle slot is inserted, allowing the heated device some time
for cooling down.
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ALGORITHM 1: Frequency Tuning Mode

1 Input:τk
ip

,mk
ip
= (δj , f , ts ), ex_timecur

2 Output:m′kip

3 speedдoal ← size (τk
ip

)/(local_deadline (τk
ip

) − ts )

4 speedcur ← (size (τk
ip

)/ex_timecur )

5 error← speedдoal − speedcur

6 speedupcur ← speedcur /speedbase

7 speedupnxt ← speedupcur + ((1 − ρ)/speedbase ) × error
8 f2 ← дet_f requency(speedupnxt ,τi ,δj )

9 if f2 < f1 then

10 m′kip
= (δj , f

′, ts )

Next, we describe how these three recovery actions have been designed.

A. Frequency Tuning: For each unstable sub-task τ k
ip

in global recovery mode where frequency

tuning is chosen as the recovery action, the frequency tuner runs once at the end of each hyper-
period. It chooses a suitable alternate frequency for the demarcated sub-task to be used in the
next hyper-period. It again iterates in the immediate next hyper-period and continues until τ k

ip

is marked stable. The algorithm used for frequency tuning uses the well known pole-placement
based self-tuning control techniques [23, 35] which dynamically model speedup of a task as a
function of task latency at different clock frequency values. This is depicted in Algorithm 1 which
takes as input an unstable sub-task τ k

ip
, its mapping mk

ip
= (δ j , f1, ts ) and the actual execution

time (ex_timecur ) recorded for τ k
ip

in the current hyper-period. The output is the modified task

mapping m′kip
which would be used in the next hyper-period. We define speed of a task τi as the

ratio between the total number of work-items (size (τi ) =Wi ·wi ) for the task and the time taken to
execute that task, whereWi is the total number of work-groups andwi is the number of work-items
per work-group for the task τi as defined earlier. Since, we want the sub-task τ k

ip
to finish within its

local deadline, the required speed i.e. speedдoal is calculated by considering the number of work-

items launched for the sub-task (size (τ k
ip

)) and the time left to finish the sub-task since it arrived

within the required local deadline (line# 3 of Algorithm 1). The current speedup of τ k
ip

is calculated

by considering the actual time it took for execution, i.e. ex_timecur (line# 4). The difference in
required and actual speeds indicate the term error that needs to be adjusted (line# 5). Since speedup
of a task is an abstraction of the relative changes in the performance with respect to frequency
variation, we define it as the ratio between the speed of the task at frequency f and the speed of
the task when it is executing at the minimum frequency (base speed). Based on this, the current
speedup is calculated considering speedcur and speedbase (line# 6). Our objective is to calculate
speedupnxt which is the required speedup for executing the sub-task in the next hyper-period.
This is obtained by using the control theoretic speedup equation speedupnxt ← speedupcur + ((1−
ρ)/speedbase )×error where ρ is the pole of the controller. Given that we have access to the WCET
lookup table, the required frequency f ′ for attaining speedupnxt is then obtained. If we observe

that f ′ is less than f , the task mapping is modified to, m′kip
= (δ j , f

′, ts ) which would be used for

executing the sub-task in the next hyper-period. This process of calculating speedup and obtaining
the required processor frequency setting is repeated iteratively for consecutive hyper-periods in
order to minimize the difference in expected and actual performance, i.e. error .
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Fig. 6. Example of Global Controller actions.

B. Task Migration: The algorithm used for task migration ascertains whether it is possible to
reduce the device utilization of the hotter device facing thermal violation so that the peak tem-
perature could be reduced. For each unstable sub-task τ k

ip
in global recovery mode where task

migration is chosen as the recovery action, the task migration algorithm runs once at the end
of each hyper-period to modify the device choice of τ k

ip
. Let the current task mapping of τ k

ip
be

mk
i,p = (δhot , f , ts ). Let δcool be the device with the lowest peak temperature during the time be-

tween start time (ts ) and local deadline (dk
ip

) of τ k
ip

. The algorithm allows migrating an unstable

sub-task τ k
ip

from device δhot to δcool if δcool can accommodate it. We greedily choose frequency

setting for δcool as the maximum frequency (fM ) to increase the possibility of task migration. Let
avail be the available time slot between the local deadline dk

ip
and start time ts when the device

δcool is idle. The estimated WCET of τ k
ip

on δcool at frequency fM i.e. ek
i,cool,fM

is obtained from the

WCET lookup table. If ek
i,cool,fM

≤ avail , the task mappingmk
ip

is changed to (δcool , fM , ts ).

C. Idle slot insertion: The algorithm used for idle slot insertion introduces idle slots between
consecutive tasks in a device to allow the device to cool down when the device is idle. For each
unstable sub-task τ k

ip
in global recovery mode where idle slot insertion is chosen as the recovery

action, the idle slot insertion algorithm runs once at the end of each hyper-period to modify the
start time of τ k

ip
. Let the task mapping of τ k

ip
be mk

ip
= (δ j , f , ts ) and the algorithm for idle slot

insertion modifies ts for the next hyper-period. The finish time (te ) of τ k
ip

is calculated from the

WCET lookup table as ts + ek
i, j,f

where ek
i, j,f

is the estimated WCET for the sub-task executed

with task mapping mk
ip

. The time the device δ j is idle after τ k
i,p finishes is denoted by slack . Here,

slack = dk
i,p − te where dk

i,p is the local deadline of τ k
ip

. The sub-task is shifted by offsetting its

starting time by this quantity slack , resulting in a new task mappingm′ki,p=(δ j , f , ts +slack ). Such

a choice of modified start time works as our WCET estimate ek
i, j,f

bounds the maximum possible

time taken by τ k
i,p .

As an example, let us consider the partial schedule for three periodic tasks illustrated in
Figure 6 for two consecutive hyper-periods in the scheduling epoch. The lengths of each coloured
rectangular box represents the execution time for each sub-task of some job of any task. The
temperature monitor samples the platform temperature at a regular interval of h. At the end
of each sub-task execution, the peak temperature over the execution period is compared with
Tmajor and Tminor . We observe that peak temperature during the execution of the three sub-tasks
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ALGORITHM 2: Local recovery

1 Input:τk ′
ip

,mk ′
ip
= (δj , f , ts ) Output:m′k

′
ip

2 slot ← dk ′
ip
− ts // dk ′

ip
is local deadline

3 P′ ← sort_dev (P, slot )
4 for δa in P′ do

5 if util_dev (δa , slot ) = Lo then

6 for f ′ in F (δa ) do

7 ek ′

a,f ′,ts
←WCET (τk ′

ip
,δa , f

′)

8 if ts + e
k ′

a,f ′,ts
< dk ′

ip
then

9 m′k
′

ip
← (δa , f

′, ts ) returnm′k
′

ip

τ 3
21

, τ 4
21

and τ 6
31

exceeds Tmajor . These three sub-tasks are marked unstable and the corresponding

working interval I ′ (depicted in Figure 6) is determined from their start and finishing times. The
resource analysis phase for the identified interval I ′ marks the device utilization in both CPU and
GPU as Hi . The frequency setting is Lo for CPU and Hi for GPU. Based on these values of device
utilization and frequency setting, one can observe from the rule set in Table 1 that the recovery
actions are idle slot insertion in CPU and frequency tuning in GPU. Hence, for unstable tasks
τ 3

21
and τ 4

21
executing on the CPU, idle slots are inserted. For τ 6

31
executing on the GPU, frequency

tuning is applied. The task mappings are changed and applied in the next hyper-period (depicted
by orange arrows in Figure 6). The temperature is successfully reduced below Tmajor .

The global recovery mode runs for multiple hyper-periods until thermal stability is attained.
In the worst-case, it may happen that the recovery controller in global recovery mode continues
re-configuring the task mappings indefinitely without reaching any thermal stability, leading to
an infinite many iterations of global controller. To manage such scenarios of non-convergence,
the recovery controller has a permissible upper limit of applying recovery actions on an unstable
sub-task in terms of the number of hyper-periods. In case this is exceeded without any observable
positive effect on the peak temperature, the global recovery mode is exited and new jobs which
are part of Jnew are not admitted.

6.2 Local Recovery Mode

The local recovery mode alters the task mapping greedily in order to mitigate minor thermal viola-
tions. Let a minor violation be detected in δ j during the execution of sub-task τ k

ip
. The immediately

next sub-task after τ k
ip

executing on δ j is identified as τ k ′
ip

. The local recovery algorithm depicted

in Algorithm 2 takes as input this sub-task, its existing mapping mk ′
ip

=(δ j , f , ts ) and outputs its

updated task mappingm′k
′

ip
. We consider the time interval slot between the local deadline and the

starting time of the sub-task of τ k ′
ip

as the working interval for the sub-task in the local recovery

mode (line 2). The sort_dev (P, slot ) function sorts devices in P in ascending order of peak temper-
ature recorded during the interval slot and returns the sorted list P′ (line 3). Let F (δa ) denote the
list of available frequency settings for each device δa sorted in ascending order of frequency value.
For each device δa ∈ P′ starting with the coolest device, the expected device utilization in the in-
terval slot is computed by util_dev (δa , slot ) (line 5). If it is Lo, each frequency setting f ′ ∈ F (δa )
starting from the lowest frequency setting is checked to see if the finishing time (ts + e

k ′

i,a,f ′
) after

modifying its mapping decision is within the local deadline of the sub-task (line 8). Note, ek ′

i,a,f ′
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Fig. 7. Local Controller actions.

represents the WCET time for the task obtained from the WCET lookup table(line 7). The mod-

ified mapping decision m′k
′

ip
= (δa , f

′, ts ) is finally returned (line 9) and the local recovery mode

is exited. We note that unlike the global recovery mode, the modified task mapping m′k
′

ip
is valid

for the current hyper-period and is not propagated to the next hyper-period. If no relevant cooler
device is found, the mapping remains unchanged.

As an example, let us consider the partial schedule for some N th hyper-period of three periodic
tasks in Figure 7. Similar to Figure 6, the lengths of each coloured rectangular box represent the
execution time for each sub-task of every job. For every job of a task marked with a specific colour,
we have dotted vertical lines of the same colour representing their deadlines. The temperature
monitor samples the platform temperature at a regular interval of Ts . At the end of each sub-task
execution, the peak temperature over the execution period is compared with Tmajor and Tminor .
We observe that minor thermal violations are detected during the execution of sub-tasks τ 1

21
and

τ 1
22

on the device CPU in the N th hyper-period of the current scheduling epoch. For the sub-task

τ 1
21

, the task mapping of the immediate next sub-task τ 2
21

is modified in local recovery mode. In this
case, even though the GPU device is relatively cooler, it has high device utilization. Hence, there
is not enough bandwidth available to facilitate migration of the sub-task. So, the local controller
decides to use frequency tuning on the CPU device for sub-task τ 2

21
in this context. For the sub-task

τ 1
22

, the device utilization is less in cooler GPU device. Hence, the immediate next sub-task τ 2
22

is
migrated from CPU to GPU device.

7 EVALUATION

This section evaluates the effectiveness of our proposed framework in reducing the occurrence
and intensity of thermal violations in heterogeneous embedded CPU-GPU platforms.

7.1 Test-bed Description

The target heterogeneous platform: We have performed our evaluations on an Odroid XU-4
embedded platform.1 The platform uses the Exynos SoC which comprises the following three types
of compute units: (i) a quad-core ARM Cortex-A7 (LITTLE CPU), (ii) a quad-core ARM Cortex-A15
(big CPU), and (iii) an ARM Mali-T628 GPU with 6 Streaming Multiprocessors (SMs).

The Odroid XU-4 platform supports a set of discrete operating clock frequencies for each com-
pute element (18 for big CPU, 14 for LITTLE CPU, and 7 for the GPU). There are five temperature
sensors in the platform: one for each of the 4 cores in the big CPU and one sensor for the GPU.

Runtime Framework: Our proposed framework has approximately 7000 LOC and leverages
the asynchronous event driven programming model supported in OpenCL to (i) dispatch tasks
to the big CPU and the GPU based on the respective arrival time of the tasks, and (ii) ascertain
device availability through asynchronous callback functions which are instantiated when a device
becomes free. For an OpenCL application executing on the CPU, the role of the CPU cores switch
between host and compute devices. The CPU can act as a host or as an OpenCL compute device as

1https://magazine.odroid.com/wp-content/uploads/odroid-xu4-user-manual.pdf.
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Fig. 8. Our runtime framework on Odroid XU-4.

Table 2. Candidate OpenCL Kernels

Task name Description

2DCONV (τ1) 2D Convolution
2MM (τ2) 2 Matrix Multiplications
3MM (τ3) 3 Matrix Multiplications
ATAX (τ4) Matrix Transpose and Vector Multiplication
GESUMMV (τ5) Scalar Vector and Matrix Multiplication
GEMM (τ6) General Matrix-multiply

required. This introduces certain limitations in the OpenCL runtime system. For example, in case
of executing an OpenCL kernel on CPU, the host program waits for the CPU to be released from the
kernel execution and cannot dispatch another kernel on the GPU even if the GPU is available. The
GPU has to wait till the CPU cores have completed the current kernel execution. This unwanted
overhead cannot be tolerated in real-time scheduling. This is handled by limiting the OpenCL
compute device for CPUs to the A-15 cores of the ARM big CPU and using the LITTLE CPUs for all
other services such as scheduling and temperature monitoring. We bind the OS (Ubuntu 18.04 LTS)
to the first two cores of the quad-core ARM LITTLE CPU by modifying the OS boot file settings.
We map our proposed scheduler (a complex host program) exclusively on the fourth core of the
LITTLE CPU by setting the thread affinity during execution. We implement an additional thread
that continuously monitors the chip temperatures. It executes on the third core of the LITTLE CPU
and discretely samples the temperature readings from the sensors with a sampling period of 250 ms.
In the rest of the paper, we use the terms CPU device, A15 cluster, or big CPU interchangeably.

Initial framework setup: The thermal threshold values for major and minor thermal violation
are set to 87◦C and 84◦C respectively. For the platform under question, the trip point for CPU
and GPU is 90◦C. The value of α and β used for binary classification of device utilization and
frequency setting in the framework for CPU are set to 0.7 and 1.5 GHz respectively and that of
GPU are set to 0.55 and 0.5 GHz respectively. This is obtained by extensively running different
task sets and considering only those cases where the peak temperature of the device δ j exceeds
Tminor . The quantity α j represents the average device utilization observed for those cases. For each
of the experiments, the drop in peak temperature is recorded whenever we decrease the frequency
setting of the device from a particular value to its immediately next lower value. This is done
for all consecutive pairs of available frequency setting values. The lower frequency value for the
pair which is responsible for the maximum drop in temperature is recorded for that experiment.
In such a way, these representative frequency setting values are computed for each experiment.
The representative frequency setting that was observed the maximum number of times across
all experiments was selected as the value of βj . We have used representative kernels (depicted
in Table 2) from the popular OpenCL benchmark suite Polybench [19] with different input sizes.
The task set contains candidate kernels representative of typical real-time computation performed
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Fig. 9. Mapping schedule for different schemes.

as part of perception systems in automotive domain (neural network pipelines, signal estimators,
etc.).

Our proposed framework can automatically design the host code for launching the kernels with
the support of a specification file that contains necessary attribute information such as input/out-
put buffers, variables passed as arguments, dimension size, work-group size for each kernel. The
specification file has provisions for specifying the arrival time, period and deadline for each task.

7.2 Experimental Results

We compare the following scheduling approaches in our evaluation.

(1) BASE: This approach refers to the default Dynamic Thermal Management (DTM) technique
[4] employed by the OS where the processor frequency is drastically reduced by thermal throttling
without considering its effect on the performance of the executing tasks. If the CPU temperature
goes beyond 90◦C on the Odroid XU-4, the CPU frequency setting drops from 2 GHz to 0.9 GHz.
(2) Online (O)-DVFS: In this approach, DTM is done by an online frequency tuning algorithm [25].
The approach initially profiles each task in the task set at the maximum frequency setting in the
target platform. The task mapping option for each task that results in minimum latency is com-
puted offline from the profiled data. During online scheduling, the approach always chooses the
task mapping with minimum latency for each task. If it is observed that the peak temperature
at runtime overshoots 87◦C, the frequency level of the A15 cores in the big CPU is reduced by
0.2 GHz. This process of stepwise frequency reduction continues if the peak temperature is still
equal to or greater than the threshold, but not below the lowest frequency setting that ensures
deadline constraint.
(3) Adaptive (A)-DTM: This is our proposed DTM scheme described in Sections 5–6 that uses
different thermal recovery actions discussed earlier to mitigate thermal violations.

We pictorially describe, with the help of Gantt Charts depicted in Figure 9, how task-scheduling
decisions are taken for BASE and O-DVFS schemes. We consider the first hyper-period in a given
epoch for the case where thermal violation occurs due to modification in the current job set
from J to J ′. The job-set J comprises the following jobs - OpenCL tasks GESUMMV(4096)
and 2DCONV(1024 × 1024) arriving with period values of 6 seconds and 15 seconds respectively.
The platform was thermally stable for the schedule S corresponding to J in the previous epoch.
In the current epoch, no job is removed from J and the new job set J ′, has three additional jobs
from OpenCL task GEMM(1024 × 1024) arriving with task period of 10 seconds along with J . As
depicted in the top sub-figure of Figure 9, each job of GESUMMV and GEMM is mapped to CPU,
while each job of 2DCONV is mapped to GPU. Each job of a task is represented by a coloured
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Fig. 10. O-DVFS vs A-DTM : for ADTM, the first hyper-period at start of the current epoch and an eventual

thermally stable hyper-period are depicted.

rectangle. The corresponding period is depicted with the help of a vertical dotted line of the same
colour. The coloured rectangle pertaining to the pth job of a task is annotated with the number p.

We observe for BASE in Figure 9 that the default thermal throttling gets triggered when the peak
temperature reaches 90◦C leading to deadline violation of the third job of GESUMMV. In case of
O-DVFS, the frequency is gradually reduced in a stepwise manner when the temperature reaches
88◦C. When the temperature goes below 88◦C, O-DVFS does not reduce the frequency any further.

We next describe how our proposed A-DTM scheme compares with respect to O-DVFS in
Figure 10. The CPU-GPU schedule in the top row of the figure reproduces the O-DVFS output
for comparison. The middle row provides a snapshot of the first hyper-period of the new epoch
started with job injection under A-DTM scheme. The bottom row shows a snapshot of the even-
tual thermally stable hyper-period in the same epoch as achieved by A-DTM. Also, since A-DTM
operates at the granularity of sub-tasks, we represent each constituent sub-task of every job by
dotted rectangles. We observe that for A-DTM, in the first hyper-period of the scheduling epoch,
both local and global recovery modes get activated. This is indicated by the grey arrows in Fig-
ure 10. In case of global recovery, the unstable sub-tasks are marked with red dotted lines and the
task mappings are changed in next hyper-periods. We observe that different recovery actions in
A-DTM scheme managed to reduce the peak temperature, leading to a thermally stable state.

For this experiment, Figure 11 illustrates the highest peak temperatures the platform reached
per hyper-period over a scheduling epoch for each of the three schemes. In the BASE case, the
highest temperature in all subsequent hyper-periods is above 90◦C. This is because tasks are al-
ways mapped to devices at the highest frequency setting, and the default thermal throttling gets
triggered when the peak temperature reaches 90◦C. In O-DVFS, the frequency is gradually re-
duced whenever the temperature reaches 88◦C. However, the O-DVFS scheme is unable to bring
the temperature below 88◦C in this case.

In contrast, for our proposed A-DTM approach, the highest temperature reduces per hyper-
period after applying different recovery actions and the updated task mapping is propagated to
the next hyper-period. We observe from Figure 11, that the maximum temperature recorded for
A-DTM is 90◦C in the N th hyper-period (beginning of scheduling epoch for J ′). This is because
no recovery actions are applied in the first hyper-period while accommodating the new jobs in
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Fig. 11. Peak temperature per hyper-period.

J ′ using our greedy mapping policy discussed earlier. In the (N + 1)th hyper-period, both global
and local recovery actions are active, and the local recovery actions manage to reduce the peak
temperature to 88◦C(>Tmajor ). In the next hyper-period, the global recovery actions change the

task mapping of the unstable sub-tasks. The updated task mappings are reflected in the (N + 2)th

hyper-period (see Figure 11). Eventually, as can be seen from further hyper-periods depicted in
Figure 11, with A-DTM scheme the peak temperature drops to 85◦C.

Performance comparison for individual control actions: Our next set of experiments char-
acterize the relative merits and demerits of each recovery action in our proposed framework across
a set of diverse task scenarios. This is done by running our framework with different combinations
of control actions in the global controller. Given our choice of three possible control actions, we
have a total of seven different combinations considering all possible subsets of three recovery ac-
tion choices. Our experimental setup comprises five test cases each with a different initial job set
J in a thermally stable state and a modified set J ′ in a thermal unstable state at the beginning of
a new scheduling epoch. We have J ′ = J ∪Jnew and Jnew contains multiple (or single) instances
of a single task. No existing job exits the system. Table 3 describes the details for each of the five test
cases in each row. The second column of the table describes each task (SIMD kernel name, input
sizes, task period and device mapping) present in the initial job set J whereas column 6 contains
the same details of the task in Jnew which is added to the modified job set. The peak temperature
Tpeak and initial CPU and GPU device utilization parameters (U (H ,δC ) and U (H ,δG )) for the job
set J at the end of the previous scheduling epoch are represented in the third and fourth column
of Table 3. Column 5 contains the hyper-period H length. For simplicity, we have considered that
the hyper-period remains the same for both J and J ′. We consider the epoch length to be 10×H .
The peak temperatureT ′

peak
, and (CPU, GPU) device utilization parameters (U ′(H ,δC ),U ′(H ,δG ))

at the beginning of the current epoch for J ′ are represented in the seventh and eighth column of
Table 3.

For each test case, we create 5 different scheduling scenarios, by modifying the deadline require-
ment of job instances of the new task added in J ′. We model such relative deadline requirements
as throughput constraints of individual jobs in Jnew . The throughput is calculated by the follow-

ing expression of throughput index T I = (#FLOPstotal
new /dnew ) where #FLOPstotal

new and dnew are the
total numbers of Floating Point Operations and the deadline of the new task respectively. Five dis-
creteT I values ranging from 6 to 12 (in the order of 1e7) are selected for our experiments. A lower
T I value indicates that the deadline is relaxed, whereas a higherT I value indicates the deadline is
stricter.

In each experiment, i.e., for a test case and new task along with job level relative deadline/TI
requirement, the global controller is executed in seven possible modes, each representing a
combination of recovery actions to reduce the peak temperature over multiple hyper-periods in
the epoch. The peak temperature obtained in the last hyper period of the epoch is recorded in
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Table 3. Test Case Scenarios

Test
Cases

Job set J Job set J′
Kernel in J with mapped
device and task period

Tpeak U (H, δC ),U (H, δG H
Kernel in Jnew with mapped
device and task period

T ′peak U ′ (H, δC ), U ′ (H, δG

1
2DCONV(512 × 512)->CPU (10s),

GESUMMV(2048)->GPU(6s)
79◦C 0.25,0.16 30s GEMM(1024 × 1024)->CPU (30s) 91◦C 0.65,0.16

2
GEMM(1024 × 1024)->CPU (20s),

GESUMMV(4096)->CPU(8s)
83◦C 0.8, 0.17 40s GEMM(512 × 512)->CPU (20s) 91◦C 0.92, 0.17

3
2DCONV(512 × 512)->CPU (10s),

GEMM(128 × 128)->GPU (2s),
GESUMMV(4096)->GPU(6s)

81◦C 0.25, 0.45 30s 2MM(512 × 512)->CPU (10s) 88◦C 0.5, 0.45

4

2DCONV(512 × 512)->CPU (5s),
GEMM(256 × 256)->CPU (3s),
GESUMMV(4096)->GPU(5s),

2MM(64 × 64)->CPU(3s),
ATAX(64 × 64)->CPU(6s)

85◦C 0.54, 0.5 30s 3MM(512 × 512)->CPU (10s) 91◦C 0.81, 0.45

5
LeNet(32 × 32)->CPU (5s),

3MM(512 × 512)->CPU (10s),
ATAX(256 × 256)->GPU(2s)

82◦C 0.35, 0.15 10s LeNet(32 × 32)->CPU (5s) 90◦C 0.45, 0.15

each case as an indication of thermal performance achieved through the recovery scheme. We
summarize our results in the subplots of Figure 12. Each subplot contains multiple line plots that
depict the thermal performance variation of each test case with respect to different TI values. For
example, in the top-left sub-plot, we provide peak temperature in last hyper-period (Y axis) as
recorded for test case 1, with different recovery schemes and varying TI values for Jnew (X axis).

In the first test case, the initial device utilization values for initial job set J depicted in Table 3
are low. When the job set is modified to J ′, major thermal violations are detected. For aT I value
of 6, we observe that task migration alone was able to reduce the peak temperature from 91◦C
at the beginning of the epoch to 86◦C at the end of the epoch. For the same scenario, idle slot
insertion was able to reduce the temperature to only 89◦C. Also, with frequency tuning as the sole
recovery action, the peak temperature reduced to 83◦C. We observe that the performance of idle
slot insertion and frequency tuning degrades as T I value increases, i.e. the headspace available
for a potentially thermally unstable task reduces. For high T I values, the scope for idle slot inser-
tion becomes limited, and the frequency tuner always sets the frequency value to a high setting
in order to meet the target throughput. In contrast, we observe that if the cooler device has low
device utilization, task migration is able to reduce the peak temperature more than frequency tun-
ing even at higherT I values. This is because the task (GEMM) in Jnew executes faster in the GPU
at the highest frequency setting than in the CPU at its highest frequency setting. Task migration
only fails when the throughput of the new task is set so high that it is greater than the maximum
throughput achievable in the highest frequency setting of the GPU. We observe that the combi-
nation of frequency tuning and migration performs better than the other schemes and almost as
good as the scheme where all recovery actions are used together. ForT I value of 6, we observe that
applying all recovery actions together (i.e. our proposed scheme, marked by ‘All’ in figure legend)
resulted in even lower peak temperatures.

In the second test case, the CPU has high device utilization whereas GPU has low device
utilization. Due to the difference in terms of utilization values between the devices, we observe
that at higherT I values, combinations of recovery actions that have migration perform better than
idle slot insertion and frequency tuning. Another observation in test case 2 is that temperature
reduction by any of the recovery actions is comparatively lower than that of test case 1 for the
same scheme. This is due to the higher CPU device utilization U (H ,δC ) and T ′

peak
values. In the

third test case, the GPU has higher device utilization compared to CPU and thus has less resource
bandwidth for accommodating new tasks. We observe that here frequency tuning outperforms
both migration and idle slot insertion even at high T I values. Task migration performs poorly in
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Fig. 12. Peak temperature at different choices of thermal recovery actions and TI value.

this case, as migration from GPU to CPU is not a thermal friendly move in the platform. This is
because the CPU is typically always hotter than the GPU due to OS, temperature monitor thread
and our scheduler thread continuously running in the little cores along with tasks in the big cores.
Also, migration from GPU to CPU is not possible as GPU is already heavily utilized here. Hence, in
this case, combinations of recovery actions that contain frequency tuning naturally perform well
in reducing peak temperature, except for combination of migration and frequency tuning. In the
fourth test case, the device utilization for both devices are comparatively higher. Here, we observe
that the thermal performance of all the seven possible combinations of recovery actions is lower
compared to that of the first three test cases. This is because due to high device utilization in both
CPU and GPU (U (H ,δC ),U (H ,δG )) and high T ′

peak
values, the headspace to apply any recovery

action is comparatively smaller. In this case, frequency tuning is the primary action responsible for
thermal management. Our proposed scheme with all actions and the scheme with frequency tuning
and idleness insertion performs marginally better than using only frequency tuning forT I value 6.

The primary objective of our framework is to reduce the peak temperature below the thermal
threshold by taking suitable actions on unstable tasks, ensuring that deadline constraints are satis-
fied. It may happen the recovery actions chosen fail to reduce the peak temperature. For example,
in test case 2 for T I value 12, we observe that the peak temperature could not be reduced be-
low trip point even after applying all combination of recovery actions. In such cases, when the
peak temperature goes beyond the trip point, the default OS governed thermal throttling kicks in
and reduces the frequency drastically to 900MHz. Table 4 summarizes the maximum throughput
achievable for O-DVFS and A-DTM schemes that manage to avoid invoking OS induced default
thermal throttling scheme (BASE). We record theT I values for each test case at which A-DTM and
O-DVFS fail to mitigate thermal violation and populate Table 4. We observe from the table that
the performance of A-DTM can sustain more throughput index compared to O-DVFS for test case
1 and 2. Whereas, for test case 3 and 4, both O-DVFS and A-DTM can sustain same value of T I .

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5s, Article 97. Publication date: September 2021.



97:24 S. Maity et al.

Table 4. Trip Point Limit

Test

Cases

T I leading

to trip point

O-DVFS A-DTM

1 12 13.5

2 9 15

3 12 13.5

4 10.5 10.5

Fig. 13. Peak temperature w.r.t. TI value.

Observing all the four test scenarios each with multiple job insertion constraints in Figure 12
and Table 4, we can conclude that our framework with the combination of three recovery actions
perform better than the widely used standalone frequency tuning scheme in terms of reducing
peak temperature when GPU device utilization is low. In case of high GPU device utilization, the
improvement is naturally lesser.

Insight with Real application: For the fifth test case, we have used LeNet, a real-life Con-
volution Neural Network (CNN) inference pipeline based on the popular LeNet architecture [41].
Each job of the inference task processes an input image of size 32 × 32. As depicted in Table 3,
the initial job set J comprises jobs of LeNet pipeline along with other standard OpenCL kernels
selected from Polybench. The job set J is modified to J ′ by adding new job instances of the
LeNet pipeline due to halving of period. In Table 3, this is modelled as addition of another periodic
LeNet instance with older period. The results as depicted in Figure 13 clearly establish that the
proposed scheme with all three control actions is able to sustain different TI requirements for this
job injection scenario with comparatively smaller peak temperature w.r.t. the other combinations
having one or two control actions.

Sensitivity with respect to hyper-period length: The performance of our proposed frame-
work is sensitive to the length of hyper-period. In our framework, when a major thermal violation
is detected in a hyper-period, the relevant thermal recovery actions are applied in the next hyper-
period. The violation mitigation can consume multiple hyper-periods. For large hyper-periods,
such actions may thus be slow, thus increasing the time the platform sustains higher temper-
atures. For same task set, if the hyper-period length is reduced too much due to smaller peri-
odicity, the device utilizations increase. This may reduce the performance of the framework as
headspace to apply any recovery action decreases. As a quantitative experiment, we modify test
case 1 from Table 3 with changed values of periods of the tasks in job set J and Jnew such that the
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hyper-period length is 15 seconds instead of 30 seconds. The initial device utilisation for CPU at
the start of the new epoch becomes 0.96 and the peak temperature overshoots platform trip point
90◦C after new job injection, thus inducing OS level default thermal throttling over multiple hyper-
periods.

8 RELATED WORK

Thermal-aware Scheduling without GPU:. There exist a myriad of thermal-aware schedul-
ing techniques for single-core and multi-core CPU systems that primarily use frequency scaling
to reduce power consumption and temperature. Prior research in the field of scheduling real-time
tasks focused on DVFS tuning for thermal management while meeting timing constraints for uni-
processor [30] and multiprocessor platforms [5, 28]. Apart from DVFS, mechanisms like thermal
aware core mapping [40] and inserting idle periods [5] have also gained traction for dynamically
regulating runtime chip temperatures. However, these solutions did not consider the presence of
GPUs or their thermal effect on CPUs in integrated heterogeneous platforms.

Thermal Aware Scheduling in CPU-GPU platform: In the recent past, several GPU thermal
management techniques have emerged, but mostly for non-real-time systems. Dev et al. [10] high-
lighted challenges and opportunities in scheduling OpenCL kernels on CPU-GPU platforms by
characterizing the thermal coupling effect between CPU and GPU devices. A proactive Dynamic
Thermal Management (DTM) policy that uses a thermal model for mitigating thermal violations on
a CPU/GPU mobile platform has been reported in [43]. The framework in [46] can automatically
select the partitioning point and the operating frequencies for optimal CPU-GPU co-execution un-
der thermal constraints for a given kernel. Prakash et al. [38] proposed CPU-GPU cooperative fre-
quency scaling for mobile gaming to meet thermal constraints with minimum loss in performance.
The work in [25] performs online thermal management in CPU-GPU based mobile MPSoCs by par-
titioning the workload across available devices and choosing suitable frequency settings. However,
such work do not consider deadline constraints for real-time systems while applying core-level
DVFS.

Thermal Aware real-time Scheduling in CPU-GPU platform: There exist few work that ex-
plore thermal aware real-time task scheduling in CPU-GPU integrated systems. These are mostly
for static scheduling and do not take care of dynamic scenarios. In [31], the authors proposed a
thermal aware CPU-GPU co-scheduling policy that i) performs thermally-balanced task-to-core
assignment in CPU cores, ii) prevents power dissipation bursts arising due to thermal coupling be-
tween CPU and GPU and iii) maintains timing constraints of tasks under a given chip temperature
limit. Isuwa et al. [25] proposed a thermal and energy management mechanism which achieves
reduction in thermal gradient through energy efficient resource mapping by thread partitioning
of tasks and online frequency tuning in heterogeneous MPSoCs.

Dynamic Scheduling: Given the intricate dependence of application level power consumption
and latency performance on architectural parameters, there exist different optimization techniques,
heuristics, machine learning (ML), and control theoretic techniques for finding the valid mapping
of applications to architectures at runtime. Model-based [9] and rule-based heuristics [12] have
been explored for architecture tuning in CPU systems. Such heuristic approaches are usually fast
and lightweight, but are not robust in nature. Other approaches use ML techniques for predicting
an optimal energy or power efficient configuration within a complicated configuration space [11,
25, 42]. Such ML based approaches handle complex modern processors, modeling an application’s
latency and power consumption as a function of resource configurations. Based on such models,
different scheduling schemes [3, 8] are designed to meet different performance goals. However,
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adding a feedback loop to factor in errors due to dynamic changes in the system is difficult in such
models. Reinforcement Learning (RL) approaches can learn dynamically and perform adaptive
scheduling but are computationally very expensive and not suitable for real-time systems [16, 24].

Control theoretic approaches use feedback to learn system dynamics automatically at run time
and are able to adjust resource usage based on the error, i.e., the difference between measured and
expected behaviour of system resource usage statistics [22, 23, 33]. Self-adaptive systems based
on control theoretic foundations can also provide the user with quantitative guarantees on the
time to convergence and robustness in the face of errors and noise. Such approaches have been
used to develop adaptive controllers and self-tuning regulators for handling the trade-off between
performance and power consumption on heterogeneous SoCs [1, 23, 32]. In this regard, several
well known control schemes like Model Predictive Control (MPC) [34], Supervisory control [39]
and simple state-space based control [23, 35] have been employed. However, existing approaches
are oblivious to the thermal behaviour of the platform.

9 CONCLUSION

We believe the proposed work is the first comprehensive analysis of thermal aware scheduling
on heterogeneous CPU/GPU embedded architectures where tasks considered are data parallel in
nature. While existing work mostly consider DVFS as the only thermal-aware control action, we
extend the OpenCL runtime framework with the flexibility of performing DVFS as well as task
migration and task shifting as platform-level control actions. Given the increased complexity of
the problem with respect to control actions as well as support for heterogeneity, designing a sound
scheduling framework with performance guarantees risks the possibility of increasing the sched-
uling overhead itself. We thus envision this lightweight heuristic guided approach for generating
real-time scheduling decisions. Future work includes generalizing lookup table based methods
with a combination of control theoretic and online learning techniques proposed in recent work
for heterogeneous scheduling [35]. Integrating other low level platform power domain control
methods under this scheduling umbrella is also a promising avenue.
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