
MODEL-BASED REGRESSION TEST SELECTION AND

OPTIMIZATION FOR EMBEDDED PROGRAMS

Swarnendu Biswas

MODEL-BASED REGRESSION TEST SELECTION AND

OPTIMIZATION FOR EMBEDDED PROGRAMS

Thesis submitted to the

Indian Institute of Technology, Kharagpur

For the award of the degree

of

Master of Science (M.S.)

by

Swarnendu Biswas

under the guidance of

Prof. Rajib Mall

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

JUNE 2011

©2011 Swarnendu Biswas. All rights reserved.

To my dear parents

APPROVAL OF THE VIVA-VOCE BOARD

___/___/_______

Certified that the thesis entitled "Model-Based Regression Test Selection and
Optimization for Embedded Programs" submitted by Swarnendu Biswas to the
Indian Institute of Technology, Kharagpur, for the award of the degree Master of
Science (M.S.) has been accepted by the external examiners and that the student
has successfully defended the thesis in the viva-voce examination held today.

———————————

Prof. Rajib Mall

(Supervisor)

———————————

Prof. Anupam Basu

(Member of DAC)

———————————

Prof. Pallab Dasgupta

(Member of DAC)

———————————

Prof. Arobindo Gupta

(Member of DAC)

———————————

...................................

External Examiner

———————————

Prof. Jayanta Mukhopadhyay

Chairman

v

CERTIFICATE

This is to certify that the thesis entitled "Model-Based Regression Test Selection
and Optimization for Embedded Programs", submitted by Swarnendu Biswas
to the Indian Institute of Technology, Kharagpur, is a record of bona fide research
work undermy supervision and I consider it worthy of consideration for the award
of the degree of Master of Science (M.S.) of the Institute.

Date:

——————————–

Prof. Rajib Mall

Supervisor

vii

DECLARATION

I declare that

a. Thework contained in the thesis is original and has been done bymyself under
the general supervision of my supervisor(s).

b. The work has not been submitted to any other Institute for any degree or
diploma.

c. I have followed the guidelines provided by the Institute in writing the thesis.

d. I have conformed to the norms and guidelines given in the Ethical Code of
Conduct of the Institute.

e. Whenever I have used materials (data, theoretical analysis, and text) from
other sources, I have given due credit to them by citing them in the text of the
thesis and giving their details in the references.

f. Whenever I have quotedwritten materials from other sources, I have put them
under quotation marks and given due credit to the sources by citing them and
giving required details in the references.

—————————–

Swarnendu Biswas

ix

Acknowledgements

My stay at IIT Kharagpur has been a long and eventful journey with its own

gamut of emotions, sometimes thrilling, and full of despair and exasperating at

certain other times. However, there has always been a few well-wishers who

strived to make my MS. journey enjoyable and a success. I would be bordering

upon blasphemy if I do not acknowledge their contributions.

I would like to take this opportunity to express my gratitude and indebtedness

to my supervisor, Prof. Rajib Mall, for his continued support in all aspects of my

research work. His guidance and motivation has been invaluable to me during

the ups and downs of my work. I really admire and hope to emulate the zeal,

dedication, and sincerity that Prof. Mall brings to his work. I consider myself very

fortunate to have had Prof. Rajib Mall as my MS. supervisor.

I am also grateful to all the other faculty members of the Department of Com-

puter Science and Engineering, IIT Kharagpur. In particular, I would like to thank

Prof. P. Dasgupta, Prof. A. Gupta and Prof. A. Basu for their constructive feedback

and insightful comments on my work. I would like to thank Prof. P. Dasgupta

for helping me during my MS. admission at IIT Kharagpur. I would like to take

this opportunity to thank the software laboratory staff Mr. Prasun Bhattacharjee

and Mr. Shibabroto Banerjee for their co-operation and support in providing suit-

able infrastructure. I also appreciate the contribution of Mayank Mittal and Vipin

Kumar K. S. (MTech. Batch of 2009, CSE) during the initial stages of this research

work.

I would like to thank all the friends and acquaintances that I have made during

my timeat IITKharagpur. MyMS. journeyof threeyears has beenmadeall themore

memorable and rich only because of their constant support and companionship in

both technical and non-technical areas. I would like to thank Sirsendu, Shibendu,

Sourya, Soumyadip, Surajit, Rajarshi, ESF Najumudheen, Sujan, Dhole, Kunal

and many others who have helped me in different ways during my stay at IIT

Kharagpur. Those aimless and unending discussions that we used to have at our

lab, our VSRC mess, etc. were really awesome, and were the best stress relievers

xi

available in IIT Kharagpur. I will really cherish all those memories that I will be

carrying with me for the rest of my life.

Finally, this page would never be complete without acknowledging the contri-

butions of my parents. My work would not have reached its final outcome without

the unconditional love, care and support of my parents.

Overall, my life andmyMS. journey at IIT Kharagpur have been full of learning

and unforgettable experiences. A very big thank you to one and all!

Date: 16th May, 2011

Best regards,

Swarnendu Biswas,

Department of CSE,

IIT Kharagpur.

Abstract

A safe regression test selection technique for embedded programs needs to take

into account additional executiondependencies that arise amongprogramelements

due to features such as tasks, task deadlines, task precedences, and inter-task com-

munication besides the traditionally considered data and control dependencies.

In this context, we propose a model-based regression test selection technique for

embedded C programs. Our technique first constructs a graph model for the em-

bedded program to be regression tested. Our proposed graph model can capture

the identified features which are important for regression test selection of embed-

ded programs. Our regression test selection technique selects regression test cases

based on an analysis of the constructed model. In addition to data and control

dependencies, our technique also takes into account the task execution dependen-

cies and the special semantics of the different features in an embedded program.

We have implemented our regression test selection technique to realize a proto-

type tool. Our experimental studies show that though using our approach on

the average about 28.33% more regression test cases were selected as compared to

existing approaches, it did select all the fault-revealing test cases whereas 36.36%

fault-revealing test cases were overlooked by the existing approaches.

However, the selected regression test suite may still be prohibitively large to

be executed within the available time or resources. In this context, we propose a

model-based multi-objective regression test suite optimization technique for em-

bedded programs. Our technique targets to ensure that the thoroughness of re-

gression testing of an embedded application using the optimized test suite is not

compromised. This is achieved by defining optimization constraints such that the

test cases that execute affected tasks and the critical functionalities are not omitted.

In addition to these constraints, we aim to minimize the cost of regression test-

ing, maximize the observable reliability, and remove redundant test cases during

optimization. Experimental studies carried out by us show that the test suites

optimized by our method include all the fault-revealing test cases from the initial

regression test suite and at the same time achieve substantial savings in regression

testing effort.

Keywords: Regression testing, embedded systems, slicing, test case selection, test suite

optimization.

xiii

List of Abbreviations and Symbols

Abbreviations

CDG - Control Dependence Graph

CFG - Control Flow Graph

COTS - Commercial Off-The-Shelf

DDG - Data Dependence Graph

DFA - Deterministic Finite Automaton

DPC - Deferred Procedure Call

FLIH - First-level Interrupt Handler

GA - Genetic Algorithms

ISR - Interrupt Service Routine

MTest - Model-based Test Case Selector

PDG - Program Dependence Graph

PUT - Program Under Test

RTS - Regression Test Selection

RTSEM - Regression Test Selection for Embedded Programs

RTSO - Regression Test Suite Optimization

SDG - System Dependence Graph

SDGC - System Dependence Graph with Control Flow

TCP - Test Case Prioritization

TSO - Test Suite Optimization

TSM - Test Suite Minimization

WCET - Worst Case Execution Time

Symbols and Notations

ET(P(t)) - Execution trace of a test case t on a program P

ETSDG - All edge types of an SDG

ETSDGC - All edges types of an SDGC

P - Original Program

P’ - Modified Program

t - A test case in T

T - Initial Test Suite

VTSDG - All node types of an SDG

VTSDGC - All node types of an SDGC

τ - A task in an embedded program

xvi

Contents

Certificate of Approval . v

Certificate . vii

Declaration . ix

Acknowledgments . xi

Abstract . xiii

List of Symbols and Abbreviations . xiv

Contents . xvii

1. Introduction . 1

1.1 Motivation for Our Work . 2

1.2 Objectives and Scope of Our Work . 6

1.3 Contributions of This Thesis . 6

1.4 Organization of the Thesis . 8

2. Basic Concepts . 9

2.1 Regression Testing Concepts . 9

2.2 Procedural Program Models . 13

2.3 Concepts Related to Embedded Software 18

2.4 Genetic Algorithms . 22

2.5 Conclusion . 22

3. Review of Related Work . 25

3.1 Regression Test Selection Techniques 25

3.2 Regression Test Suite Optimization Techniques 35

3.3 Conclusion . 36

4. Task Execution Dependencies in Embedded Programs 37

4.1 Task Execution Dependency Due to Precedence Order 38

4.2 Task Execution Dependency Due to Priorities 39

Contents

4.3 Task Execution Dependency Due to Message Passing 40

4.4 Task Execution Dependency Due to Use of Shared Resource 41

4.5 Task Execution Dependency Due to Execution of Interrupt Handlers 41

4.6 A Possible Side-Effect Due to Task Execution Dependencies 42

4.7 Conclusion . 43

5. SDGC: A Model for RTS of Embedded Programs 45

5.1 SDGC Model . 46

5.2 Construction of An SDGC Model . 50

5.3 Complexity Analysis . 53

5.4 Conclusions . 56

6. RTSEM: An RTS Technique for Embedded Programs 57

6.1 Assumptions . 57

6.2 Types of Program Changes . 59

6.3 Processing Activities in RTSEM . 60

6.4 Incremental Updation of an SDGCModel 62

6.5 Test Case Selection . 64

6.6 Experimental Studies . 67

6.7 Comparison with Related Work . 76

6.8 Conclusions . 78

7. GA-TSO: A Regression Test Suite Optimization Technique 79

7.1 Regression Test Suite Optimization for Embedded Programs 80

7.2 Our Proposed Regression Test Suite Optimization Technique 81

7.3 Experimental Studies . 88

7.4 Comparison with Related Work . 93

7.5 Conclusion . 95

8. Conclusions and Future Work . 97

8.1 Summary of Contributions . 97

8.2 Directions for Future Research . 99

Disseminations out of this Work . 103

Bibliography . 105

xviii

Chapter 1

Introduction

Over the last decade or so, there has been a rapid surge in the usage of embedded

applications. A large variety of embedded applications now touch our daily lives.

These include home appliances, communication systems, entertainment systems,

and automobiles just to name a few. In addition to the rapid increase in the

popularity of embedded systems, an unmistakable trend is their increasing size

and sophistication [107]. The enhanced capabilities of embedded systems coupled

with the demands for flexibility have contributed to prolific usage of these systems

even in safety-critical areas such as nuclear power stations, health-care, avionics,

etc [103]. Embedded systems used in safety-critical applications are required to

have far greater reliability than conventional applications. Seo et al. have reported

[107] that though embedded programs on an average implement less than 20%

of the functionalities of an embedded system, yet more than 80% of the reported

failures could be attributed to software bugs. In this context, effective regression

testing of evolving embedded software assumes increased significance.

Maintenance of an embedded program is frequently necessitated to fix bugs, to

enhance or adapt existing functionalities, or to port it to different environments.

After the necessary changes have been made, resolution testing is carried out to

check whether the required changes have been carried out properly. Regression

testing is carried out to ensure that no new errors have been introduced due to the

changesmade [63]. Themodel of a popular maintenance process carried out after a

software is released is shown in Figure 1.1. As shown in Figure 1.1, after a software

is released, the failure reports and change requests of the software are compiled

and the software is modified to make the necessary changes. Resolution tests are

carried out to verify the directlymodified parts of the code, while regression testing

is carried out to test the unchanged parts of the code that may be affected by the

1. Introduction

Software

release

Change

requirements

User

feedback

Resolution

testing

Regression

testing

New software

version release

Code

modifications

Unresolved

issues

Regression

errors

Fig. 1.1: Maintenance process model.

code change. After testing is complete, a new version of the software is released,

which then undergoes a similar cycle.

Regression testing is carried out during different phases of software develop-

ment: at unit, integration, and system testing, as well as during the maintenance

phase [63]. Regression testing of an evolving application is a crucial activity, and

consumes significant amount of time and effort. The extent of time and effort that

are being spent on regression testing is exemplified by a study [30] that reports that

it took twenty-seven days on an average to execute 135 regression test cases for

an embedded real-time application of size of about 300 KLOC. In fact, regression

testing has been estimated to account for almost half of the total software mainte-

nance costs [55, 63]. To reduce regression testing costs, it is necessary to eliminate

all those test cases that do not have any chance of detecting a bug, and at the same

time ensuring that no test case that has a potential to detect a regression bug is

overlooked. Accurate regression test selection is, therefore, considered to be an

issue of considerable practical importance, and has the potential to substantially

reduce software maintenance costs [41].

1.1. Motivation for Our Work

Regression test selection (RTS) techniques select a subset of valid test cases from an

initial test suite (T) to test the affected but unmodified parts of a program [63, 94].

Regression test selection essentially consists of two major activities:

• Identification of the affected parts - This involves identification of the unmod-

ified parts of the program that are affected by the modifications.

• Test case selection - This involves identification of a subset of test cases from

2

1.1. Motivation for Our Work

the initial test suite T which can effectively test the unmodified parts of the

program. The aim is to be able to select the subset of test cases from the initial

test suite that has the potential to detect errors induced on account of the

changes.

Rothermel and Harrold [92] have formally defined the regression test selection

problem as follows: Let P be an application program and P′ be a modified version of P.

Let T be the test suite developed initially for testing P. An RTS technique aims to select a

subset of test cases T′ ⊆ T to be executed on P′, such that every error detected when P′ is

executed with T is also detected when P′ is executed with T′.

A large number of RTS techniques for procedural, object-oriented, component-

based, aspect-oriented, and web-based applications have been reported in the

literature [15, 19, 44, 82, 94, 138]. However, research results on RTS for embedded

programs have scarcely been reported in the literature. Possibly this is one of the

reasons why in industry regression test cases for embedded programs are selected

based either on expert judgment, or on some form of manual program analysis

[24, 41]. However, the effectiveness of such approaches tends to decrease rapidly

as the complexity of software increases [24]. Also manual test selection often leads

to a large number of test cases to be selected and rerun even for minor program

changes, leading to unnecessarily high regression testing costs. What is probably

more disconcerting is the fact that many test cases which could have potentially

detected regression errors could get overlooked during manual selection.

As compared to traditional applications, regression testing of embedded pro-

grams poses several additional challenges [80,104,111]. In the following, we briefly

highlight the main complicacies that surface while selecting regression test cases

for embedded applications. Embedded applications usually consist of concurrent

and co-operating tasks having real-time constraints. Apart from verifying the func-

tional correctness of an embedded program, satisfaction of timing properties of the

tasks also needs to be tested. A cursory analysis of this situation reveals that anal-

ysis of only data or control dependencies would not be satisfactory for selection of

regression test suites for embedded programs. Unless timing issues are carefully

analyzed and taken into consideration, several potentially fault-revealing test cases

may be omitted during RTS for embedded programs.

It can be easily argued that existing RTS techniques [19, 94, 119] reported for

procedural programs are unsafe for embedded programs. Traditional RTS tech-

niques ignore the implications of important features of embedded programs, such

3

1. Introduction

as task concurrency and time-constraints on tasks, on regression test selection. In

an embedded application, it is possible that the execution of a task may get de-

layed due to changes made to the code of other tasks. For example, when two

tasks are communicating using a shared variable, the access to the shared variable

is usually guarded with a semaphore. If a task blocks the semaphore for a longer

duration due to a change made to the task code, then the execution of the other

tasks using that semaphore may get delayed. An unmodified task can also get

delayed due to a modification made to the code of some other task due to issues

such as message passing, precedence ordering and priorities. Whenever the code

of one task is changed, it becomes necessary to test those tasks whose execution

time can potentially get affected due to implicit task execution dependencies. There-

fore, in addition to traditional data and control dependency-based analysis, an

RTS technique for embedded programs needs to take into account the execution

dependencies existing among the various tasks.

In this context, it is important to note the difference between task timing analysis

and execution dependency analysis. While timing analysis dealswith prediction of

worst case execution time (WCET) for tasks, the aim of task execution dependency

analysis is to identify all those tasks in an application which can affect the timing

behavior of a given task.

We present an example of a regression error caused due to task execution

dependency. Consider an embedded program composed of three tasks τ1, τ2 and

τ3 as shown in Figure 1.2a. The task τ2 has a deadline but can start only after task

τ1 completes, while there is no such constraint on task τ3. Suppose the task τ1 is

changed as shown in Figure 1.2b for fixing a bug. A change to task τ1 can increase

its execution time, and this would subsequently cause τ2 to get delayed andmiss its

deadline. Existing RTS techniques select test cases based on only data and control

dependencies, and therefore, are likely to omit test cases that could detect check

the temporal failures of task τ2.

Programmers extensively use exception handling mechanisms to increase the

reliability and robustness of embedded software. Examples of commonly raised

exceptions in embedded systems are expiration of timers, NULL pointer exception,

etc. According to a study, the code implementing exception handling mechanisms

is usually testedmuch less compared to the other parts of the code, and is, therefore,

much more likely to have bugs, and according to one study accounts for as much

as two-thirds of the system crashes [75]. When an exception arises, it results in

4

1.1. Motivation for Our Work

Deadline for

T
i
m
e

τ1

τ2

τ2
τ3

(a)Original Program

is modified

its deadline
has overshot

Delay

T
i
m
e

τ1
τ1

τ2

τ2

τ3

(b)Modified Program

Fig. 1.2: An example to show the need of task executiondependency analysis in regression
test selection for embedded programs.

transfer of control from the point where it is raised (within the exception block) to

the corresponding exception handler routine. Exceptions raised in a program can

also change the dependence relationships for some variables [54]. In such cases,

the data dependencies may also be affected as the exception handling mechanism

may alter the definition-use sequences for some variables. Therefore, satisfactory

regression test selection of embedded programs requires explicit analysis of flow

of control due to exception handling [110].

Regression testing of embedded programs is further constrained due to restric-

tions on resources such as time, budget, personnel, etc [34, 135]. Often, paucity of

time appears as the primary obstacle to testers during regression testing [121]. Fur-

thermore, regression testing of embeddedprograms is usually extremely expensive

because the test cases are run on specific hardware and require setting up specific

execution/simulation environments. As a result, the set of selected regression test

cases may be prohibitively large to be executed with the program under test (PUT)

and still meet the given constraints on regression testing. Therefore, in the industry,

testers often have to manually optimize the selected test cases from experience to

meet the testing goals. Experienced testers manually optimize the regression test

suite by using their knowledge of the requirement specification document (SRS),

the changes that have been incorporated, and the previous testing history. How-

ever, this process becomes difficult and error-prone for non-trivial programs and

can severely compromise the thoroughness of regression testing [34, 133].

5

1. Introduction

1.2. Objectives and Scope of Our Work

The primary goal of our work is to investigate the possibility to realize improved

RTS and regression test suite optimization (RTSO) techniques for embeddedC pro-

grams that takes into consideration the special features of an embedded program.

We have chosen C as the programming language since the inherent flexibility and

the ease of porting across a wide range of hardware platforms has made the C

programming language [87] a popular choice for developing real-time and safety-

critical embedded applications [7]. Towards this goal, we have set the following

objectives:

• We plan to design a suitable graph model for representing all the features

of an embedded program that are important in the context of regression test

selection and optimization.

• We plan to develop a model-based RTS technique for embedded programs.

We also plan to implement a prototype tool to evaluate the effectiveness of

our proposed RTS technique as compared to existing approaches.

• We plan to develop a multi-objective RTSO technique for embedded pro-

grams. We plan to develop a prototype tool to verify the efficacy of our

approach.

1.3. Contributions of This Thesis

In light of the discussed inadequacies of the existing approaches, we have proposed

improved regression test selection and optimization techniques for embedded pro-

grams. We first propose a graph representation for modeling those features of an

embedded program that are relevant to regression testing. Our proposed model,

in addition to capturing data and control dependencies, also represents control

flow information and embedded program features such as tasks, task precedences

and inter-task communication using message queues and semaphores. We have

proposed an RTS technique based on an analysis of the constructed models. We

have implemented a prototype tool to validate the effectiveness of our proposed

RTS technique. We have also proposed a multi-objective regression test suite op-

timization technique for embedded programs. We report an implementation of a

prototype tool for optimizing the set of selected regression test cases, andpresent an

6

1.3. Contributions of This Thesis

experimental evaluation of our approach. From our experimental studies, we ob-

serve that our regression test case selection and optimization techniques include all

potentially fault-revealing test cases and at the same time achieve savings in terms

of regression test effort without compromising on the thoroughness of testing.

We can elaborate the above mentioned general contributions into the following

specific contributions of this thesis:

1. Agraphmodel for embedded programs - Themodels proposed in the literature

for use in regression test selection ignore many features that are important

for embedded programs such as tasks, task precedence orders, time outs,

inter-task communication using message queues and semaphores, interrupts

and exception handling. Our proposed model has been designed to capture

these important features of embedded programs, and is, therefore, an original

contribution.

2. Model-based regression test selection technique for embedded programs - Ex-

isting regression test selection techniques for procedural programs are usually

based on analysis of data and control dependencies and control flow infor-

mation. However, modifications to a task in an embedded program can affect

the completion times of other tasks. We, therefore, select regression test cases

by analyzing the execution dependencies that exist among tasks in addition

to control and data dependency analysis. Our technique determines execu-

tion dependencies among tasks that can arise due to various issues such as

task precedence orders, task priorities, inter-task communication using mes-

sage queues and semaphores, exception handling, and execution of interrupt

handlers.

3. Model-based multi-objective regression test suite optimization technique

for embedded programs - The thoroughness of regression testing an embed-

ded program may be compromised if existing optimization techniques are

used. This is because the existing techniques may ignore test cases that exe-

cute critical functionalities and the affected time-constrained tasks. We have

proposed a program model-based multi-objective regression test suite opti-

mization technique for embedded programs that aim to minimize the cost of

regression testing, maximize the reliability, and remove redundant test cases.

Our proposed optimization technique also ensures that test cases that execute

affected tasks and critical functionalities of an embedded program are not ex-

cluded so that the thoroughness of regression testing with the optimized test

7

1. Introduction

suite is not compromised.

1.4. Organization of the Thesis

The rest of this thesis is organized as follows:

Chapter 2 discusses the basic concepts that have been used in the subsequent

chapters of the thesis. More specifically, we discuss several concepts that are being

used extensively in the context of regression testing. We discuss some popular

intermediate program representations which are used for RTS, and discuss some

features of embedded programs that are relevant to regression test selection and

optimization. We also provide a brief overview of genetic algorithms.

Chapter 3 reviews the related work in the field of regression test selection and

optimization.

Chapter 4 presents the different types of execution dependencies that can arise

among the tasks in an embedded program, and discusses how these can systemat-

ically be analyzed.

Chapter 5 introduces our proposed graph model for embedded programs. Our

discussion also includes a model construction technique and an analysis of the

construction complexity.

Chapter 6 presents ourmodel-based RTS technique for embeddedprograms. In

this chapter, we first discuss our technique to select regression test cases based on

data, control and task execution dependencies that exist among the code elements

of an embedded program. Subsequently, we discuss a prototype implementation

of our RTS technique and the experimental results obtained using the prototype

implementation.

Chapter 7 presents our proposed SDGC model-based multi-objective RTSO

technique for embedded programs. In this chapter, we first discuss the opti-

mization objectives and constraints implemented in our optimization technique.

Subsequently, we discuss a prototype implementation of our RTSO technique, and

the experimental results obtained using our prototype tool.

Chapter 8 concludes the thesis by highlighting the important contributions

made, and possible extensions to the work.

8

Chapter 2

Basic Concepts

Over the last two decades or so, a significant amount of research results related to

regression testing have been published in the literature. These results have laid the

foundation of systematic regression test selection and have contributed significant

knowledge and a plethora of terminologies.

In this chapter, we first discuss a few important concepts that are extensively

being used in the context of regression testing. Subsequently, we discuss some pop-

ular intermediate program representations which have been used by researchers

for RTS. We also discuss some features of embedded programs that are relevant to

regression test selection and optimization, and then briefly discuss about genetic

algorithms.

For notational convenience throughout the rest of the thesis unless otherwise

specified, the original and the modified programs shall be denoted by P and P′

respectively. The initial regression test suite will be denoted by T, and twill denote

any test case in T.

This chapter has been organized as follows: We discuss concepts related to

regression testing in Section 2.1. In Section 2.2, we discuss few popular program

models that have been proposed for procedural programs. We discuss relevant

embedded program features that are important in the context of regression testing

in Section 2.3. We discuss few important concepts in genetic algorithms in Section

2.4. We conclude the chapter in Section 2.5.

2.1. Regression Testing Concepts

In this section, we discuss a few important notations and concepts relevant to

regression testing.

2. Basic Concepts

2.1.1. Obsolete, Retestable and Redundant Test Cases

According to Leung andWhite [63], test cases in the initial test suite can be classified

as obsolete, regression and redundant (or reusable) test cases. Obsolete test cases

are no more valid for the modified version of the program. Regression test cases

are those test cases which execute the affected parts of the system and need to be

rerun during regression testing. Redundant test cases execute the unaffected parts

of the system. Hence although they are valid test cases (i.e., not obsolete), they can

still be omitted from the regression test suite.

Figure 2.1 shows the classes into which test cases from the initial test suite can

be partitioned after a modification has been made to a program [63, 74]. In this

context, it should be noted that only the regression test cases shown in Figure 2.1

should be used to revalidate a modified program.

2.1.2. Execution Trace of a Test Case

The execution trace of a test case t on a program P (denoted by ET(P(t))) is defined

as the sequence of statements in P that are executed when P is executed with

t [94]. The execution trace information for P can be generated by appropriately

instrumenting the source code.

2.1.3. Fault-revealing Tests

A test case t ∈ T is said to be fault-revealing for a program P, if and only if it can

cause P to fail by producing incorrect outputs for P [93].

2.1.4. Modification-revealing Tests

A test case t ∈ T is said to be modification-revealing for P′ if and only if it produces

different outputs for P and P′ [93].

2.1.5. Modification-traversing Tests

A test case t ∈ T is modification-traversing for P and P′, if and only if the execution

traces of t on P and P′ are different [93, 94]. In other words, a test case t is said to

be modification-traversing if it executes the modified regions of code in P′. For a

10

2.1. Regression Testing Concepts

given original program and its modified version, the set of modification-traversing

test cases is a superset of the set of the modification-revealing test cases.

Figure 2.2 [93] depicts the inclusion relationship among the different classes of

test cases discussed.

Initial Test Suite

Regression

test cases

Obsolete

test cases

Redundant

test cases

Fig. 2.1: A partition of the initial test suite.

2.1.6. Inclusive, Precise and Safe Regression Tests

Inclusiveness measures the extent to which an RTS technique selects modification-

revealing tests from an initial regression test suite T [93]. Let us consider an initial

test suite T containing n modification-revealing test cases. If an RTS technique M

selects m of these test case, the inclusiveness of the RTS technique M is expressed

as (m/n) ∗ 100 [93].

A safe RTS technique selects all those test cases from the initial test suite that are

modification-revealing [93]. Therefore, an RTS technique is said to be safe if and

only if it is 100% inclusive. Regression test cases that are relevant to a change but

are not selected by an RTS technique are called false negatives. Therefore, a safe RTS

technique does not select false negatives [26].

Precision measures the extent to which an RTS algorithm ignores test cases that

are non-modification-revealing [93]. Test cases that are selected by a technique but

are not relevant to the changes made are called false positives. An RTS technique

is, therefore, precise if and only if there are no instances of false positives in the

regression test cases selected by it [26].

11

2. Basic Concepts

2.1.7. Program Slicing

Program slicing is a program analysis technique. It was introduced byWeiser [124]

to aid in debugging programs. A program slice is usually defined with respect to

a slicing criterion. A slicing criterion SC is a pair < p,V >, where p is a program

point of interest and V is a subset of the program’s variables. A slice of a program

Pwith respect to a slicing criterion SC is the set of all the statements of the program

P that might affect the slicing criterion for arbitrary inputs to the program.

Since the publication of Weiser’s seminal work, the concept of slicing has been

extended in many ways and have been applied to other areas such as program

understanding, compiler optimization, reverse engineering, etc. Comprehensive

surveys on program slicing can be found in [116, 130].

Initial Test Suite

modification-traversing

modification-revealing

fault-revealing

Fig. 2.2: Inclusion relationship between various classes of test suites.

2.1.8. Regression Test Suite Minimization and Prioritization

Regression test suite minimization (TSM) [43,68,70] and regression test case prior-

itization [30, 97, 121] are two other approaches proposed in the literature to reduce

the effort involved in regression testing. TSM techniques aim to reduce the size of

the regression test suite by eliminating redundant test cases while ensuring that the

coverage achieved by the minimized test suite is identical to the initial test suite.

Different studies published in the literature [68, 96, 128] report conflicting results

on the impact of TSM techniques on the fault detection capabilities of test suites.

Lin et al. observed [68] that the TSM problem isNP-complete, since the minimum

set-covering problem [28] can be reduced to the TSM problem in polynomial time.

Test case prioritization (TCP) techniques order test cases on some considerations

12

2.2. Procedural Program Models

such as test cases that have a higher fault detection capability are assigned a higher

priority and cangainfully be takenup for execution earlier. TCPapproachesusually

aim to improve the rate of fault detection by the ordered test suite [30, 97]. The

main advantage of ordering test cases is that bugs are detected and can be reported

to the development team early so that they can get started with fixing the bugs [97].

Also TCP techniques provide testers with the choice of executing only a certain

number of higher priority test cases to meet the given time or cost considerations.

This is advantageous especially in the case of unpredicted interruptions to testing

activities on account of delivery, resource or budget constraints.

Many different TSM and TCP approaches have been proposed in recent years,

and they are active areas of research by themselves. However, our current work

focuses on RTS and RTSO techniques in the context of embedded programs. More

detailed information about TSM and TCP approaches can be found in [29, 30, 134].

2.2. Procedural ProgramModels

Graph models of programs have extensively been used in many applications such

as program slicing [66,109], impact analysis [60], reverse engineering [27], compu-

tation of program metrics [122], etc. Some of the popular graph models reported

in the literature include Control Flow Graphs (CFG) [10,94], Program Dependence

Graphs (PDG) [35], and System Dependence Graphs (SDG) [49]. In the following,

we briefly review some of these graph models that are relevant to our work.

2.2.1. Control Flow Graph

A control flow graph (CFG) [10,94] is a directed graph that represents the sequence

in which the different statements in a program get executed. The CFG of a program

P is the flow graph G = (N∪Start∪Stop,E) whereN is the set of nodes and E is the

set of edges. Two additional nodes Start and Stop are used to represent the entry

and the exit points of a CFG. Each node n ∈ N represents an assignment statement

or a predicate in P. An edge (m, n) ∈ E indicates a possible flow of control from

the node m to the node n. Edges in a CFG are of two types, TRUE and FALSE,

representing the possible flow of control when a predicate evaluates to TRUE or

FALSE respectively. A CFG, therefore, captures all possible flows of control in a

program.

13

2. Basic Concepts

Figure 2.4 represents the CFG of the program in Figure 2.3. Note that the

existence of an edge (x, y) in a CFG does not necessarily mean that control must

transfer from x to y during a program run.

2.2.2. Data Dependence Graph

Dependence graphs are used to represent potential dependencies between the ele-

ments of the program. In the following, we discuss data and control dependencies

between program elements and their graph representations.

int a, b, sum;

1. read(a);

8. sum = b;

3. sum = 0;
4. while (a < 8) {
5. sum = sum + b;
6. a = a + 1; }
7. write(sum);

9. write(sum);

2. read(b);

Fig. 2.3: A sample program.

Data Dependence: Let G be the CFG of a program P. A node n ∈ G is said to

be data dependent on a node m ∈ G, if there exists a variable var of the program P

such that the following hold:

1. The node m defines var,

2. The node n uses var,

3. There exists a directed path from m to n along which there is no intervening

definition of var.

Consider the sample program shown in Figure 2.3 and its CFG shown in Figure

2.4. From the use of the variables sum and b in line 5, it is evident that node 5 is

data dependent on nodes 2, 3 and 5. Similarly, node 8 is data dependent on only

node 2. However, node 8 is not data dependent on either nodes 3 and 5.

Data Dependence Graph: The data dependence graph (DDG) of a program P

is the graph GDDG = (N, E), where each node n ∈ N represents a statement in the

program P and if x and y are two nodes of G, then (x, y) ∈ E if and only if x is data

dependent on y.

14

2.2. Procedural Program Models

2.2.3. Control Dependence Graph

The execution of certain statements in a program is dependent on the result of

the evaluation of the associated conditional statements and loop conditionals. The

concept of control dependence [10] was designed to capture these relations in a

program.

Start
 1
 2
 3
 4

5

True

False

True
 True
 True

6
 7

True

True

True

8
9
Stop

True

True
True

Fig. 2.4: CFG for the example program shown in Figure 2.3.

Dominance: If x and y are two nodes in a flow graph, then x dominates y if and

only if every path from Start to y passes through x. Similarly, y post-dominates x if

and only if every path from x to Stop passes through y.

Let x and y be two nodes in a flow graph G. Node x is said to be the immediate

post-dominator of node y if and only if x is a post-dominator of y, x , y and every

other post-dominator z , x of y post-dominates x. The post-dominator tree of a

flow graph G is the tree that consists of the nodes of G, has Stop as the root node,

and has an edge (x, y) if and only if x is the immediate post-dominator of y.

Control Dependence: Let G be the CFG of a program P, and let x and y be two

arbitrary nodes in G. The node y is said to be control dependent on another node

x if the following hold:

1. There exists a directed path Q from x to y,

2. y post-dominates every z in Q (excluding x and y),

3. y does not post-dominate x.

The concept of control dependence implies that if y is control dependent on x,

then xmust havemultiple successors inG. Conversely, if x hasmultiple successors,

then at least one of its successors must be control dependent on it. Consider the

15

2. Basic Concepts

program of Figure 2.3 and its CFG in Figure 2.4. Each of the nodes 5 and 6 is control

dependent on node 4. Note that although node 4 has two successor nodes 5 and 7,

only node 5 is control dependent on node 4.

The control dependence graph (CDG) of a program P is the graphGCDG = (N, E),

where each node n ∈ N represents a statement of the program P, and (x, y) ∈ E if

and only if x is control dependent on y.

2.2.4. Program Dependence Graph

The program dependence graph (PDG) [35] for a program P explicitly represents

both control and data dependencies. This graph contains two kinds of directed

edges: control and data dependence edges. A control (or data) dependence edge

(m, n) indicates that the node m is control (or data) dependent on the node n.

Therefore the PDG of a program P is the union of a pair of graphs: the data

dependence graph of P and the control dependence graph of P. The PDG for the

program in Figure 2.3 is shown in Figure 2.5.

2.2.5. System Dependence Graph

Amajor limitation of the PDG representation is that it canmodel a single procedure

only and cannotmodel inter-procedural calls. Horwitz et al. [49] enhanced the PDG

representation to handle procedure calls and introduced the system dependence

graph (SDG) representation to model a main program together with all its non-

nested procedures.

Let VTSDG be the set of all types of nodes of an SDG. Then, VTSDG can be

expressed as follows:

VTSDG = {Vassign,Vpred,Vcall,VA−in,VA−out,VF−in,VF−out},

where each member of the set VTSDG represents a particular node type. In the

following, we explain the different types of nodes in an SDG:

• Node types Vassign and Vpred represent assignment statements and control

predicates respectively.

• Call-site nodes (Vcall) represent the procedure call statements in a program.

16

2.2. Procedural Program Models

1

6

4

8

9
 2

5

3

7

data dependence edges

control dependence edges

Fig. 2.5: PDG of the program in Figure 2.3.

• Actual-in (VA−in) and actual-out (VA−out) nodes represent the input and output

parameters at a call site. They are control dependent on the corresponding

call-site node.

• Formal-in (VF−in) and formal-out (VF−out) nodes represent the input and output

parameters at the called procedure. These nodes are control dependent on

the procedure’s entry node.

Let ETSDG denote the different types of edges of an SDG. Then, ETSDG can be

expressed as:

ETSDG = {Ecd,Edd,Ece,EPar−in,EPar−out,ESum},

where each individual member of the set ETSDG represents a particular edge type.

In the following, we explain the different types of edges of an SDG:

• Control (Ecd) and data (Edd) dependence edges represent control and depen-

dence relationships among the nodes of an SDG respectively.

• Call edges (Ece) link the call-sitenodeswith the corresponding procedure entry

nodes.

• Parameter-in edges (EPar−in) connect the actual-in nodes with the respective

formal-in nodes.

• Parameter-out edges (EPar−out) connect the formal-out nodes with the respective

actual-out nodes.

• Summary edges (ESum) are used to represent the transitive dependencies that

arise due to function calls. A summary edge is added from an actual-in node

17

2. Basic Concepts

a to an actual-out node b if the value associated with b can get affected by the

value associated with the node a due to control or data dependence. That is,

a summary edge is added from a to b if there exists either a control or data

dependence edge from the corresponding formal-in node a′ to the formal-out

node b′.

SDG is a generalization of the PDG representation. In fact, the PDG of the main

procedure of a program is a sub-graph of the SDG. In other words, for a program

without procedure calls, the PDG and SDG models are identical. The technique

for constructing an SDG consists of first constructing a PDG for every procedure,

including the main procedure, and then interconnecting the PDGs at the call sites.

Example 2.1: Figure 2.6 shows a simplified version of a C program of an auto-

motive application developed on a VxWorks [127] platform. The corresponding

SDG model for the program has been shown in Figure 2.7. In Figure 2.7, control

dependence edges are represented by dash-dot-dash edges, while the dotted edges

represent data dependence edges. The other types of SDG edges such as parameter-

in, parameter-out, call edge, etc. have been represented by uniformly-spaced dashed

edges. Please note that we have not shown all actual-in and actual-out nodes in the

figure to avoid clutter.

2.3. Concepts Related to Embedded Software

In the following, we briefly review the standard task models that are popularly

being used in the development of embedded applications. We also discuss the

precedence relationships that may exist among tasks.

2.3.1. Task Model

A periodic task τi is represented by a four tuple, τi = 〈φi, pi, ei, di〉, where φi is the

phase of τi, pi is the period of τi, ei is the WCET of τi, and di is the relative deadline

(with respect to φi) of τi. In our work, without any loss of generality, we assume

the phases of all tasks to be zero. Therefore, we represent a task τi by the three

tuple 〈pi, ei, di〉.

OSEK/VDX [83] and POSIX RT [51,69] are two real-time operating system stan-

dards that are popularly being used in the development of embedded applications.

18

2.3. Concepts Related to Embedded Software

D0 MSG_Q_ID g_msgq=NULL;

E1 int main(void)

{

S2 int l_monitor = ERROR;

S3 int l_varyspeed = ERROR;

S4 l_monitor = taskSpawn("tMonitor",100,0,

10000, (FUNCPTR)monitor,0, 0, 0, 0, 0, 0,

0, 0, 0, 0);

S5 l_varyspeed = taskSpawn("tVarySpeed",100,0,

10000, (FUNCPTR)vary_speed,0, 0, 0, 0, 0,

0, 0, 0, 0, 0);

S6 if(ERROR!=l_monitor && ERROR!=l_varyspeed)

S7 g_msgq = msgQCreate(50, 4, MSG_Q_FIFO);

S8 return 0;

}

E2 void vary_speed(void)

{

S9 float vel;

S10 while(true)

{

S11 msgQReceive(g_msgq,(char *)&vel,

50,WAIT_FOREVER);

/*increase/decrease the acceleration*/

S12 if(-1==vel)

S13 increase_acc();

S14 else if(1==vel)

S15 decrease_acc();

}

}

E3 void monitor(void)

{

S16 float speed;

S17 int flag=0;

S18 while(true)

{

/*read the current speed*/

S19 speed=get_speed();

S20 if(speed>75)

{

S21 flag=1;

S22 msgQSend(g_msgq,(char *)&flag,4,

WAIT_FOREVER, MSG_PRI_NORMAL);

}

S23 else if (speed<25)

{

S24 flag=-1;

S25 msgQSend(g_msgq,(char *)&flag,4,

WAIT_FOREVER, MSG_PRI_NORMAL);

}

else

S26 flag=0;

}

}

Fig. 2.6: A sample VxWorks program incorporating inter-task communication.

In this paper, we consider a task model that adopts features from both these stan-

dards. We assume that the tasks are statically created. This of course is usually the

case formany embedded applications. The tasks have statically assigned priorities.

The tasks are periodic and are scheduled using a priority-driven preemptive task

scheduler. The tasks are assumed to communicate using either shared memory or

message passing. During inter-task communication, synchronization among tasks

is typically achieved by using the following two techniques:

• Shared memory: Shared memory is an important means of communication

among producer and consumer tasks. The producer tasks share data by

writing on to some shared variables; and the consumer tasks read data by

reading those shared variables. To achieve deterministic task execution, it

is a general practice in embedded programming to guard access to shared

memory through the use of synchronization primitives such as semaphores

and locks [117].

• Message passing: To achieve predictable results, embedded application de-

velopers usually restrict themselves to using the synchronous message pass-

ing mechanism [117]. Synchronous message passing requires that the sender

19

2. Basic Concepts

E1

S2

S3

S4

S5

S6

S7

S8

E3

S16

S17

S18

S19

S20

S21
 S22

S24

S25

S23

S26

E2

S9

S10

S11

S12

S13

S14

S15

control dependence edge

data dependence edge

other SDG edges (e.g.,

parameter_in, etc.)

tMoni

tor

100

monit

or

tVaryS

peed

100
 vary_s

peed

50
 4
 MSG_Q_

FIFO

g_msg

q

g_msgq

vel
50

WAIT_F

OREVER

g_msgq
flag

g_msgq
flag

Fig. 2.7: SDG model for the program of Figure 2.6.

and the receiver tasks wait for each other before a message transfer occurs.

Our task model reflects the assumptions frequently made in the development

of small embedded applications. For example, an adaptive cruise controller (ACC)

module in an automotive application is usually implemented with about a dozen

periodic real-time tasks with statically assigned priorities. The tasks are scheduled

using the rate monotonic scheduling algorithm [69]. Some of the important con-

currently executing tasks in a typical ACC implementation include controlling the

host vehicle speed (HVSM task), and processing the radar information (RIP task).

2.3.2. Task Precedence

Two tasks in an embedded application are precedence ordered when one task is

dependent on the actions or the results produced by the other task. For example,

if τi is a producer task and τ j is the consumer task, then τi must precede τ j.

When a task τi precedes another task τ j, then each instance of task τi precedes the

corresponding instance of τ j. Precedence relationships define a partial ordering

among tasks. An example of precedence ordering among tasks has been shown in

20

2.3. Concepts Related to Embedded Software

Figure 2.8. The circles in Figure 2.8 represent tasks while the edges among them

represent precedence relationships. A directed edge from a task τi to τ j indicates

that τ j is dependent on τi. FromFigure 2.8, it can be inferred that τ1 and τ4 precede τ2

and τ5 respectively. However, we cannot ascribe any precedence ordering between

the tasks τ1 and τ4 or the tasks τ1 and τ5.

We denote the precedence ordering of a task τi with other tasks by using two

functions: Pred(τi) is the set of all those tasks whose execution must be complete

before execution of task τi can be started. Succ(τi) is the set of taskswhose execution

can start only after the task τi has completed. For the example shown in Figure 2.8,

Succ(τ1) = {τ2, τ3}, and Pred(τ5) = {τ4}.

τ1

τ2

τ3

τ4

τ5

Fig. 2.8: A representation of the precedence relations among tasks.

2.3.3. Exception Handling in Embedded Systems

Invocation of exception handlers may delay the execution of certain tasks in an

embedded program. In this context, a few studies have reported techniques to

minimize the overhead of exception handling [88]. Since the C programming

language does not directly support exception handling, therefore many embedded

programs implement exception handling using jumps and switch-case constructs

or through use of specific libraries [106]. In this work, we assume that exception

handling in embedded programs is implemented using the C++ try-catchmodel.

In this model, exception handling is achieved by using try, catch and throw

statements. In C++, the code which can potentially raise an exception (known as

throwing) is enclosed within a try block. When an exception is raised, the catch

block corresponding to the raised exception is executed. The type of exception

raised can be any valid data type including user-defined classes. In the absence

of a matching catch block, the default catch block (which is indicated using an

ellipsis . . .) is executed. If a matching handler is not found, then the program

execution gets terminated. However, if no exceptions are thrown in a try block,

then the corresponding catch blocks are not executed. The different execution

21

2. Basic Concepts

paths that can be followed when an exception is thrown is discussed in more detail

in [21, 54].

2.4. Genetic Algorithms

Manysearchandoptimizationproblems in engineering tend tobemulti-objective in

nature, i.e., it requires simultaneous optimization of a number of possibly conflict-

ing objectives. Traditional algorithms such as linear programming and gradient-

based methods when applied to solve multi-objective optimization (MOO) prob-

lems may produce sub-optimal results and get stuck at a local optima [105]. For

these traditional class of algorithms, the convergence to an optimal solution de-

pends on the initial solution. Evolutionary algorithms such as genetic algorithms

(GA) [38], particle swarm optimization [56], etc. are the preferred choice for ssolv-

ing MOO problems.

Genetic algorithms (GA) are a part of the evolutionary family of algorithms

and are extensively used to solve search and multi-objective optimization prob-

lems [38]. They are derivative-free stochastic optimization methods and are based

on the principle of evolution and natural genetics. GAswere first proposed byHol-

land in 1976. A few reasons which have contributed to the popularity of GAs are its

broad applicability, ease of understanding, and intuitive appeal. GAs are based on

the principle of survival of the fittest. GAs encode a potential solution to a specific

problem using a chromosome-like data structure. Each chromosome encodes pos-

sible solution and is represented as a binary string. Evolution across generations

is incorporated using a structured yet randomized information exchange among

possible solutions. The possible genetic operations include selection, crossover and

mutation. Selection involves replication of chromosomes to the next generation.

Crossover involves exchanging part of the string between to mating chromosomes.

Mutation simply flips one bit in the binary chromosome string based on a proba-

bility.

The interested reader is referred to [38] for more detailed information of GAs.

2.5. Conclusion

In this chapter, we have presented an overview of the concepts which form the

background of our research investigations. The idea was to provide some basic

22

2.5. Conclusion

concepts and definitions that would help the reader to understand the work pre-

sented in the subsequent chapters. We started with a review of the basic concepts

related to regression testing. Subsequently, we discussed a few popular graph

models proposed for procedural programs. We also discussed the basic assump-

tions regarding the task models that will be used in our work, and provided a brief

overview of genetic algorithms.

23

Chapter 3

Review of Related Work

A large number of research results are available in the general areas of RTS, TSM,

and TCP, for procedural and object-oriented programs. However, in spite of our

best efforts, we could not find any reported results on selection and optimization

of regression test suites for embedded applications. In the absence of any directly

comparable work, in this chapter we review the related work on RTS and RTSO

and discuss few important techniques that have an indirect bearing on our work.

This chapter has been organized as follows: We first review RTS techniques

proposed in the context of different programming paradigms in Section 3.1. We

focus on RTS techniques proposed for procedural programs in subsection 3.1.1.

Subsequently, we discuss RTS techniques for object-oriented and component-based

applications in subsections 3.1.2 and 3.1.3 respectively. Since in this work, we have

assumed that procedural languages are used for embedded software development,

therefore we have kept our discussions on different RTS techniques for object-

oriented and component-based software to a minimum, and only highlight some

challenges in carrying out satisfactory RTS. We briefly detail the different surveys

carried out in the field of RTS in Section 3.1.4. We review RTSO techniques in

Section 3.2, and finally conclude the chapter in Section 3.3.

3.1. Regression Test Selection Techniques

A large number of RTS techniques have been reported for procedural [13, 15, 19,

42, 45, 46, 62, 64, 65, 94] and object-oriented programs [11, 22, 44, 82, 95], each aimed

at leveraging certain optimization options. Different techniques trade-off differ-

ently with regards to the cost of selection and execution of test cases and fault

detection effectiveness. In the recent past, the problem of RTS has actively been

3. Review of Related Work

investigated and new approaches have emerged to keep pace with the newer pro-

gramming paradigms. During the last decade, there has been a proliferation in the

use of different programming paradigms such as component-based development,

aspect-oriented programming, embedded andweb applications, etc. It is therefore

not surprising that a number of RTS techniques have been proposed for recent

programming paradigms such as component-based [37, 71, 72, 81, 137–139], aspect

programs [131, 136], and web applications [67, 99, 100, 114, 132].

3.1.1. RTS Techniques for Procedural Programs

RTS techniques were first studied in the context of procedural programs [63, 64].

RTS for procedural programs is therefore an extensively researched topic andmany

techniques have been proposed over the years [13, 15, 19, 25, 42, 45, 62, 64, 65, 90, 94,

113, 119, 120]. These techniques select relevant test cases using either control flow,

data or control dependence analysis, or by textual analysis of the original and the

modified programs. Depending on the type of the program analysis technique

used and to aid in understanding, we have grouped the different RTS techniques

into the following major classes:

1. Dependency-based techniques - These consist of the following sub-classes:

(a) Data dependence-based techniques [42, 45, 113]

(b) Slicing-based techniques [15, 19]

2. Firewall-based techniques [64, 65]

3. Differencing based approaches - These consist of the following techniques:

(a) Modified code entity-based technique [25]

(b) Textual differencing-based technique [119, 120]

4. Control flow analysis-based techniques [13, 62, 94]

In the following, we discuss in detail the control flow analysis-based safe RTS

technique proposed by Rothermel and Harrold [94], the textual diferencing-based

technique proposed by Vokolos and Frankl [119], and the SDG-based slicing tech-

nique proposed by Binkley [19].

3.1.1.1. Dependency-Based Techniques

In the following, we review the RTS techniques that have been proposed based on

various types of dependency analysis such as data and control [19,42,45,64,65,113].

26

3.1. Regression Test Selection Techniques

Data Dependence-Based Techniques: These techniques [42, 45, 113] explicitly

detect definition-use pairs for variables that are affected by programmodifications,

and select test cases that exercise the paths from the definition ofmodified variables

to their uses. The use of a variable is further distinguished into computation uses

(c-uses) and predicate uses (p-uses). A c-use occurs for a variable if it is used in

computations, and a p-use occurs when it is used in a conditional statement. A

c-use may have an indirect effect on the control flow of the program, while a p-use

may either directly affect the flow of control or may also indirectly affect some

other program statements. The dataflow analysis-based RTS techniques identify

the def-use pairs for all variables that are affected by a change and select only those

test cases, which when executed on P, exercise those affected def-use pairs in P′.

Data dependence-based RTS techniques reported in [45, 113] usually carry out

analysis either by processing the changes one by one and then incrementally updat-

ing the data dependence information for P′, or compute the full data dependence

information for P and P′, and compare the differences between def-use pairs. Both

these approaches require saving the data dependence information across testing

sessions or recompute them at the beginning of each testing session. The RTS tech-

nique proposed by Gupta et al. [42] is based on inter-procedural slicing which does

not require saving or recomputing the dataflow information across testing sessions.

The technique uses the concepts of backward and forward slices to determine the

affected def-use pairs that must be retested. The program is sliced to select test

cases that execute the affected def-use pairs.

Dependence Graph-Based Slicing Techniques: Slicing-based techniques for

RTS of procedural programs identify all program elements that are indirectly af-

fected by a modification to the original program P.

A PDG-based slicing approach for procedural programs was proposed by Bates

and Horwitz [15]. However, the PDG-based slicing technique did not support

inter-procedural regression testing. In [19], Binkley proposed an inter-procedural

RTS technique based on slicing SDG models of P and P′. Two components are

said to have equivalent execution patterns if and only if they are executed the

same number of times on any given input [19]. The concept of common execution

patterns [19] has been introduced as an inter-procedural extension of the equivalent

execution patterns proposed in [15]. Code elements are said to have a common

execution pattern if they have the same equivalent execution pattern during some

call to procedures. The common execution patterns capture the semantic differ-

27

3. Review of Related Work

ences among code elements [19]. The semantic differences between P and P′ are

determined by comparing the expanded version (i.e., with every function call ex-

panded in place) of the two programs. The expanded versions of the two programs

are analyzed to find out affected program elements which need to be regression

tested.

Critical Evaluation: The techniques reported in [42,45] are based on computing

dataflows in a program and do not consider control dependencies among program

elements for selecting regression test cases. These techniques are also not able to

detect changes that do not cause changes to the dataflow information [134]. Hence,

these techniques are unsafe. Dataflow techniques are also imprecise because the

presence of a affected definition or use in a new block of code does not guarantee

that all test cases which execute the block will execute the affected code [93]. Ex-

amples illustrating the unsafe and imprecise nature of dataflow-based techniques

are available in [93].

According to the studies reported by Rothermel and Harrold [93], the PDG [15]

and SDG-based [19] slicing techniques are not safe when the changes to the mod-

ified program involve deletion of statements. The techniques are also imprecise.

The slicing-based RTS techniques are computationally more expensive than the

dataflow analysis-based techniques. However, slicing-based RTS techniques can

be applied to select test cases for both intra- and inter-procedural modifications.

3.1.1.2. Module Level Firewall-Based Techniques

The firewall-based approach, first proposed by Leung and White [64, 65], is based

on analysis of data and control dependencies among modules in a procedural

program. A firewall is defined as the set of all the modified modules in a program

along with those modules which interact with the modified modules. The firewall

is a conceptual boundary that helps in limiting the amount of retesting required

by identifying and limiting testing to only those modules which are affected by

a change. The firewall techniques use a call graph to represent the control flow

structure of a program [64]. Module A is called an ancestor of module B, if there

exists a path (a sequence of calls) in the call graph frommoduleA to B, andmodule

B is then called a descendant of module A. The direct ancestors and the direct

descendants of the modified modules are also considered during the construction

of a firewall to account for all possible interactions with themodifiedmodules. The

test coverage information for P is used to select the subset of test cases t ∈ T which

28

3.1. Regression Test Selection Techniques

exercise the affected modules included in the firewall.

Critical Evaluation: The firewall technique is not safe as it does not select those

test cases from outside the firewall that may also execute the affected modules

within the firewall [93]. The firewall techniques are imprecise because all test

cases which execute the modules within the firewall do not necessarily execute

the modified code within modules. However, the firewall techniques are efficient

because the approaches consider only themodifiedmodules and relationshipswith

other modules in the firewall, and hence limits the total amount of the source code

that needs to be analyzed. The firewall techniques handle RTS for inter-procedural

program modifications but are not applicable for intra-procedural modifications

[93].

3.1.1.3. Differencing-Based Techniques

In this subsection, we discuss RTS techniques [25,119] that are based on an analysis

of the differences between the original and the modified programs.

Modified Code Entity-Based Technique: A modified code entity-based RTS

techniquewas proposed byChen et al. [25] for C programs. They have decomposed

program elements into functional and non-functional code entities. A code entity is

defined as either a directly executable unit of code such as a function or a statement,

or a non-executable unit such as global variable and macro. The original program

P is executed with each test case t ∈ T. The test coverage information is analyzed

to determine the set of executable code entities that are exercised by each test case

t ∈ T. For each function that is executed by a test case t, the transitive closure of the

global variables, macros, etc. referenced by the function is computed. When the

original program P is modified, all the code entities which were modified to create

the revised program P′ are identified. Test cases that exercise any of the modified

entities are selected for regression testing of P′.

Technique Based on Textual Differencing: Vokolos and Frankl [119, 120] have

proposed an RTS technique which is based on a textual differencing of the original

and the modified programs (i.e., P and P′), rather than using any intermediate

representation of the programs. A naive textual differencing of the programs will

include trivial differences between the two versions such as insertion of blank lines,

comments etc. Therefore, their technique first converts a program to its canonical

29

3. Review of Related Work

form [118, 119] before comparison. This conversion ensures that the original and

the modified programs follow the same syntactic and formatting guidelines. The

canonical version of P is instrumented to generate test coverage information. The

test coverage information includes the basic blocks that are executed by each test

case instead of the program statements. The canonical versions of P and P′ are

syntactically compared to find out modifications to the code. The test coverage

information is then used to identify test cases which execute the affected parts of

the code.

Critical Evaluation: Themodified code entity technique is safe because it identi-

fies all possible affected code entities, and selects regression test cases based on test

coverage [16, 93]. The technique proposed in [119] is also safe because it identifies

all the basic blocks that are affected due to modifications and selects regression test

cases that execute those basic blocks. However, both the techniques are imprecise.

For example, if a function f is modified, the modified code entity technique selects

all those test cases which execute f . But there might be tests which execute f with-

out executing the modified code in f . The textual differencing technique can be

highly imprecise when code changes are arbitrary since differentiation is based on

only syntax and the test cases are selected based on coverage of basic blocks. The

code entity technique is considered to be the most efficient and safe RTS technique

for procedural programs [93], and its time complexity is bounded by the size of T

andP. The time complexity of the textual differencing technique isO(|P|∗|P′|∗log|P|)

which may not be scalable for large programs.

3.1.1.4. Control Flow Analysis-Based Techniques

A few RTS techniques [13, 62, 94] have been proposed which analyze control flow

models of the input programs for selecting regression test cases. We briefly discuss

these RTS techniques in the following.

Cluster Identification Technique: The main concept used in the cluster identi-

fication technique proposed by Laski and Szermer [62] is localization of program

modifications into one or more areas of the code referred to as clusters. Clusters

are defined as single-entry, single-exit parts of code that have been modified from

one version of a program to the next. The cluster identification technique models

programs P and P′ as CFGs (denoted by G and G′). The nodes in G and G′, which

correspond to the modifications in the code, are identified, and the set of all such

30

3.1. Regression Test Selection Techniques

identified nodes in G and G′ are marked as clusters. A cluster identification-based

technique uses control dependence information of the original and the modified

procedures to compute the clusters in the two graphs.

Once the clusters have been identified in the CFGs, each cluster is then rep-

resented by a single node to form a reduced CFG. Analysis of the reduced flow

graphs is based on the assumption that any complex program modification can be

achieved by one of the following three operations: inserting a cluster into the code,

deleting a cluster, or changing the functionality of a cluster. Test cases are classified

into two categories: local to the clusters and global in the entire program. The

former includes test cases which execute modified clusters, and the latter includes

test cases which execute other areas of the program affected due to the modified

clusters based on control dependencies. The test coverage information is then used

to select regression test cases.

Graph Walk-Based Technique: Rothermel and Harrold have proposed an RTS

technique based on traversal of CFGs of the original and the modified programs

[94]. The approach proposed in [94] involves constructing CFGs G and G′ for

programs P and P′ respectively. The execution trace information for each test case

t, ET(P(t)), is recorded. This is achieved by instrumenting P. In [94], a simultaneous

depth-first traversal of the two CFGs G and G′ is performed corresponding to each

modified procedure in P and P′. The traversal is performed according to the test

case execution trace for each test case inT. For each pair of nodes n and n′ belonging

to G and G′ respectively, the technique finds out whether the program statements

associated with the successors of n and n′ along identically-labeled edges of G

and G′ are equivalent or not. If a pair of nodes n1 and n′
1
is found such that the

statements associated with n1 and n′
1
are not identical, then the edges that lead to

the non-identical nodes are identified as dangerous edges. Test cases which execute

the set of identified dangerous edges are assumed to be modification-revealing.

Therefore, a test case t ∈ T is selected for retesting P′ if ET(P(t)) contains node n1.

DFA Model-Based Approach: Ball [13] has proposed a more precise RTS tech-

nique as compared to [94] bymodeling the CFGG for a programP as a deterministic

finite state automaton (DFA). A DFA M for a CFG G can be constructed such that

the following conditions hold:

1. Each node v inG corresponds to two nodes v1 and v2 ofM, such that v1→BB(v)

v2, where BB(v) is the basic block associated with node v in G.

31

3. Review of Related Work

2. L(M) = the set of all possible complete paths in G.

Ball introduced an intersection graph model for a pair of CFGs G and G′ corre-

sponding to the original and modified programs. The intersection graph also has

an interpretation in terms of a DFA. Ball’s RTS technique is based on reachability

of edges in the intersection graphs. The techniques use edge coverage criterion as

the basis for RTS analysis.

Critical Evaluation: The RTS techniques proposed in [13,62,94] are safe. Among

the three techniques, the cluster identification technique is comparatively more

imprecise because test cases are selected based on whether they execute a cluster

rather than the affected statements. The techniques proposed in [13,94] are the two

most precise procedural RTS techniques. However, Ball’s DFA-based approach

is computationally more expensive than [94]. The time complexity of the cluster

identification technique is bounded by the time required to compute the control

scope of decision statements and is dependent on the input program size.

Ball has proposed another technique [13] which uses path coverage criterion

and is still more precise than [13, 94]. The higher precision is attributable to the

fact that path coverage is stronger than an edge coverage criterion. This increase

in precision is however accompanied by an increase in the computation effort.

Additionally, it cannot analyze control flows across procedures and hence cannot

be applied for RTS of inter-procedural code modifications.

An important difference between graph walk and slicing-based techniques is

that the latter usesdependence relationships to analyze the source code and identify

the modified regions in the source code. Regression test selection is performed by

monitoring the execution of the sliced region of code on T. On the other hand,

the graph walk techniques use comparison of graphical models of the program to

identify the modifications [90, 94].

3.1.2. RTS Techniques for Object-Oriented Programs

The object-oriented paradigm is founded on several important concepts such as

encapsulation, inheritance, polymorphism, dynamic binding, etc. These concepts

lead to complex relationships between the various program elements, and make

dependency analysis more difficult [126]. Moreover, in object-oriented develop-

ment, reuse of existing libraries, class definitions, program executables (black-box

32

3.1. Regression Test Selection Techniques

components), etc. are emphasized to facilitate faster development of applications.

These libraries and components frequently undergo independent modifications

to fix bugs and enhance functionalities. This creates a new dimension in regres-

sion testing of object-oriented programs that use these third-party components or

libraries, since the source code for such libraries are often not available. These fea-

tures, therefore, raise challenging questions on how to effectively select regression

test cases that are safe for such programs [17, 77].

The reported RTS techniques for object-oriented programs can broadly be clas-

sified into the following three major categories:

1. Firewall-based techniques [9, 50, 52, 61]

(a) Class firewall technique [61]

(b) Method level firewall technique [52]

2. Program model-based techniques [44, 82, 91, 95]

3. Design model-based techniques [11, 22, 33, 39, 79]

3.1.3. RTS Techniques for Component-Based Software

In the component-based software developmentmodel, a software product is devel-

oped by integrating different components developed either in-house or by third-

party vendors. The reliability of a component-based software application, to a large

extent, depends on the reliability of the individual components. These blackbox

components are often modified by the concerned vendor to fix bugs and incorpo-

rate enhancements. Hence, regression testing of component-based software needs

to address how the changes made to a component might affect the execution of

application programs which use those modified components. Techniques which

perform RTS of traditional programs cannot meaningfully be used for RTS of soft-

ware using COTS (Commercial Off-The-Self) components because the code for the

components are usually not available. RTS for component-based software is a

challenging research problem due to the following reasons [37, 81]:

• In a component-based development environment, often there is a lack of

adequate information about the changesmade to each release of a component.

Relevant information such as control and data flow relationships among the

modules are usually not supplied to the application programmer. Moreover,

there is also a lack of adequate documentation for third-party components.

33

3. Review of Related Work

• A change made to a component may be reflected both at the component level

and at the system level functioning of the software. Even trivial changes

made to a component in a system may at times affect the proper working of

the software as a whole.

• There is a lack of test tools which can be used to identify changes in a com-

ponent and its impact on the software.

Depending on the type of program analysis, the RTS techniques for component-

based software can be grouped into the following classes:

1. Metacontent-based RTS approaches

(a) Code coverage-based approaches [81]

(b) Enhanced change information-based approaches [71, 72]

2. Model-based techniques

(a) UML model-based techniques [101, 129]

(b) Component model-based techniques [37]

(c) Dynamic behavior and impact analysis using models [85]

3. Analysis of executable code [137–139]

3.1.4. Survey of RTS Techniques

RTS techniques have been reviewed by several authors [14,16,31,40,93,134]. In [93],

Rothermel and Harrold have proposed a framework (i.e., a set of parameters) to

evaluate the effectiveness of different RTS techniques. Baradhi and Mansour [14],

Bible et al. [16], and Graves et al. [40] have performed experimental studies on the

performance and effectiveness of different RTS techniques proposed for procedural

programs. Based on these studies, it is difficult to choose any technique as the best

because these empirical studies have been performed on different categories of

programs and also under different conditions [32]. This lead Engström et al. to

perform a qualitative study [31, 32] of the nature of the empirical data considered.

The studies reported in [31, 32] are based on the similarities of the different RTS

techniques and the quality of the empirical data used. Engström et al. [32] observe

that that it is very difficult to come upwith aRTS techniquewhich is generic enough

(i.e., can be applied to a different classes of applications) and is superior to all other

techniques.

34

3.2. Regression Test Suite Optimization Techniques

The interested reader is referred to [20] for a detailed and in-depth review of

the different RTS techniques proposed in the literature.

3.2. Regression Test Suite Optimization Techniques

Most test suite optimization (TSO) techniques reported in the literature have been

proposed in the context of traditional programs. In spite of our best efforts, we

could not find any study which specifically addresses the problem of optimizing

regression test suites of embedded applications. In the absence of any directly

comparable work, we compare our RTSO technique with the conventional ap-

proaches [34, 135].

Farooq andLam [34] haveproposed anon-paretomin-maxbasedTSO technique

which removes redundant test cases andmaximizes the branch coverage. Zhang et

al. [135] have proposed a resource-aware RTSO approach by combining selection

and prioritization of test cases. Their approach first selects the relevant test cases

and then prioritizes the selected test cases based on the given resource constraints.

A few studies reported in the literature refer to TSM [84] and TCP [48, 121]

techniques as optimization techniques aimed at improving the effectiveness of

regression testing. TCP techniques are considered as optimization approaches

for T because they aim to improve certain regression testing criteria: improving

the rate of fault detection, improving the rate of coverage achieved, etc [48, 97,

121]. A drawback inherent in using these approaches is that these approaches

primarily aim to optimize the rate of detection of faults. Usually the total number

of faults detected during a typical regression testing session is much smaller than

the number of faults detected during a product testing session. Unlike product

testing, improving the rate of fault detection during regression testing can be

considered to be less important as compared to the total number of faults detected.

The reported techniques [34,48,84,121,135]may not produce satisfactory results

when used to optimize regression test suites of embedded applications. This is

because these techniques do not consider the execution dependencies introduced

among tasks in an embeddedprogram due tomodificationsmade to the other parts

of the code. Neither the minimization nor the prioritization techniques distinguish

test cases which execute critical or non-critical functionalities of an embedded

program. Most of these approaches also do not aim to optimize the objectives of

execution cost of test cases and total path coverage at the same time.

35

3. Review of Related Work

3.3. Conclusion

In this chapter, we have presented a brief review of the various RTS techniques

proposed for procedural, object-oriented and component-based software. We have

highlighted the relative merits and demerits of procedural RTS techniques. We

have also discussed existing TSO approaches proposed in the context of optimizing

regression test suites for traditional programs. In the absence of any directly com-

parable work, we have also discussed those techniques which are only marginally

related to our work.

36

Chapter 4

Task Execution Dependencies in Em-

bedded Programs

Embedded software developers not only target to meet the stringent reliability

requirements of embedded software, but also aim to address a a set of diverse

and conflicting issues such as extensibility, efficiency, cost, etc [104]. This makes

designing and development of embedded applications a challenging task.

After the development of an embedded software is complete, it is tested to

check for possible bugs in the code. Unlike traditional programs, the failures of

an embedded program arise from both functional errors as well as timing bugs.

Therefore, in addition to functional correctness of an embedded application, it

is also necessary to guarantee its temporal correctness. Considerable number of

studies on issues such as computation of theWCETs of tasks andpriority inversions

arising on account of resource sharing has been reported in the literature. Though

research results on such timing analysis of tasks are numerous, no studies on

systematic identification of execution dependencies of tasks have been reported.

The completion time of a task of an embedded application can be affected by

other concurrent and communicating tasks. Besides control and data dependen-

cies, additional dependencies arise among tasks due to precedence relations, task

priorities, and inter-task communications [73]. We call these task execution de-

pendencies. Upon a code change, the effect of task execution dependencies can

manifest as delays to task completion times or altered task execution sequences.

Thus, it is a major challenge for software developers to always ensure that the per-

formance constraints of real-time tasks are still satisfied even after modifications to

parts of the code.

Systematic identification of task execution dependencies among tasks can be of

4. Task Execution Dependencies in Embedded Programs

use in many software engineering activities of embedded programs such as RTS,

task prioritization, debugging of timing errors, computation of complexity metrics,

etc. For example in RTS, in addition to testing for traditional regression errors

induced due to data and control dependencies after a change to an embedded

program, it is imperative to test whether any timing errors have been induced.

Similarly, while debugging a timing fault, it becomes necessary to first identify all

those tasks that might have contributed to the unexpected timing behavior. The

information about the number of tasks that are execution dependent on a particular

task can also be used to prioritize testing effort.

It is important to note that task execution dependencies are captured neither

by data nor by control dependencies. In this chapter, we discuss execution depen-

dencies that can arise among tasks in an embedded program due to various factors

such as task precedence, task priority, message passing, use of shared resources,

etc., and their effect on the execution of tasks.

This chapter is organized as follows: In Section 4.1, we discuss task execution

dependencies that arise due to precedence order. We discuss task execution de-

pendencies that arise due to priorities in Section 4.2. We discuss task execution

dependencies that arise due to message passing and use of shared resources in Sec-

tions 4.3 and 4.4. We discuss the task execution dependencies that are introduced

due to interrupt handling in Section 4.5. We discuss a possible side-effect of task

execution dependencies on the execution of embedded programs in Section 4.6.

Finally, we conclude the chapter in Section 4.7.

4.1. Task ExecutionDependencyDue to PrecedenceOr-

der

Given a set of time-constrained tasks, the completion of a task is dependent on the

task precedence order (if any) among the set of tasks. A task τi executes only after

the set of tasks in Pred(τi) have already completed their execution. Therefore, we

can say that a task is execution dependent on each task in Pred(τi). The effect of the

dependencies introduced due to precedence ordering on the execution of a task is

stated in Proposition 1.

Proposition 1. Modifications made to a task τi can affect the completion time of the tasks

in the set Succ(τi).

38

4.2. Task Execution Dependency Due to Priorities

We explain the effect of execution dependencies introduced due to precedence

order with the help of the following example.

Example 4.1: Let us consider an embedded program P consisting of three tasks

τ1 = 〈10, 3, 4〉, τ2 = 〈10, 3, 8〉 and τ3 = 〈10, 2, 8〉. Let us further assume that the task

τ1 precedes task τ2 and τ2 precedes task τ3. A possible schedule of the tasks in P is

shown in Figure 4.1a. Suppose task τ1 is modified in P′. It is possible that τ1 in P′

takes longer to execute, say 3.5 units, due to the modification. This is represented

in the schedule shown in Figure 4.1b. As a result of the change, the completion of

the tasks in Succ(τ1) = {τ2, τ3}will also get delayed by 0.5 time units.

Execution dependencies arising among tasks due to their precedence ordering

are transitive in nature. The set of tasks that are execution dependent on a task

τi due to precedence relations is same as Succ(τi). From Proposition 1, it can be

inferred that it is important to select test cases for regression testing those tasks

which are executiondependentdue toprecedence relationships on some taskwhich

has been directly modified in P′.

4.2. Task Execution Dependency Due to Priorities

Execution dependencies among tasks can arise on account of task priorities. This is

because the lower priority tasks will not be able to execute unless a higher priority

task completes its execution.

Proposition 2. A delay to the completion time of a higher priority task can lead lower

priority tasks to miss their deadlines.

We illustrate the effect of execution dependencies introduced due to task prior-

ities with the help of the following example and Figure 4.1.

Example 4.2: Let us consider the three tasks τ1, τ2 and τ3 shown in Figure 4.1.

Let the priority of each task be as follows: priority(τ1) > priority(τ2) > priority(τ3).

Assume that the execution order of the tasks are τ1, τ2, τ3. Suppose task τ1 is

changed and as a result takes longer to execute, say 3.5 units. This would delay the

other two tasks as shown in Figure 4.1b.

Execution dependencies among tasks due to priorities are transitive in nature.

For a given task τi, we denote the set of all lower priority tasks whose execution

time can potentially be affected by τi by Prior(τi).

39

4. Task Execution Dependencies in Embedded Programs

42 7 8

Time
3 5 60 1

τ1 τ2 τ3

(a)Normal execution of tasks.

Time
2 3 4 5 6 7 80 1

Delay

τ1 τ2 τ3

(b) Execution after τ1 is delayed.

Fig. 4.1: Task delay caused due to precedence relationships.

4.3. Task Execution Dependency Due to Message Pass-

ing

Synchronous message passing in an embedded program gives rise to execution

dependencies among a pair of communicating tasks. The effect of task execution

dependence due to message passing is expressed in the following proposition.

Proposition 3. Modification to either the sender or the receiver task of a pair of tasks

communicating using message queues may delay the completion of the other task.

Since we have assumed synchronous mode of communication, therefore the

message transfer will not take place unless the two tasks are ready to send and

receive data respectively. Any delay to one task will force the other task (sender/re-

ceiver) to wait.

Task executiondependencies arisingdue tomessagepassing are both symmetric

and transitive in nature. Task execution dependence due to message passing is a

symmetric relation under the assumption of synchronous message passing as both

the sender and the receiver tasks can delay each other. For a task τi, we denote the

set of tasks that can possibly get delayed by it due to the execution dependencies

arising due to messaging passing by ITCmp(τi).

40

4.4. Task Execution Dependency Due to Use of Shared Resource

4.4. Task Execution Dependency Due to Use of Shared

Resource

Execution dependencies can arise among a set of tasks when they share a resource.

The effect of task execution dependence introduced due to use of a shared resource

is stated in the following proposition.

Proposition 4. A task locking a synchronization variable for an unusually long duration

may delay other tasks sharing the same variable.

We assume that access to shared variables are usually guarded using synchro-

nization primitives such as semaphores or locks. The program statements for

accessing such primitives are implicit synchronization points between the con-

cerned tasks. Therefore, any increase to the duration for which one task locks a

synchronization variable may cause the other tasks needing to lock the variable to

get delayed.

Example 4.3: In Figure 4.2, we show an example of execution dependencies that

can exist among two tasks communicating using a shared variable. The tasks τ1 and

τ2 in Figure 4.2 communicate using the shared variable var and use a semaphore

variable sem to guard the access to var. Let us assume that task τ2 computes and

writes a newvalue for varwhich is later read by τ1. Suppose the statement ‘compute

var’ in τ2 is modified in P′. This change may cause τ2 to block the semaphore for a

longer duration, thereby delaying τ1.

Task execution dependencies arising due to the use of synchronization primi-

tives are transitive in nature and are also symmetric. For a task τi, we denote the

set of tasks that are execution dependent on it due to access to a shared resource

by ITCsyn(τi).

Without any loss of generality, in this work we have assumed semaphores are

used as synchronization primitives.

4.5. Task Execution Dependency Due to Execution of

Interrupt Handlers

Interrupts are profusely used in embedded applications to notify occurrence of

events. Interrupts are raised by the sensors or peripheral devices. On receiving an

41

4. Task Execution Dependencies in Embedded Programs

lock sem

write var
unlock sem

lock sem
read var

compute var
write var

unlock sem

var

write

write

read

Fig. 4.2: Two tasks communicating using shared memory.

interrupt, the corresponding interrupt service routine (ISR) is invoked which per-

forms operations that are necessary to handle the interrupt. The work performed

by an ISR is usually split into two parts: the first-level interrupt handler (FLIH)

and the deferred procedure call (DPC) [102, 108]. The role of FLIH is to service the

interrupt quickly by executing a few instructions only, and the DPC is executed

later. A DPC is scheduled as a normal task in many operating systems such as the

Symbian [102].

Interrupt handling can cause unpredictable delays (called jitter) to the execution

of some tasks which are usually unacceptable for hard real-time embedded tasks.

In this work, we assume that the execution of a FLIH is fast and the delay can be

ignored, and it is only the effect of the DPCs which need to be considered. A DPC

usually inherits the priority of the interrupted task, otherwise it is scheduled by

the operating system at the priority level of normal tasks. Execution of a DPC can

delay other tasks of the same or lower priority.

4.6. A Possible Side-Effect Due to Task Execution De-

pendencies

The delays suffered by tasks which are execution dependent on some directly

modified task can also lead to altered task execution sequences or a different output

being produced by the embedded program. We explain a possible side-effect due

42

4.7. Conclusion

to execution dependencies among the tasks in an embedded programwith the help

of the following example.

Example 4.4: Figure 4.3a shows three tasks and their times of arrival. The relative

priorities of the three tasks are as follows: priority(τ3) > priority(τ2) > priority(τ1).

The execution order of the tasks in Figure 4.3a are: τ1, τ2, τ3. Let us suppose that task

τ1 ismodified and itsWCET is increased as shown in Figure 4.3b. Themodified task

execution sequence now becomes: τ1, τ3, τ2. The modified task execution sequence

in P′ as a result of the execution dependencies introduced due to task priorities can

lead to a different output being produced by P′.

Time

T
as

ks

Execution order: , ,τ1
τ1 τ2

τ2

τ3

τ3

(a)Original task execution order.

Time

T
as

ks

Execution order: , ,τ1
τ1 τ2

τ2

τ3

τ3

(b)Modified task execution order.

Fig. 4.3: Change in task execution order due to execution dependencies introduced due to
task priorities.

4.7. Conclusion

Execution dependencies may arise among tasks of an embedded program due to

task precedence ordering, task priorities, inter-task communication, and execution

of interrupt handlers. Such dependencies can cause one task to delay another task’s

execution, change its execution order, etc. In this chapter, we have reported our

investigations on the possible reasons why execution dependencies arise among

tasks in an embedded program and their effects. These results can help to identify

those tasks that can get affected in an embedded program due to code changes to

a task.

43

Chapter 5

SDGC: AModel for RTS of Embedded

Programs

CFG and SDG-based representations of programs are extensively being used in

diverse applications such asprogramslicing [66], impact analysis [60], computation

of program metrics [122], reverse engineering [27], regression test case selection

[15, 94], etc. However, as far as modeling embedded programs is concerned,

the semantics of task creation, message passing, semaphore access, timers, etc.

are largely ignored by these models and are simplified into ordinary function

calls. Moreover, SDG-based representations ignore control flow information. As

a result, it becomes difficult to capture important features of embedded programs

such as tasks, their execution dependencies, and exception handling. A task is

a basic programming entity that is defined by a group of program statements

tied together through control flow relations. Furthermore, as advocated by many

researchers, analysis of timing properties requires representation of control flow

information [47, 123]. However, none of the program models proposed in the

literature canmeaningfully represent a task or other embeddedprogram constructs

that are necessary for RTS. In order to overcome these shortcomings, we propose a

graph model to represent embedded programs.

This chapter is organized into sections as follows: In Section 5.1, we discuss in

detail our proposed graph representation for modeling embedded programs. We

discuss the steps involved in constructing our model from a given embedded pro-

gram in Section 5.2. We also present an analysis of the space and time complexities

of constructing our proposed model in Section 5.3. We conclude the chapter in

Section 5.4.

5. SDGC: AModel for RTS of Embedded Programs

5.1. SDGCModel

Our proposed graph model is an extension of the standard CFG and SDG repre-

sentations [15]. We have named our model SDGC, SDGC being an acronym for

System Dependence Graph with Control flow.

Definition: SDGC Model - An SDGC model for a program P is a directed graph

G = (V,E), where V represents the set of nodes and E represents the set of edges.

The various types of nodes and edges defined for an SDGC model are represented

by the sets VTSDGC and ETSDGC respectively, where,

VTSDGC = {Vassign,Vpred,Vcall,VA−in,VA−out,VF−in,VF−out,Vtask

,Vmp,Vsem,Vtimer,Veh}

ETSDGC = {Ecd,Edd,Ece,EPar−in,EPar−out,ESum,Ec f ,Etde f ,Eprec,Emp

,Esem,Etimer}

Since an SDGCmodel is an extension of a CFG and an SDGmodel, therefore all

node and edge types defined for a CFG and an SDG model are also present in an

SDGCmodel. The setsVTSDGC andETSDGC are supersets of the correspondingnode

and edge sets discussed for an SDG model in subsection 2.2.5. That is, VTSDG ⊂

VTSDGC, and ETSDG ⊂ ETSDGC. For simplicity and to aid in understanding, an

SDGC model can also be considered to be an extended union of the CFG, DDG and

the CDG for each procedure in an embedded program.

We now discuss the additional node and edge types that we have introduced

in an SDGC model to represent those constructs of an embedded program that are

important for RTS.

5.1.1. Additional Node and Edge Types Introduced in an SDGC

Model

We have introduced additional node types to represent tasks, message queues,

semaphores, timers, and exception handling information. As illustration of the

underlying program constructs, for each node type we provide an example of a

46

5.1. SDGCModel

related API in VxWorks syntax [127].

Task nodes: We introduce a task node type (Vtask) in an SDGC to model tasks of

an embedded program. Task nodes are divided into the following sub-types:

• A task create node (denoted by Vtc) is used to model task creation using a

construct such as taskSpawn(). The priority of a task is also stored in the task

create node.

• A task delaynode (denotedbyVtdl) is used tomodel taskdelayusinga construct

such as taskDelay().

• A task suspend node (denoted by Vts) is used to model task suspension using

constructs such as taskSuspend().

• A task delete node (denoted by Vtdt) is used to model task deletion using a

construct such as taskDelete().

• A task exit node (denoted by Vtx) is used to model task exit using a construct

such as exit().

Message passing nodes: We have introduced a node type calledmessage passing

(Vmp) to model the semantics of message passing. The message passing node type is

divided into the following sub-types:

• Amessage queue createnode (denoted byVqc) is used tomodelmessage creation

using a construct such as msgQCreate().

• Amessage queue send node (denoted by Vqs) is used to model message sending

using a construct such as msgQSend().

• A message queue receive node (denoted by Vqr) is used to model message

receiving using a construct such as msgQReceive().

• Amessage queue delete node (denoted by Vqd) is used to model message queue

deletion using a construct such as msgQDelete().

Semaphore nodes: We have introduced a semaphore node type (Vsem) to model

programstatements associatedwith semaphoreoperations. Thenode type semaphore

is divided into the following sub-types:

• A semaphore create node (denoted by Vsc) is used to model semaphore creation

using a construct such as semBCreate().

• A semaphore req node (denoted by Vst) is used to model semaphore request

using a construct such as semTake().

47

5. SDGC: AModel for RTS of Embedded Programs

• A semaphore rel node (denoted by Vsg) is used to model semaphore release

using a construct such as semGive().

• A semaphore delete node (denoted by Vsd) is used to model deletion of a

semaphore variable using a construct such as semDelete().

Timer nodes: We have introduced a timer node type to model timer operations.

The timer node type is divided into the following sub-types:

• A timer create node (denoted by Vtmc) is used to model timer creation using a

construct such as wdCreate. Please note that the construct wdCreate is used

to create a watchdog timer in VxWorks.

• A timer start node (denoted by Vtms) is used to model the start/setting of a

timer using a construct such as wdStart().

• A timer stop node (denoted by Vtmp) is used to model the reset/stop of a timer

using a construct such as wdCancel().

• A timer delete node (denoted by Vtmd) is used to model the deletion of a timer

using a construct such as wdDelete().

Exception handling nodes: Our approach to represent the exception handling

information in an SDGC is based on the work reported in [12, 21, 54]. We have

introduced the exception handling node type (Veh) to model exception handling. The

exception handling node type is divided into the following sub-types:

• A try node (denoted by Vtry) is used to model the start of an exception block.

• A catch node (denoted by Vcatch) is used to model a catch statement.

• A throw node (denoted byVthrow) is used to model a statement which can raise

exceptions.

• A normal return node (denoted by Vnr) is used to model a return construct

during normal execution of the program.

• An exceptional return node (denoted by Ver) is used to model an abnormal

return.

• A normal exit node (denoted by Vnp) is used to model normal termination of

a program, i.e., when an exception is not raised.

• An exceptional exit node (denoted by Vxp) is used to model abnormal termina-

tion of a program when an exception is not caught.

We now list the additional edge types that we have introduced in an SDGC over

those present in the SDG model.

48

5.1. SDGCModel

Control flow edge: Control flow edges (denoted by Ec f) in an SDGC are used to

model possible flow of control among nodes in the individual functions and tasks

in an embedded program.

Task definition edge: A task definition edge (denoted by Etde f) is used to connect

a node of type Vtc to the Start node of the CFG for the task.

Task precedence edge: Task precedence edges (denoted by Eprec) are used tomodel

precedence relations among tasks. A task precedence edge connects two nodes of

typeVtc representing tasks τi and τ j if there exists a predefined precedence ordering

between τi and τ j.

Message passing edge: A message passing edge (denoted by Emp) is used to

represent the execution dependency that arises between a pair of tasks when they

communicate using message queues. A message passing edge connects a pair of

nodes of type Vqs and Vqr in the sender and the receiver tasks respectively.

Semaphore edge: Dependencies arising due to use of semaphores between two

communicating tasks is represented by a semaphore edge (denoted by Esem). A

semaphore edge connects a pair of nodes of type Vst andVsg representing the sender

and receiver tasks that access the same semaphore variable.

Timer edge: A timer edge (denoted by Etm) is used to connect a timer create node

with the Start node of its associated handler function which is invoked when the

timer expires. Nodes of types timer start, timer stop and timer delete are connected

with the preceding/subsequent nodes of the SDGCmodel using control flow edges.

Edges to model exceptions: To model changes to the normal control flow due

to exceptions, the following control flow edges have been introduced to connect

exception handling nodes.

• A try node is connected to the node representing the first statement in the

exception block through a control flow edge.

• A catch node has two outgoing control flow edges: the TRUE edge connects

the catch node to the first statement in the catch block, and the FALSE edge

connects the catch node to the next catch statement if any.

• A throw node is connected to the corresponding catch node with a control

flow edge. If a throw node is outside a try block, then it is connected to the

exceptional exit node of the function using a control flow edge.

49

5. SDGC: AModel for RTS of Embedded Programs

The throw and catch statements are treated as conditional statements which

alter the flow of control depending on the evaluation of the conditional expression.

Example 5.1: The SDGC model of the program of Figure 2.6 is shown in Figure

5.1. It can be observed that the SDGC model in Figure 5.1 is an extension of the

SDG model shown in Figure 2.7, and incorporates additional nodes and edges for

modeling embedded program features such as tasks, message queues, etc. The

solid edges in Figure 5.1 represent control flow edges for each function in the

program. We have omitted the TRUE labels on control flow edges wherever the

flow of control is obvious to avoid cluttering the figure.

The program in Figure 2.6 has two statements spawning two tasks in lines S4

and S5. The task names are ‘tMonitor’ and ‘tVarySpeed’ and the task bodies are the

functions monitor() and vary_speed() respectively. Since task creation semantics

are ignored by the SDG model, these constructs are shown as simple function

calls in Figure 2.7. In the SDGC model shown in Figure 5.1, the two task creation

statements are represented by the task creation nodes S4 and S5. These two nodes

are connected to the corresponding function entry nodes E3 and E2 respectively by

using task definition edges (S4→ E3 and S5→ E2).

The tasks tMonitor and tVarySpeed in the program shown in Figure 2.6 com-

municate using a message queue. The lines (and the corresponding nodes) related

to message queue management are: S7, S11, S22 and S25. Node S7 in Figure 5.1 is

of type Vmc, node S11 is of type Vmr while nodes S22 and S25 are of type Vms. Two

message passing edges connect nodes S22 and S11 and S25 and S11 respectively.

5.2. Construction of An SDGCModel

In the following, we discuss the construction of an SDGC model M through a

static analysis of the source code of a program. The pseudocode for SDGC model

construction has been shown in Algorithm 1. The input to the algorithm is the

embedded program for which the corresponding SDGCmodel is to be constructed.

The first step (line number 2 in Algorithm 1) constructs the CFG for each function

in the program. This step involves parsing the input program, and constructing

the nodes and edges by executing appropriate semantic actions corresponding to

each grammar rule. All nodes including the nodes modeling specific embedded

program features such as task create,message queue send, timer start, etc. are created in

this step. For example, a task create node is created when a taskSpawn() statement

50

5.2. Construction of An SDGCModel

E1

S2

S3

S4

S5

S6

S7

S8

E3

S16

S17

S18

S19

S20

S21
 S22

S24

S25

S23

S26

E2

S9

S10

S11

S12

S13

S14

S15

control dependence edge

data dependence edge

other SDG edges

(e.g., parameter_in, etc.)

tMoni

tor

100

monit

or
.....

tVaryS

peed

100
 vary_s

peed

.....

50
 4
 MSG_Q_

FIFO

g_msg

q

g_msgq

vel
50

WAIT_F

OREVER

g_msgq
flag

g_msgq
flag

control flow edge

TRUE

TRUE

FALSE

TRUE

TRUE

FALSE

TRUE

FALSE

task definition edge

message passing edge

Fig. 5.1: SDGC model for the program of Figure 2.6.

is parsed. Once construction of the individual CFGs is complete, these are analyzed

in lines 4 to 7 to compute and construct the data and control dependence edges.

In the next step, the partially constructed SDGC model is traversed to connect

nodes of types task create and timer create to the corresponding functions which are

either task definitions or timer expiry handlers using task definition edge or timer

edge respectively. This helps in considering the special semantics of these program

constructs by differentiating them from simple function calls. For example for the

embeddedC program shown in Figure 2.6, the name of the function monitorwhich

is the definition for the task tMonitor is stored as an actual-in argument connected

to the task create node S4. Subsequently, we connect every message queue send

node to the corresponding message queue receive node with a message passing edge.

The message queue receive node corresponding to a message queue send node can be

identified from the message queue identifier over which the communication takes

place. Similarly, semaphore req nodes are connected to the corresponding semaphore

rel nodes using semaphore edges. A pair of semaphore req and semaphore rel nodes can

easily be identified based on examination of the name/id of the semaphore variable.

The last step concerns identification of the precedence relationships among

51

5. SDGC: AModel for RTS of Embedded Programs

tasks. For this, the source code is analyzed for the constructs join()/wait().

These two constructs indicate whether a task τ j precedences another task τi. We

then create a task precedence edge between the task create nodes of the two tasks τi

and τ j to model the precedence relationship between the two tasks.

Algorithm 1 Pseudocode for constructing SDGCmodel of an embedded program.

1: procedure ConstructSDGC(input)
⊲ input = Input embedded C program

⊲ Output of ConstructSDGC is the SDGC model for input
2: Construct CFG for each procedure in input
⊲New nodes such as timer create, task create, and exception handling are constructed in this step.

3: Connect nodes across CFGs to create edges ⊲ Edges include Call, Parameter-in and
Parameter-out edges

4: for each CFG in the partially constructed SDGC model do
5: Perform data dependence computation to add data dependence edges
6: Perform control dependence computation to add control dependence edges
7: end for
8: for each task create node do
9: Connect the task create node to the corresponding function definition node with a task

definition edge
10: end for
11: for each timer create node do
12: Connect the timer create node to the corresponding timer expiry handler with a timer edge
13: end for
14: for each message queue send node do
15: Connect the node to the corresponding message queue receive nodes in all receiver tasks

with a message passing edge
16: end for
17: for each semaphore req node do
18: Connect the node to the corresponding semaphore rel node in all the other tasks which

block on the same semaphore variable with a semaphore edge
19: end for

⊲ Checking for precedence constructs join()/wait()
20: Identify precedence order among tasks from input
21: Add task precedence edges to the SDGC model
22: end procedure

Example 5.2: Wenow illustrate the construction of the SDGCmodel for a sample

program shown in Figure 5.2. First the CFG for each procedure in the sample

program is constructed. During creation of the CFGs, the actual-in, actual-out,

formal-in, formal-out, call-site, task create, timer create, etc. nodes are also created.

The partially constructed SDGC model at the completion of this step is shown in

Figure 5.3. Subsequently, the data dependence and control dependence edges are

computed and added to the partially constructed SDGC model. The SDGC model

after this step is shown in Figure 5.4. Finally, for this example, adding the task

definition, timer, and the message passing edges to the partially constructed SDGC

52

5.3. Complexity Analysis

D0 WDOG_ID g_wdog = NULL;

D1 int g_cruise = ERROR;

D2 float g_distance;

D3 float g_speed;

E4 int main(void)

{

S5 int l_status = ERROR;

S6 g_wdog = wdCreate();

S7 if (NULL != g_wdog)

{

S8 l_status = taskSpawn("tCruise",50,0,

10000,(FUNCPTR)cruise,0, 0, 0, 0, 0,

0, 0, 0, 0, 0);

}

S9 return 0;

}

E10 void HandleTimeout(int val)

{

S11 if (1 == val)

{

S12 /*Reset Cruise Control parameters*/

S13 g_cruise = ERROR;

}

}

E14 void cruise(void)

{

S15 while(true)

{

/*Timer Start*/

S16 l_status = wdStart(g_wdog

, TIMEOUT

, (FUNCPTR)HandleTimeout

, 1);

S17 if(OK==l_status)

{

S18 /*Compute Control Parameters:

g_distance and g_speed*/

S19 if (g_distance > 30)

&& (g_speed > 40))

{

S20 /*Put into Cruise Control*/

S21 g_cruise = OK;

}

S22 wdCancel(g_wdog);

/*Timer End*/

}

}

}

Fig. 5.2: A sample VxWorks program incorporating usage of a watchdog timer.

model of Figure 5.4 completes construction of the the SDGCmodel shown in Figure

5.5.

In Figure 5.5, the node S16 is of type timer start. If the timer expires before it is

reset in line S22, the control flows to the handler routine HandleTimeOut. This is

modeled in the SDGC model of Figure 5.5 with a timer edge connecting the nodes

S16 and E10.

5.3. Complexity Analysis

We now present an analysis of the space and time complexities of the algorithm for

construction of an SDGC model.

Time Complexity: Let us assume that there are n statements in P and let the

number of nodes and edges in the SDGC modelM be m and e respectively. Let the

number of functions in P be denoted by p. From the pseudocode ConstructSDGC

presented in Algorithm 1, it can be observed that the primary steps in constructing

an SDGC model are: (a) construction of the CFG, (b) computation of data depen-

dence edges, (c) computation of control dependence edges, (d) incorporation of

information related to semantics of tasks, message passing, semaphores, and timer

53

5. SDGC: AModel for RTS of Embedded Programs

E4

S5
 S6
 S7

S8
S9

E14

S15
 S16

S17

S18

S21

S20

S19

E10

S11

S12

S13

control dependence edge

data dependence edge

other SDG edges (e.g., call site,

parameter_in, etc.)

control flow edge

TRUE

TRUE

TRUE

task definition edge

TRUE

.....
tCruise
 50

cruise

g_wdog

g_wdog

g_wdog

HandleTi

meOut

...
..

FALSE

val

TRUE

Fig. 5.3: Partially constructed SDGC model for the sample program in Figure 5.2.

E4

S5
 S6
 S7

S8
S9

E14

S15
 S16

S17

S18

S21

S20

S19

E10

S11

S12

S13

control dependence edge

data dependence edge

other SDG edges (e.g., call site,

parameter_in, etc.)

control flow edge

TRUE

TRUE

TRUE

task definition edge

TRUE

.....
tCruise
 50

cruise

g_wdog

g_wdog

g_wdog

HandleTi

meOut

...
..

FALSE

val

TRUE

Fig. 5.4: Partially constructed SDGC model after computation of data and control depen-
dences.

54

5.3. Complexity Analysis

E4

S5
 S6
 S7

S8
S9

E14

S15
 S16

S17

S18

S21

S20

S19

E10

S11

S12

S13

control dependence edge

data dependence edge

other SDG edges (e.g., call site,

parameter_in, etc.)

control flow edge

TRUE

TRUE

TRUE

task definition edge

TRUE

.....

tCruise
 50

cruise

g_wdog

g_wdog

g_wdog

HandleTi

meOut

...
..

FALSE

val

TRUE
������������������������� ���timer edge

Fig. 5.5: Complete SDGC model for the sample program shown in Figure 5.2.

management. The time complexity of CFG construction is O(n) [10], and the time

complexity of control dependence computation is O(n2) [35]. Computation of the

data dependence edges requires traversal of each CFG in the SDGC model and

is bounded by p ∗ O(m2). To create edges of type semaphore, task precedence, etc.

requires traversing the SDGC model. This can be expressed by O(m2). Therefore,

the time complexity of SDGC model construction is O(m2).

Space Complexity: Let us assume that there are n statements in P, and let n f

denote the number of functions in P (including task, timers, message queue and

semaphore creation), and argmax be the maximum number of arguments of any

function in P. For a given embedded program, the SDGC model contains more

number of edges than the SDG model because the SDGC model captures many

additional embedded program features. The space complexity for representing a

graph is of theorderofO(n2)wheren is thenumberofnodes in thegraph. Therefore,

the space requirement for constructing an SDGC model is O((n + 2 ∗ n f ∗ argmax)
2).

Assuming that the maximum number of arguments is limited to a constant say 10,

the space complexity expression reduces to O(n2).

55

5. SDGC: AModel for RTS of Embedded Programs

5.4. Conclusions

In this chapter, we proposed an intermediate graph representation for embedded

programswhichwehavenamedas SDGC.AnSDGCcaptures important features of

an embedded program such as tasks, task precedences, inter-task communication

using message passing or semaphores, and exception handling. Subsequently, we

also discussed an algorithm to construct an SDGC model from a given embedded

C program, and presented an analysis of the time and space complexities of our

proposed SDGC construction algorithm.

56

Chapter 6

RTSEM: An RTS Technique for Em-

bedded Programs

We have named our proposed RTS technique as RTSEM (Regression Test Selection

for EMbedded programs). RTSEM is based on analyzing the SDGC model of an

embedded C program. More specifically, RTSEM selects test cases based on an

analysis of control, data and task execution dependencies among tasks. In this

chapter, we discuss our proposed RTS technique and a prototype implementation

of the same.

This chapter is organized as follows: In Section 6.1, we first list the assumptions

made in RTSEM, and then discuss the types of program changes possible across

program versions in Section 6.2. We discuss the different processing activities in

RTSEM in Section 6.3. We discuss the steps to incrementally update an SDGC

model in Section 6.4, and present our regression test selection algorithm in Section

6.5. We discuss about a prototype implementation of RTSEM and present the

results obtained during our experimental studies in Section 6.6. In Section 6.7, we

compare our approach with related work and conclude the chapter in Section 6.8.

6.1. Assumptions

Our approach is primarily intended to be applicable to small embedded applica-

tions. In the following, we list the assumptions made in our RTS technique.

• We assume that the embedded programs adhere to the MISRA C coding

guidelines [7]. AlthoughMISRACguidelineswere originally intended for the

automotive industry, it is now widely being used for developing embedded

6. RTSEM: An RTS Technique for Embedded Programs

applications. We list a few important rules from [7] to indicate the types of

restrictions imposed by MISRA C:

– Rule 8.1: Every function must have a prototype declaration.

– Rule 9.1: All automatic variables are assigned a value before being used.

– Rule 12.10: The comma operator is not used.

– Rule 12.13: The increment (++) and decrement (−−) operators are not

mixed with other operators in an expression.

– Rule 14.6: Only one break statement can be used in any iteration con-

struct.

– Rule 20.4: Dynamic memory allocation is not used.

We have made two exceptions to the MISRA guidelines in our implemen-

tation. MISRA guidelines do not recommend the use of goto and continue

statements to promote structured programming practices. On the other hand,

many studies [57, 59, 76] have argued that judicious use of gotos is benefi-

cial for many types of common programming problems. Embedded pro-

grammers still make heavy use of constructs such as gotos. Code that is

auto-generated using tools such as Matlab Real-TimeWorkshop also contain

unstructured constructs such as breaks. In our work, we therefore have as-

sumed that goto (Rule 14.4) and continue (Rule 14.5) statements are allowed

in the code.

• The tasks are statically created and scheduled, and dynamic creation of tasks

is not considered.

• The tasks are assigned priorities statically and are scheduled using a preemp-

tive and priority-driven operating system.

• DPCs are assumed to inherit the priority of the tasks which are interrupted.

• The tasks communicate using either shared memory or message passing

mechanisms. We further assume that only the synchronous mode of message

passing is used.

• Many embedded applications read inputs from sensors and the output com-

puted is directed to an actuator. The inputs from the sensors are usually

transferred to the program as a set of input variables, and the output vari-

ables computed are transferred to the actuator. We assume that the initial test

suite T is available as a formatted text file. For each test case t ∈ T, the for-

matted file contains the following information: a unique identifier assigned

to each test case, set of inputs, and the expected results.

58

6.2. Types of Program Changes

6.2. Types of Program Changes

Achange to a program can be classified into the following three types: (1) addition of

a statement, (2) deletion of a statement, and (3)modification to a statement. A change

to a program P can be confined to a line or can span multiple lines. A change to P

might require addition and deletion of some nodes and edges of the corresponding

SDGCmodel. Since a modification can be considered to be composed of a deletion

operation followed by an addition operation, therefore in our work, we assume

that only addition and deletion are the basic operations.

A statement-level change can affect the dependency relations among elements

of a program in subtle ways. In the following, we elaborate on how the control flow

and dependency relations are affected due to the two basic types of code changes -

addition and deletion:

• Addition of statements - Adding new statements to P requires creating new

nodes and edges in the SDGC model M. Additional control flow, control or

data dependence, parameter-in, etc. edgesmay have to be created tomodel the

addition of new statements. It may also be required to delete certain existing

control flow and dependency edges during edge creation.

We explain the effect of addition of statements in Figure 6.1. Figure 6.1a shows

a sample code snippet consisting of two sequential program statements, S1

and S2. Therefore, in the corresponding partial model, the two nodes (also

denoted by S1 and S2) are connected using a control flow edge (denoted by

solid edges). The partial model also shows that the statement S2 is data

dependent on certain other program statements Si and S j (denoted by dotted

edges). Now, suppose a statement Sk is added to the sample code snippet as

shown in Figure 6.1b. The corresponding snapshot of the modified partial

model is also shown in Figure 6.1b. Due to the addition of the statement Sk,

the control flow edge between S1 and S2 is now deleted, and instead new

control flow edges are introduced between the pairs S1 and Sk, and Sk and S2.

Due to the added statement, the data dependency between S j and S2 ceases

to exist, and instead a new data dependency is introduced between the nodes

S j and Sk.

• Deletion of statements - When a statement is deleted in P′, the corresponding

node n in M is also deleted. The different edges which were either incident

on or emanated from n are also deleted. In addition, new dependency edges

59

6. RTSEM: An RTS Technique for Embedded Programs

may also be created.

It is important to note that deleting a statement can affect the other dependent

parts of the code. For example, if a statement where a variable is defined is

deleted, it can lead to a wrong evaluation of a predicate which uses the

variable. Therefore, it is important to identify and regression test all those

program statements which are data dependent on the deleted statement.

Figure 6.2a shows a code fragment and the corresponding program model

consisting of control flow (solid) and data dependence (dotted) edges. The

edge Ei j models the data dependency between the nodes Si and S j in the

original code. Let us assume that the variables f and g are defined in the

statements represented by the nodes Sb and Sa. Therefore, there exists data

dependence edges from Sb to S j, and from Sa to Sk. Suppose the statement

S j is deleted in the modified version of the program as shown in Figure 6.2b.

Because of this change, a control flow (Cik) and a data dependence edge Eik is

now created between the nodes Si and Sk. An additional data dependency is

now introduced between Sb and Sk.

Si Sj

S2

S1

1

.....

.....

2Statement S

Statement S

Original Code Fragment

(a)Nodes and edges in the original
program

S1

S2

Sk

Sj

Si

.....

Statement S k

1Statement S

.....
2Statement S

Modified Code Fragment

(b)Nodes and edges in the modified
program

Fig. 6.1: Effect of addition of statements on control flow and dependencies.

6.3. Processing Activities in RTSEM

Many existing RTS techniques proposed in the context of procedural and object-

oriented programs advocate dividing the activities involved in RTS analysis into

different phases in an attempt to reduce the run time of the selection process.

However, RTSEM has only a single phase since we are restricting the applicability

to only small embedded programs. The time complexity of an RTS approach is not

60

6.3. Processing Activities in RTSEM

Original Program

S
i
: b = c + e

.............

S
j
: a = b + d + f

.............

S
i

S
j
S
a

S
b

E
ij

S
k

S
k
: a = b + g + f

f is defined

g is defined

(a)Nodes and edges in the original pro-
gram

Modified Program

S
i
: b = c + e

.............

.............

S
i

S
a

S
b

E
ik

S
k

S
k
: a = b + g + f

f is defined

g is defined

C
ik

(b)Nodes and edges in the modified pro-
gram

Fig. 6.2: Effect of deletion on data dependencies.

a critical concern since an automated RTS technique can be used offline for selecting

test cases once the modified program version is ready to be regression tested. The

primary aim of an effective RTS technique is to reduce the test effort spent by a

tester in manually executing the whole initial test suite by omitting those test cases

that cannot potentially expose a bug in the program to be regression tested.

The important steps of RTSEM have been represented in the activity model of

Figure 6.3. We now briefly describe these processing steps.

1. Instrument and execute program: In this step, the original program P is in-

strumented by inserting print statements. The print statements are inserted

only for the purpose of gathering test coverage information. Therefore, even

though the print statements may alter the timing properties of tasks, this

is immaterial since these statements are stripped during actual regression

testing. The instrumented code is executed with the entire test suite T to

generate the execution trace for each test case. An execution trace essentially

is a sequence of statements of P that is executed by a test case. Generating the

test coverage information is an one-time activity for a given program during

one testing cycle, and need not be repeated during the subsequent regression

testing sessions in that cycle. The test coverage information generated in this

step is saved for later processing.

2. Test suite maintenance: New test casesmay be added and obsolete test cases are

deleted from the initial test suite T during the maintenance phase. When T

is modified, the test coverage information also needs to be appropriately up-

dated. This activity is called test suite maintenance and is carried out during

resolution testing. In this work, we only focus on the regression test selection

problem and ignore the issues in test suite maintenance. We therefore assume

61

6. RTSEM: An RTS Technique for Embedded Programs

that the test coverage information generated during resolution testing is in

accordance with the initial test suite T.

3. Construct SDGC model: In this step, the SDGC model M for the original

program P is constructed by using the approach discussed in Section 5.2.

4. Mark the SDGC model: In this step, the test coverage information is marked

onM. Marking an SDGCmodel involves adding information to each node in

the SDGCmodel about the test cases that execute the corresponding program

statement.

5. Identify changes: In this step, the exact changes that weremade to themodified

program P′ are identified through a semantic analysis of P and P′. The

statement-level changes between the two files are stored as a formatted ASCII

file which we will refer to as the change file. Each entry in the change file

corresponds to a statement-level change between P and P′, and contains the

changed program statements, the line numbers in both P and P′, and the

function name corresponding to the change. In this context, it is important

to note that any changes due to commenting, formatting, etc. are ignored

during semantic analysis.

6. Update SDGC model: In this step, the SDGC model is updated using informa-

tion from the change file so as to make it correspond to the modified program

P′. The detailed steps to update the original SDGCmodelM are explained in

Section 6.4.

7. Select test cases: In this step, the relevant test cases are selected based on

control, data and task execution dependency analysis. The details of this step

are explained in greater detail in Section 6.5. The selected regression test cases

are represented by the datastore Regression Test Cases in Figure 6.3.

6.4. Incremental Updation of an SDGCModel

Many existing RTS techniques construct program models of both the original and

the modified programs [44, 94]. Construction of two program models during RTS

analysis is unacceptably inefficient for large programs, especially when minor

changes have been made to P. To overcome this source of inefficiency, we incre-

mentally update the SDGC model M constructed for P once during each mainte-

nance cycle to reflect the changes made to P. In the following, we discuss how

incremental updation of an SDGC model is achieved.

62

6.4. Incremental Updation of an SDGCModel

Instrument
and Execute

Program
Construct

SDGC ModelTest Suite
Maintenance

Read Input
Artifacts

Select Test
Cases

Mark SDGC
Model

Update SDGC
Model

Identify
Changes

Test Coverage
Information

Regression
Test Cases

[first
 run]

YesNo

Fig. 6.3: Activity diagram representation of RTSEM.

• Addition: We create an additional node for every new statement that has been

introduced in P′. Please note that though usually a single node needs to be

created for a new statement, at times more than one node may need to be

created. For example, for a function call statement, one call-site node and one

ormany actual-in and actual-out nodesmay be created. Control flow edges are

created to connect a newly created node to its control flow predecessors and

successors nodes in the SDGC model. Creation of a new node in the existing

SDGC model usually requires that existing control flow edges between the

predecessor and the successor nodes be deleted.

• Deletion: For statements which have been deleted from P, we also delete the

corresponding nodes from the SDGC model M. Deletion of a node n from

M also deletes all the edges (control flow, data dependence, etc.) which are

incident on n, or emanate from n. Before deleting a node n, we mark the set

of nodes which are dependent on n as affected.

• Dependency computation: After the control flow information is updated on

modelM for all the entries of the change file, we recompute the data and con-

trol dependency information. The data dependency information is recom-

puted for all the functions in the modified program P′ to take into account

inter-procedural data dependencies. The control dependence information is

63

6. RTSEM: An RTS Technique for Embedded Programs

recomputed for only the directly modified functions. Data and control de-

pendency computation for a changed function is done by analyzing the CFGs

corresponding to the function.

6.5. Test Case Selection

After a program is changed, apart from selecting test cases based on an analysis of

traditional dependence relationships, RTSEM also selects all test cases that execute

tasks whose timing behavior may be affected. We can therefore express the set of

regression test cases (Treg) selected by RTSEM by the following relationship:

Treg = Tdep ∪ Ttime (6.1)

where Tdep and Ttime denote the test cases selected through control and data

dependence analysis and task execution dependency analysis respectively.

6.5.1. RTS Based on Control and Data Dependency Analysis

We select regression test cases based on control and data dependencies using for-

ward slicing. We have proposed an algorithm to compute the SDGC model slice

with respect to the statement-level changes between P and P′ to identify all the

affected model elements. Our forward slicing algorithm is an extension of the two

phase SDG slicing algorithm proposed by Bates and Horwitz [15].

We have named our algorithm to slice SDGC models as SDGCSlice. The pseu-

docode of SDGCSlice is shown in Algorithm 2. Algorithm SDGCSlice takes as

input the marked and updated SDGC model M and the change file, and computes

the set of test cases (Tdep) relevant for regression testing. In addition to each entry

(i.e., a program statement) in the change file, we also include the nodes affected due

to deletion of statements as slicing points. Our SDGC model slice computation

essentially performs a reachability analysis using data and control dependence

edges [49]. Slicing the SDGC model based on data and control dependence edges

helps to identify the set of model elements that may get affected due to the modifi-

cations. SDGCSlice computes the set (denoted byA f f ectedSet) of all nodes affected

on account of data and control dependence relations by dynamically updating the

set of potentially affected nodes. These steps are shown in lines 5 to 13 inAlgorithm

2.

64

6.5. Test Case Selection

Once all the affected SDGC model elements are identified through forward

slicing, the test cases executing those model elements are selected for regression

testing. This step is trivial since the information about which test cases execute

which model elements is already marked on the SDGC model M.

Algorithm 2 Pseudocode to select regression test cases by computing the SDGC
model slice based on control and data dependence.

1: procedure SDGCSlice(M, change,Tdep)
⊲M = updated marked SDGC model

⊲ change =modifications between P and P′ ⊲ Tdep = selected regression test cases
2: Tdep ← NULL
3: Dependent← NULL ⊲ Initially, Tdep is empty
4: for each entry in change do
5: ifmodification type is added OR modification type is modified then
6: Find the nodes inM corresponding to the statement
7: for each node m do ⊲ Check for data or control dependence edges from m
8: Af f ectedSet = Af f ectedSet ∪ {Set of all nodes control or data dependent on m}

⊲ Slicing should take into account special semantics of function calls related to tasks, timers,
message queue and semaphore management

9: end for
10: else ⊲ Check for dependencies introduced due to deletions
11: Find the set of nodes affected due to deletion

⊲ Check for data or control dependence edges from each node affected due to deletion
12: Af f ectedSet=Af f ectedSet∪ {Set of all nodes control or data dependent on the affected

nodes}
13: end if
14: if AffectedSet , Φ then
15: for each node n ∈ Af f ectedSet do
16: Add the list of test cases that execute n to Tdep

17: end for
18: end if
19: Af f ectedSet← NULL
20: end for
21: end procedure

6.5.2. RTS Based on Task Execution Dependency Analysis

An important part of our regression test selection technique is the selection of those

test cases that test execution dependent tasks. We have named our algorithm Tim-

ingSelect. The pseudocode for the algorithm is shown in Algorithm 3. Algorithm

TimingSelect takes as input the SDGC model M, and the change file, and produces

the selected set of test cases (denoted by Ttiming) as the output. The working of

the algorithm is explained briefly in the following: The tasks which are directly

modified in P′ are first identified from an analysis of the change file. TimingSe-

lect then invokes four functions: PrecSelect, PrioritySelect, MPSelect, and SemSelect,

65

6. RTSEM: An RTS Technique for Embedded Programs

which compute the set of affected tasks Succ(τi), Prior(τi), ITCmp(τi), and ITCsyn(τi)

respectively.

The information about the test cases which execute the program statements

corresponding to the affected tasks in P′ are already stored in the nodes (corre-

sponding to the statements) themselves during marking of the SDGC model M.

The test cases executing the affected tasks are selected for regression testing.

Algorithm 3 Pseudocode to select regression test cases based on task execution
dependencies.

1: procedure TimingSelect(M, change,Ttiming)
⊲M = updated marked SDGC model ⊲ change =modifications between P and P′

⊲ Ttiming = selected regression test cases
2: Ttiming ← NULL
3: Identify the directly modified tasks from change (denoted by Mod(τ))
4: for each τi ∈Mod(τ) do
5: PrecSelect(M, τi) ⊲ Select regression test cases based on task precedence order
6: PrioritySelect(M, τi) ⊲ Select regression test cases based on task priorities

⊲ Select regression test cases based on dependencies due to message passing
7: MPSelect(M, τi)

⊲ Select regression test cases based on dependencies due to semaphores
8: SemSelect(M, τi)
9: end for
10: end procedure
11: procedure PrecSelect(M, τi) ⊲ Compute Succ(τi)
12: Succ(τi)← NULL
13: TraverseM to reach task create node of τi
14: for each task precedence edge emanating from τi do
15: Traverse along the task precedence edge to the task create node for the task (denoted by τ j)
16: Succ(τi) = Succ(τi) ∪ τ j ⊲ Add τ j to Succ(τi)
17: end for
18: AddTest(Ttiming, Succ(τi))
19: end procedure
20: procedure PrioritySelect(M, τi) ⊲ Compute Prior(τi)
21: Prior(τi)← NULL
22: TraverseM to reach task create node of τi
23: Let priorityi be the priority of task τi

⊲ Task priority is stored in the task create node of an SDGC model
24: TraverseM to find out all task create nodes ⊲ Traversal is along control flow and task

definition edges
25: for each task τ j ∈Mi , j do
26: if priorityi > priority j then Prior(τi) = Prior(τi) ∪ τ j ⊲ Add τ j to Prior(τi)
27: end if
28: end for
29: AddTest(Ttiming, Prior(τi))
30: end procedure

66

6.6. Experimental Studies

Algorithm 3 Pseudocode to select regression test cases based on task execution
dependencies.

31: procedure AddTest(Ttiming, Af f ectedTasks) ⊲ Af f ectedTasks is a set of affected tasks
32: for each τ j ∈ Af f ectedTasks do
33: Add the test cases that execute the task τ j to Ttiming

34: end for
35: end procedure
36: procedureMPSelect(M, τi) ⊲ Compute ITCmp(τi)
37: ITCmp(τi)← NULL
38: TraverseM to reach task create node of τi
39: Traverse along task definition edge to the corresponding task function
40: Traverse the CFG for the function

⊲ Check for nodes of type message queue send or message queue receive
41: if node type is Vms OR node type is Vmr then ⊲ Task τi is a send/receiver of data
42: Traverse along message queue edge to reach the message passing node (denoted by ndest) of

the other task (denoted by τ j)
43: Traverse back along the CFG for τ j starting from ndest to reach the task create node for τ j

44: ITCmp(τi) = ITCmp(τi) ∪ τ j ⊲ Add τ j to ITCmp(τi)
45: end if
46: AddTest(Ttiming, ITCmp(τi))
47: end procedure
48: procedure SemSelect(M, τi) ⊲ Compute ITCsyn(τi)
49: ITCsyn(τi)← NULL
50: TraverseM to reach task create node of τi
51: Traverse along task definition edge to the corresponding task function
52: Traverse the CFG for the function

⊲ Check for nodes of type semaphore req or semaphore rel
53: if node type is Vst OR node type is Vsg then ⊲ Task τi is a send/receiver of data
54: Traverse along semaphore edge to reach the semaphore node (denoted by ndest) of the other

task (denoted by τ j)
55: Traverse back along the CFG for τ j starting from ndest to reach the task create node for τ j

56: ITCmp(τi) = ITCsyn(τi) ∪ τ j ⊲ Add τ j to ITCsyn(τi)
57: end if
58: AddTest(Ttiming, ITCsyn(τi))
59: end procedure

6.6. Experimental Studies

To study the effectiveness of our approach, we have implemented RTSEM to realize

a prototype tool. We have named our prototype implementation MTest which

stands for Model-based Test case selector. In the following, we first briefly discuss

our tool implementation. Subsequently, we present the results of the experimental

studies that we have conducted using MTest.

67

6. RTSEM: An RTS Technique for Embedded Programs

6.6.1. MTest: A Prototype Implementation of RTSEM

MTest has been developed using C++ programming language on a Microsoft Win-

dows 7 environment using a Compaq SG3770IL desktop with a 2.8 GHz processor

and 2GBmainmemory. The code size of MTest is approximately 17 KLOC, exclud-

ing the external packages used. MTest currently has a rudimentary user interface

developed using Microsoft Visual Basic 6.0. During execution, MTest takes an

original program P, modified program P′ and the initial test suite T as inputs. The

information related to the initial test suite T is input as a formatted file. The file con-

tains information about the test case identifier, the set of inputs, and the expected

output for each test case t ∈ T. The output produced by MTest is a formatted text

file containing the identifiers of the test cases selected for regression testing.

6.6.1.1. Open Source Software Packages Used in Implementation of MTest

Our implementationofMTestutilizes the followingopen-source softwarepackages:

Eclipse [3], MinGW [6], ANTLR [1], Graphviz [5]. In the following, we briefly

describe the functionalities of these open-source software.

Eclipse - Eclipse [3] is a multi-language software development environment

comprising an IDE and a plugin system to extend it. We have used Eclipse CDT

(C/C++ Development Tools) as our IDE for implementation.

MinGW - MinGW (Minimalist GNU for Windows) is a distribution of the GNU

Compiler Collection (GCC), and GNU Binutils, for use in the development of

native Microsoft Windows applications [6]. We have used MinGW as our C/C++

compiler. It is not required to explicitly configure Eclipse with MinGW, as MinGW

is automatically and seamlessly integrated with Eclipse.

ANTLR - ANTLR (ANother Tool for LanguageRecognition) is a top-downLL(k)

parser generator [1]. ANTLR supports generating code in C, C++, Java, Python,

C#, and Objective-C. ANTLR takes a grammar file for a language as an input and

produces files that recognize and can parse the file. ANTLR mainly produces two

files: a lexer and a parser file. These files may be in Java or C or C++. By default,

ANTLR produces files in Java. To produce the output files in C++, we need to add

the line language = "Cpp" in the options section of the ANTLR grammar file.

We have used ANTLR v2.7.7 as the parser generator for our implementation.

68

6.6. Experimental Studies

This is because the ANTLR grammar file [125] for C language that we have used

is written with ANTLR v2.7 features. ANTLR plugin can be installed in Eclipse

to include ANTLR capabilities in our application. The steps to install the ANTLR

plugin in Eclipse is given in [2]. We have adapted the ANTLR grammar file for C

language from [125], and have used a subset of the rules in the grammar file for C

language which are compliant with MISRA C guidelines [7].

Graphviz - Graphviz (short for Graph Visualization Software) is a package of

open source tools distributed byAT&TResearch Labs for drawing graphs specified

in DOT language scripts [5]. It also provides libraries for software applications to

use the tools. We have used Graphviz to graphically display the SDGC models

constructed by MTest.

6.6.1.2. Components of MTest

The architecture of MTest is shown in the component diagram in Figure 6.4. From

Figure 6.4, it can be observed that the primary components of MTest are: SDGC

Model constructer, Test coverage generator,Model marker and Test case selector. The ball

and socket connections in between the components identifies the producer and

consumer components. For example, the test coverage information generated by

test coverage generator is used by the component Model marker. In the following, we

describe the roles of the different components of MTest.

• Model constructer: Model constructer implements the algorithmConstructSDGC

presented in Section 5.2 for constructing SDGC models. As shown in Figure

6.4, the Model constructer component takes P as input and constructs the

SDGC model M. Model constructer first constructs CFGs for each function

of the input program. Once the construction of the CFGs is complete, the

iterative dataflow computation technique described in [10] is performed on

the CFGs to identify the data dependence edges. Model constructer constructs

the CDG for a function using the approach proposed by Ferrante et al. [35].

• Test coverage generator: Test coverage generator generates test coverage informa-

tionwhen the input program is executedwith test cases. Our implementation

of test coverage generator internally uses Gcov, an open source profiling tool [4].

The generated test coverage information is in the form of an ASCII file listing

the functions, tasks and the line numbers covered by each test case in T for

the original program P.

69

6. RTSEM: An RTS Technique for Embedded Programs

• Model marker: Model marker stores the test coverage information in the SDGC

model M. A statement in the input files is usually represented by one or

more nodes in the SDGC model. For each statement in the input program,

the SDGC model M is first traversed along control flow edges to find out

the corresponding node(s). Then for each node corresponding to a program

statement, model marker stores the list of test cases that execute the node in

the node data structure itself. This technique of storing the test coverage

information on the model itself circumvents the use of a database or file

storage.

• Test case selector: Test case selector selects regression test cases by using data,

control and task execution dependency analysis as discussed in subsection

6.5. The output of this module is a file containing the identifiers of the test

cases selected for regression testing.

MTest

«component»

Test
Coverage
Generator

«component»

SDGC Model
Constructer

«component»

Model
Marker

«component»

Test Case
Selector

«component»

GUI
Interface

SDGC Models
M and M©

Execution Trace

Marked SDGC
Models M and M©

«artifact»

Modified
Program P'

«artifact»

Original
Program P

«artifact»

Selected
Regression
Test Cases

«artifact»

Initial Test
Suite T

«use»

«use»

«use»

Fig. 6.4: Component model of MTest.

6.6.2. An Evaluation of the Effectiveness of MTest

The aim of our experimental studies using MTest was to evaluate the performance

and effectiveness of our RTS approach RTSEM. We evaluated the effectiveness of

our RTS technique based on the following two criteria:

• Percentage of test cases selected for RTS - This measure indicates the size of

the regression test suite as compared to the original test suite. Obviously, it

is desirable to have this number as small as possible.

70

6.6. Experimental Studies

• Fault-revealing effectiveness - A good RTS technique should select all those

test cases that fail when the valid test cases in the initial test suite are run.

Thus, the percentage of failed test cases selected by an RTS strategy can serve

as a figure of merit. The fault-revealing effectiveness metric can be computed

by computing the percentage of test cases selected by an RTS technique from

the set of test cases that fail when the valid test cases in the initial test suite

are run. That is, the fault-revealing effectiveness of the test suite selected by

a safe RTS technique is equal to that of the initial test suite.

6.6.3. Experiments

We have used eight programs from the automotive control domain for our exper-

imental studies. These include applications such as Adaptive cruise controller,

Power window controller, and Climate controller. These C programs have been

auto-generated from the corresponding Simulink [115] models using the Real-Time

Workshop tool in MATLAB. The size of the programs range from 156 to 737 LOC.

This size is the number of uncommented statements in the program. Table 6.1

summarizes the average size of the sample programs (LOC) and that of the corre-

sponding SDGC models (in terms of the number of nodes and edges). A snapshot

of the SDGCmodel for the Climate Controller program is shown in Figure 6.5. The

figure has been generated with the dotty tool of Graphviz [5]. The black edges in

the figure represent control flow edges, while the other SDGC model edge types

are annotated in the figure. Please note that we have shown only a partial model

in Figure 6.5 for the sake of readability.

For each program under test (PUT), we created several modified versions by

systematically adding, modifying or deleting one or more lines of code. In order

to avoid the possibility of making unrealistic changes to programs, we consulted

several industry professionals involved in Simulink/Stateflow (SL/SF) based em-

bedded program development. Based on their feedback on the types of changes

usually made, we introduced the following types of modifications to the PUTs:

a) changes were introduced in the Simulink model blocks and then the code was

auto-generated to get the modified program, b) modifications were made directly

to the auto-generated code. The changes made to the Simulink models were re-

flected as new functions in the source code, or as modified function prototypes, etc.

An example of a change of type (a) is disabling the ‘Window Up’ functionality in

one version of the modified PowerWindowControl program; and that for changes

71

6. RTSEM: An RTS Technique for Embedded Programs

Program Name Size (LOC)
Average Size of SDGC Models
(#nodes, #edges)

Power Window Con-
troller

204 (263, 334)

Quasilinear Model 174 (245, 312)

Vector Calculator 156 (209, 283)

Cruise Controller 649 (783, 886)

Power Window Con-
troller (with obstacle
detection)

737 (852, 996)

ATC Disc Copier 588 (722, 836)

Climate Controller 318 (364, 429)

If Pattern 266 (302, 361)

Tab. 6.1: Characteristics of the programs used in our experimental studies.

of type (b) are changed predicates, changed datatype of variables, and delays to

tasks. The relative frequency of occurrence of the different types of changes that we

introduced are based on feedback from the industry experts. These are categorized

into three levels: Extremely frequent, Frequent, and Less frequent. In Table 6.2 we

list the different types of modifications that we introduced in the PUTs and their

relative frequencies.

We designed test cases for each PUT to test the functional and temporal cor-

rectness of the programs. The functional test cases were designed using blackbox

techniques of category partitioning and boundary value analysis, and performance

test cases were designed to check whether the timing constraints of tasks are met.

The test cases were executed with the original version of the PUTs to generate the

test coverage information. The test cases from the initial test suite were also exe-

cuted with each modified version to find out the number of test cases that failed∗.

Then, we selected regression test cases using MTest. To compare the performance

and effectiveness of our approach with an established approach for RTS of proce-

dural programs, we also selected regression test cases using the SDG-based RTS

approach proposed by Binkley [18, 19]. We have chosen Binkley’s approach [19]

since we were unable to find any RTS technique specifically designed for embed-

ded programs, and also we could not find any recent approaches that advance the

∗ A failed test case is one which produces incorrect results when run with the modified program
under test.

72

6.6. Experimental Studies

Fig. 6.5: A screenshot of the SDGC model for the climate controller program.

SDG-based RTS approach [19] in non-trivial ways.

6.6.4. Results and Analysis

The results obtained from our experiments have been summarized in Tables 6.3

and 6.4. Table 6.3 shows the number of test cases that were selected for regression

testing by MTest and Binkley’s approach. The first column in Table 6.3 shows the

type of programs that were tested. Column 2 shows the number of test cases that

were used to test the PUTs. Column 3 shows the number of test cases that were

Type of Change Relative Frequency

Uninitialized variable declara-
tions

Extremely frequent

Variables assignedwrong values Extremely frequent

Changed predicates Extremely frequent

Changed datatypes Frequent

Changes made to Simulink blocks Frequent

Changed function prototypes Less frequent

Task delays Less frequent

Tab. 6.2: Types of modifications introduced and their relative frequencies.

73

6. RTSEM: An RTS Technique for Embedded Programs

selected on the average by MTest from the initial test suite. Column 4 shows the

number of test cases that were selected using Binkley’s approach [19]. Column

5 shows the difference in the number of regression test cases selected by the two

approaches as a percentage.

The results of Table 6.3 have been presented in the form of a bar graph in Figure

6.6 to visually show the relative performance of MTest and Binkley’s approach. In

the figure, the y-axis shows the percentage of selected test cases while the labels

on the x-axis represent the different PUTs. It can be observed from Table 6.3 and

Figure 6.6 that MTest on an average selected around 45% to 65.22% of test cases

for regression testing of the PUTs. For all the PUTs, the number of test cases

selected by MTest was greater than the SDG-based RTS approach. This increase

can be explained by the fact that, in addition to data and control dependence,

our approach also selects test cases based on task execution dependencies that are

ignored by Binkley’s approach. On the average, MTest selected 28.33% more test

cases than Binkley’s approach.

Program Name # Test Cases

% of Test Cases Selected

% Change

MTest
Binkley’s
Approach

Power Window Con-
troller

30 56.67 43.33 30.77

Quasilinear Model 25 48.00 36.00 33.33

Vector Calculator 20 45.00 30.00 50.00

Cruise Controller 42 61.90 47.62 30.00

Power Window Con-
troller (with obstacle
detection)

46 65.22 52.17 25.00

ATC Disc Copier 40 57.50 50.00 15.00

Climate Controller 35 54.29 40.00 35.71

If Pattern 30 60.00 46.67 28.57

Total 268 57.46 44.78 28.33

Tab. 6.3: Summary of experimental results.

Table 6.4 shows the number of failed test cases that were selected by MTest and

Binkley’s approach. In column 2 in Table 6.4, we list the number of test cases from

the initial test suite that failed when run on the modified PUTs. The modifications

to the programs were made based on the types of changes listed in Table 6.2. Each

74

6.6. Experimental Studies

Power WIndowQuasilinear Vector Cruise ATC
(with obstacle)

20

80

P
er

ce
nt

ag
e

of
 te

st
 c

as
es

 s
el

ec
te

d

40

50

60

70

90

100

Category of Programs

Power Window Climate If Pattern

10

30

MTest

SDG−based RTS Approach

Fig. 6.6: Number of test cases selected for different categories of programs.

time after making a change, regression test cases were selected and the number of

regression test cases showing failure was determined. This was done to remove

any bias in the results introduced due to selection of a specific type of change. Only

the summary data of the average of ten systematically selected changes of a given

type have been presented in Table 6.4. For example, for a change of type predicate

change, randomly selected predicates were changed one at a time. The number of

regression test cases showing failure for Binkley’s approach and the initial test suite

was also determined. The results of Table 6.4 have been presented as a bar graph in

Figure 6.7. In the figure, the y-axis shows the percentage of failed test cases selected

while the labels on the x-axis represent the different PUTs. The results show that

MTest is able to select all the fault-revealing test cases present in T. In other words,

the regression test suite selected by MTest has the same fault-revealing effectiveness

as the initial test suite. The fault-revealing effectiveness of Binkley’s approach is

lower by 36.36% on the average compared to MTest.

6.6.5. Threats to Validity

Although the initial results from our limited set of experiments inRTS of embedded

programsareveryencouraging, it shouldbenoted that are certain limitationswhich

need to be considered before the results can be generalized. We have considered

75

6. RTSEM: An RTS Technique for Embedded Programs

eight embedded C programs from the automotive domain, and the results that we

have obtained during our experimental studies are limited to PUTs of a maximum

size of approximately 740 LOC. However, the case studies used are real industry

applications. It would be interesting to study the results obtained when MTest

is applied to select regression test cases for more complex and larger embedded

programs having large test suites.

Threats to internal validity can arise due to issues in the implementation of

the prototype tool MTest. To eliminate issues in our implementation, we have

tested the proper working of the different modules in MTest with several student

programs before carrying out our experimental studies. Moreover, aswe discussed

in subsection 6.6.4, we have tried to remove any occurrences of bias in our studies

by carrying out the tests a few times and averaging the results obtained.

Program Name
% Test Cases
Failed

Fault-revealing Effec-
tiveness

% Change

MTest
Binkley’s
Approach

Power Window 23.33 100 57.14 75.00

Quasilinear Model 24.00 100 66.67 50.00

Vector Calculator 25.00 100 80.00 25.00

Cruise Controller 30.95 100 76.92 30.00

Power Window (with
obstacle)

30.43 100 78.57 27.27

ATC Disc Copier 27.50 100 72.73 37.50

Climate Controller 28.57 100 70.00 42.86

If Pattern 30.00 100 77.78 28.57

Tab. 6.4: Summary of results of fault-revealing effectiveness.

6.7. Comparison with Related Work

In spite of our best efforts, we could not find any reported results on selecting

regression test cases for embedded applications. However, a few results have been

reported for regression testing of embedded programs [23, 80]. Cartaxo et al. [23]

haveproposed a technique to select functional test cases for embedded applications.

Given the initial test suite, their technique aims tominimize the test suite while still

76

6.7. Comparison with Related Work

Power WIndowQuasilinear Vector Cruise ATC Climate
(with obstacle)

Power Window If Pattern

Category of Programs

10

20

30

40

50

60

70

90

80

100
P

er
ce

nt
ag

e
of

 fa
ile

d
te

st
 c

as
es

 s
el

ec
te

d

MTest

SDG−based RTS Approach

Fig. 6.7: A comparison of the fault-revealing effectiveness of RTSEM and Binkley’s ap-
proach.

achieving a desired feature coverage. The technique [23], therefore, cannot be

directly applied to select regression test cases for embedded programs because the

technique does not consider testing of timing errors that are introduced in time-

constrained tasks due to execution dependencies. In [80], Netkow and Brylow

have proposed a framework called Xest for automating execution of regression

test cases in a test-driven development environment. Their test setup helps to

automatically execute regression test cases for kernel development projects on

embedded hardware. However, their work does not address the problem of RTS,

and is therefore, not directly related to our work.

In the absence of any directly comparable work, we compare our technique

with a few important procedural RTS techniques that have indirect bearing on our

work. Existing procedural RTS techniques [19, 94, 119] select regression test cases

based mainly on analysis of either one or more of the following relations among

program entities: control flow, control dependence and data dependence. These

techniques do not capture important embedded program features such as tasks,

timers, message passing, synchronization primitives, task precedence, exceptions,

etc. These techniques [19, 94, 119] also ignore task execution dependencies during

RTS. As a result, these approaches often omit test cases that can expose time-related

77

6. RTSEM: An RTS Technique for Embedded Programs

errors, and hence are unsafe. Our RTS technique models tasks, task precedence

ordering, task priorities, inter-task communication, timers and exception handling

using an extended SDG model. Apart from selecting test cases based on data

and control dependencies, our RTS technique also selects test cases based on task

execution dependencies that are identified by analyzing relations such as task

precedence, task priority, and inter-task communication using message queues

and semaphores. During our experimental studies, on the average an additional

28.33% test cases were selected for regression testing and there was an increase of

36.36% in the fault-revealing effectiveness as compared to existing techniques [19].

6.8. Conclusions

Existing RTS techniques do not take into account the implications of many embed-

ded program features such as tasks, task precedences, inter-task communication,

timers, etc., and as a consequence do not consider the execution dependencies that

arise among tasks because of these features. In addition to data and control depen-

dencies, safe RTS of embedded programs also needs to consider these additional

execution dependencies among task elements. In this chapter, we have proposed

an RTS technique for embedded programs which addresses the shortcomings of

the existing procedural RTS approaches. During our experimental studies we ob-

served an increase in the number of selected regression test cases by approximately

28.33%. Moreover, we observed that on an average 36.36% higher number of fault-

revealing test cases that were selected for regression testing. In this context, it is

promising to note that in our studies, we observed that RTSEM did not miss out

on selecting any of the fault-revealing test cases for regression testing.

78

Chapter 7

GA-TSO: A Regression Test Suite Op-

timization Technique

We discussed in Chapter 1 that embedded program features such as tasks, task

deadlines, and inter-task communication make testing of these applications a chal-

lenging task [104, 112]. A timing error which does not manifest while executing

one test case may show up for another test case that has the same set of inputs,

same start state but has different timing characteristics. Therefore, an embedded

system needs to be tested for both the functional correctness as well as the tempo-

ral correctness. This makes it necessary to verify the correctness of an embedded

system using a large number of test cases.

An important constraint on regression testing is the restriction on the availabil-

ity of resources such as time, budget, personnel, etc [34, 135]. It is very expensive

to execute a large number of test cases during regression testing of embedded

programs because the test cases are usually run on specific hardware and require

setting up specific execution/simulation environments. Paucity of time is consid-

ered to be the primary obstacle faced by testers during regression testing [121].

There are many reasons as to why aggressive schedules are often set for regression

testing. A few common reasons for this are:

• Intense competition and increased client expectations force managers to set

aggressive product release targets. The time available to carry out activities

such as bugfixing, feature enhancements, regression testing, between releases

gets severely compromised.

• Recent software developmentmethodologies like extreme programming (XP)

and lean promote shorter release cycles [86, 134]. As a result, it is often

required to test and release product versions even on a daily basis [121].

7. GA-TSO: A Regression Test Suite Optimization Technique

An important characteristic of embedded applications that differentiates these

from traditional applications is that their functionalities have different degrees of

criticality. For example, an anti-lock braking system (ABS) in an automobile per-

forms many activities, e.g., prevents wheel lock under braking (PWB), controls

the front and rear wheel brake bias (WBB), etc. An ABS system may also simul-

taneously carry out data logging activity. For an ABS application, functionalities

such as PWB and WBB are considered to be extremely critical as compared to the

logging activity. Regression testing of embedded applications should take into

account the different criticality levels of the functionalities. This is especially im-

portant in a time-constrained environment where regression testing of the more

critical functionalities can be given more focus.

A conservative attempt to achieve safety [94] is to select a large number of test

cases for regression testing [21, 89]. This of course increases the cost and the time

of testing and is usually considered unacceptable. In this context, we propose a

multi-objective RTSO technique for embedded applications. Our multi-objective

RTSO technique selects a pareto optimal set of test cases that minimizes the cost

of regression testing, maximizes the reliability of the frequently-executed non-

critical functionalities of the PUT and can be executed within the time allotted for

regression testing. The optimization constraints are that the test cases executing

the affected tasks and critical functionalities should not be omitted, so as to ensure

that the thoroughness of regression testing is not compromised.

This chapter is organized as follows: In Section 7.1, we discuss the regression

test suite optimization problem in the context of embedded programs. We present

a detailed discussion of our RTSO technique in Section 7.2. We discuss about a pro-

totype implementation and present the results obtained during our experimental

studies in Section 7.3. In Section 7.4, we compare our approach with related work

and conclude the chapter in Section 7.5.

7.1. Regression Test Suite Optimization for Embedded

Programs

We define the problem of regression test suite optimization (RTSO) of embedded

applications as follows:

Definition: Let Timemax denote the maximum time available for regression

testing of a program P using the regression test suite R. Let F = {F1, . . . , Fk}

80

7.2. Our Proposed Regression Test Suite Optimization Technique

represent the set of k objective functions which need to be optimized and let C =

{C1, . . . ,Cq} represent the set of q optimization constraints. Then the test suite

optimization problem can be stated as follows:

Find the pareto optimal set S ⊆ R having minimum cardinality with respect to F and

satisfying the set of constraints C such that the time to execute P with test cases in S is less

than or equal to Timemax.

7.2. Our Proposed Regression Test Suite Optimization

Technique

We have named our GA-based technique for optimizing regression test suites of

embeddedprograms as GA-TSO. In the following, we present a detailed discussion

of our technique, and also discuss the importance of each of the optimization

objectives and constraints.

7.2.1. Definitions

In the following, we define a few terminologies and concepts related to our work

on RTSO that we use in the rest of this thesis.

7.2.1.1. Combinationally Redundant Test Cases

The set of test cases R selected for regression testing P′ may contain a test case ti

which does not test any additional program element that is not already tested by

the other test cases in R. Such a test case ti does not contribute to the total path

coverage achieved by R. We classify such test cases as a combinationally redundant

test cases. Although a few reports [24,34,53] have used the term redundant to refer

to such test cases, we use combinationally redundant (CR) to avoid confusion with

the term redundant test cases as used in regression testing literature [63].

The concept of CR test cases has been explained with as example shown in

Figure 7.1. The oval shape in Figure 7.1 represents an application which is to be

regression tested with three test cases T1, T2 and T3. The freeform dashed and

dotted lines within the oval represent the execution trace of T1 and T2, where A, B,

C,D,X andY are different program elements. It can be observed from the execution

trace of T3 given in Figure 7.1 that test case T3 executes program elements that have

81

7. GA-TSO: A Regression Test Suite Optimization Technique

T
1

T
2

A

B

C

D

X

Y

T
1
 = (A, B,
 C
, D)

T
2
 = (X, B,
 Y
)

T
3
 = (A, B,
 Y
)

Fig. 7.1: Combinationally redundant test cases.

already been covered at least once by the other test cases. Therefore, T3 does

not contribute to the overall path coverage achieved by the regression test suite

and hence can be omitted during optimization especially for a time-constrained

regression testing environment. In this context, it is important to note that omitting

T1 instead of T3 results in a lower overall coverage and, is therefore, not preferable.

7.2.1.2. Observable Reliability of Functions

Let us consider an application A which provides two functionalities: Fa and Fb,

of which functionality Fa is executed very frequently while Fb is seldom executed.

Suppose that parts of the applicationA implementing Fa has been thoroughly tested

and is bug-free while parts of A implementing Fb contains a bug and is prone to

occasional failures. If an user X only uses functionality Fa of the system, then he

would conclude that the software is reliable. On the other hand, another user

Y may experience failures while invoking functionality Fb and may perceive the

system reliability to be relatively poor. Thus, the perceived reliability of a system

is observer-dependent and is called its observable reliability.

7.2.1.3. Classification of Critical Functionalities

Embedded applications perform different functionalities of varying criticality lev-

els (e.g., ABS application discussed earlier in the chapter). Based on the prevalent

industry practices [8, 98], the criticality levels of the different functionalities in an

embedded program can be classified as follows:

82

7.2. Our Proposed Regression Test Suite Optimization Technique

• Extremely Critical (EC) - These are functionalities whose failure during exe-

cution leads to a failure of the system potentially causing loss of lives, money,

etc. An example of an EC functionality is the front and rear wheel brake bias

(WBB) in an anti-lock braking system (ABS) in an automobile.

• Moderately Critical (MC) - Functionalities whose failure cause a system to

fail but will not lead to loss of lives, money, etc. are categorized as MC

applications. An example of an MC functionality is the diagnostics module

in automobiles.

• Less Critical (LC) - Functionalities whose failures cause only a minor annoy-

ance to the user are classified as LC functionalities. The software in a coffee

vending machine is an example of a LC functionality.

• Not Critical (NC) - Functionalities, such as logging, whose failure does not

noticeably hamper the functioning of the embedded system fall under this

category.

7.2.1.4. Test Case Costing

The cost of carrying out regression testing of a PUT using a test case (called the cost

of a test case) is dependent on the following two factors: cost of test setup, and the

cost of executing the test case. Here the underlying assumption is that a different

test setup may be required by each test case. Therefore, the cost of a test case ti,

denoted by cost(ti), is given by

cost(ti) = costsetup(ti) + costex(ti) (7.1)

In the following, we discuss how these two parameters influence the cost of a

test case.

1. Test Setup Cost - For an embedded application, a major part of the cost of

testing using a test case is the cost incurred in setting up the hardware and the

environment for the test case to run. For example, consider an automobile

adaptive cruise control software that is being tested for regression errors.

For testing the adaptive scenario of the adaptive cruise control module, it is

required that the system is already in cruise control mode or that the vehicle

speed is above a minimum threshold. To execute a test case that checks the

proper functionality of the adaptive control software, the system needs to

be first put in the cruise control mode. In this context, the cost involved in

83

7. GA-TSO: A Regression Test Suite Optimization Technique

executing the step to set the car in cruise control mode is an example of setup

cost. We denote the setup cost of a test case ti by costsetup(ti).

2. Test Execution Cost - Another component of the cost of a test case the time

taken by the test case to execute and the inputs required during its execution.

We denote the cost of executing a test case ti by costex(ti).

7.2.2. Optimization Objectives

Wehave alreadydiscussed that regression testingof embedded applications is char-

acterized by high expenses that are incurred and stringent product release dead-

lines [121]. In this context, presence of CR test cases for testing non-critical func-

tionalities in a test suite need to be eliminated especially under time-constrained

regression testing. CR test cases not only increase the size of the regression test

suite and the cost incurred in execution, it also does not contribute to the total

coverage attained by the test suite.

For higher observable reliability, it is also important to ensure that the more

frequently invoked non-critical functionalities of an application are relatively bug-

free. This leads to an increased observable reliability of the PUT and helps elicit

the confidence of the customer in the product. The functions that actually get

invoked when a functionality (or a use case) is executed can be determined by

appropriate source code instrumentation. In this context, it can be argued that

simply tracking the frequency of invocation of each function during a typical

usage of the application can be misleading and inaccurate, e.g, a function getting

called iteratively. Therefore, the relative frequency of execution of each function

is computed from the operation profile information [78] and by executing the

instrumented code. Each function fi is then assigned a priority value (pv(fi)) within

the range 1 to 10 to denote its frequency of execution relative to the other functions.

Based on the feedback from the testers, we also assign a normalized value in the

range of 1 to 10 to each test case to reflect its cost, where higher values indicate a

higher cost. In summary, the optimization objectives of GA-TSO are the following:

• F1: Minimize the number of CR test cases,

• F2: Minimize the cost of regression testing, and

• F3: Maximize the observable reliability of the non-critical functionalities.

Optimization of regression test suites of embedded applications also needs to

satisfy some constraints. Since embedded applications are being extensively used

84

7.2. Our Proposed Regression Test Suite Optimization Technique

in safety-critical and real-time application domains, therefore it is important that

test cases that test critical functionalities and affected real-time tasks are not omitted

during RTSO. Unless these constraints are met, the thoroughness of regression

testing an embedded application using an optimized test suite may be severely

compromised. Therefore, the following constraints need to be satisfied by the

optimized test suite computed by GA-TSO:

• C1: The time taken in executing the optimized test suite should meet the

given deadline for regression testing.

• C2: The optimized test suite should not miss out testing any critical function-

alities.

• C3: The optimized test suite should not miss out testing any task whose

timing behavior may get be affected.

7.2.2.1. Minimization of CR Test Cases

Our methodology for identifying CR test cases is based on the similarity-based test

case selection technique reported by Cartaxo et al. [24]. To identify CR test cases,

we first construct an SDGCmodelM for P. Based on the test coverage information,

we mark the edges inM that are covered by each test case ti ∈ R. While markingM

for a test case ti, we also mark the edges in M connecting those program elements

on which the elements executed by ti are either data or control dependent. This

technique helps to take into account all those program elementswhich are indirectly

tested by the test case ti. In the following, we explain how the number of CR test

cases in a test suite can be computed.

Let the size of the optimized test suite S be r. We compute a degree of similarity

for every pair of test cases ti and t j as follows: Let common(ti, t j) denote the number

of edges ofM common between the execution traces of ti and t j, and num(ti) denote

the number of edges of M that are covered by ti. We then prepare a similarity

matrix SIM of size r × r where the value of each element SIMij is computed as:

SIMij =
common(ti, t j)

num(ti)
, i , j (7.2)

= 0, i = j (7.3)

After computing common(ti, t j), the edges already covered in the execution trace

85

7. GA-TSO: A Regression Test Suite Optimization Technique

of ti are removed before computing common(ti, t j+1). It should be noted that the

similarity matrix SIM is symmetric in nature, i.e., SIMij = SIMji, i, j = 1, . . . , r, and

that the actual values of SIMi j, i = j along the principal diagonal are unimportant.

AhighvalueofSIMij, i , j, indicates that test cases ti and t j execute a largenumberof

common statements. Based on the similarity matrix SIM, a test case ti is considered

to be a CR test case if the following condition is satisfied:

∑

j

SIMij = 1, i , j (7.4)

Let numcr(S) denote the total number of CR test cases in S. The number of

CR test cases appearing in an optimized test suite S should ideally be as low as

possible. Therefore, GA-TSO aims to minimize the value of numcr(S).

7.2.2.2. Minimization of the Cost of Regression Testing

The total cost incurred in executing a test suite S, denoted by cost(S), is the sum of

the costs of executing the individual test cases of S. Therefore,

cost(S) =

r
∑

i=1

cost(ti) (7.5)

=

r
∑

i=1

costsetup(ti) +

r
∑

i=1

costex(ti) (7.6)

GA-TSO aims to minimize cost(S), i.e., the cost incurred in regression testing

the PUT with the optimized test suite S.

7.2.2.3. Maximization of the Observable Reliability of Non-Critical Functional-

ities

Let P′ consist of m functions. Let pv(f j) denote the priority value assigned to a

function f j based on the probability of it getting executed during a typical usage

of the PUT. For a higher observable reliability of the product, a function f j having

a higher value of pv(f j) should be tested more thoroughly than a function which

is executed less frequently. To capture this information, the fitness function can be

defined as follows: Let Q be the total number of times all the functions get tested

by S. If a test case ti tests num f (ti) functions, then

86

7.2. Our Proposed Regression Test Suite Optimization Technique

Q =
∑

ti∈S

num f (ti) =

r
∑

i=1

num f (ti) (7.7)

Let the sum of the priority values of all the functions in the program P′ be

denoted by PV(P′). It can be calculated as

PV(P′) =
∑

f j∈P′

pv(f j) =

m
∑

j=1

pv(f j) (7.8)

The number of test cases in S that should test a function f j, denoted by

numtest(f j), should be proportional to the value of pv(f j). Ideally,

numtest(f j) =
pv(f j) ∗Q

PV(P′)
(7.9)

Let thedifferencebetween the actual and the ideal numberof test cases executing

a function f j in P′ be σ(f j). To ensure that the functions are tested in proportion

to pv(f j), σ(f j) should be as near to zero as possible for an optimized test suite S.

The difference between the actual and the expected number of test cases in the

optimized test suite S, denoted by σ(S), executing the functions is the sum of σ(f j)

for each function f j. Therefore,

σ(S) =

m
∑

j=1

σ(f j) (7.10)

=

m
∑

j=1

pv(f j) ∗ (|numtest(f j) − count(f j)|) (7.11)

where, count(f j) is the actual number of test cases in S that test function f j.

7.2.3. Overview of GA-TSO

The activity diagram in Figure 7.2 shows the important steps in the working of GA-

TSO. We now briefly describe the different processing activities that are performed

in each step as shown in Figure 7.2.

• Read input artifacts - In this step, the original program P, themodified program

87

7. GA-TSO: A Regression Test Suite Optimization Technique

P′, the regression test suite R, the test coverage information of R, and the

operation profile of the PUT are input to GA-TSO.

• Construct SDGC model - In this step, the SDGC model M for the program P

is constructed. The steps involved in SDGC model construction have been

discussed in Section 5.2.

• Mark SDGC model - In this step, the test coverage information is marked on

M. Marking a SDGC model means adding information about which test

cases execute a particular node. This involves storing the identifiers for the

test cases which execute a particular statement s ∈ P in the node n ∈ M

corresponding to s.

• Identify affected tasks - In this step, the tasks which are affected due to control,

data or execution dependencies that exist among the elements of an embed-

ded program are identified. The steps involved have been discussed in detail

in Section 6.5. The test caseswhich execute the set of potentially affected tasks

can easily be identified from the test coverage information. It is important

that these test cases are not omitted during regression test suite optimization.

• Identify critical functionalities - The functionalities that are critical in the op-

eration of the embedded program to be regression tested can be identified

from the SRS and the design documents. It is important that the test cases

that execute these critical functionalities are not omitted during regression

test suite optimization.

• Apply optimization algorithm - In this step, a GA-based optimization algorithm

is applied to compute the pareto optimal set of optimal test suiteswith respect

to the objectives and the constraints listed in Section 7.2.2. A random solution

is picked from the pareto optimal set as the optimized regression test suite.

The optimized set of regression test cases is denoted in Figure 7.2 by the

datastore Optimized Test Suite.

7.3. Experimental Studies

Our optimization technique simultaneously optimizes multiple objectives which

can be conflicting in nature. For example, a test case ti which executes more crit-

ical code components may take more time and can be more expensive to execute

than another test case t j. We have chosen genetic algorithms (GA) [38] to imple-

ment the multi-objective RTSO problem, since evolutionary algorithms like GA are

88

7.3. Experimental Studies

Identify Code
Changes

Identify
Affected

Tasks
Mark SDGC

Model

Identify Critical
Functionalities

Construct
SDGC Model

Apply
Optimization

Algorithm

Read Input
Artifacts

«datastore»

Test Coverage
Information

«datastore»

Optimized
Test Suite

«datastore»

Operation
Profile

Original and modified
program, regression test
suite

Fig. 7.2: Activity model of GA-TSO.

widely used as the preferred choice for solvingmulti-objective optimization (MOO)

problems as compared to deterministic techniques like linear programming and

gradient methods [58, 105].

To study the effectiveness of our approach, we have implemented GA-TSO

to realize a prototype tool. We have named our prototype tool TSOTool which

stands for Test Suite Optimization Tool. In the following, we first discuss our

prototype implementation TSOTool, and then discuss the results obtained from the

experimental studies performed with TSOTool.

7.3.1. TSOTool: A Prototype Implementation of GA-TSO

TSOTool has been developed as a Windows console application using C program-

ming language. The pseudocode of our GA-based implementation is shown in

Algorithm 4. TSOTool takes as input the regression test suite R that is to be op-

timized, the test coverage information, the set of objective functions (F), the set

of constraints (C), population size (q), chromosome size (cr), maximum number of

iterations (MAX_RUNS), crossover probability (pc), and the mutation probability

(pm). In our implementation of TSOTool, we have assumed that the information

89

7. GA-TSO: A Regression Test Suite Optimization Technique

regarding critical functionalities and the potentially affected test cases of the em-

bedded program to be regression tested are available as inputs. TSOTool first uses

the test coverage information to identify test cases (denoted by TC) that execute

the critical functionalities and the affected tasks. Our algorithm then creates an

initial population denoted by Pcount, with count set to zero, of size q where the size

of each chromosome is cr. The initial population is created such that all the test

cases in TC are encoded in the population. Then, the value of the fitness functions

are computed for each chromosome in the population. The population for the

next generation is created by applying the selection, crossover and the mutation

operators on the individuals. The process is repeated for MAX_RUNS iterations

where the value of MAX_RUNS is fixed heuristically. TSOTool ensures that the

information regarding the test cases in TC are carried over across generations so as

to satisfy the set of constraints C.

At the end ofMAX_RUNS iterations, the population will contain the best possi-

ble chromosomes. TSOTool chooses a random individual S from the pareto optimal

solution as the output.

In the following, we discuss some important issues in the implementation of

TSOTool.

Encoding Scheme: A chromosome is encoded as t1t2t3 . . . tcr where each con-

stituent test case ti, i = 1, . . . cr, belongs to the regression test suite R.

Selection: We use an elitist selection model [38] so that the best values from

every generation gets carried over to the next. In this approach, the probability

of an individual getting selected is determined using the rank-based selection

technique [36]. Determination of the other members for the next generation is

done using a roulette wheel selection technique [38].

Crossover: Two chromosomes are selected at random from a generation for par-

ticipating in crossover. In our technique, pc is assumed to be one. We consider

a single-point crossover and a random point of crossover is chosen. Application

of crossover may cause the same test case to appear twice in a particular chro-

mosome. However, executing a test case multiple times usually does not expose

additional bugs. Hence, we replace any one of the duplicate test cases (if any) with

another randomly selected test case which is not already present in the concerned

chromosome.

90

7.3. Experimental Studies

Algorithm 4 TSOTool Pseudocode

1: procedure TSOTool(q, r,R,F ,C, pc, pm, S)
⊲ q = Population Size ⊲ r = Chromosome Size ⊲ R = Regression Test Suite ⊲ F = Set of Objective Functions

⊲ C = Set of Constraints ⊲MAX_RUNS =Maximum Iterations ⊲ pc = Crossover Probability ⊲ pm =Mutation Probability
⊲ S = Output is the Optimized Test Suite ⊲ Information about critical functionalities and affected tasks is available

2: Identify the set of test cases TCwhich execute the critical functionalities and affected tasks
3: count← 0 ⊲ Keep track of the number of iterations
4: Create initial population Pcount of size q randomly from R where each chromosome is of size r

⊲ Pi is population at the ith iteration
5: while count <= MAX_RUNS do
6: for chromosome in Pcount do
7: computeFitness() for all functions in F ⊲ Compute the fitness of a chromosome
8: end for
9: Copy the best individual to Pcount+1

⊲ Ensure that test cases in TC are carried across generations
10: Apply selection to individuals from Pcount

11: Apply crossover to individuals from Pcount

12: Apply mutation to individuals fromPcount

13: Generate Pcount+1

14: count← count + 1
15: end while
16: Identify the pareto optimal set S from the last population
17: Choose a random individual from the pareto optimal set S
18: end procedure

Figure 7.3 shows the application of the crossover operator on two sample chro-

mosomes. In this case, the crossover point is taken to be two, and the test cases

after the crossover point are swapped to produce a new pair of chromosomes.

Mutation: The mutation operator mutates parts of a chromosome in order to

increase the exploration of the solution space. It is generally recommended that pm

should be kept low so that the good solutions are not disturbed. We have chosen pm

to be 0.05. When a particular test case t j in a chromosome is chosen for mutation,

another test case t j not already included in the chromosome is randomly selected

to replace ti.

Stopping Criteria: We use a heuristic-based stopping criterion. Our heuristic

depends on the improvement in the fitness values achieved across a number of

generations. Any non-dominated individual [36, 38] in the population after termi-

nation of the algorithm is a potential solution to our optimization problem.

7.3.2. Results

In the following, we discuss the results obtained from the experimental studies

performed using TSOTool. For our experimental studies on RTSO, we have used

five programs out of the eight with which we carried out our studies on RTSEM.

We did not include the programs Power Window Controller, Quasilinear, and

91

7. GA-TSO: A Regression Test Suite Optimization Technique

chromosome
i

chromosome
i+1

t1

t2 t3 t4 t5t1

t2 t4 t5 t3

t1 t2

t3

t4 t3t5

t2t1 t4 t5

Crossover Point

Initial Population After Crossover

Fig. 7.3: Crossover operation.

Vector Calculator the since the size of the selected regression test suites were too

small to be meaningfully optimized. The prototype tool was used to optimize the

regression test suite for each PUT. The results of our experimental studies have been

summarized in Table 7.1. Column 1 in Table 7.1 shows the names of the PUTs and

column 2 stands for the size of the regression test suite for each PUT. Each PUTwas

then testedwith the optimized regression test suite computed by TSOTool. Column

3 shows the number of fault-revealing test cases from the initial test suite that were

included in the test suite optimized using TSOTool. Column 4 shows the cost that

is incurred by executing the set of optimized regression test cases on each PUT. The

next two columns 5 and 6 show the corresponding values when the regression test

suites were optimized only with respect to the cost of regression testing. Column

7 in Table 7.1 shows the percent improvement in selection of fault-revealing test

cases, while column 8 shows the percent increase in regression testing cost that is

incurred while executing the test suites optimized with TSOTool.

From Table 7.1, we can observe that a greater number (i.e., percentage) of fault-

revealing test cases are included during optimization with TSOTool. It should be

noted that a higher number of fault-revealing test cases in the optimized test suite

is preferred since it ensures that the fault detection effectiveness of the test suite

is not compromised. However, the overall cost of regression testing using the test

suite optimized using TSOTool is comparatively more than the test suite optimized

based on test case cost. This can be explained by the fact that usually the test

cases that test the more critical functionalities are more expensive to execute. What

is more important to note is that there is a significant increase in the number of

fault-revealing test cases that are included by TSOTool for regression testing. This

is because TSOTool does not omit any test cases that execute the affected tasks and

the critical parts of the code which is consistent with the objective of GA-TSO.

92

7.4. Comparison with Related Work

PUT
Size of
Regres-
sion Test
Suite

Size of
Optimized
Test Suite

Optimized by
GA-TSO

Optimized w.r.t
Cost

% Change
in Fault-
revealing
Test Cases

% Change
in Cost

Fault-
revealing
Test Cases

Cost
Fault-
revealing
Test Cases

Cost

Power
Window
Controller
(with
obstacle
detection)

30 20 14 170 9 114 55.56 32.74

Cruise
Controller

26 20 13 157 9 119 44.44 24.20

ATC Disc
Copier

23 15 11 123 7 80 57.14 34.96

Climate
Controller

19 15 10 111 8 94 25.00 15.32

If Patern 18 15 9 114 7 97 28.57 14.91

Tab. 7.1: Summary of experimental results carried out with a prototype implementation
of GA-TSO.

The limitation in testing a program with a test suite optimized with only a

single objective can easily be observed from Table 7.1. For example, the test suite

optimizedwith respect to only cost achieves greater savings in terms of the cost, but

omits many fault-revealing test cases. For the PUTATCDisc Copier, this difference

was as high as 57.14%. So although there is a savings in terms of the cost of

regression testing that is incurred, it is offset by the fact that there is a lesser chance

of faults being exposed using the test suite optimized only with respect to the cost

of regression testing. This is unacceptable especially for safety-critical embedded

applications, where occurrence of a fault can lead to irreversible damage.

The pareto optimal solutions obtained at the end of the last population for

the five PUTs of Table 7.1 are shown in Figures 7.4 and 7.5. The x- and y-axis

in the figures represent the cost of regression testing cost(S) and the value of σ(S)

respectively. Note that the results plotted in Figures 7.4 and 7.5 are with respect to

the objectives F2 and F3.

7.4. Comparison with Related Work

Most RTSO techniques reported in the literature have been proposed in the context

of traditional programs. In spite of our best efforts, we could not find any study

93

7. GA-TSO: A Regression Test Suite Optimization Technique

 20

 30

 40

 50

 60

 70

 80

 90

 90 100 110 120 130 140

V
al

ue
 o

f σ
(S

)

Cost of regression testing

ATC
Climate

If Pattern

Fig. 7.4: Pareto frontier obtained for the PUTs.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 140 150 160 170 180 190 200

V
al

ue
 o

f σ
(S

)

Cost of regression testing

PWC (obstacle)
Cruise

Fig. 7.5: Pareto frontier obtained for the PUTs.

94

7.5. Conclusion

which specifically addresses the problem of optimizing regression test suites of

embedded applications. In the absence of any directly comparable work, we

compare our RTSO technique with the approaches reported in [34, 135].

Farooq andLam [34] haveproposed anon-paretomin-maxbasedTSO technique

which removes redundant test cases and maximizes branch coverage. Zhang

et al. [135] have proposed a resource-aware RTSO technique. Their technique

[135] first selects test cases which meet the resource constraints, and then the

selected test cases are prioritized. However, both these techniques ignore important

embeddedprogram features such as tasks, task deadlines, criticality, etc. The event-

drivennature of embeddedprograms and features such as taskdeadlines, criticality

give rise to additional dependencies among the program elements which need to

be regression tested. Therefore, these techniques may omit test cases that could

potentially expose faults in the PUT thereby compromising the thoroughness of

regression testing embedded applications.

7.5. Conclusion

Traditional RTSO techniques cannot be applied to satisfactorily optimize regres-

sion test suites for embedded programs without sacrificing the thoroughness of

testing since these techniques do not consider testing of critical functionalities and

the affected tasks in an embedded program. In this chapter, we have presented a

GA-based multi-objective regression test suite optimization technique for embed-

ded programs. Our RTSO technique aims to maximize the observable reliability

of the frequently-executed non-critical functionalities, minimize the cost of regres-

sion testing, and minimize the number of CR test cases in the regression test suite.

Our experimental studies show that the thoroughness of regression testing is not

compromised since all the critical and frequently-used functionalities and the po-

tentially affected tasks are thoroughly testedwithin the regression testing deadline.

95

Chapter 8

Conclusions and Future Work

Themain goal of this thesis was to present improved regression testing approaches

for embedded programs. In this thesis, we have presented a novel regression test

selection and optimization approach for embedded programs. We have imple-

mented prototype tools to realize our proposed approaches, and have presented

experimental evaluations of our approaches.

This chapter is organized as follows: In Section 8.1, we highlight the main

contributions of this thesis. In Section 8.2, we discuss possible extensions to our

work.

8.1. Summary of Contributions

In the following, we elaborate the three main contributions of this thesis.

8.1.1. SDGCModel

Themodelsproposed in the literature foruse inRTS ignoremany important features

of embedded programs such as tasks, task precedence orders, timing constraints,

inter-task communication using message queues and semaphores, interrupts and

exception handling though these are aspects that need to be considered during

regression test selection. To overcome this shortcoming, we have proposed a novel

graph model for embedded programs which we have named System Dependence

Graph with Control flow (SDGC) which is an original contribution. An SDGCmodel

is an extension of the standard CFG and SDG models and is able to capture the

following important information of an embedded program: tasks, task prece-

dences, task priorities, inter-task communication using message passing or shared

8. Conclusions and Future Work

resources, timers, and exception handling.

Since an SDGC is an extension of an SDGmodel, therefore all the node and edge

types defined for an SDG model are also present in an SDGC model. In addition,

we have introduced additional node and edge types to capture important features

of an embedded programs. We have developed an algorithm ConstructSDGC to

construct SDGC models from a given embedded C program. As part of our work,

we have analyzed and reported the time and space complexity requirements of

the algorithm ConstructSDGC. We have also developed a prototype tool which

implements our SDGC construction algorithm. We have tested and manually

verified the correctness of our SDGC construction algorithm with several case

studies adapted from the automotive control domain.

8.1.2. RTSEM: A Model-Based RTS Technique for Embedded Pro-

grams

Existing RTS techniques for procedural programs are either based on analysis of

data and control dependencies or based on analysis of only control flow informa-

tion. However, modifications to a task in an embedded application can affect the

timing behavior (i.e., completion times) of other tasks. Therefore, selecting regres-

sion test cases for embedded programs using existing techniques can be unsafe.

In this context, we have proposed a regression test selection technique which we

have named Regression Test Selection for EMbedded programs (RTSEM). RTSEM

selects regression test cases by analyzing the execution dependencies that exist

among tasks in addition to the usual control and data dependency analysis. Our

technique determines the execution dependencies among tasks that arise due to

various issues such as task precedence orders, task priorities, inter-task communi-

cation using message queues and semaphores, exception handling, and execution

of interrupt handlers.

To study the effectiveness of our approach, we have implemented RTSEM to

realize a prototype tool. We have named our prototype implementation MTest

which stands for Model-based Test case selector. For our experimental studies, we

used eight industry C programs from the automotive control domain. To compare

the performance and effectiveness of our approach with a popular approach for

RTS of procedural programs, we also selected regression test cases using the SDG-

based RTS approach proposed by Binkley [19]. From our experimental studies, we

observe a 28.33% increase on the average in the number of selected regression test

98

8.2. Directions for Future Research

cases over Binkley’s approach. What is more important is that there was a 36.36%

increase in the number of fault-revealing test cases that were selected for regression

testing. Thus, our experimental studies carried out using MTest show that it is

important to consider the special semantics of embedded program features such

as tasks, inter-task communication, etc., and the task execution dependencies that

arise due to these features for RTS.

8.1.3. GA-TSO: A RTSO Technique for Embedded Programs

Our third major contribution is a multi-objective RTSO technique for embedded

applications which we have named GA-TSO. Our multi-objective RTSO technique

selects a pareto optimal set of test cases thatminimizes the cost of regression testing,

maximizes the reliability of the frequently-executed non-critical functionalities of

the PUT and can be executed within the time allotted for regression testing. Since

many embedded applications are being extensively used in safety-critical and real-

time application domains, therefore it is also important that the test cases that test

critical functionalities and affected real-time tasks are not omitted during RTSO.

Unless these constraints are met, the thoroughness of regression testing an embed-

ded application using an optimized test suite may be severely compromised.

We have developed our multi-objective RTSO technique for embedded pro-

grams using genetic algorithms. We have also developed a prototype tool imple-

menting GA-TSO as a console application in C programming language. We have

carried out our experimental studies using a set of five embedded C programs

used during our RTS work. Experimental studies carried out by us show that the

test suites optimized by our method include all the fault-revealing test cases from

the initial regression test suite and at the same time achieve substantial savings in

regression testing effort. However, the thoroughness of regression testing is not

compromised since all the relevant test cases that test the critical and frequently-

used functionalities in an embedded program are also executed during regression

testing.

8.2. Directions for Future Research

During the course of this work, many new ideas emerged related to regression

test selection and optimization for embedded programs. It would be interesting to

explore these ideas and check whether they can feasibly be used to improve our

99

8. Conclusions and Future Work

current approaches. We discuss some of these possible extensions of our work in

the following.

Aperiodic and sporadic tasks and asynchronous message passing: At present,

our work is based on a few simplifying assumptions. For example, we consider

the task execution dependencies introduced only due to the synchronous message

passing model. We have also assumed that the tasks in an embedded program are

only periodic in nature. Sophisticated embedded applications often include aperi-

odic and sporadic tasks, and may communicate using the asynchronous message

passing model also. Our RTS technique at present does not consider the depen-

dencies that may arise due to presence of these features in an embedded program.

Therefore, a suitable RTS technique needs to be proposed which would analyze

and select test cases based on the additional dependencies that arise due to these

features.

Embedded program development using C++/UML: Embedded software de-

veloped for many applications such as those from the infotainment and telematics

domain are larger andmore complex. These applications usually require improved

visual interfaces, and are event-based. Therefore, infotainment and telematics ap-

plications are oftendevelopedusingC++/UML to take advantage of object-oriented

development practices. For safe RTS of such embedded applications developed

using C++/UML, it is important that the dependencies introduced due to use of

object-oriented features are also taken into account.

Model Driven Development: Of late, model-driven development (MDD) has

been receiving a lot of attention. The model-driven paradigm is being extensively

used for development of embedded controllers in various application domains

such as avionics, automotive, industrial control, etc. In MDD, there exists a close

correspondence between the design model(s) and code. Therefore, instead of per-

forming RTS solely based on code analysis, test selection could also be performed

based on an analysis of the design models.

In the industry, usually UML models are used for discrete control application

development, whereas for hybrid control applications, MATLAB Simulink/State-

flow (SL/SF) models [115] are more popular. For example, SL/SF model-based

development is extensively used in the automotive domain for developing heat-

ing, ventilation and air conditioning (HVAC) systems, power window controllers,

etc. For evolving embedded applications in an MDD environment, the modifica-

100

8.2. Directions for Future Research

tions may be carried out in any of the following two ways: (a) the design model

is modified, and (b) the code auto-generated from the model is modified. In the

latter case, a minor change made to the code may not mandate a change to the

original model. As an example, consider a variable assignment statement which is

modified in the code. This change is not reflected in the designmodels, but it needs

to be noted that the change can affect a guard condition or an action statement in

the SL/SF model due to data dependencies. In this context, an RTS technique for

control applications needs to select test cases based on both code analysis as well

as model analysis.

Model-based RTS can help take into consideration several aspects of embedded

programs that are not easily extracted from the code. Such program aspects include

object states, message path information, exception handling, timing characteristics

etc. Some of these information can easily be extracted from the design models

and the SRS document, and can be incorporated in the graph model representing

the embedded program under test. An analysis of such a model, that has been

augmented with the information extracted from the design and analysis models,

can help to accurately identify all the relevant regression test cases.

101

Disseminations out of this Work

1. S. Biswas, R. Mall, M. Satpathy, S. Sukumaran. A Model-Based Regression

Test SelectionApproach for EmbeddedApplications. ACMSIGSOFT Software

Engineering Notes, 34(4):1-9, July 2009.

2. S. Biswas, R. Mall, M. Satpathy, S. Sukumaran. Regression Test Selection

Techniques: A Survey. Submitted to Informatica.

3. S. Biswas, R. Mall, M. Satpathy. Task Dependency Analysis for Regression

Test Selection of Embedded Programs. Submitted to IEEE Embedded Systems

Letters.

4. S. Biswas and R. Mall. Model-Based Optimization of Regression Test Suites

for Embedded Applications. Submitted to TENCON 2011.

5. S. Biswas, R. Mall, M. Satpathy. A Regression Test Selection Technique for

Embedded Applications. To be submitted to ACM Transactions in Embedded

Computing Systems.

103

Bibliography

[1] ANTLR Parser Generator. Website. http://www.antlr.org/.

[2] ANTLR plugin for Eclipse. Website.
http://antlreclipse.sourceforge.net/.

[3] Eclipse. Website. http://www.eclipse.org/.

[4] Gcov - Using the GNU Compiler Collection (GCC). Website.
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

[5] Graphviz. Website. http://www.graphviz.org/.

[6] Minimalist GNU for Windows. Website. http://www.mingw.org/.

[7] MISRA-C: 2004 - Guidelines for the use of the C language in critical systems.
Website, October 2004.

[8] IEC 61508. Functional safety of electrical/electronic/programmable electronic
safety-related systems - part 1: General requirements, April 2010.

[9] K. Abdullah and L.White. A firewall approach for the regression testing of
object-oriented software. In Proceedings of 10th Annual Software Quality Week,
page 27, May 1997.

[10] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools.
Dorling Kindersley (India) Pvt Ltd, 2nd edition, 2008.

[11] A.Ali, A.Nadeem,Z. Iqbal, andM.Usman. Regression testingbasedonUML
design models. In Proceedings of the 13th Pacific Rim International Symposium
on Dependable Computing, pages 85–88, 2007.

[12] M. Allen and S. Horwitz. Slicing java programs that throw and catch excep-
tions. In PEPM ’03: Proceedings of the 2003 ACM SIGPLAN workshop on Partial
evaluation and semantics-based program manipulation, pages 44–54, 2003.

[13] T. Ball. On the limit of control flow analysis for regression test selection. In
ISSTA ’98: Proceedings of the 1998 ACM SIGSOFT international symposium on
Software testing and analysis, pages 134–142, 1998.

http://www.antlr.org/
http://antlreclipse.sourceforge.net/
http://www.eclipse.org/
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://www.graphviz.org/
http://www.mingw.org/

Bibliography

[14] G. Baradhi and N. Mansour. A comparative study of five regression test-
ing algorithms. In Proceedings of Australian Software Engineering Conference,
Sydney, pages 174–182, 1997.

[15] S. Bates and S. Horwitz. Incremental program testing using program depen-
dence graphs. InConference Record of 20thACMSIGPLAN-SIGACTSymposium
on Principles of Programming Languages, pages 384–396, January 1993.

[16] J. Bible, G. Rothermel, and D. Rosenblum. A comparative study of coarse-
and fine-grained safe regression test-selection techniques. ACM Transactions
on Software Engineering and Methodology, 10(2):149–183, April 2001.

[17] R. Binder. TestingObject-Oriented Systems:Models, Patterns, andTools. Addison-
Wesley, 1999.

[18] D. Binkley. Reducing the cost of regression testing by semantics guided test
case selection. In Proceedings of the Conference on Software Maintenance, pages
251–260. IEEE Computer Society Press, 1995.

[19] D. Binkley. Semantics guided regression test cost reduction. IEEETransactions
on Software Engineering, 23(8):498–516, August 1997.

[20] S. Biswas and R. Mall. Regression test selection techniques: A survey. Tech-
nical report, Indian Institute of Technology, Kharagpur, India, March 2011.

[21] S. Biswas, R.Mall, M. Satpathy, and S. Sukumaran. Amodel-based regression
test selection approach for embedded applications. ACM SIGSOFT Software
Engineering Notes, 34(4):1–9, July 2009.

[22] L. Briand, Y. Labiche, and S. He. Automating regression test selection based
on UML designs. Information and Software Technology, 51(1):16–30, January
2009.

[23] E. Cartaxo, W. Andrade, F. Neto, and P. Machado. LTS-BT: A tool to generate
and select functional test cases for embedded systems. In SAC ’08: Proceedings
of the 2008 ACM Symposium on Applied Computing, pages 1540–1544, 2008.

[24] E. Cartaxo, P. Machado, and F. Neto. On the use of a similarity function
for test case selection in the context of model-based testing. Software Testing,
Verification And Reliability, July 2009.

[25] Y. Chen, D. Rosenblum, and K. Vo. TestTube: A system for selective re-
gression testing. In Proceedings of the 16th International Conference on Software
Engineering, pages 211–222, May 1994.

[26] P. Chittimalli and M. Harrold. Regression test selection on system require-
ments. In ISEC ’08: Proceedings of the 1st conference on India software engineering
conference, pages 87–96, 2008.

106

Bibliography

[27] A. Cleve, J. Henrard, and J. Hainaut. Data reverse engineering using system
dependency graphs. In Proceedings of the 13th Working Conference on Reverse
Engineering, pages 157–166, 2006.

[28] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, Cambridge, MA, 2001.

[29] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel. The effects of time
constraints on test case prioritization: A series of controlled experiments.
IEEE Transactions on Software Engineering, 36(5):593–617, September 2010.

[30] S. Elbaum, A.Malishevsky, andG. Rothermel. Test case prioritization: A fam-
ily of empirical studies. IEEE Transactions of Software Engineering, 28(2):159–
182, February 2002.

[31] E. Engström, P. Runeson, and M. Skoglund. A systematic review on regres-
sion test selection techniques. Information and Software Technology, 52(1):14–30,
January 2010.

[32] E. Engström, M. Skoglund, and P. Runeson. Empirical evaluations of re-
gression test selection techniques: a systematic review. In Proceedings of the
Second ACM-IEEE international symposium on Empirical software engineering
and measurement, pages 22–31, 2008.

[33] Q. Farooq, M. Iqbal, Z. Malik, and A. Nadeem. An approach for selective
state machine based regression testing. In Proceedings of the 3rd international
workshop on Advances in model-based testing, pages 44–52, 2007.

[34] U. Farooq and C. Lam. A max-min multiobjective technique to optimize
model based test suite. In SNPD ’09: Proceedings of the 2009 10th ACIS Inter-
national Conference on Software Engineering, Artificial Intelligences, Networking
and Parallel/Distributed Computing, pages 569–574, 2009.

[35] J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph
and its use in optimization. ACM Transactions on Programming Languages and
Systems, 9(3):319–349, July 1987.

[36] C. Fonseca and P. Fleming. Genetic algorithms for multiobjective optimiza-
tion: Formulation, discussion and generalization. In Genetic Algorithms: Pro-
ceedings of the 5th International Conference, pages 416–423. Morgan Kaufmann,
July 1993.

[37] J. Gao, D. Gopinathan, Q. Mai, and J. He. A systematic regression testing
method and tool for software components. In Proceedings of the 30th Annual
International Computer Software and Applications Conference (COMPSAC’06),
pages 455–466, 2006.

[38] D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, 2000.

107

Bibliography

[39] R. Gorthi, A. Pasala, K. Chanduka, and B. Leong. Specification-based ap-
proach to select regression test suite to validate changed software. In Pro-
ceedings of the 2008 15th Asia-Pacific Software Engineering Conference, pages
153–160, 2008.

[40] T. Graves, M. Harrold, J. Kim, A. Porter, and G. Rothermel. An empirical
study of regression test selection techniques. ACM Transactions on Software
Engineering and Methodology, 10(2):184–208, April 2001.

[41] J. Guan, J. Offutt, and P. Ammann. An industrial case study of structural
testing applied to safety-critical embedded software. InProceedings of the 2006
ACM/IEEE international symposium on Empirical software engineering, pages
272–277, 2006.

[42] R. Gupta, M. Harrold, andM. Soffa. Program slicing-based regression testing
techniques. Journal of Software Testing, Verification, and Reliability, 6(2):83–112,
June 1996.

[43] M. Harrold, R. Gupta, and M. Soffa. A methodology for controlling the size
of a test suite. ACM Transactions on Software Engineering and Methodology,
2(3):270–285, July 1993.

[44] M. Harrold, J. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S. A.
Spoon, and A. Gujarathi. Regression test selection for Java software. In Pro-
ceedings of the 16th ACMSIGPLANConference on Object-Oriented Programming,
Systems, Languages and Applications, pages 312–326, January 2001.

[45] M. Harrold and M. Soffa. An incremental approach to unit testing during
maintenance. In Proceedings of the International Conference on Software Mainte-
nance, pages 362–367, October 1988.

[46] M. Harrold and M. Soffa. Interprocedural data flow testing. In Proceedings
of the ACM SIGSOFT ’89 third symposium on Software testing, analysis, and
verification, pages 158–167, December 1989.

[47] D. Hatley and I. Pirbhai. Strategies for Real-Time System Specification. Dorset
House Publishing Company, 1987.

[48] K. Hla, Y. Choi, and J. Park. Applying particle swarm optimization to prior-
itizing test cases for embedded real time software retesting. In Proceedings of
the 2008 IEEE 8th International Conference on Computer and Information Technol-
ogy Workshops - Volume 00, pages 527–532, 2008.

[49] S.Horwitz, T. Reps, andD. Binkley. Interprocedural slicingusingdependence
graphs. ACMTransactions on Programming Languages and Systems, 12(1):26–61,
January 1990.

108

Bibliography

[50] P. Hsia, X. Li, D. Kung, C. Hsu, L. Li, Y. Toyoshima, and C. Chen. A technique
for the selective revalidation of object-oriented software. Journal of Software
Maintenance: Research and Practice, 9(4):217–233, 1997.

[51] IEEE Standards Association. IEEE posix certification authority. Website.
http://standards.ieee.org/regauth/posix/.

[52] Y. Jang,M.Munro, andY.Kwon. An improvedmethod of selecting regression
tests for C++ programs. Journal of Software Maintenance: Research and Practice,
13(5):331–350, September 2001.

[53] B. Jiang, Y. Mu, and Z. Zhang. Research of optimization algorithm for path-
based regression testing suit. In 2010 Second International Workshop on Educa-
tion Technology and Computer Science, pages 303–306, 2010.

[54] S. Jiang, S. Zhou, Y. Shi, and Y. Jiang. Improving the preciseness of depen-
dence analysis using exception analysis. InProceedings of the 15th International
Conference on Computing IEEE, pages 277–282, 2006.

[55] G. Kapfhammer. The Computer Science Handbook, chapter on Software testing.
CRC Press, Boca Raton, FL, 2nd edition, 2004.

[56] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings
of IEEE International Conference on Neural Networks, Piscataway, NJ., pages
1942–1948, 1995.

[57] D. Knuth. Structured programming with go to statements. ACM Computing
Surveys (CSUR), 6(4):261–301, December 1974.

[58] A. Konak, D. Coit, and A. Smith. Multi-objective optimization using genetic
algorithms: A tutorial. Reliability Engineering & System Safety, 91(9):992–1007,
September 2006.

[59] H. Kondoh and K. Futatsugi. To use or not to use the goto statement: pro-
gramming styles viewed from Hoare logic. Science of Computer Programming,
60(1):82–116, March 2006.

[60] J. Korpi and J. Koskinen. Advances and Innovations in Systems, Computing
Sciences and Software Engineering, chapter Supporting Impact Analysis by
ProgramDependenceGraphBased Forward Slicing, pages 197–202. Springer
Netherlands, 2007.

[61] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C. Chen. On regression
testing of object-oriented programs. Journal of Systems and Software, 32(1):21–
40, January 1996.

[62] J. Laski and W. Szermer. Identification of program modifications and its
applications in software maintenance. In Proceedings of the Conference on
Software Maintenance, pages 282–290, November 1992.

109

http://standards.ieee.org/regauth/posix/

Bibliography

[63] H. Leung and L. White. Insights into regression testing. In Proceedings of the
Conference on Software Maintenance, pages 60–69, 1989.

[64] H. LeungandL.White. A studyof integration testing and software regression
at the integration level. InProceedings of the Conference onSoftwareMaintenance,
pages 290–300, November 1990.

[65] H. Leung and L. White. A firewall concept for both control-flow and data-
flow in regression integration testing. In Proceedings of the Conference on
Software Maintenance, pages 262–270, 1992.

[66] D. Liang and M. Harrold. Slicing objects using system dependence graphs.
In Proceedings of the International Conference on Software Maintenance, pages
358–367, November 1998.

[67] Feng Lin, Michael Ruth, and Shengru Tu. Applying safe regression test selec-
tion techniques to java web services. Next Generation Web Services Practices,
International Conference on, 0:133–142, September 2006.

[68] J. Lin, C. Huang, and C. Lin. Test suite reduction analysis with enhanced
tie-breaking techniques. In 4th IEEE International Conference on Management
of Innovation and Technology, 2008. ICMIT 2008., pages 1228–1233, September
2008.

[69] R.Mall. Real-Time Systems Theory and Practice. Pearson Education, 1st edition,
2007.

[70] N. Mansour and K. El-Fakih. Simulated annealing and genetic algorithms
for optimal regression testing. Journal of Software Maintenance: Research and
Practice, 11(1):19–34, 1999.

[71] C. Mao and Y. Lu. Regression testing for component-based software systems
by enhancing change information. In APSEC ’05: Proceedings of the 12th
Asia-Pacific Software Engineering Conference, pages 611–618, 2005.

[72] C.Mao, Y. Lu, and J. Zhang. Regression testing for component-based software
via built-in test design. In Proceedings of the 2007 ACM symposium on Applied
computing, pages 1416–1421, 2007.

[73] P. Marwedel. Embedded System Design. Springer, 2007.

[74] A. Mathur. Foundations of Software Testing. Pearson Education, 2008.

[75] R. Maxion and R. Olszewski. Improving software robustness with depend-
ability cases. In 28th International Symposium on Fault Tolerant Computing,
pages 346–355, 1998.

[76] S. McConell. Code Complete: A Practical Handbook of Software Construction.
Microsoft Press, 2nd edition, June 2004.

110

Bibliography

[77] J.McGregor andD. Sykes. APractical Guide to TestingObject-Oriented Software.
Addison-Wesley, March 2001.

[78] J. Musa. Operational profiles in software-reliability engineering. IEEE Soft-
ware, 10(2):14–32, March 1993.

[79] L. Naslavsky and D. Richardson. Using traceability to support model-based
regression testing. In Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, November 2007.

[80] M. Netkow and D. Brylow. Xest: an automated framework for regression
testing of embedded software. InProceedings of the 2010Workshop on Embedded
Systems Education, WESE ’10, pages 7:1–7:8. ACM, October 2010.

[81] A.Orso,M.Harrold, D.Rosenblum,G.Rothermel,M. Soffa, andH.Do. Using
component metacontent to support the regression testing of component-
based software. In Proceedings of the IEEE International Conference on Software
Maintenance (ICSM’01), pages 716–725, 2001.

[82] A. Orso, N. Shi, and M. Harrold. Scaling regression testing to large soft-
ware systems. In Proceedings of the 12th ACM SIGSOFT Twelfth International
Symposium on Foundations of Software Engineering, pages 241–251, November
2004.

[83] OSEK. OSEK/VDX time-triggered operating system specification 1.0. Web-
site, July 2001. http://portal.osek-vdx.org.

[84] S. Parsa and A. Khalilian. On the optimization approach towards test suite
minimization. International Journal of Software Engineering and Its Applications,
4(1), January 2010.

[85] A. Pasala, Y Fung, F. Akladios, A. Raju, and R. Gorthi. Selection of regression
test suite to validate software applications upon deployment of upgrades.
In 19th Australian Conference on Software Engineering, pages 130–138, March
2008.

[86] C. Poole and J. Huisman. Using extreme programming in a maintenance
environment. IEEE Software, 18(6):42–50, November 2001.

[87] D. Ritchie and B. Kernigham. The C Programming Language. Prentice Hall of
India, 2nd edition, 2007.

[88] A. Romanovsky, J. Xu, and B. Randell. Exception handling in object-oriented
real-time distributed systems. In ISORC ’98 Proceedings of the The 1st IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing,
ISORC ’98, pages 32 – 42. IEEE Computer Society, April 1998.

111

http://portal.osek-vdx.org

Bibliography

[89] G. Rothermel, S. Elbaum, A. Malishevsky, P. Kallakuri, and X. Qiu. On test
suite composition and cost-effective regression testing. ACM Transactions on
Software Engineering and Methodology, 13(3):277–331, 2003.

[90] G. Rothermel and M. Harrold. A safe, efficient algorithm for regression
test selection. In Proceedings of the Conference on Software Maintenance, pages
358–367, 1993.

[91] G. Rothermel and M. Harrold. Selecting regression tests for object-oriented
software. In International Conference on Software Maintenance, pages 14–25,
March 1994.

[92] G. Rothermel and M. Harrold. Selecting tests and identifying test cover-
age requirements for modified software. In Proceedings of the International
Symposium on Software Testing and Analysis, pages 169–184, August 1994.

[93] G.Rothermel andM.Harrold. Analyzing regression test selection techniques.
IEEE Transactions on Software Engineering, 22(8):529–551, August 1996.

[94] G. Rothermel and M. Harrold. A safe, efficient regression test selection tech-
nique. ACM Transactions on Software Engineering and Methodology, 6(2):173–
210, April 1997.

[95] G. Rothermel, M. Harrold, and J. Dedhia. Regression test selection for C++
software. Software Testing, Verification and Reliability, 10:77–109, June 2000.

[96] G. Rothermel, M. Harrold, J. Ostrin, and C. Hong. An empirical study of
the effects of minimization on the fault detection capabilities of test suites.
In Proceedings of the International Conference on Software Maintenance, pages
34–43, November 1998.

[97] G. Rothermel, R. Untch, C. Chu, and M. Harrold. Prioritizing test cases for
regression testing. IEEE Transactions on Software Engineering, 27(10):929–948,
October 2001.

[98] RTCA/DO-178B. Software considerations in airborne systems and equipment
certification, December 1992.

[99] M. Ruth, S. Oh, A. Loup, B. Horton, O. Gallet, M. Mata, and S. Tu. Towards
automatic regression test selection for web services. In Proceedings of the 31st
Annual International Computer Software and Applications Conference - Volume
02, COMPSAC ’07, pages 729–736. IEEE Computer Society, 2007.

[100] M. Ruth and S. Tu. A safe regression test selection technique for web ser-
vices. In Proceedings of the Second International Conference on Internet and Web
Applications and Services, pages 47–. IEEE Computer Society, 2007.

112

Bibliography

[101] A. Sajeev and B.Wibowo. Regression test selection based on version changes
of components. In APSEC ’03: Proceedings of the Tenth Asia-Pacific Software
Engineering Conference Software Engineering Conference, page 78, 2003.

[102] Jane Sales. Symbian OS Internals: Real-Time Kernel Programming. John Wiley
& Sons, 2005.

[103] F. Salewski and A. Taylor. Fault handling in FPGAs and microcontrollers in
safety-critical embedded applications: A comparative survey. In ISESE ’06:
Proceedings of the 2006 ACM/IEEE international symposium on Empirical software
engineering, pages 124–131, August 2007.

[104] A. Sangiovanni-Vincentelli and M. Di Natale. Embedded system design for
automotive applications. IEEE Computer Society, 40:42–51, October 2007.

[105] I. Sbalzariniy, S. Müller, and P. Koumoutsakos. Multiobjective optimization
using evolutionary algorithms. In Center for Turbulence Research Proceedings
of the Summer Program 2000, July 2000.

[106] T. Schotland and P. Petersen. Exception handling in C without C++. Online,
February 2011.

[107] J. Seo, Y. Ki, B. Choi, and K. La. Which spot should I test for effective
embedded software testing? In SSIRI ’08: Proceedings of the 2008 Second
InternationalConference onSecure System Integration andReliability Improvement,
pages 135–142, 2008.

[108] A. Silberschatz, P. Galvin, and G. Gagne. Operating System Concepts. Wiley
India Pvt Ltd, 8th edition, 2010.

[109] S. Sinha, M. Harrold, and G. Rothermel. System-dependence-graph-based
slicing of programswith arbitrary interprocedural control flow. InProceedings
of the 21st International Conference onSoftware Engineering, pages 432–441, 1999.

[110] S. Sinha and M. J. Harrold. Analysis of programs with exception-handling
constructs. In ICSM ’98: Proceedings of the International Conference on Software
Maintenance, page 348. IEEE Computer Society, 1998.

[111] D. Sundmark, A. Pettersson, S. Eldh, M. Ekman, and H. Thane. Efficient
system-level testing of embedded real-time software. In Work in Progress
Session of the 17th Eurmicro Conference on Real-Time System, Spain, pages 53–56,
December 2007.

[112] D. Sundmark, A. Pettersson, and H. Thane. Regression testing of multi-
tasking real-time systems: A problem statement. ACM SIGBED Review,
2(2):31–34, April 2005.

113

Bibliography

[113] A. Taha, S. Thebaut, and S. Liu. An approach to software fault localization
and revalidation based on incremental data flow analysis. In Proceedings of
the 13th Annual International Computer Software and Applications Conference,
pages 527–534, September 1989.

[114] A. Tarhini, H. Fouchal, and N. Mansour. Regression testing web services-
based applications. In AICCSA ’06 Proceedings of the IEEE International Con-
ference on Computer Systems and Applications, pages 163–170. IEEE Computer
Society, 2006.

[115] The Mathworks, Inc. MATLAB. Website, April 2011.
http://www.mathworks.com.

[116] F. Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3(3), September 1995.

[117] F. Vahid andT.Givargis. Embedded SystemDesign: AUnifiedHardware/Software
Introduction. John Wiley & Sons, 1st edition, 2002.

[118] F. Vokolos. A regression test selection technique based on textual differencing. u,
Polytechnic University, 1998.

[119] F. Vokolos and P. Frankl. Pythia: A regression test selection tool based
on textual differencing. In Proceedings of the 3rd International Conference on
Reliability, Quality & Safety of Software-Intensive Systems (ENCRESS’ 97), pages
3–21, May 1997.

[120] F. Vokolos and P. Frankl. Empirical evaluation of the textual differencing
regression testing technique. In ICSM ’98: Proceedings of the International
Conference on Software Maintenance, pages 44–53, 1998.

[121] K. Walcott, M. Soffa, G. Kapfhammer, and R. Roos. Time aware test suite
prioritization. In Proceedings of the 2006 International Symposium on Software
Testing and Analysis, pages 1–12, 2006.

[122] N.Walkinshaw,M. Roper, andM.Wood. The Java system dependence graph.
In Third IEEE International Workshop on Source Code Analysis andManipulation,
pages 55–64, September 2003.

[123] P. Ward and S. Mellor. Structured Development for Real-Time Systems. Prentice
Hall Professional Technical Reference, 1991.

[124] M. Weiser. Program slicing. In ICSE ’81: Proceedings of the 5th international
conference on Software engineering, pages 439–449, 1981.

[125] David Wigg. ANTLR C++ grammar. Website.
http://www.antlr.org/grammar/list.

114

http://www.mathworks.com
http://www.antlr.org/grammar/list

Bibliography

[126] N. Wilde and R. Huitt. Maintenance support for object-oriented programs.
IEEE Transactions on Software Engineering, 18(12):1038–1044, December 1992.

[127] Wind River Systems. Wind River VxWorks: Embedded RTOS
with support for POSIX and SMP. Website, August 2010.
http://www.windriver.com/products/vxworks/.

[128] W.Wong, J.Horgan, S. London, andA.Mathur. A studyof effective regression
testing in practice. In Proceedings of the Eighth International Symposium on
Software Reliability Engineering, pages 230–238, November 1997.

[129] Y. Wu and J. Offutt. Maintaining evolving component-based software with
UML. In Proceedings of 7th European Conference on Software Maintenance and
Reengineering (CSMR ’03), pages 133–142, March 2003.

[130] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A brief survey of program
slicing. ACM SIGSOFT Software Engineering Notes, 30(2):1–36, March 2005.

[131] G. Xu and A. Rountev. Regression test selection for AspectJ software. In
ICSE ’07: Proceedings of the 29th international conference on Software Engineering,
pages 65–74, 2007.

[132] Lei Xu, Baowen Xu, Zhenqiang Chen, Jixiang Jiang, and Huowang Chen.
Regression testing for web applications based on slicing. Computer Software
and Applications Conference, Annual International, 0:652, 2003.

[133] Z. Xu, K. Gao, and T.Khoshgoftaar. Application of fuzzy expert system in test
case selection for system regression test. In 2005 IEEE International Conference
on Information Reuse and Integration, pages 120–125, August 2005.

[134] S. Yoo and M. Harman. Regression testing minimization, selection and pri-
oritization: a survey. Software Testing, Verification and Reliability, 1(1):121–141,
March 2010.

[135] X. Zhang, H. Shan, and J. Qian. Resource-aware test suite optimization.
In QSIC ’09: Proceedings of the 2009 Ninth International Conference on Quality
Software, pages 341–346, 2009.

[136] J. Zhao, T. Xie, and N. Li. Towards regression test selection for AspectJ
programs. InProceedings of the 2ndworkshop on Testing aspect-oriented programs,
WTAOP ’06, pages 21–26. ACM, 2006.

[137] J. Zheng, B. Robinson, L. Williams, and K. Smiley. An initial study of a
lightweight process for change identification and regression test selection
when source code is not available. In Proceedings of the 16th IEEE International
Symposium on Software Reliability Engineering, pages 225–234, November 2005.

115

http://www.windriver.com/products/vxworks/

Bibliography

[138] J. Zheng, B. Robinson, L. Williams, and K. Smiley. Applying regression test
selection for COTS-based applications. In ICSE ’06: Proceedings of the 28th
international conference on Software engineering, pages 512–522, May 2006.

[139] J. Zheng, B. Robinson, L. Williams, and K. Smiley. A lightweight process
for change identification and regression test selection in using COTS com-
ponents. In ICCBSS ’06: Proceedings of the Fifth International Conference on
Commercial-off-the-Shelf (COTS)-Based Software Systems, pages 137–143, Febru-
ary 2006.

116

	Certificate of Approval
	Certificate
	Declaration
	Acknowledgments
	Abstract
	List of Symbols and Abbreviations
	Contents
	Introduction
	Motivation for Our Work
	Objectives and Scope of Our Work
	Contributions of This Thesis
	Organization of the Thesis

	Basic Concepts
	Regression Testing Concepts
	Procedural Program Models
	Concepts Related to Embedded Software
	Genetic Algorithms
	Conclusion

	Review of Related Work
	Regression Test Selection Techniques
	Regression Test Suite Optimization Techniques
	Conclusion

	Task Execution Dependencies in Embedded Programs
	Task Execution Dependency Due to Precedence Order
	Task Execution Dependency Due to Priorities
	Task Execution Dependency Due to Message Passing
	Task Execution Dependency Due to Use of Shared Resource
	Task Execution Dependency Due to Execution of Interrupt Handlers
	A Possible Side-Effect Due to Task Execution Dependencies
	Conclusion

	SDGC: A Model for RTS of Embedded Programs
	SDGC Model
	Construction of An SDGC Model
	Complexity Analysis
	Conclusions

	RTSEM: An RTS Technique for Embedded Programs
	Assumptions
	Types of Program Changes
	Processing Activities in RTSEM
	Incremental Updation of an SDGC Model
	Test Case Selection
	Experimental Studies
	Comparison with Related Work
	Conclusions

	GA-TSO: A Regression Test Suite Optimization Technique
	Regression Test Suite Optimization for Embedded Programs
	Our Proposed Regression Test Suite Optimization Technique
	Experimental Studies
	Comparison with Related Work
	Conclusion

	Conclusions and Future Work
	Summary of Contributions
	Directions for Future Research

	Disseminations out of this Work
	Bibliography

