
Practical Support for Strong, Serializability-Based Memory
Consistency

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree Doctor
of Philosophy in the Graduate School of The Ohio State University

By

Swarnendu Biswas, B.E., M.S.

Graduate Program in Computer Science and Engineering

The Ohio State University

2016

Dissertation Committee:

Michael D. Bond, Advisor

Atanas Rountev

Feng Qin

c© Copyright by

Swarnendu Biswas

2016

Abstract

Data races are a fundamental barrier to writing correct shared-memory, multithreaded

programs, and often lead to concurrency bugs. Furthermore, data races complicate program-

ming language semantics. Current programming language and hardware memory models

provide weak end-to-end consistency guarantees for executions with data races—leading to

unexpected, erroneous behaviors.

Researchers have argued for a stronger guarantee in the presence of concurrency errors

arising from data races: programs should have fail-stop behavior and precise semantics.

However, building a system that efficiently provides strong semantic guarantees for data

races is complex and challenging—and has remained elusive.

The complexity and risk associated with data races motivate this work. The thesis

of our work is that systems should furnish programming language implementations with

a mechanism that gives all executions clear, simple semantics. In this dissertation, we

advocate for providing strong memory consistency based on serializability of regions as the

default memory model on shared-memory systems. Prior approaches that have attempted to

provide region serializability were afflicted by the high costs of either precisely tracking

“last reader(s)” information at read operations or eagerly tracking all conflicts. To realize this

goal, we explore efficient techniques to provide strong memory consistency based on region

serializability—where regions are demarcated by synchronization operations, or they can

be programmer-defined. We begin by developing a software-only technique that provides

ii

serializability of synchronization-free regions (i.e., regions demarcated by synchronization

operations) by efficiently detecting region conflicts. For a given execution, our proposed

technique ensures that the execution either completes successfully and the output is region

serializable, or the execution terminates with an exception. The key insight in this work

is that detecting read–write conflicts lazily retains necessary semantic guarantees and has

better performance than eager conflict detection. Our proposed software-only technique

has overheads competitive enough to provide practical semantic guarantees to a language

specification. Since hardware support can speed up conflict detection, we then explore

the possibility of an efficient architectural solution to provide region serializability end-

to-end. We propose a novel architecture design that provides the same strong consistency

guarantee for every execution by either providing region serializability or by generating

a consistency exception indicating a data race that may jeopardize consistency. The key

insight in our hardware design is that each core can execute largely independently from other

cores, deferring actions that ensure consistency until synchronization operations and private

cache evictions. The key contributions lie in its novel mechanism to detect region conflicts.

Furthermore, as a result of ensuring consistency, the design can defer cache coherence until

synchronization operations and evictions—unlike existing coherence protocols that ensure

coherence at every instruction. Lastly, we extend the scope of providing consistency to

the language-level by providing serializability of programmer-defined regions instead of

synchronization-free regions. Serializability of programmer-defined regions or atomicity

is a key correctness property of concurrent programs that allows programmers to reason

about code regions in isolation. However, programs often fail to enforce atomicity correctly,

leading to serializability violations that are difficult to detect. We present a novel sound

and precise dynamic atomicity checker that checks for violations of conflict serializability

iii

efficiently. The key insight of this work lies in soundly and efficiently overapproximating

cross-thread dependences, and then recovering precision with more expensive analysis only

when required.

Even after years of research, providing strong memory consistency based on serializabil-

ity of regions has so far remained elusive. As a case in point: current high-level programming

languages such as C/C++ and Java memory models provide essentially no useful guarantees

about the semantics of data races. This dissertation aims to fill this critical gap in today’s

languages and systems by demonstrating the possibility of providing a strong memory model

based on region serializability efficiently. By precisely identifying potential serializability

violations, the approaches proposed in this dissertation help extend strong semantic guaran-

tees to all program executions, including executions with data races. By precisely checking

for atomicity violations, our technique presents a promising direction for providing serializ-

ability of programmer-defined regions. The software-only performance-efficient techniques

presented in this work can provide the foundation to guarantee stronger semantics to all

program executions in the near-future, thereby improving concurrent software development

and reliability in the long-term. Our evaluation shows that the hardware-based solution can

be the foundation upon which future scalable shared-memory systems are built. Overall,

this dissertation significantly advances the state of the art in parallel architecture consistency

and coherence.

iv

Dedicated to my parents and my wife

v

Acknowledgments

There are many people who have directly or indirectly contributed to this dissertation. I

am grateful to all of them.

It has been a wonderful and enriching experience to work with my advisor Dr. Michael

D. Bond at the Ohio State University. I guess it was just meant to be, since I did not know

him when I applied to the graduate school. Everything fell into place once Mike contacted

me to see if I was interested in working with him. During all these years, he has been very

supportive and encouraging in every aspect of life, both professional and personal. I am

grateful to him for all his contributions.

I have had the good fortune to interact with several learned people both in and out of the

university. Dr. Brandon Lucia from Carnegie Mellon has been a collaborator on some of my

projects, and his expertise in architecture and simulation has been of great help. He is fun to

work with. Prof. Atanas Rountev and Feng Qin have been on my reading committee and I

thank them for their advice and feedback. I would like to acknowledge the support of Prof.

P. Sadayappan and other professors in our department.

I thank the staff members of the department for their continued help, and am also grateful

for the wonderful facilities provided by the department.

Successful projects generally result from contributions from several collaborators—they

are seldom the work of one person. I would like to acknowledge all the help from the

vi

PLaSS group members: Man Cao, Meisam Fathi-Salmi, Jipeng Huang, Jake Roemer, Aritra

Sengupta, Minjia Zhang, and Rui Zhang. They are an awesome bunch of people.

Columbus is a wonderful city to live in, and I thoroughly enjoyed my stay here. Nonethe-

less, my experience at Columbus was all the more fun-filled and memorable because of the

quality time spent with friends. I would like to acknowledge the companionship of Bortik

Bandyopadhyay, Arka Bhattacharya, Samik Bhattacharya, Aniket Chakrabarti, Ashesh

Choudhury, Soumya Dutta, Rajaditya Mukherjee, Dhrubojyoti Roy, and Aritra Sengputa.

It would have been impossible to complete my PhD journey and achieve whatever

little I have today without the unwavering support and sacrifice of my parents. They have

encouraged me, guided me and believed in me every step of my life. I am grateful to them

for ever.

I met my lovely wife during my PhD program. She is a wonderful companion, I am

grateful to her for her understanding and constant support.

The material presented in this dissertation is based upon work supported by the National

Science Foundation under generous grants CSR-1218695, CAREER-1253703, and CCF-

1421612. Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the views of the National

Science Foundation.

vii

Vita

August 2016 . PhD,
Computer Science and Engineering,
The Ohio State University, USA.

May 2015 . M.S.,
Computer Science and Engineering,
The Ohio State University, USA.

August 2011 . M.S.,
Computer Science and Engineering,
IIT Kharagpur, India.

May 2005 . B.E.,
Computer Science and Engineering,
NIT Durgapur, India.

Publications

Research Publications

Minjia Zhang, Swarnendu Biswas, and Michael D. Bond. All That Glitters Is Not Gold:
Improving Availability and Practicality of Exception-Based Memory Models. In Ohio State
CSE Technical Report #OSU-CISRC-4/16-TR01, April 2016.

Minjia Zhang, Swarnendu Biswas, and Michael D. Bond. Relaxed Dependence Tracking
for Parallel Runtime Support. In International Conference on Compiler Construction, pages
45–55, March 2016.

Swarnendu Biswas, Minjia Zhang, Michael D. Bond, and Brandon Lucia. Valor: Efficient,
Software-Only Region Conflict Exceptions. In ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, pages 241–259,
October 2015.

viii

Swarnendu Biswas. Viser: Providing Serializability in Hardware with Simplified Cache
Coherence. In Companion Proceedings of the 2015 ACM SIGPLAN International Con-
ference on Systems, Programming, Languages and Applications: Software for Humanity,
pages 75–76, October 2015.

Aritra Sengupta, Swarnendu Biswas, Minjia Zhang, Michael D. Bond, and Milind Kulkarni.
Hybrid Static-Dynamic Analysis for Region Serializability. In ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems, pages
561–575, March 2015.

Swarnendu Biswas, Minjia Zhang, and Michael D. Bond. Lightweight Data Race Detection
for Production Runs. In Ohio State CSE Technical Report #OSU-CISRC-1/15-TR01,
January 2015.

Swarnendu Biswas, Jipeng Huang, Aritra Sengupta, and Michael D. Bond. DoubleChecker:
Efficient Sound and Precise Atomicity Checking. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 28–39, June 2014.

Michael D. Bond, Milind Kulkarni, Man Cao, Minjia Zhang, Meisam Fathi Salmi, Swar-
nendu Biswas, Aritra Sengupta, and Jipeng Huang. Octet: Capturing and Controlling
Cross-Thread Dependences Efficiently. In ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pages 693-712,
March 2013.

Fields of Study

Major Field: Computer Science and Engineering

Studies in:

Programming Languages and Software Systems Prof. Michael D. Bond
High Performance Computing Prof. P. Sadayappan
Theory and Algorithms Prof. Anish Arora

ix

Table of Contents

Page

Abstract . ii

Dedication . v

Acknowledgments . vi

Vita . viii

List of Tables . xiv

List of Figures . xvi

1. Introduction . 1

1.1 Motivation and Problem Statement . 1
1.2 Proposed Solutions for Practical Support for Strong, Serializability-Based

Memory Consistency . 3
1.2.1 Providing SFR Serializability in Software 4
1.2.2 Providing SFR Serializability in Hardware 5
1.2.3 Checking Serializability of Programmer-Defined Regions 6

1.3 Contributions and Impact . 7
1.4 Outline . 9

2. Background and Related Work . 10

2.1 Data Races . 12
2.1.1 Definitions . 12
2.1.2 Detecting Data Races . 15

2.2 Memory Models . 23
2.2.1 Weak Memory Models . 24
2.2.2 Strong Memory Models . 25

x

2.3 Checking Atomicity of Programmer-Defined Regions 30
2.3.1 Overview . 30
2.3.2 Detecting Atomicity Violations 32

3. Valor: Providing RSx Efficiently in Software 36

3.1 Introduction . 36
3.2 Efficient Region Conflict Detection . 38
3.3 FastRCD: Detecting Conflicts Eagerly in Software 39
3.4 Valor: Detecting Read–Write Conflicts Lazily 42

3.4.1 Overview . 43
3.4.2 Analysis Details . 47
3.4.3 Providing Valor’s Guarantees 50

3.5 Extending the Region Conflict Detectors 51
3.5.1 Demarcating Regions . 51
3.5.2 Correctness of RFR Conflict Detection 52
3.5.3 Reporting Conflicting Sites . 54

3.6 Alternate Metadata and Analysis for Valor 55
3.7 Valor Is Sound and Precise . 58
3.8 Implementation . 61

3.8.1 Jikes RVM: Our Implementation Infrastructure 62
3.8.2 Features Common to All Implementations 63
3.8.3 FastTrack and FastRCD . 65
3.8.4 Valor . 66

3.9 Evaluation . 69
3.9.1 Methodology . 69
3.9.2 Run-Time Overhead . 70
3.9.3 Architectural Sensitivity . 72
3.9.4 Scalability . 73
3.9.5 Space Overhead . 73
3.9.6 Run-Time Characteristics . 75
3.9.7 Data Race Detection Coverage 77
3.9.8 Comparing FastTrack Implementations 79
3.9.9 Summary . 81

3.10 Contributions and Impact . 81

4. RCC: Practical Architecture Support for Region-Serializability-Based Consistency 83

4.1 Introduction . 83
4.2 Hardware Memory Models and Cache Coherence Protocols 85
4.3 Design Overview of RCC . 87

4.3.1 RCC’s Goals and Guarantees 89

xi

4.3.2 Overview and Insights . 89
4.3.3 Design Details . 90

4.4 Architecture of RCC . 94
4.4.1 Private Access Information Management 95
4.4.2 LLC Access Information Management 96
4.4.3 Consistency Controller (CC) . 100

4.5 Design Optimizations . 102
4.5.1 Avoiding Self-Invalidation . 103
4.5.2 Optimizing Region Commit . 105

4.6 Evaluation . 106
4.6.1 Simulation Methodology . 106
4.6.2 Run-Time Performance and Traffic 109
4.6.3 Impact of Optimizations . 114
4.6.4 Sensitivity to AIM Cache Size 115
4.6.5 Comparison with TCC . 115
4.6.6 Summary . 117

4.7 Contributions and Impact . 121

5. DoubleChecker: Efficient Sound and Precise Atomicity Checking 123

5.1 Introduction . 123
5.2 Design of DoubleChecker . 125

5.2.1 Overview . 125
5.3 Imprecise Cycle Detection . 128

5.3.1 Efficient Tracking of Cross-Thread Dependences 128
5.3.2 Identifying Cross-Thread Dependences 132
5.3.3 Cycle detection . 138
5.3.4 Maintaining Read/Write Logs 139
5.3.5 Soundness Argument . 140

5.4 Precise Cycle Detection . 140
5.5 Implementation . 142

5.5.1 DoubleChecker . 142
5.5.2 Velodrome . 144

5.6 Evaluation . 145
5.6.1 Methodology . 145
5.6.2 Soundness . 148
5.6.3 Performance . 150
5.6.4 Other Performance Investigations 155
5.6.5 Run-Time Characteristics . 156

5.7 Contributions and Impact . 159

xii

6. Related Work . 161

7. Future Work . 169

7.1 Valor . 169
7.2 RCC . 170
7.3 DoubleChecker . 171

8. Conclusion . 172

8.1 Summary . 172
8.2 Impact and Meaning . 174

Bibliography . 177

xiii

List of Tables

Table Page

3.1 Run-time characteristics of the evaluated programs, executed by implemen-
tations of FastTrack, FastRCD, and Valor. Counts are rounded to three
significant figures and the nearest whole number. Percentages are rounded
to the nearest 0.1%. *Three programs by default spawn threads in proportion
to the number of cores (64 in most of our experiments). 76

3.2 Data races reported by FastTrack, FastRCD, and Valor. For each analysis,
the first number is average distinct races reported across 10 trials. The
second number (in parentheses) is distinct races reported at least once over
all trials. 78

4.1 Architectural parameters used for simulation. 107

4.2 Threads spawned and average region sizes (rounded to 3 significant figures)
for the PARSEC benchmarks. n is the minimum threads parameter in
PARSEC. f is the input-size-dependent number of frames processed by x264.109

4.3 Average on-chip and off-chip (LLC-to-memory) bandwidth (rounded to one
place after decimal) required by MESI, CE, and RCC for 32 cores. For the
benchmarks not shown, the maximum value in any column is ≤2.2 GB/s. . 113

4.4 Impact of AIM cache size, relative to the default of 32K entries, on perfor-
mance and off-chip traffic. 116

5.1 Octet state transitions. ∗A read to a RdShc object by T triggers a fence
transition if and only if per-thread counter T.rdShCnt < c. The fence
transition updates T.rdShCnt to c. 130

5.2 Static atomicity violations reported by our implementations of Velodrome
and DoubleChecker. For Velodrome and multi-run mode, Unique counts
how many violations were not reported by single-run mode. 149

xiv

5.3 Run-time characteristics of DoubleChecker for the single-run and the second
run in the multi-run mode. Each average is rounded to a whole number with
at most three significant digits. 158

xv

List of Figures

Figure Page

2.1 A Java code snippet containing data races on variables x and done. 13

2.2 Transformations on a racy program can lead to surprising behaviors. 14

2.3 Synchronization-free regions (SFRs). 20

2.4 Under SFRSx, an execution generates an exception only for a data race that
may violate SFR serializability. 29

3.1 (a) Like FastRCD, Valor eagerly detects a conflict at T2’s access because
the last region to write x is ongoing. (b) Unlike FastRCD, Valor detects
read–write conflicts lazily. During read validation, T1 detects a write to x
since T1’s read of x. 44

3.2 Valor relies on versions to detect conflicts soundly and precisely. Asso-
ciating only epoch information with writes can lead to false positives in
inferring read–write region conflicts lazily. (b) Without tracking versions,
read validation in thread T1 is unaware of the remote write and cannot detect
a read–write conflict lazily. 46

3.3 Synchronization- and release-free regions. 52

3.4 Detecting conflicts among RFRs allow more conflicts to be detected than
SFRs, which are also true data races. (a) SFR j+1 in T1 has finished by the
time T2 accesses x, and so no conflict is detected. (b) The same interleaving
but with RFRs as regions is able to detect the conflict. 53

3.5 Relative performance of OpenJDK and Jikes RVM on two platforms. In
each graph, the two geomean bars for Jikes RVM are the geomean including
and excluding pjbb2005. 68

xvi

3.6 Run-time overhead added to unmodified Jikes RVM by our implementations
of FastTrack, FastRCD, and Valor. 71

3.7 Run-time overhead added to unmodified Jikes RVM by our implementations
of FastTrack, FastRCD, and Valor on an Intel Xeon E5-4620 system. Other
than the platform, the methodology is the same as for Figure 3.6. 72

3.8 Run-time overheads of the configurations from Figure 3.6, for 1–64 applica-
tion threads. The legend applies to all graphs. 73

3.9 Space overheads of the configurations from Figure 3.6. 74

3.10 Performance comparison of FastTrack implementations. The last two config-
urations correspond to the baseline and FastTrack configurations in Figure 3.6. 80

4.1 Relationship of possible execution behaviors. Behaviors that may or may
not generate an exception under SFRSx are shaded gray. A memory model
would restrict behaviors to one of these sets of executions. 87

4.2 The RCC architecture (not according to scale). The shaded parts show
additional hardware structures introduced in the design. 94

4.3 Per-line metadata introduced by RCC for private caches. Metadata added
by RCC is shaded gray. 96

4.4 An AIM entry for a system with C cores and B-byte cache lines. 97

4.5 Run-time performance and on-chip traffic costs for MESI, CE, and RCC
for 8–32 cores. The suffix for each simulator indicates the number of cores.
The legend at top applies to both graphs. 118

4.6 LLC-to-memory traffic for for MESI, CE, and RCC for 8–32 cores, using
the same configurations as Figure 4.5. 119

4.7 The effect of RCC optimizations on-chip network traffic in a system with 8
cores. 120

5.1 An overview of DoubleChecker’s two execution modes. 126

xvii

5.2 A possible interleaving of six concurrent threads accessing shared objects o
and p, and the corresponding Octet state transitions they trigger (with new
states shown in parentheses). 131

5.3 ICD procedures called from Octet state transitions. 134

5.4 An example interleaving of threads executing atomic regions of code as
transactions. The figure shows the Octet states after each access and the
IDG edges added by ICD. 135

5.5 Rules to update last-access information for a read and write of field f by a
transaction tx. 141

5.6 Iterative refinement methodology to generate a program’s atomicity specifi-
cation. 147

5.7 Run-time performance comparisons of Velodrome, DoubleChecker’s single-
run mode, and the first and second runs of DoubleChecker’s multi-run mode.
The sub-bars show GC time. The geomean GC time excludes short-running
sor, which never triggers GC. 151

xviii

Chapter 1: Introduction

Current multicore hardware trends of providing more—instead of faster—cores have

made parallelism necessary for performance. As multicore systems become widespread,

software and hardware face a growing challenge in efficiently implementing and exploiting

parallelism. For example, programmers are now hard-pressed to develop correct and high-

performance concurrent programs to exploit every iota of performance available from

multicore systems.

The shared memory paradigm is the most widely-used programming model and the

de facto standard for programming parallel applications. Shared-memory multiprocessors

enable an execution model that is simple and efficient: multiple threads execute on processor

cores that share a global memory. In other words, the shared-memory programming model

simplifies parallel programming by providing an address space shared by different threads

of execution potentially running on different processor cores.

1.1 Motivation and Problem Statement

Recent studies and experiences have shown that developing shared-memory parallel

programs that are correct and scalable is notoriously challenging [80, 112]. David Patterson

explained the seriousness of this issue in a 2006 interview [137]:

1

From my perspective, parallelism is the biggest challenge since high-level programming
languages. It’s the biggest thing in 50 years because industry is betting its future that
parallel programming will be useful.

Industry is building parallel hardware, assuming people can use it. And I think there’s
a chance they’ll fail since the software is not necessarily in place. So this is a gigantic
challenge facing the computer science community. If we miss this opportunity, it’s going to
be bad for the industry.

A key challenge in writing and debugging shared-memory parallel programs is that program-

mers must reason about many possible behaviors because of the many ways that threads’

memory accesses can interleave. The bête noire of shared memory concurrent programming

is a data race which occurs when multiple threads access the same memory location without

synchronization (Section 2.1). A fundamental barrier to achieving correctness with shared-

memory systems is that shared-memory programming languages and architectures provide

weak or undefined semantics for executions with data races [2, 8, 31, 118, 157, 164, 174]—

leading to unexpected, erroneous behaviors [2, 29, 30, 32, 33, 112].

For performance reasons, shared-memory programming language compilers and run-

times employ several optimizations that were developed and are provably correct in the

single-threaded context. Building a shared-memory system that efficiently provides strong

semantic guarantees for data races is complex and challenging—and has remained elusive

even after years of research. Instead, limiting clear, intuitive semantics to programs that are

free of data races allow these language compilers and runtimes to continue to use existing

optimizations. As a case in point: languages such as C/C++ and Java provide essentially no

useful guarantees about the semantics of data races [2, 5, 29, 30, 115, 163] (Section 2.2.1).

According to Adve and Boehm [2], “The memory model defines an interface between

a program and any hardware or software that may transform that program (for example,

the compiler, the virtual machine, or any dynamic optimizer).” While language memory

models provide virtually no guarantees for executions with data races [2, 31, 118], nearly

2

all architectures enforce comparatively strong guarantees for program executions with

data races. Still, pervasive hardware memory models used by x86 [164], SPARC [174],

Power [157], and ARM [8] are weak, permitting visible reordering of memory accesses [8,

157, 164, 174]. Furthermore, hardware memory models are thus not only weak, but their

guarantees are not end-to-end, i.e., they are with respect to the compiled program only.

Problem statement. The complexity and risk associated with data races motivate this

work. The thesis of our work is that systems should provide strong memory models end-to-

end. That is, programming language implementations or systems should provide data races

with clear, simple semantics. Our goal in this work is to develop mechanisms that equip

present and future shared-memory languages and systems with clear, intuitive semantics

even for programs that permit data races.

1.2 Proposed Solutions for Practical Support for Strong, Serializability-
Based Memory Consistency

Current shared-memory languages and systems provide a memory model, called SFR

serializability, for data-race-free (DRF) programs [5, 31, 115, 118, 139]. In the absence of

data races, all program operations are correctly synchronized, and hence synchronization-

free regions (SFRs) of code—which are dynamic regions of code between synchronization

operations—appear to execute atomically (i.e., without region conflicts). SFR serializability

is a strong memory model as it allows few interleavings. Another advantage of SFR

serializability is that compiler and hardware optimizations are free to reorder memory

accesses within SFRs. Furthermore, architecture support alone can ensure end-to-end

SFR serializability because compilers already respect synchronization boundaries. These

advantages make SFR serializability an appealing memory model, and it extends the same

3

guarantees to executions with races that current languages and systems give to only race-free

executions. We discuss SFR serializability in detail in Section 2.2.2.

In the following, we briefly describe our contributions to efficiently provide a strong

memory model called SFRSx, which is based on serializability of regions. Even in an

execution with data races, SFRSx guarantees the serializability of SFRs of code, or halts with

a consistency exception that indicates a conflict. We first describe a software-only technique

that provides SFR serializability as a strong memory consistency model. Since conflict

detection in hardware can be more efficient, we provide end-to-end region serializability

with architectural modifications. Lastly, we extend the scope of providing consistency to the

language-level by providing serializability of programmer-defined regions.

1.2.1 Providing SFR Serializability in Software

We present two new software-based region conflict detectors, called FastRCD and Valor,

that provide SFR serializability [20]. FastRCD is a new dynamic analysis for detecting

region conflicts that leverages the epoch optimization strategy of the current state-of-the-art

data race detector [68]. We have developed FastRCD more for the purposes of comparison,

and show that it continues to suffer from performance bottlenecks similar to prior work.

The primary contribution of the work is Valor, which is a sound and precise region conflict

detection analysis that achieves high performance by eliminating the costly analysis on

each read operation that prior approaches (and FastRCD) require. Valor instead logs

a region’s reads and lazily detects conflicts for logged reads when the region ends. A

successful program execution with Valor indicates that the execution was region (e.g., SFR)

serializable, i.e., all regions executed atomically, otherwise Valor raises an exception. Valor

4

is the first region conflict detector to provide strong semantic guarantees for racy program

executions with under 2X slowdown.

1.2.2 Providing SFR Serializability in Hardware

To provide strong memory models, one must consider implications for the whole sys-

tem [2]. For example, “a processor vendor cannot guarantee a strong hardware model if the

memory system designer provides a weaker model; a strong hardware model is not very

useful to programmers using languages and compilers that provide only a weak guaran-

tee” [2]. Furthermore, since conflict detection can be cheaper with hardware support, in this

work, we explore a hardware solution to provide strong memory consistency, i.e., SFRSx,

end-to-end. We propose a novel architecture design called Region Consistency and Coher-

ence that provides a strong consistency guarantee: for every execution, RCC either provides

serializability of synchronization-free regions (SFRs), or it generates a consistency exception

indicating a data race that may jeopardize consistency. RCC’s insight is that each core can

execute largely independently from other cores, deferring actions that ensure consistency

until synchronization operations and private cache evictions. Furthermore, as a result of

ensuring consistency, RCC can defer cache coherence until synchronization operations and

evictions—unlike existing coherence protocols that ensure coherence at every instruction.

RCC’s contribution is a novel mechanism for detecting conflicts by ensuring write atomicity

and checking read consistency. RCC eliminates the need for legacy coherence protocol

support, making better use of hardware resources, yielding a design that is both performant

and complexity-effective. Our evaluation shows that RCC compares favorably with current

shared-memory implementations. Furthermore, RCC has clear advantages in terms of imple-

mentability over prior work called Conflict Exceptions (CE) and TCC, in terms of run-time

5

performance, on-chip and off-chip traffic. While an unoptimized design of RCC incurs

significant costs to provide coherence conservatively, we show how optimizations reduce

these costs substantially. Compared to Valor, RCC provides end-to-end SFR serializability

more efficiently but at the cost of hardware modifications.

1.2.3 Checking Serializability of Programmer-Defined Regions

Instead of limiting the dissertation’s scope to detecting serializability violations of

regions demarcated by synchronization operations, this work checks for serializability

violations of programmer-defined regions. We propose a novel dynamic analysis to check for

violations of serializability, which is also known as the atomicity in programming languages.

Dynamic program analysis can detect atomicity violations in concurrent programs based on

an atomicity specification, but existing approaches incur large overheads [67, 73, 113, 185].

Our technique, called DoubleChecker, is an efficient, sound and precise dynamic atomicity

violation detector [18] that substantially outperforms current state-of-art [73]. The key

insight of DoubleChecker lies in its use of two new staged and cooperating dynamic

analyses—an imprecise and a precise analysis. Its imprecise analysis tracks cross-thread

dependences soundly but imprecisely with significantly better performance than a fully

precise analysis. Its precise analysis is more expensive but only needs to process a subset

of the execution identified as potentially involved in atomicity violations by the imprecise

analysis. DoubleChecker can operate in two modes. In single-run mode, the two analyses

execute in the same program run, which guarantees soundness and precision but requires

logging program accesses to pass from the imprecise to the precise analysis. In multi-run

mode, the first program run executes only the imprecise analysis, and a second run executes

both analyses. Multi-run mode trades accuracy for performance; each run of multi-run

6

mode outperforms single-run mode, but can potentially miss violations. DoubleChecker is

a promising direction for improving the performance of dynamic atomicity checking over

prior work.

1.3 Contributions and Impact

The memory consistency model is considered to be fundamental to the concurrency

semantics of a shared-memory program or system [2]. Current shared-memory language

and hardware memory models are complicated by the presence of data races, and do not

provide strong semantics for racy program executions which can and has led to erroneous

behaviors [107, 145, 179]. Furthermore, complex memory models make it difficult to

learn and write correct parallel programs. Alternate memory models are either too strict

(i.e., allows no or few reorderings limiting hardware and compiler optimizations) severely

reducing performance, or are too relaxed and places the burden of correctness on the

programmer (Section 2.2).

To deal with data races, current languages and systems need to adopt stronger memory

models. One such desired strong memory model is SFR serializability, which extends

to executions with data races the same end-to-end guarantees that today’s language and

hardware memory models provide but only for DRF executions [2]. So far, efficient

techniques for providing SFR serializability have remained elusive. In this dissertation, we

show that achieving strong memory consistency with serializability of SFRs is practical.

We propose efficient and realizable techniques that advance the state of the art in providing

strong memory consistency based on region serializability. For example, Valor advances the

state of the art in always-on software support for strong behavioral guarantees for data races.

DoubleChecker presents a new direction in dynamic sound and precise atomicity checking

7

and dynamic analyses (e.g., other types dynamic concurrency bug detection such as data

race detection [19]) in general: by dividing the analysis into two staged and cooperating

analyses, our work shows that it is often beneficial to over-approximate dependences and

recover precision on demand. The improved performance overhead of atomicity checking

presented in this proposal, coupled with the fact that our proposed solution is software-

only, suggests that the technique proposed in this work represent practical, promising

direction for improving the performance of concurrency bug detectors and making it more

widely available. The software-only techniques presented in this dissertation, Valor and

DoubleChecker, have the potential to be integrated into future language runtimes to provide

better software reliability. For example, a language runtime can integrate Valor to provide

always-on support for strong behavioral guarantees for data races, and DoubleChecker to

warn developers about potential atomicity violations. Such support provided by runtime

systems will help developers identify and eliminate most or all data races that lead to

serializability violations and atomicity violations during testing, and will terminate program

executions on production systems before allowing bad behavior to actually happen. RCC

does require extensions to the current architecture, but our evaluation shows that it can

be the foundation upon which future scalable shared-memory systems are built. Since

RCC provides significantly stronger guarantees than current shared-memory systems at a

comparable cost, it is a compelling design for providing consistency and coherence in future

systems.

As acknowledged by Adve and Boehm [2], strengthening the memory model deci-

sion can have a long-lasting impact on the systems community, affecting portability and

maintainability of programs. This dissertation contributes to the cause.

8

1.4 Outline

In the following, we outline the work presented in this dissertation.

• We discuss background on data race detection, memory models, and atomicity check-

ing along with closely related work in Chapter 2.

• We present a software-only solution called Valor [20] to provide SFR serializability

in Chapter 3.

• We present an architectural solution called RCC to provide SFR serializability in

Chapter 4.

• We present our work on efficient, sound and precise dynamic atomicity violation

detection technique called DoubleChecker [18] in Chapter 5.

• We discuss other related work in Chapter 6.

• We discuss possible improvements to our proposed techniques and potential future

work in Chapter 7.

• We conclude our dissertation and discuss the impact of our work in Chapter 8.

9

Chapter 2: Background and Related Work

Today, software is omnipresent. Our society is increasingly reliant on software to solve

tasks that range from simple household applications to more critical tasks in areas such as

medicine, engineering, transportation, and energy. With the advent of the multicore era,

computing systems must become more parallel and at the same time more reliable in order

to address future unsolved problems.

Software bugs are the primary cause of failures in production systems compared to

hardware failures [11]. It is estimated that software companies spend over 30% of their

development resources on software testing, but even then it is difficult to guarantee bug-

free software due to several challenges. As a result, software bugs—both sequential and

concurrent—often escape into production systems. Concurrency bugs constitute a major

chunk of these software errors [155]. The Therac-25 medical accident [107], the Northeast-

ern electricity blackout [179], and the Nasdaq Facebook glitch [145] are a few examples of

several high-profile failures, and bear testament to the fact that software errors (including

concurrency bugs) are present even in well-tested code (e.g., [74, 112]). According to the

report of National Institute of Standards and Technology (NIST) in 2002, software errors

caused the US economy an estimated 59.5 billion annually, or about 0.6 percent of the

gross domestic product (GDP). In short, the impact of software and concurrency bugs is

enormous.

10

Testing of concurrent programs is getting even more challenging in the current multicore

era. The increased state space of programs involving multiple threads and shared memory

makes it extremely difficult to detect all possible bugs during testing. Moreover, diagnosing

concurrency errors is in itself challenging, given the nondeterministic nature of concurrent

programs. Studies suggest that it often takes developers weeks or months to diagnose and

fix concurrency issues [80, 112], and even then risk introducing additional bugs as part of

the fix itself [68, 96]. Concurrency bugs will only become more problematic as software

systems become increasingly parallel to scale with parallel hardware.

Concurrency bugs can be of different types such as atomicity violations, order violations,

data races, and deadlocks [112]. The more common sources of non-deadlock concurrency

bugs among others are due to data races and atomicity violations. There has been lot of

research on trying to automatically detect concurrency bugs with program analyses to help

improve programmer productivity and software reliability. A plethora of static and dynamic

analyses have been proposed to detect different types of concurrency bugs such as atomicity

violations [63,67,72–74,113,185], data races [34,56,60,68,94,99,120,131,132,136,146,170],

and deadlocks [97, 186]. However, existing concurrency bug detection techniques tend to

suffer from a variety of drawbacks, ranging from performance overheads, correctness and

precision concerns, scalability, and/or custom hardware support, which have affected the

practical adoption of such techniques. For example, static analysis techniques have the

potential to be sound and complete (i.e., generate no false negatives), but these techniques

usually suffer from poor precision (i.e., report false positives) (e.g., [132]) and do not scale

well to large real-world programs (e.g., [131]). Existing dynamic analyses usually incur

high performance overheads to guarantee both soundness and precision [68, 73], and often

resort to making a tradeoff to balance all desired features [56, 158]. These performance

11

concerns have affected the usability of existing dynamic analysis techniques. Developers

desist using tools that report false positives due to the possibility of wasted work [34, 120],

whereas programmers and testers shy away from using intrusive tools that do not allow them

to test realistic program executions [120]. No wonder the practical adoption of these existing

techniques is still muted! Low-overhead checking is needed in order to use it liberally

to find bugs during in-house, alpha, and beta testing, and perhaps even some production

settings. Greathouse et al. [81] note that high dynamic analysis overheads “reduce the degree

to which programs can be tested within a reasonable amount of time. Beyond that, high

overheads slow debugging efforts, as repeated runs of the program to hunt for root causes

and verify fixes also suffer these slowdowns.”

In this chapter, we first present some background on data races and their impact on

programming language memory consistency models. We then conclude this chapter by

discussing about atomicity checking. Atomicity, which is synonymous to serializability

in programming languages, is a fundamental correctness property in concurrent programs.

Unfortunately, programs often fail to correctly enforce atomicity, and atomicity violations

are the primary source of concurrency bugs.

2.1 Data Races

Data races often indicate presence of other sources of non-deadlock concurrency bugs

such as order violations.

2.1.1 Definitions

Definition 2.1. The happens-before relation (≺HB) is a transitively-closed, irreflexive,

partial order relation on the operations in an execution [34, 68, 104]. A dynamic statement A

happens-before B (i.e., A≺HB B) if any of the following conditions hold:

12

MyObject x = null;

boolean done = false;

Thread 1 Thread 2

x = new MyObject();

done = true;

while (!done);

x.compute();

Figure 2.1: A Java code snippet containing data races on variables x and done.

• PROGRAM ORDER: Statement A executes before B in the same thread.

• SYNCHRONIZATION ORDER: Statement A and B are operations on the same synchro-

nization variable such that the semantics imply a happens-before edge (e.g., A releases

a lock, and B subsequently acquires the same lock).

• TRANSITIVE RELATION: A≺HB C and C ≺HB B.

If A happens before B, then it is also the case that B happens after A.

Definition 2.2. Two operations in an execution are concurrent if they are not related by the

happens-before relation.

Definition 2.3. Two memory accesses from different threads are said to be conflicting if

they both access (read or write) the same variable, and at least one of the operations is a

write.

Definition 2.4. In a concurrent program execution, a data race occurs when two accesses are

conflicting—executed by different threads and at least one is a write—and concurrent—not

ordered by synchronization operations [6].

13

MyObject x = null;

boolean done = false;

Thread 1 Thread 2

x = new MyObject();

done = true;

while (!done);

x.compute(); null pointer
dereference

(a)

MyObject x = null;

boolean done = false;

Thread 1 Thread 2

x = new MyObject();

done = true;

while (!temp);

x.compute();

infinite
loop

temp = done;

(b)

Figure 2.2: Transformations on a racy program can lead to surprising behaviors.

Figure 2.1 shows a simple but often used Java code where two threads try to incorrectly

coordinate their execution via the shared variables x and done. The accesses to x and done

are racy since no happens-before relation exists between the dynamic program statements

accessing the variables (i.e., none of the three conditions listed in Definition 2.1 hold).

Data races can cause programs to exhibit confusing and incorrect behavior. In an attempt

to improve performance, the compiler and hardware can reorder instructions in each thread

independently of other concurrent threads. Although compilers and hardware take care that

the optimization effects are not externally visible for DRF programs, these optimizations

can exhibit surprising behavior in the presence of data races. For example, a compiler

can generate an optimized program that looks like either Figure 2.2(a) or 2.2(b). In the

absence of data dependences, it is perfectly legal for current compilers and hardware to

reorder the two instructions in Thread 1 (Figure 2.2(a)). This can lead to a null dereference

of x. The compiler can also decide to optimize the redundant loads of done from the while

loop as shown in Figure 2.2(b), thereby leading to an infinite loop. Note that both these

optimizations are perfectly legal for DRF programs.

14

Data races directly or indirectly lead to concurrency bugs, including sequential consis-

tency, atomicity, and order violations [112, 139] that may corrupt data, cause a crash, or

prevent forward progress [69, 98, 133]. The Therac-25 disaster [107], the Northeastern elec-

tricity blackout of 2003 [179], and the mismatched NASDAQ Facebook share prices [145]

were all due to race conditions, and are a testament to the danger posed by data races.

2.1.2 Detecting Data Races

There has been much work on detecting data races [34, 56, 57, 59, 60, 66, 68, 94, 99, 115,

120, 131, 132, 136, 146, 147, 170, 194]. This section overviews prior work.

2.1.2.1 Static Analyses

Static program analysis for detecting data races has the advantage of being sound by

considering all possible inputs, environments, and thread interleavings—but at the cost

of precision and scalability [59, 131, 132, 147, 183]. Static analysis abstracts data and

control flow conservatively, leading to imprecision and false positives. Achieving soundness,

precision and scalability are often conflicting properties—imprecision and performance

tend to scale poorly with increasing program size and complexity. For example, conditional

must-not alias analysis is not so imprecise as previous analyses, but it does not scale to large

programs [131]. Sound static analysis is useful for identifying potential data races, but as

we and others find [19, 49, 57, 99, 106, 182], dynamic analysis is essential for pruning false

positives.

2.1.2.2 Software-Based Dynamic Analysis

Happens-before analysis. Dynamic happens-before analysis soundly and precisely checks

that all conflicting accesses are ordered by the happens-before relationship [34, 68, 99, 104,

15

120, 146]. Analyses typically track happens-before using vector clocks [126]; each vector

clock operation takes time proportional to the number of threads. In addition to tracking

happens-before, an analysis must track when each thread last wrote and read each shared

variable, in order to check that each access happens after every earlier conflicting access.

FastTrack is the current state-of-art dynamically sound and precise happens-before-

analysis-based data race detector [68]. FastTrack exploits the following insights. (1) In a

race-free program, writes to a variable are totally ordered. (2) In a race-free program, upon

a write, all previous reads must happen before the write. (3) The analysis must distinguish

between multiple concurrent reads since they all potentially race with a subsequent write.

FastTrack reduces the cost of tracking last accesses, without missing any data races, by

tracking a single last writer and, in many cases, a single last reader [68]. This allows

FastTrack to be nearly an order of magnitude faster than prior vector-clock-based techniques

because instead of O(n) time and space analysis, it replaces all write and many read vector

clocks with a scalar clock and almost always performs O(1)-time analysis on them.

Despite this optimization, FastTrack still slows executions by nearly an order of magni-

tude on average (e.g., > 8X slowdown [68]). Its high run-time overhead is largely due to

the cost of tracking shared variable accesses, especially reads. A program’s threads may

perform reads concurrently, but FastTrack requires each thread to update shared metadata

on each read. These updates effectively convert the reads into writes that cause remote

cache misses [20]. Moreover, FastTrack must synchronize to ensure that its happens-before

checks and metadata updates happen atomically. These per-read costs fundamentally limit

FastTrack and related analyses (e.g., [73]). Even industry-standard tools such as Intel’s

16

Inspector XE,1 Google’s ThreadSanitizer v2 [162],2 and Helgrind [134],3 which are largely

based on happens-before analysis, incur substantial slowdowns, e.g., 10–100X. Furthermore,

happens-before analysis scales poorly: each vector clock operation takes linear time in terms

of the number of threads (O(n) for n threads).

Sampling-based approaches. With a view to minimize performance overhead, researchers

have distributed the work of happens-before analysis across many production runs [34, 99,

120]. These techniques give up soundness entirely, missing data races in exchange for

performance, usually in order to target production systems. Sampling-based analyses per-

form analysis selectively at accesses and synchronization operations [34, 120]. However,

sampling-based race detection approaches continue to suffer from run-time overhead that is

still high, unscalable, and unbounded. LiteRace and Pacer sample race detection analysis but

instrument all program accesses, adding high baseline overhead even when the sampling rate

is miniscule [34, 120]. RaceMob “crowdsources” race detection analysis by trying to detect

just one potential race in each execution [99]. These approaches still incur high overheads

and do not scale well due to the high cost of tracking the happens-before relationship [19].

Furthermore, they provide limited coverage guarantees [60, 120].

Happens-before analysis is sound and precise but only reports data races that manifest in

the current execution. In other words, coverage is quite sensitive to thread interleavings [196];

unrelated happens-before edges mask data races that can manifest in another execution. Since

repeated executions in similar environments tend to exercise similar interleavings [143,160],

happens-before analysis is unlikely to detect races exposed by rare interleavings.

1https://software.intel.com/en-us/intel-inspector-xe

2https://code.google.com/p/thread-sanitizer

3http://valgrind.org

17

https://software.intel.com/en-us/intel-inspector-xe
https://code.google.com/p/thread-sanitizer
http://valgrind.org

Dynamic lockset analysis. Detecting data races during testing runs is insufficient to

find all data races, whose occurrence is sensitive to inputs, environments, and thread

interleavings [61, 80, 99, 170]. Researchers have considered alternatives in an effort to

improve performance and/or data race coverage. An alternative is lockset analysis, which

detects violations of a locking discipline (e.g., [49, 158, 181]). Dynamic lockset analysis

has good coverage but at the cost of precision and performance [158, 181]. To minimize

time and space costs, most lockset analyses compute the lockset for each shared variable

on the fly, reporting false positives that are not even violations of the locking discipline.

The fact that lockset analysis reports false data races limits its value for race detection

and so it is unsuitable for providing a strong execution model. In an effort to limit these

false positives, these analyses introduce unsound heuristics [135, 158, 181]. Alternatively, a

more heavyweight analysis can soundly and precisely check the lockset property [49, 136].

Hybrids of happens-before and lockset analysis tend to report false positives (e.g., [136]).

Hybrid approaches have tried to effectively combine lockset and happens-before tracking to

minimize false positives and performance overheads [136].

Other approaches. Goldilocks [57] detects races soundly and precisely and provides

exceptional, fail-stop data race semantics. The Goldilocks paper reports 2X average slow-

downs, but the authors of FastTrack argue that a realistic implementation would incur an

estimated 25X average slowdown [68].

In work concurrent with Valor [20] (Chapter 3), Clean detects write–write and write–

read data races but does not detect read–write races [159]. Clean exploits the insight that

detecting read–write conflicts eagerly is expensive, and does not detect read–write conflicts

at all. Instead, Clean argues that detecting write–write and write–read data races is sufficient

18

to provide certain execution guarantees such as freedom from out-of-thin-air values [118].

Ignoring read–write races allows Clean to provide a weaker memory model than SFR

serializability, and still requires extending cache coherence [159].

2.1.2.3 Hardware Support

Custom hardware can accelerate data race detection by adding on-chip memory for

tracking vector clocks or locksets and extending cache coherence to identify shared ac-

cesses [6, 54, 130, 159, 188, 196], but they require invasive architecture changes that are

not applicable to today’s systems and manufacturers have been reluctant to change already-

complex cache and memory subsystems substantially to support race detection. Furthermore,

realistically bounded hardware resources cannot efficiently detect data races that occur over

very long spans of dynamic instructions [6, 54, 130].

2.1.2.4 Model Checking

Model checking can detect data races or other concurrency errors by exploring many

thread interleavings and/or inputs exhaustively, but it suffers from state-space explosion.

CHESS reduces state-space explosion somewhat by bounding preemptions and considering

one input at a time [129], although scalability is still a challenge especially for long-running

programs.

2.1.2.5 Languages and Types

New languages can eliminate data races, but they require writing programs in these

potentially restrictive languages [28, 152]. Type systems can ensure data race freedom, but

they typically require adding annotations and modifying code [1, 36]; writing annotations is

tedious and constraining.

19

unlock(...);
...
unlock(...);
...
...
lock(...);
...
lock(...);
...
unlock(...);

SFR

SFR

SFR

SFR

Figure 2.3: Synchronization-free regions (SFRs).

2.1.2.6 Exposing Effects of Data Races

Prior work that is orthogonal to detecting data races exposes erroneous behavior due to

data races, often under non-sequentially-consistent memory models. Prior work tries to infer

which data races are most likely to be harmful (e.g., crash the program, hurt performance,

or corrupt data) [37, 69, 98, 133], and several approaches try to expose errors by forcing an

execution to perform rare but allowable behavior at racy accesses [37, 69, 133, 160]. We and

other researchers note that every data race is potentially harmful because language memory

models such as C/C++ and Java provide no or very weak semantics for data races [2,30,133]

(Section 2.2.1).

2.1.2.7 Tolerating Data Races

ToleRace [151] and ISOLATOR [149] detect and tolerate some concurrency errors

including “asymmetric” data races, in which one thread follows a locking discipline but

another does not. These techniques work by making local copies of shared accesses in

critical sections, and detect and tolerate conflicts when critical sections end.

20

BulkCompiler and Atom-Aid rely on custom hardware support to provide bulk-atomic

execution of dynamic regions, tolerating some effects of data races [7, 116]. Software-based

approaches can provider stronger behavioral guarantees for racy executions, but at additional

cost [139, 161].

2.1.2.8 Detecting Region Conflicts

Given the high cost of sound and precise happens-before data race detection, prior work

has sought to detect the subset of data races that may violate serializability of an execution’s

synchronization-free regions (SFR). An SFR is a sequence of dynamic instructions separated

by synchronization operations (e.g., acquire/release, fork/join, wait/notify). Figure 2.3

shows an example of SFRs. Every executed non-synchronization instruction is in exactly

one SFR.

Several techniques detect conflicts between operations in SFRs that overlap in time [56,

115,121]. SFR conflict detection yields the following guarantees: a DRF execution produces

no conflicts; any conflict is a data race; and a conflict-free execution is equivalent to a

serialization of SFRs.

Prior work called Conflict Exceptions (CE) detects conflicts between overlapping SFRs

and treats conflicts as exceptions [115]. CE achieves high performance via hardware support

for conflict detection that augments existing cache coherence mechanisms. However, its

hardware support has several drawbacks. First, it adds complexity to the cache coherence

mechanism. Second, each cache line incurs a high space overhead for storing metadata.

Third, sending larger coherence messages that include metadata leads to coherence network

congestion and requires more bandwidth. Fourth, cache evictions and synchronization

operations for regions with evictions become more expensive because of the need to preserve

21

metadata by moving it to and from memory. Fifth, requiring new hardware precludes use in

today’s systems.

DRFx detects conflicts between regions that are synchronization free but also bounded,

i.e., every region has a bounded maximum number of instructions that it may execute [121].

Bounded regions allow DRFx to use simpler hardware than CE [121, 167]. DRFx detects

conflicts among bounded regions by maintaining region buffers and Bloom filter signatures

of memory accesses [121, 167]. Detecting conflicts among bounded regions means DRFx

cannot detect all violations of SFR serializability, although it guarantees SC for conflict-free

executions. Furthermore, DRFx broadcasts the Bloom filter signatures and occasionally

the region buffers across cores, which is unscalable for large regions (e.g., SFRs) and with

increasing core counts. Like CE, DRFx is inapplicable to today’s systems because it requires

hardware changes.

IFRit detects data races by detecting conflicts between dynamically overlapping interference-

free regions (IFRs) [56]. An IFR is a region of one thread’s execution that is associated with

a particular variable, during which another thread’s read and/or write to that variable is a

data race. IFRit comprises both static and dynamic analysis. IFRit relies on whole-program

static analysis to place IFR boundaries conservatively, so IFRit is precise (i.e., no false

positives). Conservatism in placing boundaries at data-dependent branches, external func-

tions calls, and other points causes IFRit to miss some IFR conflicts that may compromise

SFR serializability [56]. This leads IFRit to focus on precisely detecting as many races as

possible, but it adds high run-time overhead.

2.1.2.9 Summary

Despite much effort, data races remain a challenge. Their occurrence is environ-

ment, input, and timing sensitive [61, 80, 99, 170]. Moreover, programmers introduce

22

data races both accidentally (e.g., when optimizing contention), and/or intentionally (for

performance) [69, 98, 133]. Unfortunately, existing sound and precise data race and re-

gion conflict detectors are impractical, relying on custom hardware or slowing programs

substantially [56, 68, 115, 167].

2.2 Memory Models

A memory consistency model (or simply a memory model) is an interface between

the software and the hardware, and defines the set of possible orders in which memory

operations can interleave and the possible values returned by a read [2, 172]. A memory

model is important since it specifies the allowed behaviors of a multithreaded program

executing under the shared memory programming model. According to Sorin et al. [172], a

good memory consistency model must possess the following properties:

1. PROGRAMMABILITY: A good model should be intuitive to use and should make

multithreaded programming (relatively) easy.

2. PERFORMANCE: A good model should allow high-performance implementations at

reasonable power and cost.

3. PORTABILITY: A good model should be flexible enough to be adopted widely and

optionally provide the ability to translate among models.

4. PRECISION: A good model should be formally defined and unambiguous.

Pervasive shared-memory programming languages (e.g., C/C++ and Java) provide weak

memory models. Strong memory models exist, but are limited by cost, complexity, and

semantics. Here we discuss the landscape and reveal the critical gap that this dissertation

fills.

23

2.2.1 Weak Memory Models

Current shared-memory programming language and hardware memory models are weak

since they provide no or poor guarantees for racy executions.

2.2.1.1 DRF0-Based Language Memory Models

DRF0 (data-race-free-0) is a memory model introduced by Adve and Hill in 1990 [5].

The motivation behind DRF0 is that consistency models weaker than sequential consis-

tency [105] (SC) (Section 2.2.2.1) are hard for programmers to understand. Thus, DRF0

guarantees SC for DRF executions. The rationale for the DRF0 memory model is that it

permits compilers and hardware to perform aggressive intra-thread optimizations, as long

as they do not arbitrarily reorder memory accesses across synchronization operations. For

DRF programs, the effects of optimizations will not be externally visible.

Current high-level programming languages such as C/C++ and Java extend the DRF0

memory model [31,118]. DRF0 (and its variants) provide SC for well-synchronized, or DRF

executions. In addition to SC, DRF0 (and its variants) provide an even stronger guarantee

than SC but only for DRF programs: serializability of SFRs [2,31,115,118] (Section 2.2.2.2).

However, for executions with data races, DRF0 provides no useful guarantees. In C/C++,

data races have undefined semantics [2, 31] creating a problem, not just in theory, but in

practice: a recent study showed that C/C++ programs with seemingly “benign” data races

may behave incorrectly due to compiler transformations or microarchitectural changes not

visible to the programmer [29]. In contrast, Java’s memory model preserves memory and

type safety despite races, but permits non-SC behaviors [118]. Unfortunately, Java’s safety

guarantees preclude important compiler optimizations [33, 163], so current Java virtual

machines (JVMs) do not actually enforce Java’s memory model [33].

24

2.2.1.2 Hardware Memory Models

Relaxed consistency. Relaxed consistency is a class of hardware memory models that

require no ordering constraints between two memory operations from the same thread

for all four combinations of load (memory read) and store (memory write) operations:

Load → Load, Load → Store, Store → Store, and Store → Load. Relaxed or weak

memory consistency models only preserve the orderings that are explicitly required by a

programmer [172]. The motivation behind this memory model is to allow more reorderings

by the compiler and the hardware to improve performance. Some examples of relaxed

consistency memory models are release consistency [79], IBM Power [157], and ARM [8].

However, using relaxed consistency memory models is complex since programmers must

understand low-level reordering issues to know where to “order” instructions. Moreover,

vendors have failed to agree on a single relaxed memory consistency model, compromising

portability [172].

Total store order. Total store order (TSO) is a memory model that allows Store→ Load

reorderings, to hide the latency of writes. Note that TSO preserves the other three constraints:

Load→ Load, Load→ Store, and Store→ Store. TSO and its variants are provided by

widely-used architectures such as x86 and SPARC [164,174]. TSO is primarily an axiomatic

description of the possible behaviors in a multicore processor with write buffers.

2.2.2 Strong Memory Models

Researchers have argued that systems must provide stronger memory models to avoid

unusably complex semantics for data races [2,41]. Adve and Boehm emphasize that systems

25

should give simple, well-defined semantics to executions with data races using hardware

and software support [2]. According to Adve and Boehm [2],

The inability to define reasonable semantics for programs with data races is not just
a theoretical shortcoming, but a fundamental hole in the foundation of our languages
and systems.

. . .

This process has exposed fundamental shortcomings in our languages and a hardware–
software mismatch. Semantics for programs that contain data races seem fundamen-
tally difficult, but are necessary for concurrency safety and debuggability. We call
upon software and hardware communities to develop languages and systems that
enforce data-race-freedom, and co-designed hardware that exploits and supports such
semantics.

Furthermore, providing such strong semantics to executions both with or without data races

would help simplify the programming language semantics [20, 115].

2.2.2.1 Sequential Consistency

Sequential consistency (SC) [105] is a memory model that requires all memory opera-

tions in an execution to appear to have executed in a global sequential order that is consistent

with the per-thread program order. This memory model is simple, as it matches the opera-

tional intuition where each read from a location sees the value of the latest write [172]. SC

preserves the order of two memory operations from the same thread for all four combinations

of load and store operations. However, many program transformations that are sequentially

valid can potentially violate SC in the presence of multiple threads, such as, reordering of

instructions in one thread can be seen by another thread as in Figure 2.2(a). As a result, SC

precludes the use of common compiler optimizations (code motion, loop transformations,

etc.) and hardware optimizations (out-of-order execution, store buffers, lockup-free caches,

etc.).

26

Much work has focused on providing SC as a memory model [4, 78, 109, 110, 122,

150, 165, 168, 178] either end-to-end (enforced relative to the original program) or for the

compiled program only. For example, hardware-based SC enforcement provides SC for

the compiled program only. However, as discussed, providing end-to-end SC requires

corresponding restrictions of reordering in the compiler in addition to the hardware, which

slows programs and/or relies on custom hardware support [4, 78, 122, 168].

Still, SC is not a particularly strong memory model, and prior work argues that “pro-

grammers do not reason about correctness of parallel code in terms of interleavings of

individual memory accesses, and sequential consistency does not prevent common sources

of concurrency bugs. . . ” [2]. Some operations that many programmers expect to execute

atomically do not execute atomically under SC (e.g., multi-access operations such as x++

and buffer[index++] = . . .). Furthermore, it is challenging for program analyses and runtime

systems to deal with all interleavings at the granularity of individual memory accesses.

2.2.2.2 SFR Serializability

An execution is region serializable if it is equivalent to some serial execution of regions

(i.e., some global order of non-interleaved regions). In the SFR serializability memory model,

all regions of code between synchronization operations appear to execute atomically and in

program order, even if they have data races. This behavior is appealing because it extends the

same guarantees to executions with races that DRF0 gives to DRF executions (Portability,

Programmability). Another advantage of SFR serializability is that compiler and hardware

optimizations are free to reorder memory accesses within SFRs (Performance). Furthermore,

architecture support alone (e.g., [115]) can ensure end-to-end SFR serializability because

compilers already respect synchronization boundaries (Portability). SFR serializability is a

27

stronger alternative memory model compared to DRF0 and SC since it ensures serializability

of SFRs even for executions with data races.

Enforcing region serializability seems inherently problematic and expensive due to

the need to support unbounded speculative execution. Moreover, trying to ensure region

serializability can lead to deadlocks or livelocks for racy executions thereby complicating the

semantics. Researchers have thus introduced a memory consistency model that treats data

races as errors, potentially throwing a consistency exception for a data race, but otherwise

ensuring region serializability [20, 115]. (Furthermore, other approaches also treat some or

all data races as errors [57, 159, 188].)

Data race exceptions. Instead of ensuring serializability, a cleaner way to deal with data

races is to detect problematic data races and halt the execution with a data race exception

when one occurs [57, 115, 121]. Problematic data races are ones that may violate a useful

semantic property, like SC [57] or SFR serializability [115]. Exceptional fail-stop semantics

for data races have several desirable benefits [115]. First, they simplify programming

language specifications because data races have clear semantics, and an execution is either

correct or it throws an exception. Second, they make software safer by limiting the possible

effects of data races. Third, they permit aggressive optimizations within SFRs that might

introduce incorrect behavior with weaker data race semantics. Fourth, they help debug

problematic data races by making them a fail-stop condition. Treating problematic data

races as exceptions requires a mechanism that dynamically detects those races precisely (no

false positives) and is efficient enough for always-on use.

Prior work called Conflict Exceptions [115] avoids the expense of detecting all happens-

before races by instead detecting conflicts between SFRs. Every SFR conflict is a true data

28

Thread 1 Thread 2

rd x

consistency
exception

lock(n)

unlock(n)

wr x

lock(m)

wr y

rd y

no consistency
exception

S
FR

S
FR

S
FR

S
FR

S
FR

rd z

Figure 2.4: Under SFRSx, an execution generates an exception only for a data race that may
violate SFR serializability.

race, but not every data race is a conflict. Conflict Exceptions (CE) executes a program and

either reports an exception on a SFR conflict or ensures serializability of SFRs. We call this

memory model SFRSx. SFRSx guarantees (1) SFR serializability for DRF executions and

(2) an exception for any non-SFR-serializable execution. Under SFRSx, an execution with a

data race may either enforce SFR serializability or generate an exception. Figure 2.4 shows

an execution with data races on two shared variables, x and y. An implementation of SFRSx

does not generate a consistency exception at the read of x because the SFRs accessing x do

not overlap. In contrast, SFRSx generates an exception at the read of y (because the SFRs

accessing y overlap), to avoid violating SFR serializability (e.g., suppose Thread 1’s SFR

later writes x or y).

CE provide SFRSx, but with significant drawbacks. CE adds hardware on top of an

already-complex MOESI cache coherence protocol to detect SFR conflicts [115]. CE

generates prohibitively high memory traffic (Section 4.6.2.3) and fundamentally relies on a

cache coherence mechanism that uses messages to eagerly update coherence permissions, to

29

exchange access metadata. CE thus requires invasive hardware customizations that makes

the design unscalable and unimplementable.

2.3 Checking Atomicity of Programmer-Defined Regions

SFR serializability ensures serializability of regions demarcated by synchronization

operations. A higher-level semantic property of a program is serializability of programmer-

defined regions that are meant to be atomic. Such atomic regions are also referred to as

transactions. While checking for region conflicts suffice to provide SFR serializability, it is

important to check serializability of atomic regions rather than conflict freedom since region

conflicts are not necessarily errors according to the program semantics. In the following, we

briefly discuss about atomicity and the related work.

2.3.1 Overview

Atomicity is a fundamental non-interference property that eases reasoning about program

behavior in multithreaded programs. For programming language semantics, atomicity is

synonymous with serializability: program execution must be equivalent to some serial

execution of atomic arbitrarily-sized regions and non-atomic instructions. That is, the code

block’s execution appears not to be interleaved with statements from other concurrently

executing threads. This effectively means that the execution should be equivalent to one

for which intermediate updates from within an atomic section are not externally visible

until the execution of the atomic section is complete. Programmers can thus reason about

atomic regions without considering effects of other threads. In some sense, atomicity can be

considered to be consistency of the program at a semantic level.

While much work has considered how to detect and prevent data races (Section 2.1),

ensuring data-race-freedom does not guarantee semantic correctness—in particular, it does

30

not guarantee atomicity of regions that the programmer intended to be atomic. Except for

the fact that data races are often indicators of atomicity violations, they are complementary

errors [73, 84, 113]. Consider the following example from prior work [73]:

class Set {
final Vector elems = new Vector();
atomic void add(Object x) { // intended to be atomic
if (!elems. contains(x)) {
elems.add(x);

}
}

}

class Vector {
synchronized void add(Object o) { ... }
synchronized boolean contains(Object o) { ... }

}

Note that the atomic keyword is used just to indicate the programmer’s intention that the

program will always execute Set.add() atomically. The atomic keyword has no effect on

program semantics (e.g., the language and runtime system do not enforce atomicity based

on the atomic keyword).

The method Set.add() is data race free: the methods called from Set.add() synchronize

on the this object.4 However, it is possible for Set.add() to violate atomicity: if two threads

call Set.add(x) with parameters referencing the same object, it is possible for the referenced

object to be added to the set twice—an unserializable outcome (i.e., an outcome impossible

if atomic regions are serialized).

Atomicity specification. An atomicity specification denotes particular code regions that

are expected to execute atomically. Program analysis can check atomicity by checking

whether a program conforms to the atomicity specification. A violation indicates that the

4A synchronized method executes its method body in a critical section that acquires the lock of this object.

31

program or specification is wrong (or both). Writing an atomicity specification may seem

burdensome, but prior work shows that specifications can be derived mostly automati-

cally [67, 73].

Prior work finds that a reasonable starting point for an atomicity specification is to

assume that all methods and/or synchronization blocks are atomic [67, 72, 73]. From there,

programmers can iteratively apply an atomicity-checking analysis to refine the specification.

In particular, programmers investigate each reported atomicity violation and decide whether

(1) it is a true atomicity violation, which needs to be fixed; or (2) the offending method or

synchronization block is not intended to be atomic, in which case the atomicity specification

needs to be refined.

2.3.2 Detecting Atomicity Violations

This section describes static and dynamic analyses related to detecting atomicity vio-

lations, including the current state-of-art called Velodrome [73].

Static analyses. Similar to detecting data races, static approaches can check all inputs

soundly, but they are imprecise, and in practice they do not scale well to large programs nor

to dynamic language features such as dynamic class loading. Type systems can help check

atomicity but require a combination of type inference and programmer annotations [72, 74].

Model checking does not scale well to large programs because of state space explosion [62,

65, 90]. Static approaches are well suited to analyzing critical sections but not wait–notify

synchronization.

32

Checking conflict serializability. Checking serializability efficiently is impractical [140],

so existing analyses check properties sufficient for serializability such as conflict serializ-

ability. An execution is conflict serializable if and only if the graph of dependences among

executing transactions5 is acyclic.

Velodrome is a state-of-the-art dynamic analysis that checks conflict serializability

soundly and precisely [73]. Each code region that is supposed to execute atomically

(according to the atomicity specification) executes as a transaction. Other accesses each

execute as a unary transaction. Velodrome’s dynamic analysis builds a graph of transactions

at run time. When a new (regular or unary) transaction starts, the analysis adds an intra-

thread dependence edge from the thread’s prior transaction to the new transaction. At

each access, the analysis detects cross-thread data dependences: write–read, read–write,

and write–write dependences between threads, as well as release–acquire synchronization

dependences. Velodrome adds cross-thread dependence edges between transactions as the

program executes. It detects cycles in the graph; a cycle is a sound and precise condition for

a conflict serializability violation.

Velodrome slows programs by 12.7X in prior work [73] and 6.1X using our Velodrome

implementation and experiments (Section 5.6.3). These slowdowns are largely due to

tracking cross-thread dependences soundly and precisely, which has two main costs. First,

tracking dependences involves maintaining the last transaction to write, and each thread’s

last transaction to read, each variable. Second, to preserve correctness in the face of accesses

potentially involved in data races, the analysis must use atomic operations and memory

fences to ensure that an access and its corresponding analysis execute together atomically.

Atomic operations and memory fences slow execution by limiting reordering and serializing

5A transaction represents a dynamically executing atomic region. Each non-atomic access executes as a
unary transaction.

33

in-flight instructions and by triggering remote cache misses. It is especially expensive for

shared, mostly read-only variables, since metadata updates lead to remote cache misses that

could otherwise be avoided.

Farzan and Parthasarathy introduce a dynamic serializability-checking analysis based on

finding cycles among transactions [63]. Their analysis bounds space overhead optimally so

space is not proportional to the length of the run, by summarizing the dependence graph as

transactions finish.

While Velodrome detects cycles online as the program executes, Farzan and Parthasarathy’s

analysis detects cycles offline, i.e., after the execution finishes. They compare their summa-

rized dependence graph to an unsummarized dependence graph—but this unsummarized

graph does not use garbage collection (GC), so its space overhead is unavoidably propor-

tional to the length of the run.

Other dynamic analyses. Some dynamic approaches are predictive, so they detect atom-

icity violations not only for the current execution’s thread interleavings, but also for other

interleavings that could have executed [169,173]. Predictive analyses tend to be considerably

more expensive than non-predictive analysis, particularly as they aim to provide higher

coverage and less imprecision.

Wang and Stoller propose dynamic analyses for checking atomicity based on detecting

unserializable patterns [184, 185]. These approaches are predictive since they aim to find

potential violations in other executions, but this process is inherently imprecise, so they may

report false positives.

Atomizer is a dynamic atomicity checker that uses a variation of the lockset algo-

rithm [158] to determine shared variables that can have racy accesses, and monitors those

34

variables for potential atomicity violations. Atomizer reports false positives since it relies

on the locket algorithm.

Other alternatives. HAVE combines static and dynamic analysis to obtain benefits of

both approaches [45]. Because HAVE speculates about untaken branches, it can report false

positives.

Several approaches infer an atomicity specification automatically [47, 84, 113, 175, 189],

which is useful because specifications are not usually available. However, these approaches

are inherently unsound and imprecise. Furthermore, many of these approaches add high

overhead to track cross-thread dependences, e.g., AVIO slows programs by more than an

order of magnitude [113].

Prior work exposes atomicity violations by making them more likely to occur [142, 143]

and thus more likely for a non-predictive analysis to detect. Exposing atomicity violations

is complementary to checking atomicity.

Transactional memory enforces programmer-specified atomicity annotations by specula-

tively executing atomic regions as transactions, which are rolled back if a region conflict

occurs [91]. Custom hardware–based TM approaches offer low overhead [128], but any

real hardware support is likely to be limited and require software TM. Software TM sys-

tems (STM) suffer from two main problems: poor performance and weak semantics [39].

Supporting strong atomicity semantics using STM affects the performance even more.

Atom-Aid relies on custom hardware to execute regions atomically and to detect some

atomicity violations [116]. Static analysis can infer needed locks automatically from an

atomicity specification (e.g., [46]). The inferred locks are inherently imprecise, leading to

overly conservative locking.

35

Chapter 3: Valor: Providing RSx Efficiently in Software

3.1 Introduction

Memory models of shared-memory programming languages such as C/C++ and Java

provide virtually no guarantees for executions with data races [2, 31, 118]. Chapters 1

and 2 highlight the the complexity and risk associated with data races. Such poor (zero or

weak) semantics for racy program executions is unsatisfactory, especially in the context of

safety-critical applications. We and other researchers have argued that this lack of semantic

guarantees create an urgent need to strengthen memory models [2, 30].

The key to dealing with the consequences of data races, regardless of the memory

consistency model, is providing an efficient mechanism for identifying the conflicting

memory accesses that make up a data race. Efficient system support for conflict detection is

essential to comprehensible language specifications [2,20,42,115,121,159,167] and simple

execution models [85, 86, 88], as well as system support such as debugging [56, 73] and

determinism [13, 53, 93, 180].

SFRSx is a desirable strong memory model that provides several benefits to ensure strong

semantics for all program executions, such as simplifying programming and debugging,

and allowing flexibility in programming language implementations, including the freedom

to rearrange operations in the compiler and architecture [2, 20, 41, 139]. To that extent,

36

this chapter focuses on a novel, software-only solution to provide SFRSx to all program

executions.

Motivation. One way to deal with data races is to provide exceptional, fail-stop semantics,

which have several desirable benefits [115] (Section 2.2.2). The secondary motivation for our

work is that without any existing, fully precise, high-performance software data race detector

or region conflict detector (Section 2.1), race detection is largely limited to debugging and in-

house testing [120]. An efficient, precise data race detector is thus invaluable for finding and

fixing data races, both before and after deployment. During development, high overheads

are problematic, wasting limited resources [81]. Developers shy away from using intrusive

tools that do not allow them to test realistic program executions [120]. Detecting data

races during testing and debugging is an essential step in producing reliable software and

doing so presents several important challenges. Moreover, the manifestation of a data

race is dependent on an execution’s inputs, environments, and thread interleavings, and

data races in deployed systems may cause yet-unseen failures, even in thoroughly tested

programs [107, 145, 179]. A data race may not occur in hours of program execution [196],

sometimes requiring weeks to reproduce, diagnose, and fix if it is contingent on specific

environmental conditions [80, 112, 179]. Detecting and debugging such data races requires

analyzing production executions, making performance a key constraint. In this work, we

develop a mechanism that meets this requirement by detecting problematic races efficiently

and precisely.

Existing work. Sound and precise dynamic data race detection enables a language to

define the semantics of data races by throwing an exception for every data race. Section 2.1

discusses existing work related to detecting data races. The precision and scalability

37

limitations make static approaches unsuitable for detecting data races and providing a strong

execution model. Unfortunately, existing sound and precise data race and region conflict

detectors are impractical, relying on custom hardware or slowing programs substantially [56,

115, 167].

The next section introduces our software-only analyses (like IFRit [56]) that detect

conflicts between SFRs (like CE [115]).

3.2 Efficient Region Conflict Detection

The goal of this work is to develop a region conflict detection mechanism that is useful

for providing guarantees to a programming language implementation, and is efficient enough

for always-on use. The rest of this chapter uses “region” and “SFR” interchangeably. In

addition to SFRs, we show that our proposed region conflict detection mechanism is also

applicable to regions that are only demarcated by synchronization “release” operations

(Section 3.5.1).

We explore two different approaches for detecting region conflicts. The first approach is

called FastRCD, which, like FastTrack [68], uses epoch optimizations and eagerly detects

conflicts at conflicting accesses. We have developed FastRCD in order to better understand

the characteristics and performance of a region conflict detector based on FastTrack’s

approach. Despite FastRCD being a natural extension of the fastest known sound and

precise dynamic data race detection analysis, Section 3.9.2 experimentally shows that Fast-

RCD’s need to track last readers imposes overheads that are similar to FastTrack’s and are

too high for always-on use.

38

In response to FastRCD’s high overhead, we develop Valor,6 which is the main con-

tribution of this chapter. Valor detects write–write and write–read conflicts eagerly as in

FastRCD. The key to Valor is that it detects read–write conflicts lazily, effectively avoiding

the high cost of tracking last-reader information. Lazy conflict detection is more efficient

than eager conflict detection because it need not track last reader information. Instead, in

Valor, each thread logs read operations locally. At the end of a region, the thread validates

its read log, checking for read–write conflicts between its reads and any writes in other

threads’ ongoing regions. By lazily checking for these conflicts, Valor can provide fail-stop

semantics without hardware support and with overheads far lower than even our optimized

FastRCD implementation.

Section 3.3 describes the details of FastRCD and the fundamental sources of high

overhead that eager conflict detection imposes. Section 3.4 then describes Valor and

the implications of lazy conflict detection. Sections 3.5 and 3.6 describe extensions and

optimizations for FastRCD and Valor. We prove that Valor is a sound and precise region

conflict detector in Section 3.7. We discuss implementation details in Section 3.8 and present

results in Section 3.9. We conclude in Section 3.10.

3.3 FastRCD: Detecting Conflicts Eagerly in Software

This section presents FastRCD, a new software-only dynamic analysis for eagerly

detecting region conflicts. FastRCD reports a conflict when a memory access executed by

one thread conflicts with a memory access that was executed by another thread in a region

that is ongoing. It provides essentially the same semantics as CE [115] but without hardware

support.

6Valor is an acronym for Validating anti-dependences lazily on release.

39

In FastRCD, each thread keeps track of a clock c that starts at 0 and is incremented at

every region boundary. This clock is analogous to the logical clocks maintained by FastTrack

to track the happens-before relation [68, 104].

FastRCD uses epoch optimizations based on FastTrack’s optimizations [68] (Sec-

tion 2.1.2.2) for efficiently tracking read and write metadata. It keeps track of the single last

region to write each shared variable, and the last region or regions to read each shared vari-

able. To do so, FastRCD performs the following steps. For each shared variable x, FastRCD

maintains x’s last writer region using an epoch c@t: the thread t and clock c that last wrote

to x. When x has no concurrent reads from overlapping regions, FastRCD represents the last

reader as an epoch c@t. Otherwise, since there is no ordering among concurrent readers,

FastRCD keeps track of last readers in the form of a read map, containing one entry per

thread that maps threads to the clock values c of their last read to x. We use the following

notations to help with exposition:

clock(T) – Returns the current clock c of thread T.

epoch(T) – Returns an epoch c@T, where c represents the ongoing region in thread T.

Wx – Represents last writer information for variable x in the form of an epoch c@t.

Rx – Represents a read map for variable x of entries t→ c. Rx[T] returns the clock value c

when T last read x (or 0 if not present in the read map).

Our algorithms use T for the current thread, and t and t’ for other threads. For clarity, we

use a common notation for read epochs and read maps; a one-entry read map is a read epoch,

and an empty read map is the initial-state epoch 0@0.

Algorithms 1 and 2 show FastRCD’s analysis at program writes and reads, respectively.

At a write by thread T to program variable x, the analysis first checks if the last writer epoch

40

matches the current epoch, indicating an earlier write in the same region, in which case the

analysis does nothing (line 1). Otherwise, it checks for conflicts with the previous write

(lines 3–4) and reads (lines 6–9). Finally, it updates the metadata to reflect the current write

(lines 11–12).

Algorithm 1 WRITE [FastRCD]: thread T writes variable x
1: ifWx 6= epoch(T) then . Write in same region
2: let c@t←Wx
3: if c = clock(t) then . t’s region is ongoing
4: Conflict! . Write–write conflict detected
5: end if
6: for all t’→ c’ ∈Rx do
7: if c’ = clock(t’) then
8: Conflict! . Read–write conflict detected
9: end if

10: end for
11: Wx← epoch(T) . Update write metadata
12: Rx← /0 . Clear read metadata
13: end if

At a read, the instrumentation first checks for an earlier read in the same region, in which

case the analysis does nothing (line 1). Otherwise, it checks for a conflict with a prior write

by checking if the last writer thread t is still executing its region c (lines 3–5). Finally, the

instrumentation updates T’s clock in the read map (line 6).

Algorithm 2 READ [FastRCD]: thread T reads variable x
1: ifRx[T] 6= clock(T) then . Read in same region
2: let c@t←Wx
3: if c = clock(t) then . t’s region is ongoing
4: Conflict! . Write–read conflict detected
5: end if
6: Rx[T]← clock(T) . Update read map
7: end if

41

FastRCD’s analysis at a read or write must execute atomically. Whenever the analysis

needs to update x’s metadata (Wx and/or Rx), it “locks” x’s metadata for the duration of

the action (not shown in the algorithms). Because the analyses presented in Algorithms 1

and 2 read and write multiple metadata words, the analyses are not amenable to a “lock-free”

approach that updates the metadata using a single atomic operation.7 Note that the analysis

and program memory access need not execute together atomically because the analysis need

not detect the order in which conflicting accesses occur, just that they conflict.

FastRCD soundly and precisely detects every region conflict just before the conflict-

ing access executes. FastRCD guarantees that region-conflict-free executions are region

serializable, and that every region conflict is a data race. It suffers from high overheads (Sec-

tion 3.9.2) because it unavoidably performs expensive analysis at reads. Multiple threads’

concurrent regions commonly read the same shared variable; updating per-variable metadata

at program reads leads to communication and synchronization costs not incurred by the

original program execution.

3.4 Valor: Detecting Read–Write Conflicts Lazily

This section describes the design of Valor, a novel, software-only region conflict detector

that eliminates the costly analysis on read operations that afflicts FastRCD (and FastTrack).

Like FastRCD, Valor reports a conflict when a memory access executed by one thread

conflicts with a memory access previously executed by another thread in a region that is

ongoing. Valor soundly and precisely detects conflicts that correspond to data races and

7Recent Intel processors provide Transactional Synchronization Extensions (TSX) instructions, which
support multi-word atomic operations via hardware transactional memory [193]. However, recent work shows
that existing TSX implementations incur high per-transaction costs [125, 153].

42

provides the same semantic guarantees as FastRCD. Valor detects write–read and write–

write conflicts exactly as in FastRCD, but detects read–write conflicts differently. Each

thread locally logs its current region’s reads and detects read–write conflicts lazily when

the region ends. Valor eliminates the need to track the last reader of each shared variable

explicitly, avoiding high overhead.

3.4.1 Overview

During a region’s execution, Valor tracks each shared variable’s last writer only. Last

writer tracking is enough to eagerly detect write–write and write–read conflicts. Valor does

not track each shared variable’s last readers, so it cannot detect a read–write conflict at the

conflicting write. Instead, Valor detects a read–write conflict lazily, when the (conflicting

read’s) region ends.

This section presents Valor so that it tracks each shared variable’s last writer using

an epoch, just as for FastRCD. Section 3.6 presents an alternate design of Valor that

represents the last writer differently using ownership information (for implementation

reasons). Conceptually, the two designs work in the same way, e.g., the examples in this

section apply to the design in Section 3.6.

Write–write and write–read conflicts. Figure 3.1(a) shows an example execution with a

write–read conflict on the shared variable x. Dashed lines indicate region boundaries, and

the labels j-1, j, k-1, etc. indicate threads’ clocks, incremented at each region boundary. The

grey text above and below each program memory access (e.g., 〈v,p@T0〉) shows x’s last

writer metadata. Valor stores a tuple 〈v,c@t〉 that consists of a version, v, which the analysis

increments on a region’s first write to x, and the epoch c@t of the last write to x. Valor needs

versions to detect conflicts precisely, as we explain shortly.

43

Thread T1 Thread T2
j-1

j

wr x
<v+1, j@T1>

wr/rd x

k-1

k

conflict
detected

<v, p@T0>

<v+1, j@T1>

(a)

Thread T1 Thread T2

j-1

j

rd x
<v, p@T0>

wr x

j+1

k-1

k

conflict on x
detected

<v, p@T0>

<v, p@T0>

<v+1, k@T2>

log <x, v>

read
validation

(b)

Figure 3.1: (a) Like FastRCD, Valor eagerly detects a conflict at T2’s access because the
last region to write x is ongoing. (b) Unlike FastRCD, Valor detects read–write conflicts
lazily. During read validation, T1 detects a write to x since T1’s read of x.

In the example, T1’s write to x triggers an update of its last writer metadata to 〈v+1, j@T1〉.

(The analysis does not detect a write–write conflict at T1’s write because the example as-

sumes that T0’s region p, which is not shown, has ended.) At T2’s write or read to x,

the analysis detects that T1’s current region is j and that x’s last writer epoch is j@T1.

These conditions imply that T2’s access conflicts with T1’s ongoing region, so T2 reports a

conflict.

Read–write conflicts. Figure 3.1(b) shows an example read–write conflict. At the read of

x, T1 records the read in its thread-local read log. A read log entry, 〈x,v〉, consists of the

address of variable x and x’s current version, v.

T2 then writes x, which is a read–write conflict because T1’s region j is ongoing.

However, the analysis cannot detect the conflict at T2’s write, because Valor does not

track x’s last readers. Instead, the analysis updates the last writer metadata for x, including

incrementing its version to v+1.

44

When T1’s region j ends, Valor validates j’s reads to lazily detect read–write conflicts.

Read validation compares each entry 〈x,v〉 in T1’s read log with x’s current version. In the

example, x’s version has changed to v+1, and the analysis detects a read–write conflict. Note

that even with lazy read–write conflict detection, Valor guarantees that each conflict-free

execution is region serializable. In contrast to eager detection, Valor’s lazy detection cannot

deliver precise exceptions. An exception for a read–write conflict is only raised at the end

of the region executing the read, not at the conflicting write, which Section 3.4.3 argues is

acceptable for providing strong behavior guarantees.

Valor requires versions. Tracking epochs alone is insufficient: Valor’s metadata must

include versions. Let us assume for exposition’s sake that Valor tracked only epochs and

not versions, and it recorded epochs instead of versions in read logs, e.g., 〈x,p@T0〉 in

Figure 3.1(b). In this particular case, Valor without versions correctly detects the read–write

conflict in Figure 3.1(b).

However, in the general case, Valor without versions is either unsound or imprecise.

Figures 3.2(a) and 3.2(b) illustrate why epochs alone are insufficient. In Figure 3.2(a), no

conflict exists. The analysis should not report a conflict during read validation, because even

though x’s epoch has changed from the value recorded in the read log, T1 itself is the last

writer.

In Figure 3.2(b), T1 is again the last writer of x, but in this case, T1 should report a

read–write conflict because of T2’s intervening write. (No write–write conflict exists: T2’s

region k ends before T1’s write.) However, using epochs alone, Valor cannot differentiate

these two cases during read validation. Note that there is no write–write conflict because

T1’s write occurs after T2’s region k completes.

45

Thread T1 Thread T2

j-1

j

rd x
<v, p@T0>

j+1

k-1

k

no conflict

<v, p@T0>

<v+1, j@T1>

wr x
<v, p@T0>

log <x, v>

k+1

read
validation

(a)

Thread T1 Thread T2

j-1

j

rd x
<v, p@T0>

wr x

j+1

k-1

k

conflict
detected

<v, p@T0>

<v, p@T0>

<v+1, k@T2>

<v+2, j@T1>

wr x
<v+1, k@T2>

log <x, v>

k+1

read
validation

(b)

Figure 3.2: Valor relies on versions to detect conflicts soundly and precisely. Associating
only epoch information with writes can lead to false positives in inferring read–write region
conflicts lazily. (b) Without tracking versions, read validation in thread T1 is unaware of the
remote write and cannot detect a read–write conflict lazily.

Thus, Valor uses versions to differentiate cases like Figures 3.2(a) and 3.2(b), in which

remote writes may have interleaved between a region’s read followed by a write to the same

variable. Read validation detects a conflict for x if (1) its version has changed and its last

writer thread is not the current thread or (2) its version has changed at least twice,8 definitely

indicating intervening write(s) by other thread(s).

Read validation using versions detects the read–write conflict in Figure 3.2(b). Although

the last writer is the current region (j@T1), the version has changed from v recorded in the

read log to v+2, indicating an intervening write from a remote thread. Read validation

(correctly) does not detect a conflict in Figure 3.2(a) because the last writer is the current

region, and the version has only changed from v to v+1.

8Note that a region increments x’s version only the first time it writes to x (line 2 in Algorithm 3).

46

The rest of this section describes the Valor algorithm in detail: its actions at reads and writes

and at region end, and the guarantees it provides.

3.4.2 Analysis Details

Our presentation of Valor uses the following notations, some of which are the same as or

similar to FastRCD’s notations:

clock(T) – Represents the current clock c of thread T.

epoch(T) – Represents the epoch c@T, where c is the current clock of thread T.

Wx – Represents last writer metadata for variable x, as a tuple 〈v,c@t〉 consisting of the

version v and epoch c@t.

T.readLog – Represents thread T’s read log. The read log contains entries of the form

〈x,v〉, where x is the address of a shared variable and v is a version. The read log

affords flexibility in its implementation and it can be implemented as a sequential

store buffer (permitting duplicates) or as a set (prohibiting duplicates).

As in Section 3.3, we use T for the current thread, and t and t’ for other threads.

Analysis at writes. Algorithm 3 shows the analysis that Valor performs at a write. It

does nothing if x’s last writer epoch matches the current thread T’s current epoch (line 2),

indicating that T has already written to x. Otherwise, the analysis checks for a write–write

conflict (lines 3–4) by checking if c = clock(t), indicating that x was last written by an

ongoing region in another thread (note that this situation implies t 6= T). Finally, the analysis

updatesWx with an incremented version and the current thread’s epoch (line 6).

47

Algorithm 3 WRITE [Valor]: thread T writes variable x
1: let 〈v,c@t〉 ←Wx
2: if c@t 6= epoch(T) then . Write in same region
3: if c = clock(t) then
4: Conflict! . Write–write conflict detected
5: end if
6: Wx← 〈v+1,epoch(T)〉 . Update write metadata
7: end if

Analysis at reads. Algorithm 4 shows Valor’s read analysis. The analysis first checks

for a conflict with a prior write in another thread’s ongoing region (lines 2–3). Then, the

executing thread adds an entry to its read log (line 5). The new entry consists of x’s address

and its current version v.

Algorithm 4 READ [Valor]: thread T reads variable x
1: let 〈v,c@t〉 ←Wx
2: if t 6= T ∧ c = clock(t) then
3: Conflict! . Write–read conflict detected
4: end if
5: T.readLog← T.readLog ∪ {〈x,v〉}

Unlike FastRCD’s analysis at reads (Algorithm 2), which updates FastRCD’s read map

Rx, Valor’s analysis at reads does not update any shared metadata. Valor thus avoids the

synchronization and communication costs that FastRCD incurs updating read metadata.

Analysis at region end. Valor detects read–write conflicts lazily at region boundaries, as

shown in Algorithm 5. For each entry 〈x,v〉 in the read log, the analysis compares v with x’s

current version v’. Differing versions are a necessary but insufficient condition for a conflict.

48

If x was last written by the thread ending the region, then a difference of more than one (i.e.,

v’ ≥ v+2) is necessary for a conflict (line 3).

Algorithm 5 REGION END [Valor]: thread T executes region boundary
1: for all 〈x,v〉 ∈ T.readLog do
2: let 〈v’,c@t〉 ←Wx
3: if (v’ 6= v ∧ t 6= T) ∨ v’ ≥ v + 2 then
4: Conflict! . Read–write conflict detected
5: end if
6: end for
7: T.readLog← /0

We note that when Valor detects a write–write or write–read conflict, it is not necessarily

the first conflict to occur: there may be an earlier read–write conflict waiting to be detected

lazily. To report such read–write conflicts first, Valor triggers read validation before reporting

a detected write–write or write–read conflict. As Section 3.4.3 explains, Valor can validate

reads at any point to detect outstanding read–write conflicts, and does so before sensitive

operations like system calls and I/O.

Atomicity of analysis operations. Similar to FastTrack and FastRCD, Valor’s analysis

at writes, reads, and region boundaries must execute atomically in order to avoid missing

conflicts and corrupting analysis metadata. Unlike FastTrack and FastRCD, Valor can use a

lock-free approach because the analysis accesses a single piece of shared state,Wx. The

write analysis updatesWx (line 6 in Algorithm 3) using an atomic operation (not shown).

If the atomic operation fails because another thread updates Wx concurrently, the write

analysis restarts from line 1. At reads and at region end, the analysis does not update shared

state, so it does not need atomic operations.

49

3.4.3 Providing Valor’s Guarantees

Like FastRCD, Valor soundly and precisely detects region conflicts. Section 3.7 proves

that Valor is sound and precise.

Since Valor detects read–write conflicts lazily, it cannot provide precise exceptions. A

read–write conflict will not be detected at the write, but rather at the end of the region that

performed the read.

Deferred detection does not compromise Valor’s semantic guarantees as long as the

effects of conflicting regions do not become externally visible. A region that performs

a read that conflicts with a later write can behave in a way that would be impossible in

any unserializable execution. We refer to such regions as “zombie” regions, borrowing

terminology from software transactional memory (STM) systems that experience similar

issues by detecting conflicts lazily [88]. To prevent external visibility, Valor must validate

a region’s reads before all sensitive operations, such as system calls and I/O. Similarly,

a zombie region might never end (e.g., might get stuck in an infinite loop), even if such

behavior is impossible under any region serializable execution. To account for this possibility,

Valor must periodically validate reads in a long-running region. Other conflict and data

race detectors have detected conflicts asynchronously [54, 121, 167], providing imprecise

exceptions and similar guarantees.

In an implementation for a memory- and type-unsafe language such as C or C++, a

zombie region could perform arbitrary behavior such as corrupting arbitrary memory. This

issue is problematic for lazy STMs that target C/C++, since a transaction can corrupt memory

arbitrarily, making it impossible to preserve serializability [51]. The situation is not so dire

for Valor, which detects region conflicts in order to throw conflict exceptions, rather than

to preserve region serializability. As long as a zombie region does not actually corrupt

50

Valor’s analysis state, read validation will be able to detect the conflict when it eventually

executes—either when the region ends, at a system call, or periodically (in case of an infinite

loop).

Our implementation targets a safe language (Java), so a zombie region’s possible effects

are safely limited.

3.5 Extending the Region Conflict Detectors

This section describes extensions that apply to both our proposed software-only region

conflict detectors, FastRCD and Valor.

3.5.1 Demarcating Regions

The descriptions of FastRCD and Valor so far assumed that regions are demarcated by

all synchronization operations, i.e., SFRs (Section 2.1). This is in tune with our goal of

providing the SFRSx memory model. However, making regions larger helps detect more

data races and can potentially help amortize fixed per-region costs. We argue that regions

should be as large as possible, as long as any region conflict is guaranteed to be a data

race. We observe that it is also correct to bound regions only at synchronization release

operations (e.g., lock release, monitor wait, and thread fork) because region conflicts are still

guaranteed to be true data races. We call these regions release-free regions (RFRs). Using

RFRs as regions still allow FastRCD and Valor to soundly provide the SFRSx memory

model.

Figure 2.3 showed an example of SFRs. Figure 3.3 illustrates the difference between

SFRs and RFRs. We note that the boundaries of SFRs and RFRs are determined dynamically

(at run time) by the synchronization operations that execute, as opposed to being determined

statically at compile time. An RFR is at least as large as an SFR, so an RFR conflict detector

51

unlock(...);
...
unlock(...);
...
...
lock(...);
...
lock(...);
...
unlock(...);

SFR

RFR

SFR

SFR

RFRSFR

Figure 3.3: Synchronization- and release-free regions.

detects at least as many conflicts as an SFR conflict detector (as illustrated in Figures 3.4(a)

and 3.4(b)). Larger regions potentially reduce fixed per-region costs, particularly the cost of

updating writer metadata on the first write in each region.

There are useful analogies between RFR conflict detection and prior work. Happens-

before data race detectors increment their epochs at release operations only [68, 146], and

some prior work extends redundant instrumentation analysis past acquire, but not release,

operations [71].

3.5.2 Correctness of RFR Conflict Detection

In this section, we prove that RFR conflicts correspond to true data races that can

potentially violate region serializability. Recall that Valor and FastRCD define a region

conflict as an access executed by one thread that conflicts with an already-executed access

by another thread in an ongoing region. This definition is in contrast to an overlap-based

region conflict definition that reports a conflict whenever two regions that contain conflicting

accesses overlap at all. Both of these definitions support conflict detection between SFRs

with no false positives. However, only the definition that we use for Valor and Fast-

RCD supports conflict detection between RFRs without false data races; an overlap-based

52

Thread T1 Thread T2

j

j+1

wr x
<j+1@T1>

wr/rd x

j+2

k

k+1

<j+1@T1> no conflict

unlock(l);

lock(m);

unlock(m);

lock(l);

(a)

Thread T1 Thread T2

j

j+1

wr x
<j+1@T1>

wr/rd x

j+2

k

<j+1@T1> conflict
detected

unlock(l);

lock(m);

unlock(m);

lock(l);

(b)

Figure 3.4: Detecting conflicts among RFRs allow more conflicts to be detected than SFRs,
which are also true data races. (a) SFR j+1 in T1 has finished by the time T2 accesses x,
and so no conflict is detected. (b) The same interleaving but with RFRs as regions is able to
detect the conflict.

definition of RFR conflicts would yield false races. In the following, we prove the absence

of false data races for our RFR conflict detection scheme.

RFR conflicts are data races. We prove the following theorem which applies to all of

our proposed region conflict detectors:

Theorem 1. Every release-free region (RFR) conflict is a true data race.

Proof. We prove this claim by contradiction. Suppose that an RFR conflict exists in a DRF

execution. Recall that, by definition, an RFR conflict exists when an access conflicts with

another access executed by an ongoing RFR. Without loss of generality, we assume that a

read by thread T2 conflicts with a write in an ongoing RFR in T1:

Thread T1 Thread T2

wr x

rd x

53

where the dashed line represents the end of the RFR that contains wr x.

Because we have assumed that the execution is DRF, T1’s write must happen before

T2’s read:

wr x≺HB rd x

where ≺HB is the happens-before relation, a partial order that is the union of program order

(i.e., intra-thread order) ≺PO and synchronization order ≺SO [104, 118].

Since wr x and rd x execute on different threads, they must be ordered in part by ≺SO.

Since≺SO orders only synchronization operations, not ordinary reads and writes, wr x and rd

x must also be ordered in part by ≺PO. Furthermore, ≺SO can only order a release operation

before an acquire operation (i.e., rel ≺SO acq). Thus, there must exist a release operation rel

and an acquire operation acq such that

wr x≺PO rel≺SO acq≺HB rd x

Note that acq and rd x may be executed by different threads and/or be ordered by additional

operations, so we cannot say anything more specific than acq≺HB rd x.

The above ordering implies that rel is executed by T1 and that rel≺HB rd x. Thus rd x

does not overlap with the RFR that contains wr x, contradicting the initial assumption of an

RFR conflict.

3.5.3 Reporting Conflicting Sites

When a program executing under the “region conflict exception” memory model gen-

erates an exception, developers may want to know more about the conflict. We extend

FastRCD and Valor to (optionally) report the source-level sites, which consist of the method

and bytecode index (or line number), of both accesses involved in a conflict.

54

Data race detectors such as FastTrack report sites involved in data races by recording the

access site alongside every thread–clock entry. Whenever FastTrack detects a conflict, it

reports the corresponding recorded site as the first access and reports the current thread’s

site as the second access. Similarly, FastRCD can record the site for every thread–clock

entry, and reports the corresponding site for a region conflict.

By recording sites for the last writer, Valor can report the sites for write–write and

write–read conflicts. To report sites for read–write conflicts, Valor stores the read site with

each entry in the read log. When it detects a conflict, Valor reports the conflicting read log

entry’s site and the last writer’s site.

3.6 Alternate Metadata and Analysis for Valor

As presented in the last two sections, Valor maintains an epoch c@t (as well as a version

v) for each variable x. An epoch enables a thread to query whether an ongoing region has

written x. An alternate way to support that query is to track ownership: for each variable

x, maintain the thread t, if any, that has an ongoing region that has written x. This section

proposes an alternate design for Valor that tracks ownership instead of using epochs. For

clarity, the rest of this chapter refers to the design of Valor described in Section 3.4 as

Valor-E (Epoch) and the alternate design introduced here as Valor-O (Ownership).

We implement and evaluate Valor-O for implementation-specific reasons: (1) our imple-

mentation targets IA-32 (Section 3.8); (2) metadata accesses must be atomic (Section 3.4.2);

and (3) Valor-O enables storing metadata (ownership and version) in 32 bits.

We do not expect either design to perform better in general. Valor-O consumes less space

and uses slightly simpler conflict checks, but it incurs extra costs to maintain ownership: in

55

order to clear each written variable’s ownership at region end, each thread must maintain a

“write set” of variables written by its current region.

Metadata representation. Valor-O maintains a last writer tuple 〈v, t〉 for each shared

variable x. The version v is the same as Valor-E’s version. The thread t is the “owner” thread,

if any, that is currently executing a region that has written x; otherwise t is φ .

Analysis at writes. Algorithm 6 shows Valor-O’s analysis at program writes. If T is

already x’s owner, it can skip the rest of the analysis since the current region has already

written x (line 2). Otherwise, if x is owned by a concurrent thread, it indicates a region

conflict (lines 3–4). T updates x’s write metadata to indicate ownership by T and to increment

the version number (line 6).

Algorithm 6 WRITE [Valor-O]: thread T writes variable x
1: let 〈v, t〉 ←Wx
2: if t 6= T then . Write in same region
3: if t 6= φ then
4: Conflict! . Write–write conflict detected
5: end if
6: Wx← 〈v+1,T〉 . Update write metadata
7: T.writeSet← T.writeSet ∪ {x}
8: end if

A thread relinquishes ownership of a variable only at the next region boundary. To

keep track of all variables owned by a thread’s region, each thread T maintains a write set,

denoted by T.writeSet (line 7), which contains all shared variables written by T’s current

region.

56

Analysis at reads. Algorithm 7 shows Valor-O’s analysis at program reads, which checks

for write–read conflicts by checking x’s write ownership (lines 2–3), but otherwise is the

same as Valor-E’s analysis (Algorithm 4).

Algorithm 7 READ [Valor-O]: thread T reads variable x
1: let 〈v, t〉 ←Wx
2: if t 6= φ ∧ t 6= T then
3: Conflict! . Write–read conflict detected
4: end if
5: T.readLog← T.readLog ∪ {〈x,v〉}

Analysis at region end. Algorithm 8 shows Valor-O’s analysis for validating reads at the

end of a region. To check for read–write conflicts, the analysis resembles Valor-E’s analysis

except that it checks each variable’s owner thread, if any, rather than its epoch (line 3).

Algorithm 8 REGION END [Valor-O]: thread T executes region boundary
1: for all 〈x,v〉 ∈ T.readLog do
2: let 〈v’, t〉 ←Wx
3: if (v’ 6= v ∧ t 6= T) ∨ v’ ≥ v + 2 then
4: Conflict! . Read–write conflict detected
5: end if
6: end for
7: T.readLog← /0
8: for all x ∈ T.writeSet do
9: let 〈v, t〉 ←Wx . Can assert t = T

10: Wx← 〈v,φ〉 . Remove ownership by T
11: end for
12: T.writeSet← /0

Finally, the analysis at region end processes the write set by setting the ownership of

each owned variable to φ (lines 8–11) and then clearing the write set (line 12).

57

3.7 Valor Is Sound and Precise

This section proves that Valor detects region conflicts soundly and precisely.9 That is,

it reports a conflict if and only if an execution has a region conflict, which is defined as

an access that conflicts with an access executed in an ongoing region (Section 3.2). Here

we assume that the relatively straightforward FastRCD algorithm detects region conflicts

soundly and precisely.

Theorem 2. Valor is sound: if an execution has a region conflict, Valor reports a conflict.

Proof. We prove the claim by contradiction. Suppose an execution has a region conflict and

Valor reports no conflict.

Valor detects write–write and write–read conflicts identically to FastRCD, which we

assume is sound, so Valor detects all write–write and write–read conflicts. Thus, the

undetected conflict must be a read–write conflict. Without loss of generality, suppose thread

T2 writes a variable x that conflicts with a region executed by thread T1. By the definition

of region conflict, T2’s write happens between T1’s read to x and T1’s region end:

Thread T1 Thread T2

rd x

wr x

where the dashed line indicates the earliest region boundary after T1’s read, and the write is

T2’s first write to x after T1’s read. Henceforth, “T1’s region” and “T2’s region” refer to the

regions that contain the conflicting read and write, respectively.

At T1’s read to x, let v be x’s version (fromWx). T1 logs 〈x,v〉 at the read (Algorithms 4

and 7). When T1’s region ends, it performs read validation, which checks the following

9The theorems and proofs apply to both Valor-E and Valor-O.

58

condition for the read log entry 〈x,v〉 (Algorithms 5 and 8):

(v’ 6= v ∧ t 6= T1) ∨ v’≥ v+2

where v’ and t are x’s version and last-writer thread (fromWx), respectively, at the time of

validation.

Since our initial assumption was that Valor does not report a conflict, the condition must

be false, i.e.,

v’= v ∨ (t= T1 ∧ v’< v+2)

We consider each of the disjunction’s predicates in turn.

Case 1: v’= v

Since Valor increments versions monotonically, v’ = v only if T2’s write does not

increment x’s version, which happens only if T2’s region has already written x

(Algorithms 3 and 6). We assumed that T2’s write to x is the first write since T1’s

read, so T2’s region must have written x before T1’s read. By definition of region

conflict, a write–read region conflict exists, which Valor detects, contradicting the

initial assumption.

Case 2: t= T1 ∧ v’< v+2

Since t = T1, T1 must be the last writer to x before read validation (Algorithms 3

and 6). The earliest such write must increment x’s version unless T1 wrote x prior

to T2’s write—but that would be a write–write conflict, contradicting the initial

assumption. Similar to Case 1, T2’s write must increment x’s version unless its region

wrote x prior to T1’s read—but that would be a write–read conflict, contradicting the

initial assumption. Thus, Valor must have incremented x’s version at least twice, so

v’≥ v+2, contradicting this case’s premise.

59

Both cases lead to contradictions, so the assumption that Valor misses a conflict is false.

Theorem 3. Valor is precise: it reports a conflict only for an execution that has a region

conflict.

Proof. We prove the claim by contradiction. Suppose Valor reports a conflict for an execu-

tion that has no region conflict.

Valor detects and reports write–write and write–read conflicts identically to FastRCD,

which we assume is precise, so the conflict must be a read–write conflict. Valor detects

read–write conflicts only during read validation (Algorithms 5 and 8). Without loss of

generality, suppose that thread T reports a conflict during read validation when validating a

read log entry 〈x,v〉:
Thread T

rd x

where the dashed line represents the earliest region boundary following the read.

Since read validation reports a conflict, the following condition must be satisfied:

(v’ 6= v ∧ t 6= T) ∨ v’≥ v+2

where v’ and t are x’s version and last-writer thread (fromWx), respectively, at the time of

validation.

At least one of the two predicates of the disjunction must be satisfied:

Case 1: v’ 6= v ∧ t 6= T

Because v’ 6= v (and only Valor’s write analysis updatesWx), there must have been a

write by t to x between T’s read and the region end that updatedWx to 〈v’,c@t〉 (Valor-

E’s representation; Algorithm 3) or 〈v’, t〉 (Valor-O’s representation; Algorithm 6).

60

Based on our initial assumption of region conflict freedom, this write must have been

executed by T. Thus, t= T, contradicting this case’s premise.

Case 2: v’≥ v+2

In order to increment x’s version at least twice between T’s read and region end, at

least two writes in distinct regions must have written x (Algorithms 3 and 6). Only one

of these writes can be in T’s read’s region, so the other write must be by a different

thread, which by definition is a read–write region conflict, which contradicts the initial

assumption.

Both cases lead to contradictions, so the assumption that Valor reports a false region conflict

is false.

3.8 Implementation

We have implemented FastTrack, FastRCD, and Valor in Jikes RVM 3.1.3 [9], a Java

virtual machine (JVM) that performs competitively with commercial JVMs [20]. In the

following, we first describe our implementation infrastructure, Jikes RVM. We will then

present implementation details of FastTrack, FastRCD, and Valor in Jikes. Our implementa-

tions share features as much as possible: they instrument the same accesses, and FastRCD

and Valor demarcate regions in the same way. As Section 3.6 mentioned, we implement the

Valor-O design of Valor. We have made our implementations publicly available on the Jikes

RVM Research Archive.10

10http://www.jikesrvm.org/Resources/ResearchArchive/

61

http://www.jikesrvm.org/Resources/ResearchArchive/

3.8.1 Jikes RVM: Our Implementation Infrastructure

Jikes RVM is a high-performance research JVM that is written in Java, and provides

performance competitive with commercial JVMs [20].

Jikes RVM uses just-in-time compilation to generate machine code for each method at

run-time. Jikes RVM has two dynamic compilers: baseline and optimizing. The baseline

compiler is used to generate machine code when an application executes a method for the

first time. The baseline compiler transforms bytecode to machine code directly, and does

not perform any code optimizations. If a method is executed several times, it is considered

“hot” and the VM recompiles the method using the optimizing compiler. The optimizing

compiler transforms the bytecode to an internal representation (IR), and performs many

optimizations such as inlining, constant propagation, and register allocation. The optimizing

compiler supports different optimization levels. Our implementations modify both the

dynamic compilers to add instrumentation to the application and library code.

Jikes RVM also supports automatic memory management using the Memory Manage-

ment Toolkit [21]11 (MMTk), and implements several garbage collection (GC) policies.

More details about the architecture of Jikes RVM and instructions to setup and execute

applications with Jikes RVM are available online.12

Evaluating competitiveness of Jikes RVM. To evaluate the competitiveness of Jikes

RVM and to lend credibility to the performance results reported in this dissertation, this

section compares the run-time performance of two JVMs, Jikes RVM 3.1.3 and OpenJDK

1.7. OpenJDK is a free and open source implementation of the Java Platform, Standard

Edition (Java SE), and is the official reference implementation of Java SE starting from

11http://jikesrvm.org/MMTk

12http://jikesrvm.org/Care+and+Feeding

62

http://jikesrvm.org/MMTk
http://jikesrvm.org/Care+and+Feeding

version 7. Figure 3.5 shows the relative performance of OpenJDK and Jikes RVM on two

platforms: (a) a 64-core AMD system and (b) a 32-core Intel system. The two configurations,

OpenJDK and Jikes RVM, represent unmodified OpenJDK and Jikes RVM respectively. The

results are normalized to the first configuration.

As Figure 3.5 shows, overall Jikes RVM performs competitively with OpenJDK with

one significant exception: pjbb2005, which performs 16.7X slower on both platforms, for

reasons that are unknown to us. The two geomean bars show the geometric mean including

and excluding pjbb2005 respectively. On average, Jikes RVM is 47% and 16% slower than

OpenJDK on the AMD and Intel platforms, respectively. Excluding pjbb2005 from the

geomean, Jikes RVM is 20% slower (AMD) and 7% faster (Intel) than OpenJDK.

By limiting execution to 32 cores (using the Linux taskset command) on the 64-core

AMD machine (results not shown), we have concluded that most of the overhead differ-

ence between the two platforms is due to differences other than the core count, such as

architectural differences.

These experiments suggest that although Jikes RVM was originally designed for research,

it usually performs competitively with modern commercial JVMs, at least for our evaluated

programs and platform.

3.8.2 Features Common to All Implementations

The implementations target IA-32 and extend Jikes RVM’s baseline and optimizing

dynamic compilers, to instrument synchronization operations and memory accesses. The

implementations instrument all code in the application context, including application code

and library code (e.g., java.*) called from application code.13

13Jikes RVM is itself written in Java, so both its code and the application code call the Java libraries. We
have modified Jikes RVM to compile and invoke separate versions of the libraries for application and JVM
contexts.

63

Instrumenting program operations. Each implementation instruments synchronization

operations to track happens-before (FastTrack) or to demarcate regions (FastRCD and Valor).

Acquire operations are lock acquire, monitor resume, thread start and join, and volatile read.

Release operations are lock release, monitor wait, thread fork and terminate, and volatile

write. By default, FastRCD and Valor detect conflicts between release-free regions (RFRs;

Section 3.5.1) and add no instrumentation at acquires.

The compilers instrument each load and store to a scalar object field, array element, or

static field, except in a few cases: (1) final fields, (2) volatile accesses (which we treat as

synchronization operations), (3) accesses to a few immutable library types (e.g., String and

Integer), and (4) redundant instrumentation points, as described next.

Eliminating redundant instrumentation. We have implemented an intraprocedural data-

flow analysis to identify redundant instrumentation points. Instrumentation on an access to

x is redundant if it is definitely preceded by an access to x in the same region (cf. [35, 71]).

Specifically, instrumentation at a write is redundant if preceded by a write, and instrumenta-

tion at a read is redundant if preceded by a read or write. The implementations eliminate

redundant instrumentation by default, which we find reduces the run-time overheads added

by FastTrack, FastRCD, and Valor by 3%, 4%, and 5%, respectively (results not shown).

Tracking last accesses and sites. The implementations add last writer and/or reader

information to each scalar object field, array element, and static field. The implementations

lay out a field’s metadata alongside the fields; they store an array element’s metadata in a

metadata array reachable from the array’s header.

64

The implementations optionally include site tracking information with the added meta-

data. We evaluate data race coverage with site tracking enabled, and performance with site

tracking disabled.

3.8.3 FastTrack and FastRCD

The FastRCD implementation shares many features with our FastTrack implementation,

which is faithful to prior work’s implementation [68]. Both implementations increment a

thread’s logical clock at each synchronization release operation, and they track last accesses

similarly. Both maintain each shared variable’s last writer and last reader(s) using Fast-

Track’s epoch optimizations. In FastTrack, if the prior read is an epoch that happens before

the current read, the algorithm continues using an epoch, and if not, it upgrades to a read

map. FastRCD uses a read epoch if the last reader region has ended, and if not, it upgrades

to a read map. Each read map is an efficient, specialized hash table that maps threads to

clocks. We modify garbage collection (GC) to check each variable’s read metadata and, if it

references a read map, to trace the read map.

We represent FastTrack’s epochs with two (32-bit) words. We use 9 bits for thread

identifiers, and 1 bit to differentiate a read epoch from a read map. Encoding the per-thread

clock with 22 bits to fit the epoch in one word would cause the clock to overflow, requiring

a separate word for the clock.

FastRCD represents epochs using a single 32-bit word. FastRCD avoids overflow by

leveraging the fact that it is always correct to reset all clocks to either 0, which represents a

completed region, or 1, which represents an ongoing region. To accommodate this strategy,

we modify GC in two ways. (1) Each full-heap GC sets every variable’s clock to 1 if it

65

was accessed in an ongoing region and to 0 otherwise. (2) Each full-heap GC resets each

thread’s clock to 1. Note that FastTrack cannot use this optimization.

Despite FastRCD resetting clocks at every full-heap GC, a thread’s clock may still

exceed 22 bits. FastRCD could handle overflow by immediately triggering a full-heap

collection, but we have not implemented that extension.

Atomicity of instrumentation. To improve performance, our implementations of Fast-

Track and FastRCD eschew synchronization on analysis operations that do not modify

the last writer or reader metadata. When metadata must be modified, the instrumentation

ensures atomicity of analysis operations by locking one of the variable’s metadata words, by

atomically setting it to a special value.

Tracking happens-before. In addition to instrumenting acquire and release synchroniza-

tion operations as described in Section 3.8.2, FastTrack tracks the happens-before edge

from each static field initialization in a class initializer to corresponding uses of that static

field [111]. The FastTrack implementation instruments static (including final) field loads

as an acquire of the same lock used for class initialization, in order to track those happens-

before edges.

3.8.4 Valor

We implement the Valor-O design of Valor described in Section 3.6.

Tracking the last writer. Valor tracks the last writer in a single 32-bit metadata per

variable: 23 bits for the version and 9 bits for the thread. Versions are unlikely to overflow

because variables’ versions are independent, unlike overflow-prone clocks, which are

66

updated at every region boundary. We find that versions overflow in only two of our evaluated

programs. A version overflow could lead to a missed conflict (i.e., a false negative) if the

overflowed version happened to match some logged version. To mitigate version overflow,

Valor could reset versions at full-heap GCs, as FastRCD resets its clocks (Section 3.8.3).

Access logging. We implement each per-thread read log as a sequential store buffer (SSB),

so read logs may contain duplicate entries. Each per-thread write set is also an SSB, which is

naturally duplicate free because only a region’s first write to a variable updates the write set.

To allow GC to trace read log and write set entries, Valor records each log entry’s variable x

as a base object address plus a metadata offset.

Handling large regions. A region’s read log can become arbitrarily long because an

executed region’s length is not bounded. Our Valor implementation limits a read log’s length

to 216 entries. When the log becomes full, Valor does read validation and resets the log.

The write set can also overflow, which is uncommon since it is duplicate free. When the

write set becomes full (>216 elements), Valor conceptually splits the region by validating

and resetting the read log (necessary to avoid false positives) and relinquishing ownership

of variables in the write set.

67

eclipse6

hsqldb6

lusearch6

xalan6

avrora9

jython9

luindex9

lusearch9

pmd9
sunflow9

xalan9

pjbb2000

pjbb2005

geomean

0

1

2

N
o

r
m

a
li

z
e
d

 e
x

e
c
u

ti
o

n
 t

im
e OpenJDK 1.7

Jikes RVM 3.1.3

2.1 16.7

(a) Performance on the 64-core AMD system.

eclipse6

hsqldb6

lusearch6

xalan6

avrora9

jython9

luindex9

lusearch9

pmd9
sunflow9

xalan9

pjbb2000

pjbb2005

geomean

0

1

2

N
o

r
m

a
li

z
e
d

 e
x

e
c
u

ti
o

n
 t

im
e OpenJDK 1.7

Jikes RVM 3.1.3

16.7

(b) Performance on the 32-core Intel system.

Figure 3.5: Relative performance of OpenJDK and Jikes RVM on two platforms. In each
graph, the two geomean bars for Jikes RVM are the geomean including and excluding
pjbb2005.

68

3.9 Evaluation

This section evaluates and compares the performance and other characteristics of our

implementations of FastTrack, FastRCD, and Valor.

3.9.1 Methodology

Benchmarks. We evaluate our implementations of Valor, FastRCD, and FastTrack using

large, realistic, benchmarked applications: the large workload size of the multithreaded

DaCapo benchmarks [22] that Jikes RVM 3.1.3 can execute successfully: eclipse6, hsqldb6,

lusearch6, xalan6, avrora9, jython9, luindex9, lusearch9,14 pmd9, sunflow9, and xalan9

(suffixes ‘6’ and ‘9’ distinguish benchmarks from versions 2006-10-MR2 and 9.12-bach,

respectively). We also execute fixed-workload versions of SPECjbb2000 and SPECjbb-

2005 programs, which we refer to as pjbb2000 and pjbb2005, respectively.15 We omit

single-threaded programs and programs that Jikes RVM 3.1.3 cannot execute.

Experimental setup. Each detector is built into a high-performance 32-bit JVM configura-

tion called FastAdaptive that optimizes the JVM, adaptively optimizes the application code,

and uses the default, high-performance, generational, stop-the-world garbage collector [23]

(GenImmix). All experiments use a 64 MB nursery for generational GC, instead of the

default 32 MB, because the larger nursery improves performance of all three detectors. The

baseline (unmodified JVM) is negligibly improved on average by using a 64 MB nursery.

We limit the GC to 4 threads instead of the default 64 because of a known scalability

bottleneck in Jikes RVM’s memory management toolkit (MMTk) [55]. Using 4 GC threads

14We use a version of lusearch9 that fixes a serious memory leak [191].
15http://www.spec.org/jbb200{0,5}, http://users.cecs.anu.edu.au/~steveb/research/

research-infrastructure/pjbb2005

69

http://www.spec.org/jbb200{0,5}
http://users.cecs.anu.edu.au/~steveb/research/research-infrastructure/pjbb2005
http://users.cecs.anu.edu.au/~steveb/research/research-infrastructure/pjbb2005

improves performance for all configurations and the baseline. This change leads to reporting

higher overheads for FastTrack, FastRCD, and Valor than with 64 GC threads, since less

time is spent in GC, so the time added for conflict detection is a greater fraction of baseline

execution time.

Platform. The experiments execute on an AMD Opteron 6272 system with eight 8-core

2.0-GHz processors (64 cores total), running RedHat Enterprise Linux 6.6, kernel 2.6.32.

We have also measured performance on an Intel Xeon platform with 32 cores, as

summarized in Section 3.9.3.

3.9.2 Run-Time Overhead

Figure 3.6 shows the overhead added over unmodified Jikes RVM by the different

implementations. Each bar is the average of 10 trials in order to minimize the effect of

any machine noise. Each bar has a 95% confidence interval that is centered at the mean.

The main performance result in this work is that Valor incurs only 99% run-time overhead

on average, far exceeding the performance of any prior conflict detection technique. We

discuss Valor’s performance result in context by comparing it to FastTrack and FastRCD.

FastTrack. Our FastTrack implementation adds 342% overhead on average (i.e., 4.4X

slowdown). Prior work reports an 8.5X average slowdown, but for a different implementation

and evaluation [68]. In Section 3.9.8, we compare the two FastTrack implementations in our

evaluation setting.

FastRCD. Figure 3.6 shows that FastRCD adds 267% overhead on average. FastRCD

tracks accesses similarly to FastTrack, but has lower overhead than FastTrack because it

70

eclipse6

hsqldb6

lusearch6

xalan6

avrora9

jython9

luindex9

lusearch9

pmd9
sunflow9

xalan9

pjbb2000

pjbb2005

geomean

0

100

200

300

400

500

600

700

800

900

O
v
e
r
h

e
a
d

 (
%

)
o
v
e
r
 u

n
m

o
d

if
ie

d
 J

V
M

FastTrack

FastRCD

Valor

1,006%

Figure 3.6: Run-time overhead added to unmodified Jikes RVM by our implementations of
FastTrack, FastRCD, and Valor.

does not track happens-before. We measured that around 70% of FastRCD’s cost comes

from tracking last readers; the remainder comes from tracking last writers, demarcating

regions, and bloating objects with per-variable metadata. Observing the high cost of last

reader tracking motivates Valor’s lazy read validation mechanism.

Valor. Valor adds only 99% overhead on average, which is substantially lower than the

overheads of any prior software-only technique, including our FastTrack and FastRCD

implementations. The most important reason for this improvement is that Valor completely

does away with expensive updates and synchronization on last reader metadata. Valor

consistently outperforms FastTrack and FastRCD for all programs except avrora9, for which

FastTrack and FastRCD add particularly low overhead (for unknown reasons). Valor slightly

outperforms the baseline for xalan9; we believe this unintuitive behavior is a side effect of

reactive Linux thread scheduling decisions, as others have observed [14].

71

eclipse6

hsqldb6

lusearch6

xalan6

avrora9

jython9

luindex9

lusearch9

pmd9
sunflow9

xalan9

pjbb2000

pjbb2005

geomean

0

100

200

300

400

500

600
O

v
e
r
h

e
a

d
 (

%
)

o
v

e
r
 u

n
m

o
d

if
ie

d
 J

V
M FastTrack

FastRCD

Valor

657
1,016

823

776

Figure 3.7: Run-time overhead added to unmodified Jikes RVM by our implementations of
FastTrack, FastRCD, and Valor on an Intel Xeon E5-4620 system. Other than the platform,
the methodology is the same as for Figure 3.6.

3.9.3 Architectural Sensitivity

This section evaluates the sensitivity of our experiments to the CPU architecture by

repeating our performance experiments on an Intel Xeon E5-4620 system with four 8-core

processors (32 cores total). Otherwise, the methodology is the same as in Section 3.9.2.

Figure 3.7 shows the overhead added over unmodified Jikes RVM by our implementations.

FastTrack adds an overhead of 408%, while FastRCD adds 303% overhead. Valor continues

to substantially outperform the other techniques, adding an overhead of only 116%.

The relative performance of Valor compared to FastTrack and FastRCD is similar on

both platforms. On the Xeon platform, Valor adds 3.5X and 2.6X less overhead than Fast-

Track and FastRCD, respectively, on average. On the (default) Opteron platform, Valor adds

3.4X and 2.7X less overhead on average.

72

1 2 4 8 16 32 64

0

100

200

300

400

500

600

O
v
e
r
h

e
a
d

 (
%

)

FastTrack

FastRCD

Valor

(a) lusearch9

1 2 4 8 16 32 64

0

100

200

300

400

500

600

700

800

(b) sunflow9

1 2 4 8 16 32 64

0

100

200

300

400

500

600

700

800

900

(c) xalan9

Figure 3.8: Run-time overheads of the configurations from Figure 3.6, for 1–64 application
threads. The legend applies to all graphs.

3.9.4 Scalability

This section evaluates how the run-time overhead of Valor, compared with FastRCD and

FastTrack, varies with additional application threads—an important property as systems

increasingly provide more cores. We use the three evaluated programs that support spawning

a configurable number of application threads: lusearch9, sunflow9, and xalan9 (Table 3.1).

Both lusearch9 and sunflow9 naturally scale with unmodified Jikes RVM, while xalan9 starts

anti-scaling after 32 threads (results not shown). Figure 3.8 shows the overhead for each

program over the unmodified JVM for 1–64 application threads, using the configurations

from Figure 3.6. Figure 3.8 shows that all three techniques’ overheads scale with increasing

numbers of threads. Valor in particular provides similar or decreasing overhead as the

number of threads increases.

3.9.5 Space Overhead

This section evaluates the space overhead added by FastTrack, FastRCD, and Valor.

We measure an execution’s space usage as the maximum memory used after any full-heap

73

eclipse6

hsqldb6

lusearch6

xalan6

avrora9

jython9

lusearch9

pmd9
sunflow9

xalan9

pjbb2000

pjbb2005

geomean

0

100

200

300

M
a

x
im

u
m

 m
e
m

o
r
y

 o
v

e
r
h

e
a

d
 (

%
) FastTrack

FastRCD

Valor

Figure 3.9: Space overheads of the configurations from Figure 3.6.

garbage collection (GC). Our experiments use Jikes RVM configured with the default,

high-performance, generational GC and let the GC adjust the heap size automatically

(Section 3.9.1).

Figure 3.9 shows the space overhead, relative to baseline (unmodified JVM) execution

for the same configurations as in Figure 3.6. We omit luindex9 since the unmodified JVM

triggers no full-heap GCs, although each of the three analyses does. FastTrack, FastRCD,

and Valor add 180%, 112%, and 98%, respectively. Unsurprisingly, FastTrack uses more

space than FastRCD since it maintains more metadata. Valor sometimes adds less space than

FastRCD; other times it adds more. This result is due to the analyses’ different approaches

for maintaining read information: FastRCD uses per-variable shared metadata, whereas

Valor logs reads in per-thread buffers. On average, Valor uses less memory than FastRCD

and a little more than half as much memory as FastTrack.

74

3.9.6 Run-Time Characteristics

Table 3.1 characterizes the evaluated programs’ behavior. Each value is the mean of 10

trials of a statistics-gathering version of one of the implementations. The first two columns

report the total threads created and the maximum active threads at any time.

The next columns, labeled Reads and Writes, report instrumented, executed read and

write operations (in millions). The No metadata updates columns show the percentage of

instrumented accesses for which instrumentation need not update or synchronize on any

metadata. For FastTrack, these are its “read/write same epoch” and “read shared same epoch”

cases [68]. For FastRCD and Valor, these are the cases where the analysis does not update

any per-variable metadata. Note that Valor has no Reads column because it does not update

per-variable metadata on a program read.

For three programs, FastTrack and FastRCD differ significantly in how many reads

require metadata updates (minor differences for other programs are not statistically signif-

icant). These differences occur because the analyses differ in when they upgrade from a

read epoch to a read map (Section 3.8.3). For per-write metadata updates, the analyses

report very similar percentages, so we report a single percentage (the percentage reported by

FastTrack).

The last two columns report (1) how many release-free regions (RFRs), in thousands,

each program executes and (2) the average number of memory accesses executed in each

RFR. The RFR count is the same as the number of synchronization release operations exe-

cuted and FastTrack’s number of epoch increments. Most programs perform synchronization

on average at least every 1,500 memory accesses. The outlier is sunflow9: its worker threads

perform mostly independent work, with infrequent synchronization.

75

T
hr

ea
ds

R
ea

ds
W

ri
te

s
N

o
m

et
ad

at
a

up
da

te
s(

%
)

D
yn

.R
FR

s
Av

g.
ac

ce
ss

es
R

ea
ds

W
ri

te
s

pe
r

R
FR

To
ta

l
M

ax
liv

e
(×

10
6)

(×
10

6)
Fa

st
Tr

ac
k

Fa
st

R
C

D
(×

10
3)

ec
lip
se
6

18
12

11
,2

00
3,

25
0

80
.4

74
.4

64
.2

19
6,

00
0

71
hs
ql
db

6
40

2
10

2
57

5
79

41
.5

41
.6

13
.8

7,
60

0
86

lu
se
ar
ch
6

65
65

2,
30

0
79

8
83

.4
83

.5
79

.4
9,

88
0

31
1

xa
la
n6

9
9

10
,1

00
2,

15
0

43
.4

42
.1

23
.4

28
8,

00
0

41
av
ro
ra
9

27
27

4,
79

0
2,

43
0

88
.6

88
.7

91
.9

6,
34

0
1,

13
3

jy
th
on

9
3

3
4,

66
0

1,
37

0
59

.1
48

.9
38

.3
19

9,
00

0
28

lu
in
de
x9

2
2

32
6

98
86

.3
85

.0
70

.6
26

7
1,

48
0

lu
se
ar
ch
9*

64
64

2,
36

0
69

2
84

.3
84

.5
77

.3
6,

05
0

49
4

pm
d9

5
5

57
0

18
8

85
.4

85
.4

72
.1

2,
13

0
34

6
su
nfl

ow
9*

12
8

64
19

,0
00

2,
05

0
95

.4
95

.4
47

.9
10

2,
14

0,
00

0
xa
la
n9

*
64

64
9,

31
7

2,
10

0
52

.0
51

.2
28

.2
10

8,
00

0
10

6
pj
bb

20
00

37
9

1,
38

0
53

7
32

.9
33

.8
9.

2
12

8,
00

0
15

pj
bb

20
05

9
9

6,
14

0
2,

66
0

54
.9

37
.6

9.
7

28
3,

00
0

30

Ta
bl

e
3.

1:
R

un
-t

im
e

ch
ar

ac
te

ri
st

ic
s

of
th

e
ev

al
ua

te
d

pr
og

ra
m

s,
ex

ec
ut

ed
by

im
pl

em
en

ta
tio

ns
of

Fa
st

Tr
ac

k,
Fa

st
R

C
D

,a
nd

V
al

or
.

C
ou

nt
s

ar
e

ro
un

de
d

to
th

re
e

si
gn

ifi
ca

nt
fig

ur
es

an
d

th
e

ne
ar

es
tw

ho
le

nu
m

be
r.

Pe
rc

en
ta

ge
s

ar
e

ro
un

de
d

to
th

e
ne

ar
es

t0
.1

%
.*

T
hr

ee
pr

og
ra

m
s

by
de

fa
ul

ts
pa

w
n

th
re

ad
s

in
pr

op
or

tio
n

to
th

e
nu

m
be

ro
fc

or
es

(6
4

in
m

os
to

fo
ur

ex
pe

ri
m

en
ts

).

76

3.9.7 Data Race Detection Coverage

FastTrack detects every data race in an execution. In contrast, Valor and FastRCD

focus on supporting conflict exceptions, so they detect only region conflicts, not all data

races. That said, an interesting question is how many data races Valor and FastRCD detect

compared with a fully sound data race detector like FastTrack. That is, how many data races

manifest as region conflicts in typical executions?

Table 3.2 shows how many data races each analysis detects. A data race is defined as

an unordered pair of static program locations (Section 2.1). If the same race is detected

multiple times in an execution, we count it only once. The first number for each detector is

the average number of races (rounded to the nearest whole number) reported across 10 trials.

Run-to-run variation is typically small: 95% confidence intervals are consistently smaller

than ±10% of the reported mean, except for xalan9, which varies by ±35% of the mean.

The number in parentheses is the count of races reported at least once across all 10 trials.

As expected, FastTrack reports more data races than FastRCD and Valor. On average

across the programs, one run of either FastRCD or Valor detects 58% of the true data races.

Counting data races reported at least once across 10 trials, the percentage increases to 63%

for FastRCD and 73% for Valor, respectively. Compared to FastTrack, FastRCD and Valor

represent lower coverage, higher performance points in the performance–coverage tradeoff

space. We note that FastRCD and Valor are able to detect any data race, because any data

race can manifest as a region conflict [56].

We emphasize that although FastRCD and Valor miss some data races, the reported

races involve accesses that are dynamically “close enough” together to jeopardize region

serializability (Section 2.2.2). We (and others [56, 115, 121]) argue that region conflicts are

therefore more harmful than other data races, and it is more important to fix them.

77

FastTrack FastRCD Valor

eclipse6 37 (46) 3 (7) 4 (21)
hsqldb6 10 (10) 10 (10) 9 (9)
lusearch6 0 (0) 0 (0) 0 (0)
xalan6 12 (16) 11 (15) 12 (16)
avrora9 7 (7) 7 (7) 7 (8)
jython9 0 (0) 0 (0) 0 (0)
luindex9 1 (1) 0 (0) 0 (0)
lusearch9 3 (4) 3 (5) 4 (5)
pmd9 96 (108) 43 (56) 50 (67)
sunflow9 10 (10) 2 (2) 2 (2)
xalan9 33 (39) 32 (40) 20 (39)
pjbb2000 7 (7) 0 (1) 1 (4)
pjbb2005 28 (28) 30 (30) 31 (31)

Table 3.2: Data races reported by FastTrack, FastRCD, and Valor. For each analysis, the
first number is average distinct races reported across 10 trials. The second number (in
parentheses) is distinct races reported at least once over all trials.

Although FastRCD and Valor both report RFR conflicts soundly and precisely, they may

report different pairs of sites. For a read–write race, FastRCD reports the first read in a

region to race, along with the racing write. If more than two memory accesses race, Valor

reports the site of all reads that race, along with the racing write. As a result, Valor reports

more races than FastTrack in a few cases because Valor reports multiple races between one

region’s write and another region that has multiple reads to the same variable x, whereas

FastTrack reports only the read–write race involving the region’s first read to x. We have

manually verified that the reported races are in fact true data races.

Comparing SFR and RFR conflict detection. FastRCD and Valor bound regions at

releases only, potentially detecting more races at lower cost as a result. We have evaluated

the benefits of using RFRs in Valor by comparing with a version of Valor that uses SFRs.

For every evaluated program, there is no statistically significant difference in races detected

78

between SFR- and RFR-based conflict detection (10 trials each; 95% confidence). RFR-

based conflict detection does, however, outperform SFR-based conflict detection, adding

99% versus 104% overhead on average, respectively. This difference is due to RFRs being

larger and thus incurring fewer metadata and write set updates (Section 3.5.1).

3.9.8 Comparing FastTrack Implementations

To fairly and directly compare FastTrack, FastRCD, and Valor, we have implemented all

three approaches in Jikes RVM (Section 3.8). This section seeks to better understand the

performance differences between our FastTrack implementation and Flanagan and Freund’s

publicly available FastTrack implementation [68].16 Their FastTrack implementation is

built on the RoadRunner dynamic bytecode instrumentation framework, which alone slows

programs by 4–5X on average [68, 70]. We execute the RoadRunner FastTrack implementa-

tion on a different JVM, Open JDK 1.7, because Jikes RVM would not execute it correctly.

RoadRunner does not fully support instrumenting the Java libraries (e.g., java.*), and it does

not support the class loading pattern used by the DaCapo harness [76], so we are only able

to execute a few programs successfully, and we exclude library instrumentation. (Recent

work runs the DaCapo benchmarks successfully with RoadRunner by running the programs

after extracting them from the harness [187].)

Figure 3.10 shows how the implementations compare for the programs that RoadRunner

executes. For each program, the first two configurations execute with OpenJDK, and the last

two execute with Jikes RVM. The results are normalized to the first configuration, which

is unmodified OpenJDK. The second configuration, RR + FT, shows the slowdown that

FastTrack (including RoadRunner) adds to OpenJDK. This slowdown is 9.3X, which is

16https://github.com/stephenfreund/RoadRunner

79

https://github.com/stephenfreund/RoadRunner

hsqldb6 lusearch6 avrora9 lusearch9 geomean
0

1

2

3

4

5

6

7

8

9

10

N
o
r
m

a
li

z
e
d

 e
x
e
c
u

ti
o
n

 t
im

e

OpenJDK

RR + FT

Jikes RVM

FT (Jikes)

25.2 14.6

Figure 3.10: Performance comparison of FastTrack implementations. The last two configu-
rations correspond to the baseline and FastTrack configurations in Figure 3.6.

close to the 8.5X slowdown reported by the FastTrack authors [68] in their experiments

(with different programs on a different platform).

The last two configurations, Jikes RVM and FT (Jikes), are the baseline and FastTrack

configurations, respectively, from Figure 3.6. Note that this experiment keeps library in-

strumentation enabled for the last configuration, FT (Jikes). Our FastTrack implementation

in Jikes RVM adds significantly less overhead than the RoadRunner implementation, pre-

sumably because the Jikes RVM implementation is inside the JVM, so it can add efficient

per-field and per-object metadata, modify the garbage collector, and control the compilation

of instrumentation. In contrast, RoadRunner is a general framework that is implemented on

top of the JVM using dynamic bytecode instrumentation.

For these four programs, unmodified Jikes RVM is about 54% slower than unmodified

OpenJDK. (Section 3.8.1 compares the JVMs’ performance across all programs.)

80

3.9.9 Summary

Overall, Valor substantially outperforms both FastTrack and FastRCD, adding, on

average, just a third of FastRCD’s overhead. Valor’s overhead is potentially low enough for

use in alpha, beta, and in-house testing environments and potentially even some production

settings, enabling more widespread use of applying sound and precise region conflict

detection to provide semantics to racy executions.

3.10 Contributions and Impact

In Section 2.2.1, we highlighted that current shared-memory programming languages

such as C/C++ and Java provide no or weak semantics for racy executions. Our goal in

this work is to develop efficient mechanisms that equip present and future languages with

clear, intuitive semantics even for programs that permit data races. Recent work gives

fail-stop semantics to data races, treating a data race as an exception [41, 115]. Our work

is motivated by these efforts, and our techniques also give data races fail-stop semantics.

This work introduces two new software-based region conflict detectors, FastRCD and Valor,

to strengthen memory models and provide SFR serializability to all program executions.

The key insight behind Valor is that detecting read–write conflicts lazily retains necessary

semantic guarantees and has better performance than eager conflict detection.

Our proposed software-only technique, Valor, represents an advance in the state of the art

for providing always-on support for strong guarantees for racy executions and for detecting

data races. Valor has overheads low enough to provide practical semantic guarantees (i.e.,

SFR serializability) to a language specification. For example, future language runtimes

can integrate an analysis like Valor to warn developers about potential violations of region

serializability. This advance helps make it practical to use all-the-time conflict exceptions in

81

various settings, from in-house testing to alpha and beta testing to even some production

systems. Using an analysis like Valor will help developers identify and eliminate most or all

data races that lead to serializability violations during testing. For data races that escape

testing and manifest in the wild, Valor will terminate program executions on production

systems before allowing bad behavior to actually happen. In the longer term, this should

translate to ease of development and better debugging of data races for programmers, and

thus to safer and more reliable software.

82

Chapter 4: RCC: Practical Architecture Support for

Region-Serializability-Based Consistency

4.1 Introduction

Chapter 3 presented a software-only solution called Valor to efficiently provide the

SFRSx memory model to all program executions. A software-only solution such as Valor

has the advantage of being immediately useful to several application environments. Although

our proposed technique Valor is the fastest known region conflict detector and has overheads

competitive enough to provide practical semantic guarantees to a language specification, it

still slows programs by 2X which may not be suitable for use in all production environments.

Our position in this work is that systems should provide strong, end-to-end memory models—

but in order to gain traction, these mechanisms must incur costs and complexity on par with

current weak memory model mechanisms.

Since region conflict detection can be sped up with hardware support, an alternate

option to provide strong memory consistency models such as SFRSx is to explore optimal

architectural support. This work describes a new, generally applicable conflict detection

mechanism, realized in an efficient, complexity-effective architecture design. We illustrate

the value of our new conflict detection mechanism by describing its application to supporting

a memory consistency model called SFRSx [20, 115]. Even in an execution with data races,

83

SFRSx guarantees the serializability of synchronization-free regions (SFRs) of code, or halts

with a consistency exception that indicates a conflict.

A feasible SFRSx implementation requires a precise, efficient, complexity-effective

conflict detection mechanism—a requirement that has eluded prior work. Software-only

approaches slow programs by 2X or more [20, 39, 52, 73, 89, 166]. Hardware transactional

memory (HTM) systems limit region length [91,193], require a software fallback [12,38,102,

127], or pay a high cost to support unbounded regions [10, 44, 85, 88, 148]. TM also usually

tracks conflicts imprecisely, which is sufficient for speculative execution, but not for a

precise SFRSx implementation. Transactional Coherence and Consistency (TCC) leverages

TM to enforce coherence and consistency, but relies on expensive read set broadcasts, and is

not efficiently scalable to unbounded regions [85] (Sections 4.6.5 and 6). Hardware support

for SFRSx called Conflict Exceptions (CE) [115] places impractically high demands on the

memory system to store and access analysis information (Section 4.6). Furthermore, CE

is built on top of current systems’ cache coherence mechanisms that serialize concurrent

memory accesses to a single memory location, incurring the latency and complexity of a

mechanism such as the M(O)ESI coherence protocol [141, 172]—which prior work showed

is unnecessary for enforcing strong memory consistency [48, 85, 100]. These prior efforts

thus are non-starters for high-performance parallel systems.

In this work, we explore an optimal architectural solution to provide end-to-end SFR

serializability to all program executions efficiently. This work introduces Region Consis-

tency and Coherence (RCC): a precise, efficient, complexity-effective architecture design

that supports SFRSx by detecting conflicts between unbounded regions. RCC’s contribution

is a novel mechanism for detecting conflicts by ensuring write atomicity and checking

read consistency. Our work makes a case for rethinking cache coherence and consistency

84

in providing SFRSx. RCC eliminates the need for legacy coherence protocol support,

making better use of hardware resources, yielding a design that is both performant and

complexity-effective. CE, which also provides SFRSx, is built on top of current systems’

cache coherence mechanisms that serialize concurrent memory accesses to a single mem-

ory location, incurring the latency and complexity of a mechanism such as the M(O)ESI

coherence protocol [141, 172]—which we show in this work is superfluous in a setting that

ensures strong memory consistency.

4.2 Hardware Memory Models and Cache Coherence Protocols

While language memory models provide virtually no guarantees for executions with

data races, nearly all architectures enforce comparatively strong guarantees. Still, pervasive

hardware memory models used by x86 [164], SPARC [174], Power [157], and ARM [8] are

weak, they lack clear race semantics and end-to-end guarantees permitting visible reordering

of memory accesses [8,157,164,174]. Furthermore, their guarantees are not end-to-end, i.e.,

they are with respect to the compiled program only. In the words of Adve and Boehm [2],

“a strong hardware model is not very useful to programmers using languages and compilers

that provide only a weak guarantee.” Therefore, it is of little benefit in providing strong

guarantees end-to-end in the presence of already-performed language-level reorderings in

racy executions.

Cache coherence protocols. Most architectures use a cache coherence protocol, such as

MESI [141], to guarantee cache coherence. These protocols typically enforce the single

writer / multiple readers (SWMR) invariant [172], which provides the most recently written

value for a location at all times. Adhering to the SWMR guarantee, a cache coherence

protocol implementation furnishes reads with correct, up-to-date values.

85

A cache coherence protocol spends time, area, energy, on-chip bandwidth, and com-

plexity to ensure cache lines are coherent. In a modern, directory-based, write-invalidate

protocol (i.e., MESI or MOESI), the protocol maintains a directory of sharers for each line,

which consumes area and increases total power. When a core accesses a cache line, the

coherence protocol sends messages between cores and the directory to enforce the SWMR

invariant. Before a core writes a line, it reads a list of sharers from the directory, sends an

invalidation message to the sharers and collects acknowledgments of the invalidation from

each sharer. Messaging increases power requirements, incurs latency, and increases on-chip

network traffic, consuming valuable bandwidth. In addition to the run-time costs of a co-

herence protocol, even straightforward protocols like MESI have very high implementation

complexity, which stems from the need for transient protocol states [172]. Some transient

states exist only to provide coherence semantics to data races [48, 172], to which language

memory models already ascribe undefined semantics [2, 31, 118].

For the properties they provide, cache coherence protocols like MESI offer good perfor-

mance and scalability [123]. However, cache coherence alone is a relatively weak consis-

tency property that does not match programming languages well. Our work’s goal is to

provide strong consistency that subsumes coherence and is a better match for what languages

need. A key insight of our work is that by introducing support for strong region-based

consistency, we can eliminate support for coherence provided eagerly at each memory

access. We advocate for a departure from eager, access-granular coherence protocols,

instead providing one mechanism that uniformly enforces region-based consistency and

coherence properties for all accesses (including data races) and permits aggressive compiler

and hardware reordering.

86

Sequentially
consistent

SFR
serializable

All executions

Data race freeSFR conflict
free

Exception-free
executions
in RCC

Figure 4.1: Relationship of possible execution behaviors. Behaviors that may or may not
generate an exception under SFRSx are shaded gray. A memory model would restrict
behaviors to one of these sets of executions.

Figure 4.1 shows the relationship between various types of execution behavior (regardless

of the memory model). For example, if an execution is data race free, it is SFR serializable.

If an execution is SFR serializable, it is SC. As prior work has motivated [20, 77, 115],

SFRSx allows for some flexibility: an execution with a data race may or may not throw a

consistency exception. In the figure, behaviors for which SFRSx may or may not generate

an exception are shaded gray.

4.3 Design Overview of RCC

This chapter introduces a new architecture design called Region Consistency and Coher-

ence (RCC) that provides the SFRSx memory model end-to-end, ensuring strong semantics

for all program executions. RCC targets an existing memory model called SFRSx that

either ensures serializability of SFRs or (only if there is a data race) reports a consistency

exception [20, 115]. In contrast to prior efforts [115], RCC jettisons a traditional coherence

mechanism, in favor of new hardware structures of similar complexity. In RCC, cores

87

execute largely independently, eschewing eagerly propagating memory access information

throughout the system (e.g., to a directory or other cores), avoiding the latency of sending

coherence messages and waiting for acknowledgments. This implies that the RCC protocol

need not maintain read sharer information. Not having to maintain sharers also implies that

RCC can do away with the necessity of requiring inclusivity for the last-level cache (LLC).

Instead, RCC provides coherence and consistency only at SFR boundaries (synchronization

operations) and on cache line evictions. RCC ensures SFRSx without incurring the full cost

of detecting all region-to-region conflicts, by using a novel design that ensures serializability

through mechanisms that detect some conflicts directly and infer others indirectly. By

providing SFRSx, which is a stronger property than cache coherence alone, our architecture

features are a better target for current and future language memory models than the pervasive,

but mismatched, cache coherence property.

RCC’s coherence mechanisms are inspired by prior work on distributed shared memory

(DSM) systems that provide release consistency [3, 15, 25, 40, 64, 101] and prior work that

simplifies cache coherence mechanisms [48, 58, 100, 154, 176, 177]. However, all of that

work applies to DRF executions only, whereas RCC requires a substantially different design

to ensure strong consistency for all executions (Section 6).

In RCC, if synchronization operations are frequent, enforcing coherence and consistency

can be costly. We eliminate almost all of this cost with several effective optimizations.

RCC’s optimizations take a cue from prior approaches that use self-invalidation [48, 58, 100,

154] with the important and substantial difference that these prior approaches provide no

guarantees for executions with data races (Section 6).

This section provides a high-level, view of the goals of RCC and an architecture-

independent description of how RCC meets its goals. Sections 4.4 and 4.5 describe the RCC

88

architecture and optimizations. Section 4.6 discusses steps for simulating RCC and presents

results. We conclude in Section 4.7.

4.3.1 RCC’s Goals and Guarantees

Region Consistency and Coherence (RCC) is an architectural design that provides

the SFRSx memory model end-to-end. In particular, RCC enforces the SFRSx memory

model (Section 2.2.2.2), which ensures that every execution either (1) is equivalent to a

serialization of SFRs; or (2) has a data race and generates a consistency exception. A

consistency exception indicates that RCC has detected a conflict between SFRs (i.e., a

true data race) that may jeopardize serializability. RCC requires no compiler or language-

level changes: compilers already limit reordering across synchronization operations, so

supporting SFRSx in hardware is sufficient to provide end-to-end guarantees. RCC treats

synchronization operations (e.g., atomic instructions and memory fences) as SFR boundaries,

permitting it to run legacy code. Alternatively, RCC could add an ISA extension (like the

endR instruction from Conflict Exceptions [115]) to explicitly demarcate region boundaries

in the instruction stream, at the expense of legacy support.

The rest of this chapter uses “region” and “SFR” interchangeably.

4.3.2 Overview and Insights

RCC provides architecture support for consistency (SFRSx) that avoids the need for

cache coherence at the granularity of memory accesses. Instead RCC defers coherence until

synchronization operations and private cache evictions.

In RCC, each core preserves SFR serializability by executing each SFR in isolation and

ensuring its consistency at SFR boundaries. Each core tracks its reads and writes locally, in

its private cache, during an SFR’s execution. (For simplicity, this section assumes each core

89

has a single private cache.) When its SFR ends, the core ensures consistency by committing

its writes atomically and validating that its reads are consistent with the values in the shared

cache (i.e., the LLC). A detected conflict or a failure to validate a read indicates an SFR

conflict and thus a possible violation of SFR serializability, so RCC generates a consistency

exception.

With finite caches, a core cannot always cache an SFR’s working set. When a region

suffers a capacity miss, the core delegates further consistency checking for that line to

the LLC. The LLC immediately checks for conflicts and validates that the line’s reads are

consistent with the values in the LLC. For the rest of the core’s SFR, the LLC tracks the

reads and writes for the evicted line, and it detects intervening conflicts from other cores.

By ensuring consistency (for non-evicted lines) at region boundaries by validating reads

and committing writes atomically, RCC avoids the costs prior work has incurred to detect

conflicts, e.g., by piggybacking on coherence messages to communicate read and write sets

among cores [85, 115, 121, 167].

4.3.3 Design Details

State. Cores’ private caches and the LLC track access information that represents, for

each byte in a cache line, whether it has been read and/or written by a core’s ongoing SFR.

Byte-granular tracking is essential for precise conflict detection. The LLC maintains access

information only for the lines evicted from a private cache to the LLC.

Each shared cache line maintains a version that is a monotonically increasing number,

incremented on each write-back to the line in the LLC. A version represents the logical time

of write-backs to the line in the LLC. When a shared line is fetched by a private cache, the

90

version is cached privately. A private cache does not update the version, but rather uses it to

validate reads from the private line.

Actions at reads and writes. When a core reads or writes a byte of memory, it updates

its private cache line’s access information (read or write bit) for the accessed byte. If the

byte was previously written and is being read, the core need not update the information. If a

core evicts a line that has access information from its private cache, the private cache writes

back the access information to the LLC, along with the line data (as usual) if the line is dirty.

A dedicated consistency controller (Section 4.4) (CC) co-located with the LLC maintains

per-core access information for evicted lines. The LLC uses the access information to detect

conflicts with other cores when they validate reads and commit writes to the LLC, and when

they evict lines with access information to the LLC. If a private cache fetches a line that was

accessed by its current SFR but was then evicted, the private cache restores the same access

information from the LLC.

Actions at SFR boundaries. When a core’s SFR ends, it ensures serializability by val-

idating its reads and committing its writes atomically, accomplished by performing the

following three operations in order:

(1) Pre-commit: The core writes back dirty bytes to the LLC. The LLC checks for conflicts

(which generate a consistency exception) using its access information for the written-back

lines, and it updates access information for the committing core’s lines. The LLC maintains

the written-back lines’ access information during the next step, read validation, to ensure

the atomicity of validating reads and committing writes.

91

(2) Read validation: The core needs to validate that the values it read are consistent with the

current values in the LLC. Sending data values would generate a lot of traffic, and comparing

values alone could miss consistency violations by not validating with respect to a single

memory snapshot. The core thus compares the version of each line read with the line in

the LLC. To preserve soundness, the LLC checks for write–read conflicts during validation,

even on a version match, if the shared line has write information set for a remote core.

Algorithm 9 shows how read validation works. For each cache line that needs to

be validated, the private cache sends the line’s version to the LLC for comparison. For

simplicity, the algorithm depicts a synchronous reply for every validation request; in fact, the

LLC’s reply can be asynchronous, and it need not reply if the versions match (Section 4.4).

A version mismatch indicates a write to the same line but not necessarily the same

bytes that the validating core has read. The core handles a mismatch by checking that the

line data matches the line data values from the LLC (for only the read-only bytes in the

line) and that no write–read conflict exists (i.e., no locally read byte has its write access

information set in the LLC); if not, the core generates a consistency exception. The core

updates the line’s version to the new value, so that the algorithm —which must validate all

lines version mismatches— can eventually complete without a mismatch. Although a core

might repeatedly retry read validation, RCC is livelock and deadlock free because a version

mismatch means that some other core made progress by writing to the LLC.

(3) Post-commit: The core clears its private access information, and the LLC clears all of its

access information for the core. By dividing committing of writes into pre- and post-commit,

RCC ensures that commit and validation appear to happen together atomically.

In addition, the core must invalidate all lines in its private cache, in order to ensure

coherence at SFR boundaries. This self-invalidation step degrades locality, increasing time

92

Algorithm 9 A core performs read validation
1: repeat
2: mustRevalidate← false
3: for all private cache lines L with a read-only byte do
4: let v← getVersion(L)
5: Send L’s address and v to LLC
6: resp← LLC’s response . resp is ⊥ or 〈v′,w′,d′〉
7: if resp 6= ⊥ then
8: 〈v′,w′,d′〉 ← resp . LLC line’s version, write bits, & data values
9: mustRevalidate← true

10: d← getData(L)
11: if d′ 6= d ∨ . Compares read-only bytes only

w′ ∩ getReadBits(L) 6= /0 then
12: Consistency exception!
13: end if
14: setVersion(L,v′)
15: end if
16: end for
17: until not mustRevalidate

and communication costs, especially for short regions. Section 4.5 introduces optimizations

that avoid the costs of self-invalidation.

Write-after-read upgrades. RCC’s use of value validation requires careful handling of

write-after-read (WAR) upgrades. A WAR upgrade happens when a core writes a byte that

it read earlier in its ongoing region. Simply overwriting the byte in the private cache line

would make it impossible to value-validate read(s) performed earlier in the region. RCC

thus sends an upgraded line’s read access information and version to the LLC. The LLC

immediately read-validates the line (similar to its handling of private cache line evictions),

and it detects future read–write conflicts for the line. As Section 4.4.1 describes, the RCC

architecture avoids the cost of communication with the LLC on upgrades to L1 lines, by

relying on the read access information in the L2’s corresponding line.

93

Core 1

L1

L2

Core 2

L1

L2

Core n

L1

L2

Main memory

access metadata

controller
cache

Access information
buffer

LLCconsistency
controller

AIM

. . .controller
cache

controller
cache

Figure 4.2: The RCC architecture (not according to scale). The shaded parts show additional
hardware structures introduced in the design.

4.4 Architecture of RCC

The RCC architecture is a collection of modifications to a commodity multi-core pro-

cessor. We assume that each core has a cache hierarchy with private, write-back L1 and L2

caches, and that cores share the last-level cache (LLC). This section describes modifications

to a base architecture that has no support for cache coherence. In the base architecture,

each cache line has only a valid bit and a dirty bit. The private caches are inclusive and the

LLC is not inclusive. Figure 4.2 shows the components that RCC adds to the processor: (1)

access information storage and management and (2) a consistency controller for ensuring

consistency at the LLC.

94

4.4.1 Private Access Information Management

Each core maintains access information for each of the lines in its private caches. RCC

associates two bits per byte with each line in the core’s L1 and L2 cache, as shown in

Figure 4.3. One bit is the byte’s read bit and the other is the byte’s write bit. A byte’s read

bit indicates that the byte was read, without first being written, during an SFR. A byte’s

write bit indicates that the byte was written (and potentially subsequently read) during an

SFR. Both bits are set if and only if an SFR reads and then writes the byte.

Updating access information. When a core writes a byte, it sets the byte’s write bit if it

is not already set. When a core reads a byte, it sets the byte’s read bit only if byte has not

been read or written.

When a core writes a byte in the L1 that was previously read in the same region, the

core experiences a write-after-read (WAR) upgrade. RCC handles WAR upgrades specially

to allow for correct value validation. Simply overwriting the byte in the L1 would make it

impossible to validate the values of reads performed earlier in the region, before the WAR

upgrade. To make value validation work, RCC writes the line’s access information to the L2,

before letting the write execute. When a core evicts a dirty L1 line to the L2, RCC checks

the L2 line’s access information. If the L2 line was previously read, RCC immediately

validates reads to the line using the mechanism described in Section 4.4.3.2. After validating

reads, RCC writes back the dirty L1 line and its access information to the L2.

Evictions. When a core evicts a line from the L1 to the L2, the line’s access information

is copied to an identical bit array for the line in the L2. When the L2 evicts a line, it sends

95

byte
offset iversion dirtyV/I ...R W

Figure 4.3: Per-line metadata introduced by RCC for private caches. Metadata added by
RCC is shaded gray.

the line’s access information to the access information memory (AIM), which is co-located

with the LLC; Section 4.4.2 describes the operation of the AIM and the LLC.

Versions. In addition to read and write bits, each cache line in the L1 and L2 has an

associated version. The version is a 32-bit field that RCC uses to detect consistency

violations (Section 4.3.3).

4.4.2 LLC Access Information Management

Rather than storing access information for each LLC line in the LLC or in memory, RCC

stores the information in the access information memory (AIM). The AIM is a cache-like

memory connected on a bus shared with the LLC. Each AIM entry contains two bits per

byte of access information for each core in the system. An AIM entry also contains a 32-bit

version, used during read validation. For a system with C cores and B-byte cache lines, the

size of an AIM entry is 2×C×B+32 bits; 1,056 bits per entry for a typical 8-core system

with 64-byte cache lines. Figure 4.4 illustrates the structure of an AIM entry.

When a core writes back a line to the LLC, the LLC updates the line’s AIM entry to

reflect the access information metadata in the line being written back. The LLC copies the

core’s updated access information from the private line’s metadata into the core’s access

information bits in the line’s AIM entry. When a core writes back a dirty line to the LLC,

96

R W R W R W R W

2 x B bits32 bits

Version # Core 1 Access Information

2 x B bits

2 x B x C bits

Core C Access Information

Figure 4.4: An AIM entry for a system with C cores and B-byte cache lines.

the LLC also increments the version for the line that is stored in the AIM. Note that only the

LLC, not the private caches, updates a line’s version.

In an idealized RCC implementation, the AIM would contain one entry for every line

in the LLC, with the same associativity. Evicting AIM lines only when the LLC evicts

corresponding lines makes such an idealized AIM a perfect cache of the LLC’s access

information. However, an ideal AIM is impractical: in a system with 8 cores, 64 byte LLC

lines, and a 16MB LLC, the AIM would be around 33MB—an impractically large (88

mm2), slow (5.3ns), and power hungry (7W leakage) on-chip structure in 32-nm technology

(data from CACTI 5.3 [103]). Therefore for an 8-core system, the RCC design considers

a realistic AIM that has 32K entries (∼4MB) and only 4-way associativity, rather than

the LLC’s 16-way. A 4MB AIM is reasonably implementable, with lower area (11 mm2),

latency (1.9ns), and leakage power (900mW). In a high-end, 32-nm Intel Core i7-3970X17

at 3.5GHz, the AIM would impose a reasonable 2.5% area overhead, 7-cycle access latency

(easily hidden by LLC latency), and leakage at a tolerable 0.6% of TDP [95].

The size of an entry in the AIM scales with the number of cores. At realistic CMP

core counts, the AIM’s hardware cost is not prohibitive. At 16 cores, a 32K-entry AIM is

realizable with a 2.6ns access time, 26 mm2 area overhead, and 1.8W leakage power. At 32

17http://ark.intel.com/products/70845

97

http://ark.intel.com/products/70845

cores, a 16MB AIM with 32K entries is costly, but realizable with a 3.9ns access time, 64

mm2 area cost, and 3.8W leakage power. A less costly 16K-entry AIM for a 32 core machine

has a latency of 3.9ns, area of 45 mm2, and leakage power of 2.2W. As Section 4.6.4 shows,

the AIM remains effective across core counts; for 32 cores, the smaller 16K entry AIM

design remains effective.

While the original CE algorithm [115] backed metadata directly to memory, we observe

that adding an AIM-like metadata cache may reduce CE’s traffic to memory, as it reduces

RCC’s. However, this observation reveals a fundamental distinction between RCC and CE.

Unlike RCC, CE assumes a coherence mechanism (e.g., MOESI) that eagerly exchanges

access information bits with coherence messages. Consequently, CE with an AIM would

incur the AIM’s hardware cost and complexity on top of a full MOESI coherence protocol

implementation. Furthermore, an implementor of CE with an AIM must design, implement,

and verify the AIM, the coherence protocol, and their interactions via the conflict detection

mechanism. RCC only needs an AIM, and its conflict detection mechanism, making its

hardware cost and complexity lower than that of CE.

Virtualizing access information to memory. Regardless of the geometry of the AIM

(ideal vs. cache-like), RCC must preserve the access information in an AIM entry in memory

when the entry is evicted from the AIM. A line is evicted from an ideal AIM exactly when a

line is evicted from the LLC, and from a cache-like AIM at least as often. Similar to prior

work [115], RCC maps evicted AIM entries into a dedicated region in memory.

To enable post-commit to clear all access information for a core without explicitly

tracking and updating access information that has been evicted to memory, RCC augments

an evicted AIM entry with a list of saved epochs, one per core, before pushing the entry to

98

memory. An epoch is a number that identifies a core’s SFR. The AIM maintains an epoch

for each core in a current epoch register. A core’s current epoch register in the AIM is

incremented whenever a core finishes an SFR. When the AIM fills a line, it compares the

incoming entry’s saved epochs to each core’s current epoch register. If the epochs differ,

the AIM clears the access information for that line for that core. It is then correct to clear

a core’s access information because the saved epoch indicates that the access information

represents accesses from a previous SFR.

Storing access information in memory. For a system with C cores, B-byte cache lines,

V -bit versions, and E-bit epochs, RCC must preserve P =C×(E+2)+V/B bits per byte of

access information from the AIM. RCC reserves the high-order argmini(2i ≥ P/8) address

bits and uses addresses with those bits set to store evicted access information. With 8 cores,

64-byte lines, 32-bit versions, and 32-bit epochs, a system needs P = 272.5 bits per byte of

backing memory. In such a system, RCC reserves (i.e., does not allocate) 9 address bits,

leaving the application with a 55-bit address space. The AIM computes an entry’s location

in memory using the 55-bit line address as the entry’s memory location’s high-order bits.

Note that while these addresses must be reserved for correctness, they are not necessarily

a source of memory overhead. AIM evictions are infrequent, and these reserved memory

locations are unlikely to occupy any physical memory, in a way similar to page tables.

Consequently, the RCC’s translation scheme is unlikely to present a serious performance or

memory capacity problem. Moreover, Section 4.6 shows experimentally that AIM evictions

are usually rare.

99

4.4.3 Consistency Controller (CC)

RCC ensures consistency using a region commit protocol that is implemented in RCC’s

consistency controller (CC). Section 4.3.3 described the basic operation of the region commit

protocol. Here we focus on the CC’s implementation.

The CC is co-located with the AIM, and has several responsibilities: comparing access

bits from a single core with access bits from other cores, checking cache line versions during

read validation, and coordinating with RCC’s core logic to initiate value checking when a

version check fails.

4.4.3.1 Region Commit Protocol

The CC has fast read/write access to the AIM via a bus shared by the CC, LLC, and

AIM. The CC is connected to each core, enabling cores to send lines to the CC for conflict

checking. When a core reaches a region boundary, it works with the CC to detect conflicts

and validate reads.

Pre-commit. During pre-commit, the core streams access information from its dirty,

privately cached lines to the CC. The CC buffers the lines’ write access information while it

reads in the line’s access information from the AIM. The CC then compares the validating

core’s access bits to all other cores’ access bits using fixed-function combinational logic.

The logic uses a single multiplexer to select the core’s access bits and then computes a

bitwise and of those bits with all other cores’ bits. If a logical or of the bits in the result is

nonzero, then the bits indicate a conflict and the CC delivers an exception. If not, the CC

updates the access bits in the AIM to match the buffered ones it received from the core.

100

Read validation. After pre-commit, the CC begins read validation. The core streams a

sequence of messages to the CC, one for each line the core read during the ending region.

Each message contains the line’s address and version from the core’s private cache. The

CC fetches addresses and versions from the AIM for each message it receives from the

core. The CC uses dedicated logic to compare the line’s version in the core’s message to the

version from the AIM. If all versions match and no write bits are set for a remote core for

any offset in the shared line, read validation completes successfully. If a read line’s versions

match, but a write bit was set by a remote core, the CC responds with read bits and checks

for write–read conflicts. In case of a conflict, the core raises a consistency exception.

If a line’s version differs, then another core wrote the line during the ending region and

there may be a conflict. On a version mismatch, the CC messages the core with the line’s

address and updated version. The core re-fetches that line from the LLC into a dedicated

line comparison buffer in the core. The core compares the (read-only) line in the private

cache to the line in the comparison buffer.

If the lines differ, then the validating core read inconsistent data and raises a consistency

exception. If they match, then the core may have seen consistent data in its region. On

receiving a version mismatch message from the CC, the core also sets its revalidate bit. The

revalidate bit indicates that after the core finishes validating all remaining lines, it must

start again from the beginning, streaming version messages to the CC, to ensure that it saw

consistent data. After the core completes validation without version mismatches, it unsets

the revalidate bit and continues.

Post-commit. During post-commit, a core prepares for its next region. The core streams

dirty bytes in its L1 and L2 caches to the LLC, and it clears its L1 and L2 cache’s access

101

information (e.g., using gang clearing [124]). The CC clears the core’s access information

in the AIM. The AIM clears access information for lines already evicted to memory lazily,

when the line is next cached in the LLC). Finally, the AIM increments the committing core’s

epoch and the core continues to the next region.

4.4.3.2 Other CC Responsibilities

Handling evictions to the LLC. When an L2 evicts a line with access information, the

CC performs pre-commit and read validation on the line. The CC checks for conflicts using

the access information in the AIM, and checks that the L2 line’s bytes match the version or

values in the LLC. Finally, the CC updates the line’s access information in the AIM.

When a core’s L2 fetches an LLC line with access bits in the AIM for that core, the

LLC sends the core the line’s data values and the core’s access bits, which the cores uses to

populate its L1 and L2 access information. The AIM then stops tracking access bits for the

line for that core.

Delivering consistency exceptions. RCC raises a consistency exception whenever the

CC or the core detects a conflict. When RCC detects a consistency exception, it raises a

dedicated per-core signal for the core that detected the conflict. The consistency exception

signal is a non-maskable interrupt. By default, the core that received the interrupt should

execute operating system code to terminate the program’s execution.

4.5 Design Optimizations

Self-invalidation at region boundaries is a key source of overhead in the RCC design pre-

sented in Sections 4.3 and 4.4. It hurts locality across region boundaries, leading to degraded

performance. The impact of lost temporal locality across region boundaries becomes more

102

acute for programs that have shorter regions. This section introduces optimizations that

focus on reducing self-invalidations soundly, to improve locality across region boundaries.

We also describe how to reduce traffic generated by region commits.

4.5.1 Avoiding Self-Invalidation

We introduce different optimizations for touched (read or written by the current region)

and untouched lines.

4.5.1.1 Touched Lines

The intuition behind optimizations for touched optimizations is that pre-commit and

read validation already process these lines and can check if they are up-to-date and thus

do not need to be invalidated. (Note that post-commit always clears all private cache lines’

access information.)

Read-only lines. RCC need not invalidate privately cached lines that are read-only. This

optimization is correct because read validation already ensures that read-only lines in the

private cache are consistent with the (shared) copy in the LLC.

Dirty lines. For dirty lines, pre-commit can check if a line’s version is unchanged in

the LLC—a sufficient condition for not invalidating the line. This optimization extends

pre-commit to send the core’s cached version of the line to the CC. If the version matches

the value in the AIM, then the core has the latest version and does not need to invalidate the

line. On a version mismatch, the CC sends a message asynchronously to the core indicating

that it must in fact invalidate the line. If the core receives no message for a dirty line, it does

not invalidate the line during post-commit.

103

4.5.1.2 Untouched Lines

An untouched line need not be invalidated if RCC can ensure that other cores have not

written to the line during the region’s execution. We introduce two optimizations to exploit

this idea.

A COND-INVALID state The first optimization adds COND-INVALID as a new state for

private cache lines. This state indicates that the line’s data is valid only if the LLC’s

version is unchanged. During post-commit, a core changes each untouched line’s state to

COND-INVALID, instead of invalid.

When a core accesses a line in the COND-INVALID state for the first time in a subsequent

region, the L2 cache sends the core’s copy of the line’s version (but not the data values) to

the CC, which compares the version with the AIM’s copy of the line’s version and replies to

the core indicating whether the versions match. If the versions match, the L2 and L1 caches

upgrade the line to valid. Otherwise, the access is handled as a miss. This optimization

reduces on-chip traffic by often sending only a version rather than data values on an L2

cache miss. This optimization incurs latency on an access to a COND-INVALID line, due

to a roundtrip exchange with the CC. However, the optimization reduces on-chip traffic

compared with a regular L2 cache miss, often sending only a version rather than a line’s full

data.

Write signatures. Second, RCC minimizes self-invalidations for untouched lines by

keeping a per-core write signature [43] in the CC that encodes which lines have been updated

in the LLC during each core’s current region by any other core. During post-commit, if a

line is not in a core’s write signature, the core need not invalidate the line.

104

The CC encodes a write signature for each core’s ongoing region as a Bloom filter [24,43].

Whenever any core C writes back to the LLC, the CC updates every core’s write signature

except C’s to include the updated line. When a core starts read validation, the CC sends

the core its write signature and clears the copy of the signature in the CC. The core uses its

received copy of the write signature during post-commit to identify untouched lines in its

private caches. If the signature does not contain the line, then it was definitely not updated

in the LLC during the core’s execution and it can stay in the valid state in the core’s private

caches.

RCC uses a small, 112-bit Bloom filter for each core which, along with control data, fits

into one 16-byte network flit. We use two hash functions that each set a Bloom filter bit.

A small Bloom filter is sufficient to encode a write signature for short regions. Catering to

short regions pays off because they suffer self-invalidations most frequently.

4.5.2 Optimizing Region Commit

The following optimizations minimize the work performed by RCC at region boundaries.

Optimizing read validation. Our insight for optimizing read validation is that a core C

can forgo validating a line if the line was not updated in the LLC by any other core during

C’s region. To do this check, C uses the per-core write signature introduced in Section 4.5.1,

obtained before read validation starts. To ensure atomicity, C re-fetches the write signature

after read validation to ensure it has not changed (if it has, C restarts read validation).

Deferring write-backs. In the base RCC design, pre-commit writes back both write

access information and data values for dirty cache lines. We optimize pre-commit by

avoiding sending the data values to the LLC until (and if) they are needed by another core.

105

RCC implements this optimization by adding logN additional bits (for a system with N

cores) to each cache line in the LLC to identify the “last-writer” core that has up-to-date

data, plus an additional bit to indicate whether the line’s state is “deferred.” If another core

requests a deferred line from the LLC, the LLC first fetches the latest values from last-writer

core. While this optimization is analogous to the Owner state in the MOESI protocol [172],

RCC derives greater benefit from it by avoiding otherwise-mandatory write-backs at every

region boundary.

We find that deferring write backs at the granularity of individual cache line offsets lead

to muted additional benefit at a greater hardware complexity.

4.6 Evaluation

This section evaluates the performance and on-chip network and off-chip memory traffic

of RCC and compares with competing approaches.

4.6.1 Simulation Methodology

We have implemented RCC in simulators based on the RADISH simulator provided

by its authors [54]. For comparison, we have implemented a directory-based MESI cache

coherence protocol [172] to model current shared-memory systems, which we call MESI.

We have also implemented Conflict Exceptions (CE) [115] on top of MESI. The simulators

consume a serialized trace of events generated by a Pintool [117]. Multiple simulator

configurations process the same trace, in order to eliminate differences due to run-to-run

nondeterminism. All three simulators model a realistic baseline architecture, detailed

in Table 4.1. The MESI simulator’s LLC is inclusive in order to support a directory

protocol [172]. We model a directory embedded in the LLC with the same associativity

as the LLC. The MESI protocol (see Figure 8.6 in [172]) performs silent evictions from E

106

Processor 8-, 16-, or 32-core chip at 1.6 GHz. Each non-memory-
access instruction takes 1 cycle.

L1 cache 8-way 32 KB per-core private cache, 64 B line size,
1-cycle hit latency

L2 cache 8-way 256 KB per-core private cache, 64 B line size,
10-cycle hit latency

Remote cache hit 15-cycle one-way cost
LLC 64 B line size, 35-cycle hit latency

8 cores: 16-way 16 MB shared cache
16 cores: 16-way 32 MB shared cache
32 cores: 32-way 64 MB shared cache

AIM cache 4-way metadata cache with 32K lines
8 cores: 132 B line size (∼4 MB), 4-cycle hit latency

16 cores: 260 B line size (∼8 MB), 5-cycle hit latency
32 cores: 516 B line size (∼16 MB), 7-cycle hit latency

Memory 120-cycle latency
Bandwidth NoC: 100 GB/s, 16-byte flits; Memory: 48 GB/s

Table 4.1: Architectural parameters used for simulation.

to I, but evictions of shared cache lines (S to I) send a message to the directory. The CE

simulator extends the MESI simulation to eagerly detect conflicts [115]. The CE algorithm

requires memory access on private cache evictions to back up access metadata and to fetch

access metadata on LLC hits under certain conditions [115]; our CE simulator optimistically

assumes that the latency of accessing memory is masked by subsequent memory operations.

The RCC simulator’s LLC is not inclusive (Section 4.4).

We evaluate the scalability of the three simulators with a varied number of core counts.

By default, the RCC simulator models a realistic AIM cache, as Table 4.1 shows.

Estimating execution time. Table 4.1 shows the number of cycles required for memory

and non-memory instructions. All three simulators report the maximum number of cycles for

any core; as in prior work [17,54], cores do not model time spent waiting in synchronization.

All three simulators model wait-free write-back caches with idealized write buffers.

107

The RCC simulator models the costs of RCC performing operations at region boundaries.

Since cores send multiple messages without waiting synchronously for responses during the

pre-commit and read validation phases, we compute the cycle cost of messaging based on the

total size of messages sent and the available bandwidth between a core and the LLC. During

read validation, a core sends lines’ versions to the LLC. Each 16-byte flit contains four lines

to be validated, since a flit can fit four tags and versions plus a control block. We assume

that the CC and LLC are ported to handle a flit’s four validation requests at a time. The

RCC simulator models version mismatches, including the costs of the CC alerting the core

and the core restarting read validation. The RCC simulator models post-commit, including

gang-clearing for self-invalidation of private cache lines and bulk-clears of per-core AIM

information.

Estimating network traffic. We simulate an on-chip network and off-chip memory net-

work with 16-byte flits and the bandwidth characteristics shown in Table 4.1. Control

messages are 8 bytes (tag plus message type); a MESI data message is 64 bytes (correspond-

ing to a cache line). For RCC write-backs we model idealized write-buffer coalescing that

sends only the dirty bytes in a line.

Benchmarks. Our experiments execute the PARSEC benchmarks [17], version 3.0-beta-

20150206, with simmedium inputs. We include 11 of 13 benchmarks; freqmine uses OpenMP

as the parallelization model, and facesim does not finish executing with our Pintool and

simulators. We report cycles and traffic for the parallel “region of interest” (ROI) only [16];

vips lacks an ROI annotation so we consider its entire execution to be the ROI. We include

the costs of stack-local accesses in both simulators, although Pin can identify them.

108

Average accesses per SFR
Threads nnn = 8 nnn = 16 nnn = 32

blackscholes 1+n 9,150,000 4,570,000 2,290,000
bodytrack 2+n 63,600 57,400 47,800
canneal 1+n 5,470,000 2,746,000 1,370,000
dedup 3+3n 36,300 36,300 35,900
ferret 3+4n 630,000 514,000 388,000
fluidanimate 1+n 131 99 68
raytrace 1+n 5,820,000 3,030,000 1,550,000
streamcluster 1+2n 4,320 2,260 1,250
swaptions 1+n 83,000,000 41,600,000 20,800,000
vips 3+n 105,000 81,100 55,800
x264 1+2 f 208,000 202,000 202,000

Table 4.2: Threads spawned and average region sizes (rounded to 3 significant figures)
for the PARSEC benchmarks. n is the minimum threads parameter in PARSEC. f is the
input-size-dependent number of frames processed by x264.

Table 4.2 shows how many threads each benchmark spawns, parameterized by n, which

is PARSEC’s minimum threads parameter (the -n flag). The simulators set n equal to the

number of cores in the simulated architecture, which is either 8, 16, or 32 in our experiments.

The simulators map thread identifiers to cores using modulo arithmetic. The last three

columns show the average number of memory accesses performed per SFR for n=8, n=16,

and n=32.

4.6.2 Run-Time Performance and Traffic

Figures 4.5 and 4.6 show our main results. The data show that the execution time and

on-chip network traffic of MESI, CE, and RCC are comparable, often significantly favoring

RCC, and that these numbers scale with increased core count. The data also show that RCC’s

off-chip memory traffic is comparable to MESI and uniformly better than CE, in some cases

by an order of magnitude or more. The figures group together configurations with the same

109

core count. The first three bars, MESI-8, CE-8, and RCC-8, show the performance and

traffic overheads running on 8 cores. Correspondingly, the next two groups of three bars

report the overheads on 16 and 32 cores. All bars are normalized to MESI-8.

Overall, the data show that the execution time and on-chip network traffic of MESI, CE,

and RCC are comparable, and that these numbers scale with increased core count. The data

also show that RCC’s off-chip memory traffic is comparable to MESI and uniformly better

than CE, in some cases by an order of magnitude or more.

4.6.2.1 Performance

Figure 4.5(a) shows executed cycles as reported by the simulators. Each bar shows the

breakdown of execution cycles into different components. MESI and CE (which builds on

MESI) are divided into cycles attributed to coherence and other execution. Coherence cycles

are those spent when the directory forwards requests to remote cores and for core-to-core

communication. For RCC, cycles are divided into cycles for pre-commit and read validation

and cycles incurred during region execution.

Figure 4.5(a) shows that CE adds minimal performance overhead over MESI (e.g., 0.4%

for 8 cores), because our CE simulator does not ascribe any additional cost for transmitting

access metadata piggybacked on MESI coherence messages or to access memory or to back

up or fetch access metadata; hence the performance of CE is similar to MESI.

The figure shows that RCC outperforms MESI and CE in several cases by avoiding the

latency of MESI coherence. RCC underperforms MESI and CE in a few cases (canneal and

fluidanimate). For fluidanimate, regions are short and incur latency from cache misses due

to frequent self-invalidation. (Although read validation and pre-commit perform substantial

work, they incur low latency since they are streaming operations.) For canneal, RCC incurs

many AIM cache misses while fetching access metadata for LLC hits. This results in

110

fetching the access metadata from memory, in effect incurring the latency of a memory

access. On average, RCC performs similarly to MESI and CE, outperforming them by 3–4%

with 8 cores and performing nearly identically with 16–32 cores.

4.6.2.2 On-Chip Traffic

Figure 4.5(b) compares the on-chip network traffic incurred by MESI, CE, and RCC,

counted in 16-byte flits and normalized to MESI with 8 cores. On-chip traffic for RCC

includes all communication between cores and the LLC/CC. On-chip traffic for MESI and

CE includes all traffic between cores and the LLC, as well as core-to-core communication.

The figure uses the same simulator configurations and the same breakdowns for these

configurations as in Figure 4.5(a).

As described in prior work [115] and emulated in our simulator, the CE protocol

piggybacks on MESI coherence messages and transfers access bits to detect region conflicts.

This results in CE incurring more on-chip network traffic than MESI. In addition, CE scales

poorly with fluidanimate, since CE must perform many broadcasts of access metadata (endR

messages) at fluidanimate’s frequent region boundaries [115].

The key result from Figure 4.5(b) is that for all benchmarks except fluidanimate, RCC’s

traffic overhead increases proportionately with core count, and RCC’s traffic scalability

is nearly identical to MESI’s. This result shows that RCC’s traffic overhead is unlikely

to prevent scaling to moderate core counts. The reason for the disproportionate increase

in fluidanimate’s traffic is that fluidanimate performs more writes and synchronization

operations with increasing numbers of threads. With 16 worker threads, fluidanimate has

17% more writes and 44% more synchronization operations compared to 8 worker threads,

while it has 57% more writes and 146% more synchronization operations with 32 threads.

Thus, the benchmark has progressively smaller regions with more threads (Table 4.2). More

111

frequent region boundaries cause more frequent pre-commit, read validation, and self-

invalidation, which all increase traffic. This explanation is clear in the increased proportions

of RCC’s pre-commit and read validation costs for fluidanimate with 16 and 32 cores.

RCC outperforms MESI and CE for swaptions with 16 and 32 cores. Swaptions has the

largest SFRs among the PARSEC benchmarks, and consequently large working sets. With

16 and 32 cores, the number of private and shared cache misses increase significantly for

swaptions because of inclusivity, the private caches and the LLC are inclusive in MESI and

CE. Eviction of shared lines from the LLC in MESI requires recalling the lines from all

private caches, incurring high traffic for shared lines.

On average, RCC adds slightly more on-chip network traffic than MESI but less than CE.

Is the raw magnitude of this traffic a cause for concern? The On-chip columns in Table 4.3

show the average on-chip bandwidth used, in GB/s, for MESI, CE, and RCC on 32 cores.

For fluidanimate, the CE algorithm incurs high on-chip network traffic (84 GB/s) and almost

saturates the on-chip network. For canneal and streamcluster, RCC’s algorithm for ensuring

consistency, which defers coherence, stresses the network much less compared to eager

invalidation-based protocols such as MESI. Even in cases where RCC adds more on-chip

traffic than MESI, the average bandwidth used is significantly lower than the available

bandwidth (Table 4.1).

4.6.2.3 Off-Chip (LLC-to-Memory) Traffic

Figure 4.6 shows the LLC-to-memory (off-chip) traffic for MESI, CE, and RCC. CE

incurs high off-chip traffic overhead over MESI, since the design backs up and fetches

evicted access metadata information to and from memory [115]. In particular, CE must

back up access bits in a global table when a line that was accessed in an ongoing region is

evicted from a private cache or the shared LLC. Similarly, the CE design requires memory

112

On-chip LLC-to-memory
MESI CE RCC MESI CE RCC

blackscholes <0.1 0.1 <0.1 <0.1 <0.1 <0.1
bodytrack 1.3 1.4 2.4 <0.1 0.3 <0.1
canneal 61 66 37 2 116 9
dedup 4 4 5 1 2 1
ferret 4 4 4 <1 2 <1
fluidanimate 8 84 46 <1 1 <1
raytrace 1.8 1.8 1.5 0.3 0.8 0.3
streamcluster 34 40 16 <1 48 <1
swaptions <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
vips 9 9 9 1 4 1
x264 4 4 4 <1 2 <1

Table 4.3: Average on-chip and off-chip (LLC-to-memory) bandwidth (rounded to one place
after decimal) required by MESI, CE, and RCC for 32 cores. For the benchmarks not shown,
the maximum value in any column is ≤2.2 GB/s.

traffic even on an LLC hit, if the line was evicted to memory or the core has evicted a line

from its private caches during the ongoing region. The benchmark streamcluster has the

highest proportion of LLC hits that require CE to fetch metadata from memory, leading CE

to incur very high memory traffic overhead (510–3,500X) compared to MESI. The absolute

bandwidth required by CE for streamcluster with 32 cores is 48 GB/s, as Table 4.3’s

Off-chip columns show, which saturates the memory network capacity. For canneal, the

required bandwidth saturates the memory network at 32 cores and exceeds the assumed

NOC bandwidth (Tables 4.1 and 4.3), rendering the CE design unimplementable.

The memory requirement for RCC is comparable to MESI for all benchmarks except

canneal. The increased traffic for canneal is due to a bounded AIM cache, which leads to

misses in metadata lookups. Despite the relative increase in memory traffic, RCC incurs

reasonable average memory traffic for canneal up to 32 cores (9 GB/s as Table 4.3 shows)—a

113

fraction of the the 48 GB/s maximum available bandwidth (Table 4.1)—and ≤2 GB/s for all

other programs.

4.6.3 Impact of Optimizations

Our default RCC configuration includes all optimizations presented in Section 4.5. This

section evaluates the effect of those optimizations by evaluating RCC without optimizations.

We focus on on-chip network traffic since the optimizations affect that metric the most.

Figure 4.7 shows the on-chip network traffic incurred by MESI and different configurations

of RCC, for 8 cores only (for brevity), normalized to MESI. RCC unopt includes none of Sec-

tion 4.5’s optimizations; it incurs 63% more traffic than MESI on average. For fluidanimate,

RCC unopt incurs high on-chip traffic relative to MESI; the figure shows fluidanimate using a

separate y-axis scale. RCC inv opt uses only the optimizations for reducing self-invalidations

(Section 4.5.1), thereby reducing traffic substantially for fluidanimate and other programs.

On average, RCC inv opt incurs 23% more traffic than MESI. Even after the self-invalidation

optimizations, RCC inv opt continues to incur substantial on-chip traffic relative to MESI,

due to several sources of traffic incurred by RCC but not MESI. As the figure shows, for

all of these programs except swaptions, RCC’s higher traffic is due to pre-commit and read

validation, which send dirty lines and read validation information, respectively, to the LLC at

every region boundary. For swaptions, RCC’s higher traffic is due to region execution—the

traffic is due to evictions of read-only or upgraded lines from private caches to the LLC,

which incur higher traffic costs (to transfer read access information) in RCC than MESI.

The last configuration, (fully optimized) RCC, reduces traffic further by optimizing the data

transmitted during pre-commit and read validation, incurring only 5.7% average traffic over

MESI for 8 cores (the same result as in Figure 4.5(b)).

114

4.6.4 Sensitivity to AIM Cache Size

Our experiments use an AIM cache with 32K entries (Table 4.1). The AIM cache’s

dimensions increase linearly with the core count, which implies a steeper increase in area,

latency, and power consumption. We have thus evaluated the sensitivity of the RCC protocol

with both a smaller AIM cache with 16K entries as well as an RCC system with an ideal

AIM cache. The top half of Table 4.4 shows the change in run-time performance and

off-chip traffic (AIM cache size does not affect on-chip traffic) with an AIM cache with

only 16K lines. We find that for 8–32 cores, a 16K-entry AIM increases execution time and

on-chip network traffic by less than 1% on average relative to the default 32K-entry AIM.

The 16K-entry AIM increases LLC-to-memory traffic on average by less than 7% for 8, 16,

and 32 cores.

To evaluate the performance cost of using a small, realistic AIM (the default with 32K

entries), the bottom half of Table 4.4 simulates an idealized AIM that has one entry for each

LLC line. A RCC system with an ideal AIM outperforms a 32K-entry AIM by less than 4%

on the average for 8, 16, and 32 cores. Default RCC’s performance matches the ideal for all

benchmarks except canneal, which has 25–36% run-time overhead for 8–32 cores (result

not shown), due to large regions with many AIM accesses that are better handled by the

idealized AIM cache. The impact on off-chip traffic due to a bounded-size AIM is limited

to less than 18% for 8, 16, and 32 cores. These results show that the RCC protocol remains

largely unaffected with a reasonably sized AIM cache.

4.6.5 Comparison with TCC

Although TCC targets speculative execution of programmer-specified regions [85]

(Section 6), one could imagine applying its mechanisms to RCC’s context. We have

115

AIM size Cores Exec. cycles Off-chip traffic

8 +0.7% +6.2%
16K entries 16 +0.7% +5.8%

32 +0.8% +5.6%

8 −2.7% −8.5%
Ideal 16 −3.6% −15.4%

32 −4% −17.2%

Table 4.4: Impact of AIM cache size, relative to the default of 32K entries, on performance
and off-chip traffic.

measured the costs that RCC would incur if it used TCC’s mechanisms and algorithms.

That is, we compute RCC’s execution cycles and on-chip traffic without pre-commit, read

validation, and post-commit, but including the following: each region broadcasts its write

set, and a region that overflows its private caches cannot execute in parallel with other

overflowed or committing regions [85]. Modeling other costs (e.g., private and shared cache

hits and misses) are the same for RCC and TCC. For 8 cores, we find that using TCC’s

mechanisms increases execution cycles by 3.0X and on-chip traffic by 3.3X, compared with

default RCC. For 32 cores, TCC’s mechanisms incur an overhead of 5.5X for execution

cycles and 9.3X for on-chip traffic compared to RCC. We find that TCC’s mechanisms add

high on-chip traffic in order to broadcast write sets to all cores, and they incur high run-time

overhead because many regions overflow the private caches, leading to much serialization.

This comparison shows that, for the same context (precise conflict detection; non-speculative

SFRs), RCC’s mechanisms provide substantial performance and traffic benefits over TCC’s

mechanisms.

116

4.6.6 Summary

Our experiments show that RCC compares favorably to MESI and CE, up to 32 cores,

sometimes outperforming both MESI and CE. RCC uses similar on-chip and memory

bandwidth to MESI. While CE’s on-chip bandwidth is acceptable compared to MESI and

RCC, RCC uses far less memory bandwidth than CE, often by orders of magnitude. Our

results yield two conclusions. First, RCC provides stronger memory model guarantees

than MESI at a similar hardware and run-time cost. Second, we find CE is effectively

unimplementable because of its memory bandwidth requirements and, moreover, even

if CE used RCC-like metadata caching to decrease memory traffic, CE is fundamentally

more complex because it relies on an eager, point-to-point coherence protocol. Finally, the

comparison with TCC shows that although RCC’s approach is related at a high level to

TCC (e.g., marrying coherence and consistency), RCC’s mechanism is substantially more

practical and implementable than TCC’s mechanism. Our evaluation thus shows RCC’s

value and viability.

117

M
E

S
I:

 c
o
h
er

en
ce

M
E

S
I:

 o
th

er
 e

x
ec

u
ti

o
n

R
C

C
:

p
o
st

-c
o
m

m
it

R
C

C
:

re
ad

 v
al

id
at

io
n

R
C

C
:

p
re

-c
o
m

m
it

R
C

C
:

re
g
io

n
 e

x
ec

u
ti

o
n

b
la

ck
sc

h
o
le

s

b
o
d
y
tr

ac
k

ca
n
n
ea

l

d
ed

u
p

fe
rr

et
fl

u
id

an
im

at
e

ra
y
tr

ac
e

st
re

am
cl

u
st

er

sw
ap

ti
o
n
s

v
ip

s
x
2
6
4

g
eo

m
ea

n

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Normalized execution

cycles

MESI-8
CE-8
RCC-8
MESI-16
CE-16
RCC-16
MESI-32
CE-32
RCC-32

(a
)R

un
-t

im
e

pe
rf

or
m

an
ce

.

fl
u
id

an
im

at
e

sw
ap

ti
o
n
s

02468

1
0

1
2

1
4

1
6

Normalized on-chip traffic

b
la

ck
sc

h
o
le

sb
o
d
y
tr

ac
k

ca
n
n
ea

l

d
ed

u
p

fe
rr

et
ra

y
tr

ac
e

st
re

am
cl

u
st

er

v
ip

s
x
2
6
4

g
eo

m
ea

n

012

MESI-8
CE-8
RCC-8
MESI-16
CE-16
RCC-16
MESI-32
CE-32
RCC-32

(b
)O

n-
ch

ip
ne

tw
or

k
tr

af
fic

.

Fi
gu

re
4.

5:
R

un
-t

im
e

pe
rf

or
m

an
ce

an
d

on
-c

hi
p

tr
af

fic
co

st
s

fo
rM

E
SI

,C
E

,a
nd

R
C

C
fo

r8
–3

2
co

re
s.

T
he

su
ffi

x
fo

re
ac

h
si

m
ul

at
or

in
di

ca
te

s
th

e
nu

m
be

ro
fc

or
es

.T
he

le
ge

nd
at

to
p

ap
pl

ie
s

to
bo

th
gr

ap
hs

.

118

b
la

ck
sc

h
o
le

s

b
o
d
y
tr

ac
k

ca
n
n
ea

l

d
ed

u
p

fe
rr

et
fl

u
id

an
im

at
e

ra
y
tr

ac
e

st
re

am
cl

u
st

er

sw
ap

ti
o
n
s

v
ip

s
x
2
6
4

g
eo

m
ea

n

012345

Normalized off-chip traffic

MESI-8
CE-8
RCC-8
MESI-16
CE-16
RCC-16
MESI-32
CE-32
RCC-32

6
.9

7
.8

1
1

1
2

1
3

5
.4

7
.6

5
4

0
4

8
0

3
3

0
0

6
.91

6 1
0
3

2
6

.7
7

.5
5

.5
7

.4

Fi
gu

re
4.

6:
L

L
C

-t
o-

m
em

or
y

tr
af

fic
fo

rf
or

M
E

SI
,C

E
,a

nd
R

C
C

fo
r8

–3
2

co
re

s,
us

in
g

th
e

sa
m

e
co

nfi
gu

ra
tio

ns
as

Fi
gu

re
4.

5.

119

M
E

S
I:

 c
o

h
e
re

n
c
e

M
E

S
I:

 o
th

e
r

e
x

e
c
.

R
C

C
:

p
o
st

-c
o
m

m
it

R
C

C
:

re
ad

 v
al

.
R

C
C

:
p
re

-c
o
m

m
it

R
C

C
:

re
g
io

n
 e

x
ec

.

fl
u
id

a
n
im

a
te

02468

1
0

1
2

1
4

1
6

1
8

Normalized on-chip traffic

b
la

ck
sc

h
o
le

s

b
o
d
y
tr

ac
kca

n
n
ea

ld
ed

u
p

fe
rr

et
ra

y
tr

ac
est

re
am

cl
u
st

er

sw
ap

ti
o
n
sv
ip

s
x
2
6
4

g
eo

m
ea

n

012345

MESI
RCC unopt
RCC inv opt
RCC

Fi
gu

re
4.

7:
T

he
ef

fe
ct

of
R

C
C

op
tim

iz
at

io
ns

on
-c

hi
p

ne
tw

or
k

tr
af

fic
in

a
sy

st
em

w
ith

8
co

re
s.

120

4.7 Contributions and Impact

In this chapter, we have presented a novel architectural design called Region Consistency

and Coherence (RCC) that provides SFRSx. For every execution, RCC either provides

serializability of synchronization-free regions (SFRs), or it generates a consistency exception

indicating a data race that may jeopardize consistency. The key to RCC’s efficiency is its

novel mechanism for detecting region conflicts that allows regions to execute largely in

isolation and avoids propagating access information eagerly at the granularity of individual

memory accesses. Furthermore, as a result of ensuring consistency, RCC can defer cache co-

herence until synchronization operations and evictions—unlike existing coherence protocols

that ensure coherence at every instruction.

RCC performs competitively with MESI in terms of run-time performance and on-chip

network traffic, without incurring CE’s high traffic costs [115] or TCC’s [85] scalability

bottlenecks. For example, RCC significantly outperforms CE in off-chip memory traffic,

and we show that the high memory bandwidth required by the CE design effectively makes

the algorithm unimplementable in hardware. These results, together with RCC’s strong

end-to-end guarantees, suggest that RCC significantly advances the state of the art in parallel

architecture consistency and coherence.

Despite pervasive cache-coherent architectures, today’s systems are both over-designed

and under-designed. Coherence protocols are over-designed for common languages [31,

118] that give ill-synchronized code undefined semantics: the coherence protocol wastes

resources to ensure that undefined accesses are coherent. Multicore architectures endure

high complexity and communication costs in order to maintain the single writer/multiple

readers invariant [58,154]. Some transient states exist only to provide coherence semantics to

121

unsynchronized code [48,172], to which language memory models already ascribe undefined

semantics [2, 31, 118].

At the same time, coherent systems are under-designed for the general case of consistency.

Systems do not typically ensure consistency, for example, in the presence of operation

reordering in a compiler and in hardware write buffers [174]. The result is that programmers

must judiciously use synchronization, or endure inscrutable, architecture-specific program

behavior. Our proposed work advocates for a departure from cache coherence protocols,

instead providing one mechanism that uniformly ensures strong consistency for all accesses

(even unsynchronized ones), and permitting aggressive compiler and hardware reordering.

Since RCC provides significantly stronger guarantees than MESI at a comparable cost,

it is a compelling design for providing consistency and coherence in future systems. We

believe RCC can form the foundation for building efficient shared-memory systems in the

future. An architecture like RCC will help programmers build reliable software which can

have a long-lasting impact on society.

122

Chapter 5: DoubleChecker: Efficient Sound and Precise Atomicity

Checking

5.1 Introduction

In Chapters 3 and 4, we presented novel techniques to provide serializability of regions

that were bounded by synchronization operations. In this chapter, we extend the scope of

providing serializability to arbitrary-sized programmer-defined regions. For programming

language semantics, serializability of arbitrarily-sized regions is also known as atomicity:

program execution must be equivalent to some serial execution of atomic regions and non-

atomic instructions [112]. Atomicity, which is a fundamental non-interference property

that eases reasoning about program behavior in multithreaded programs. However, modern

general-purpose languages provide crude support for enforcing atomicity—programmers are

basically stuck using locks to control how threads’ shared-memory accesses can interleave.

Programmers try to maximize scalability by minimizing synchronization, often mistakenly

writing code that does not correctly enforce needed atomicity properties. Therefore, checking

atomicity is an important problem. Furthermore, while checking for region conflicts suffice

to provide SFR serializability, it is important to check serializability of atomic regions

rather than conflict freedom since region conflicts are not necessarily errors according to the

program semantics.

123

Motivation. Atomicity violations are common but serious concurrency errors that are

sensitive to inputs, environments, and thread interleavings, so violations manifest unexpect-

edly and only in certain settings. According to a study, 69% of non-deadlock concurrency

errors are due to atomicity violations [112]. Checking atomicity in different environments

is essential to detect (1) detect and help diagnose atomicity violations that occur only in

those execution environments and (2) make software more robust by detecting all atomicity

violations that occur, in order to take action such as terminating the program or trying to fix

the program automatically [96].

The goal of this work is to reduce the cost of sound and precise atomicity checking

significantly in order to increase its practicality for various use cases.

Existing work. Static analysis can check atomicity but is inherently imprecise, and type-

based approaches rely on annotations [62, 65, 72, 74]. Moreover, existing static analyses

do not scale well to large programs. Dynamic analyses typically check only the current

monitored execution, are precise and can scale well to large programs [63, 67, 73, 113,

184, 185, 189]. However, existing dynamic analyses are precise but slow programs by up

to an order of magnitude or more. Dynamic approaches incur high costs to track cross-

thread dependences, which is especially expensive because it requires inserting intrusive

synchronization to ensure correctness. The state-of-the-art Velodrome algorithm, which

sound and precisely checks conflict serializability, slows programs by about an order of

magnitude on average [73], mainly because of the high cost of identifying cross-thread data

dependences soundly and precisely (Section 2.3.2).

124

5.2 Design of DoubleChecker

This section describes our dynamic conflict serializability checker, called Double-

Checker [18], that uses two cooperating dynamic analyses to check atomicity without

incurring the full costs of tracking cross-thread dependences soundly and precisely for all

program accesses. The key insight of DoubleChecker lies in its dual-analysis approach

that avoids the high costs of precisely tracking cross-thread dependences and performing

synchronized metadata updates at every program access, by overapproximating dependences

between transactions (a transaction is a dynamically executing atomic region) and then

recovering precision only for those transactions that might be involved in violations.

5.2.1 Overview

DoubleChecker achieves low overhead by staging work between two new analyses, one

imprecise and the other precise. DoubleChecker’s imprecise analysis, called imprecise cycle

detection (ICD), monitors all program accesses to track cross-thread dependences soundly

but imprecisely, i.e., the dependences imply the execution’s actual dependences as well as

other false dependences. ICD is inherently imprecise mainly because it identifies dependence

edges by tracking shared-memory “ownership”; a transfer of ownership indicates a possible

dependence, but does not guarantee a dependence nor identify the source of the dependence

edge. ICD constructs a dependence graph whose nodes are transactions and whose edges

correspond to the cross-thread dependences that ICD detects. ICD checks for cycles in this

graph—presence of cycles in the dependence graph indicate potential atomicity violations,

which are a superset of the true (precise) cycles.

The second analysis, precise cycle detection (PCD), is a sound and precise analysis that

limits its monitoring to a subset of all transactions in the program: the transactions identified

125

Program
execution

atomicity

specification
ICD + PCD

ICD PCD
read/write logs

ICD cycles

Atomicity
violations

(a) Single-run mode

Program
execution

atomicity

specification cycles

Program
execution transactions

monitored Atomicity
violations

Second
run

static transaction
information

imprecise
Potentially

ICD

ICD + PCD

First
run

(b) Multi-run mode

Figure 5.1: An overview of DoubleChecker’s two execution modes.

by ICD as being involved in potential cycles—which preserves soundness because every

precise cycle’s transactions will always be a subset of some (potentially imprecise) cycle

identified by ICD. The precise analysis recomputes precise cross-thread dependences, and

checks for presence of cycles in the precise dependence graph. Note that PCD is not a

standalone analysis: it performs its analysis on an execution’s access log, provided by ICD.

DoubleChecker can operate in either of two execution modes–single-run and multi-run

mode. Figure 5.1 overviews the two modes of DoubleChecker.

Single-run mode. In single-run mode, ICD and PCD run on the same program execution.

ICD logs all program reads and writes and ordering dependences between them, so PCD

can identify precise cycles. A key cost of single-run mode is logging all program accesses.

126

Multi-run mode. In testing and deployment situations, programs are run multiple times

with various inputs. DoubleChecker’s multi-run mode takes advantage of this situation

by splitting work across multiple program runs.18 One run can identify transactions that

might be involved in a dependence cycle, and another run can focus its monitoring on

this set of transactions. In contrast to single-run mode, multi-run mode avoids logging

all accesses during the first run by instead performing precise checking during a second

run of the program. The first run of multi-run mode uses only ICD. This run identifies

all regular (non-unary) transactions that are involved in imprecise cycles according to

their static starting locations (e.g., method signatures). Rather than identifying precisely

which unary transactions were involved in cycles, the first run identifies only whether any

unary transactions were involved in any cycle. It would be expensive to identify unary

transactions precisely, since it would essentially require recording the program location of

every non-transactional access.

The second run takes this static transaction information—set of regular transactions plus

a boolean about unary transactions—as input, and limits its analysis to the identified regular

transactions and instruments all unary transactions if the unary transaction boolean is true.

We find this approximation yields acceptable performance in practice since most accesses

are not unary, i.e., they occur inside regular transactions. In our experiments, the second run

uses both ICD and PCD—similar to the single-run mode—for the best performance, but the

second run can also potentially use a different precise checker such as Velodrome.

In multi-run mode, DoubleChecker guarantees soundness if the two program runs

execute identically. In practice, two executions in the wild will take different inputs and

execute different thread interleavings. The set of (static) transactions identified by the first

18Prior bug detection work has split work across runs using sampling (e.g., [108]), which is complementary
to our work.

127

run may not be involved in a cycle in the second run; similarly, the second run may execute

transactional cycles not present in the first run. To increase efficacy, the second run can take

as input all transactions identified across multiple executions of the first run. The multi-run

mode can still be effective in practice if the same regions tend to be involved in cycles across

multiple runs.

5.3 Imprecise Cycle Detection

Imprecise cycle detection (ICD) is a dynamic analysis that analyzes all program execution

in order to detect cycles among transactions. ICD constructs a sound but imprecise graph

called the imprecise dependence graph (IDG) to model dependences among the transactions

in a multithreaded program. The nodes in an IDG are regular transactions (which correspond

to atomic regions) or unary transactions (which correspond to single accesses outside of

atomic regions). A cross-thread edge between two nodes in different threads indicates a

(potentially imprecise) cross-thread dependence between the transactions. Two consecutive

nodes (i.e., transactions) in the same thread are connected by an intra-thread edge that

effectively captures any intra-thread dependences.

We first describe an existing concurrency control mechanism that ICD extends to help

detect cross-thread dependences but that makes detection inherently imprecise. We then

describe how ICD builds the IDG and detects cycles.

5.3.1 Efficient Tracking of Cross-Thread Dependences

This section describes Octet, a recently developed software-based concurrency control

mechanism [35] that ICD uses to help detect cross-thread dependences. Octet establishes

and identifies happens-before relationships [104] that soundly but imprecisely imply all of

an execution’s cross-thread dependences.

128

At run time, Octet maintains a locality state for each object19 that can be one of the

following: WrExT (write-exclusive for thread T), RdExT (read-exclusive for thread T), or

RdShc (read-shared; we explain the counter c later). Table 5.1 shows the possible state

transitions based on an access and the object’s current state. To maintain each object’s state

at run time, the compiler inserts instrumentation called a write barrier20 before every store:

if (obj . state != WrExT) { // fast path
/∗ slow path: change obj. state ∗/

}
obj . f = ... ; // program write

and a read barrier before every load:

if (obj . state != WrExT && obj.state != RdExT && // fast
!(obj . state == RdShc && T.rdShCnt >= c)) { // path

/∗ slow path: change obj. state ∗/
}
... = obj.f ; // program read

The state check, called the fast path, checks whether the state needs to change (the Same

state rows in Table 5.1). The key to Octet’s performance is that the fast path is simple and

performs no writes or synchronization. If the state needs to change, the slow path executes

in order to change the state.

Conflicting transitions. The last four rows of Table 5.1 show conflicting state transitions,

which indicate a conflicting access and require a coordination protocol to perform the

state change. For example, in Figure 5.2, before thread T2 can change an object o’s state

from WrExT1 to RdExT2, T2 must coordinate with T1 to ensure that T1 does not continue

accessing o racily without synchronization. As part of this coordination protocol, T1 does

19We use the term “object” to refer to any unit of shared memory.
20A barrier is instrumentation added to every program load and store [190].

129

Trans. Old New Cross-thread
type state Access state dependence?

Same state
WrExT R or W by T Same

NoRdExT R by T Same
RdShc R by T ∗ Same

Upgrading
RdExT W by T WrExT No
RdExT1 R by T2 RdShgRdShCnt Possibly

Fence RdShc R by T ∗ Same ∗ Possibly

Conflicting

WrExT1 W by T2 WrExT2
Possibly

WrExT1 R by T2 RdExT2
RdExT1 W by T2 WrExT2
RdShc W by T WrExT

Table 5.1: Octet state transitions. ∗A read to a RdShc object by T triggers a fence transition
if and only if per-thread counter T.rdShCnt < c. The fence transition updates T.rdShCnt to
c.

not respond to T2’s request until it reaches a safe point: a program point definitely not

between an Octet barrier and its corresponding program access.

The coordination protocol for conflicting transitions first puts o into an intermediate state,

which helps simplify the protocol by ensuring that only one thread at a time tries to change

an object’s state. For example, if T2 wants to read an object that is in the WrExT1 state, T2

first puts the object into the RdExIntT2 state. The coordination protocol is then performed in

one of two ways:

• The threads perform the explicit protocol if T1 is executing code normally. T2 sends

a request to T1, and T1 responds to the request when it reaches a safe point. When T2

observes the response, a roundtrip happens-before relationship has been established,

so T2 can change the state to RdExT2 and proceed.

130

rd o.f
(RdExT2)

rd o.f
(RdShc)

rd p.q
(RdShc+1)

rd p.q
(fence)

rd o.f
(fence)

 rd o.f
(no fence)

tim
e

ConflictingUpgrading or fenceOrdered by gRdShCounter

T1 T2 T3 T6T4 T5

wr o.f
(WrExT1)

safe
point

Figure 5.2: A possible interleaving of six concurrent threads accessing shared objects o
and p, and the corresponding Octet state transitions they trigger (with new states shown in
parentheses).

• Otherwise, thread T1 is “blocking,” e.g., waiting for synchronization or I/O. Rather

than waiting for T1, T2 implicitly coordinates with T1 by atomically setting a flag

that T1 will observe when it unblocks. This protocol establishes a happens-before

relationship, so T2 can change the state to RdExT2 and proceed.

Upgrading and fence transitions. Upgrading and fence transitions (middle rows of Ta-

ble 5.1) do not require coordination because other threads can safely continue accessing

the object under the old state. In Figure 5.2, T3 atomically upgrades an object’s state from

RdExT2 to RdShc. The value c is the new value of a global counter gRdShCnt that gets

incremented atomically every time an object transitions to RdSh, establishing a global order

of all transitions to RdSh. This state change establishes a happens-before relationship from

131

the read on T2 to the current program point on T3, ensuring a transitive happens-before

relationship from T1’s write to T3’s read.

In Figure 5.2, T4 reads o in the RdShc state. To ensure a happens-before relationship

from the last write to o (by T1) to this read in T4, a fence transition is triggered. The fence

transition is triggered when a thread’s local counter T.rdShCnt is not up-to-date with the

counter c in RdShc. T4 updates T4.rdShCnt to c and issues a memory fence to ensure a

happens-before relationship from T3’s transition to RdShc to T4’s read.

In Figure 5.2, T5 reads o but does not trigger a fence transition because T5 has already

read an object (p) in the RdShc+1 state. However, a transitive happens-before relationship

exists from T1’s write to T5’s read of o because there is a happens-before relationship from

o’s state transition to RdShc in T3 to p’s transition to RdShc+1 in T6 (since both transitions

update gRdShCnt atomically).

Octet’s state transitions thus establish happens-before edges that transitively imply all

cross-thread dependences [35]. ICD can piggyback on Octet’s state transitions to identify

potential cross-thread dependences. Next, we address the challenge of actually identifying

the dependence edges that ICD should add to the IDG.

5.3.2 Identifying Cross-Thread Dependences

ICD uses Octet to help detect cross-thread dependences. While Octet establishes happens-

before relationships that soundly imply all cross-thread dependences, it does not precisely

identify the exact points in the execution with which happens-before relationships are

established. ICD addresses the challenge of how to identify these program points and thus

add cross-thread edges to the IDG that soundly imply all cross-thread dependences, so that

any true dependence cycle will lead to a cycle in the IDG. In this way, ICD detects atomicity

132

violations soundly but imprecisely with substantially lower overhead than a fully precise

approach.

The challenge of identifying each cross-thread edge is in identifying its source; the

sink is obvious since it is the current execution point on the thread triggering the state

change. ICD keeps track of a few “last transaction to do X” facts, to help identify sources of

cross-thread edges later:

T.lastRdEx – Per-thread variable that stores the last transaction of thread T to transition

an object into the RdExT state.

gLastRdSh – Global variable that stores the last transaction among all threads to transition

an object into a RdSh state.

We also define the following helper function:

currTX(T) – Returns the transaction currently executing on T.

Creating cross-thread edges for conflicting transitions. A conflicting transition in-

volves one requesting thread reqT, which coordinates with each responding thread respT.

ICD piggybacks on each invocation of the coordination protocol, using the procedure

handleConflictingTransition() in Figure 5.3, in order to add an edge to the IDG.

Either reqT or respT will invoke the procedure as part of the coordination protocol,

depending on whether the explicit or implicit protocol is used. For the explicit protocol,

respT invokes the procedure before it responds, which is safe since both threads are stopped

at that point. For the implicit protocol, reqT invokes the procedure since respT is blocked;

reqT first atomically places a “hold” on respT so respT will not unblock while reqT invokes

the procedure.

133

procedure handleConflictingTransition(respT, reqT, oldState, newState)
IDG.addEdge(currTX(respT)→ currTX(reqT))
if newState = RdExreqT then

reqT.lastRdEx := currTX(reqT)
end if

end procedure
procedure handleUpgradingTransition(T, oldState, newState)

Let rdExThread be the thread T such that oldState = RdExT
IDG.addEdge(rdExThread.lastRdEx→ currTX(T))
IDG.addEdge(gLastRdSh→ currTX(T))
gLastRdSh := currTX(T)

end procedure

procedure handleFenceTransition(T)
IDG.addEdge(gLastRdSh→ currTX(T))

end procedure

Figure 5.3: ICD procedures called from Octet state transitions.

Figure 5.4 shows a possible thread interleaving among seven concurrent threads ex-

ecuting transactions. The edges among transactions are IDG edges that ICD adds. The

access rd o.g in Tx2j conflicts with the first write to object o in transaction Tx1i. The

handleConflictingTransition() procedure creates a cross-thread edge in the IDG from Tx1i

(the transaction executing the responding safe point) to Tx2j (the transaction triggering the

conflicting transition).

To help upgrading transitions (explained next), handleConflictingTransition() updates

the per-thread variable T.lastRdEx, the last transaction to put an object into RdExT. In

Figure 5.4, this procedure updates T2.lastRdEx to Tx2j (not shown).

Creating cross-thread edges for upgrading transitions. To see why ICD needs to add

cross-thread edges for upgrading transitions (and not just for conflicting transitions), consider

134

T
h
re

a
d
 6

g
La

st
R

d
S

h

T
h
re

a
d
 1

w
r

o
.f

rd
 o

.g

rd
 o

.f

rd
 p

.r

w
r

o
.f

rd
 p

.q

T
h
re

a
d
 2

T
h
re

a
d
 3

T
h
re

a
d
 4

T
h
re

a
d
 5

rd
 o

.h

(W
rE

x
T
1
)

(R
d

S
h

c)

(W
rE

x
T
1
)

(R
d

E
x

T
2
)

(R
d

S
h

c+
1
)

(f
e
n
ce

)

(n
o
 f

e
n
ce

)

time

transaction

T
x

1
i

T
x

2
j

T
x

3
k

T
4

.r
d
S
h
C

o
u
n

t
=

 c
+

1

T
x

4
l

T
x

5
m

T
4

.r
d
S
h
C

o
u
n

t
>

 c

T
2

.l
a
st

R
d

E
x

sa
fe

 p
o
in

t
re

a
d
 b

a
rr

ie
r

sa
fe

 p
o
in

t

re
a
d
 b

a
rr

ie
r

T
x

7
y

T
h
re

a
d
 7

w
r

p
.q

(W
rE

x
T
7
)

sa
fe

 p
o
in

t

re
a
d
 b

a
rr

ie
r

re
a
d
 b

a
rr

ie
r

g
La

st
R

d
S

h re
a
d
 b

a
rr

ie
r

w
ri

te
 b

a
rr

ie
r

co
n
fl
ic

ti
n
g

u
p

g
ra

d
in

g
/f

e
n
ce

C
ro

ss
-t

h
re

a
d
 e

d
g
e
 t

y
p
e
s

T
4

.r
d
S
h
C

o
u
n

t
<

 c

T
x

6
n

rd
 p

.r
re

a
d
 b

a
rr

ie
r

(R
d

E
x

T
6
)

T
6

.l
a
st

R
d

E
x

w
ri

te
 b

a
rr

ie
r

w
ri

te
 b

a
rr

ie
r

Fi
gu

re
5.

4:
A

n
ex

am
pl

e
in

te
rl

ea
vi

ng
of

th
re

ad
s

ex
ec

ut
in

g
at

om
ic

re
gi

on
s

of
co

de
as

tr
an

sa
ct

io
ns

.T
he

fig
ur

e
sh

ow
s

th
e

O
ct

et
st

at
es

af
te

re
ac

h
ac

ce
ss

an
d

th
e

ID
G

ed
ge

s
ad

de
d

by
IC

D
.

135

the upgrading transition from RdExT2 to RdShc+1 in Figure 5.4. Creating a cross-thread edge

is necessary to capture the dependence from T1’s write to o to T3’s read of o transitively.

To create this edge, T3 invokes the procedure handleUpgradingTransition() in Figure 5.3.

This procedure also creates a second edge: from the last transaction to transfer an object

to the RdSh state, referenced by gLastRdSh, to the current transaction. This edge orders

all transitions to RdSh state, and is needed in order to capture dependences related to fence

transitions, discussed next. For rd o.f in Tx3k, the procedure creates an edge from gLastRdSh,

which is Tx5m, to the current transaction. Finally, the procedure updates gLastRdSh to point

to the current transaction, Tx3k.

ICD safely ignores RdExT → WrExT upgrading transitions. Any new dependences

created by this transition are already captured transitively by existing intra-thread and

cross-thread edges.

Creating cross-thread edges for fence transitions. ICD adds edges to the IDG for fence

transitions, in order to capture a possible write–read dependence for RdSh objects. Each

fence transition calls handleFenceTransition() (Figure 5.3), which creates an edge from the

last transaction to transition an object to RdSh (gLastRdSh) to the current transaction.

In Figure 5.4, T4’s read of o.h triggers a fence transition and a call to handleFenceTran-

sition(), which creates an edge from gLastRdSh (Tx3k) to Tx4l. This edge helps capture the

possible dependence from T1’s write to T4’s read (in this case, no true dependence exists

since the accesses are to different fields).

After T4 reads o.h, it reads p.q, which does not trigger a fence transition because T4 has

already read an object (o) with a more recent RdSh counter (c+1) than p’s RdSh counter

(c). However, because RdEx→ RdSh transitions create edges between all transactions that

136

transition an object to RdSh (e.g., the edge from Tx5m to Tx3k), all write–read dependences

are captured by IDG edges even if they do not trigger a fence transition. In the figure, the

IDG edges added by the procedures transitively capture the dependence from T7’s write to

p.q to T4’s read of p.q.

Handling synchronization operations. Like Velodrome [73], DoubleChecker captures

dependences not only between reads and writes to program variables, but also between

synchronization operations: lock release–acquire, notify–wait, and thread fork and join.

ICD handles these operations by treating acquire-like operations as reads and release-like

operations as writes, on the object being synchronized on.

A distinction with related work is that Farzan and Parthasarathy’s analysis (Section 2.3.2)

does not track synchronization edges [63]. In contrast, DoubleChecker, which follows

Velodrome [73], tracks synchronization edges—but tracking synchronization edges can lead

to false positives when checking conflict serializability.

Sources of imprecision. ICD is imprecise because the edges it adds to the IDG are

imprecise in several ways. First, ICD does not maintain the last transaction to read and write

each object, so it identifies last accesses conservatively. For a conflicting transition, ICD

adds an edge from the responding thread’s last safe point. For an upgrading transition from

RdExT to RdSh, it adds an edge from T’s last transition to RdExT, which may involve a

different object.

ICD not only does not maintain the last reader transactions, but it does not maintain even

the last reader threads for a RdSh object. ICD adds edges between all upgrading transitions

to RdSh (to help enable sound tracking of write–read dependences for RdSh objects). For

137

conflicting transitions from RdSh to WrExT, ICD adds edges from all threads to T’s current

transaction.

Finally, ICD tracks dependences at object granularity instead of field granularity.

ICD’s imprecision is inherent in its use of Octet, which gives up precise detection

of dependences for better performance. Eliminating some but not all sources of ICD’s

imprecision would be of little use, since ICD would still be imprecise.

5.3.3 Cycle detection

Rather than triggering cycle detection each time it creates a cross-thread edge (as

Velodrome does [73]), ICD waits until a transaction ends to detect cycles. Consider the

following example.

T1 T2

wr o.f (WrExT1)

rd p.q (RdExT1)

wr p.q (WrExT2)

rd o.g (RdExT2)

rd o.f (RdExT2) fast path

slow path

slow path

Even if T1 and T2 each trigger cycle detection when they add cross-thread edges, no precise

cycle exists until rd o.f executes. In single-run mode, to ensure that PCD sees the precise

cycle, ICD should report the cycle only after the transaction finishes. By invoking cycle

detection when transactions end, ICD is guaranteed to detect each cycle at least once. In the

first run of multi-run mode, deferring cycle detection until transactions finish is not strictly

necessary but leads to fewer invocations of cycle detection.

138

Detecting strongly connected components. A side effect of delayed cycle detection is

that a transaction might be involved in multiple cycles. ICD therefore computes the maximal

strongly connected component (SCC) [50] starting from the transaction that just ended,

which identifies the set of all transactions that are part of a cycle. The SCC computation

explores a transaction tx only if tx has finished. This rule is sound because if tx is indeed

involved in cycles, an SCC computation launched when tx finishes will detect those cycles.

Avoiding processing unfinished transactions helps prevent identifying the same cycles

multiple times, and it avoids races with threads updating their current transaction’s state.

In Figure 5.4, ICD detects an SCC (in this case, a simple cycle) of size four when

transaction Tx1i ends. In single-run mode or the second run of multi-run mode, ICD passes

these transactions to PCD for further processing. Note that PCD detects a precise cycle

involving Tx1i and Tx3k. In contrast, if Tx3k did not execute rd o.f, ICD would still detect an

imprecise cycle, but PCD would not detect a precise cycle since none exists.

5.3.4 Maintaining Read/Write Logs

In single-run mode or the second run of multi-run mode, when ICD detects a cycle,

it passes the set of transactions involved in the cycle to PCD. PCD also needs to know

the exact accesses that have executed as well as the cross-thread ordering between them.

To provide this information, ICD records read/write logs for every transaction: the exact

memory accesses (e.g., object fields) read and written by the transaction. To accomplish this,

ICD adds instrumentation before each program access but after Octet’s instrumentation that

records the access in the current transaction’s read/write log. Synchronization operations

are recorded as reads or writes to the objects being synchronized on. ICD provides cross-

thread ordering of accesses by recording, for each IDG edge, not only the source and sink

139

transactions of the edge, but also the exact read/write log entries that correspond to the

edge’s source and sink.

5.3.5 Soundness Argument

We now argue that ICD is a sound first-pass filter. In particular, we show that for any

actual (precise) cycle of dependences, there exists an (imprecise) IDG cycle that is a superset

of the precise cycle.

Let C be any set of executed nodes tx1, tx2, . . . , txn whose (sound and precise) dependence

edges form a (sound and precise) cycle tx1→ tx2→ . . .→ txn→ tx1.

Let txi→ tx j be any dependence edge in C. Since ICD adds edges to the IDG that imply

all dependences soundly, there must exist a path of edges from txi to tx j in the IDG.

Thus there exists a path tx1→ tx2→ . . .→ txn→ tx1 in the IDG. ICD will detect this as

a cycle C′ ⊇C and pass C′ to PCD. Since C′ contains all nodes in C, and PCD computes all

dependences between nodes in C′, PCD will compute the dependences tx1→ tx2→ . . .→

txn→ tx1, and it will thus detect the cycle C.

5.4 Precise Cycle Detection

Precise cycle detection (PCD) is a sound and precise analysis that identifies cycles of

dependences on a set of transactions provided as input. DoubleChecker invokes PCD with

the following input from ICD: (1) a set of transactions identified by ICD as being involved

in an SCC, (2) the read/write logs of the transactions, and (3) the cross-thread edges added

by ICD recorded relative to read/write log entries (to order conflicting accesses). PCD

processes each SCC identified by ICD separately. Using these inputs, PCD essentially

“replays” the subset of execution corresponding to the transactions in the IDG cycle, and

performs a sound and precise analysis similar to Velodrome [73]. PCD uses the read/write

140

procedure READ(f, tx)
ifW(f) 6= null and thread(tx) 6= thread(W(f)) then

Add PDG edge: W(f)→ tx
end if
R(T,f) := tx . Update last read for T

end procedure

procedure WRITE(f, tx)
ifW(f) 6= null and thread(tx) 6= thread(W(f)) then

Add PDG edge: W(f)→ tx
end if
for all T, R(T,f) 6= null do

if thread(R(T,f)) 6= thread(tx) then
Add PDG edge: R(T,f)→ tx

end if
end for
W(f) := tx . Update last write
∀ T, R(T,f) := null . Clear all reads

end procedure

Figure 5.5: Rules to update last-access information for a read and write of field f by a
transaction tx.

ordering information to replay accesses in an order that reflects the actual execution order.

As PCD simulates replaying execution from logs, it tracks the last access(es) to each field:

• W(f) is the last transaction to write field f,

• R(T,f) is the last transaction of thread T to read field f.

PCD constructs a precise dependence graph (PDG) based on the last-access information.

A helper function thread(tx) returns the thread that executes transaction tx. At each read

or write of a field f, the analysis (1) adds a cross-thread edge to the PDG (if a dependence

exists) and (2) updates the last-access information of f, as shown in Figure 5.5.

141

PCD detects cycles in the PDG after adding each cross-thread edge. A detected cycle

indicates a precise atomicity violation. As part of the error log, PCD reports all the

transactions and edges involved in the precise PDG cycle. For example, in Figure 5.4, PCD

processes an IDG cycle of size four, computes the PDG, and identifies a precise cycle with

just two transactions, Tx1i and Tx3k.

PCD aids debugging by performing blame assignment [73], which “blames” a transaction

for an atomicity violation if its outgoing edge is created earlier than its incoming edge,

implying that the transaction completes a cycle. In Figure 5.4, PCD blames Tx1i.

5.5 Implementation

We have implemented a prototype of DoubleChecker in Jikes RVM 3.1.3 [9], a high-

performance research JVM [20] (Section 3.8.1). Our implementation builds on the publicly

available Octet implementation [35].21 For comparison purposes, we have also implemented

Velodrome in Jikes RVM. Flanagan et al.’s implementation [73] is not available, and in any

case it is implemented on top of the JVM-independent RoadRunner framework [70], so its

performance characteristics could differ significantly. We have made our implementations

of DoubleChecker and Velodrome publicly available on the Jikes RVM Research Archive.21

5.5.1 DoubleChecker

Specifying atomic regions. DoubleChecker takes an atomicity specification as input,

specified as a list of methods to be excluded from the specification; all other methods are

part of the specification, i.e., they are expected to execute atomically. DoubleChecker extends

Jikes RVM’s dynamic compilers so each compiled method is statically either transactional

or non-transactional. Methods specified as atomic are always transactional, and non-atomic

21http://www.jikesrvm.org/Research+Archive

142

http://www.jikesrvm.org/Research+Archive

methods are compiled as transactional or non-transactional depending on the caller’s context.

The compilers compile two versions of non-atomic methods called from both contexts.

Constructing the IDG. The two dynamic compilers in Jikes insert instrumentation to

start and end transactions in each atomic method called from a non-transactional context. At

method start, instrumentation creates a new regular transaction. At method end, it creates a

new unary transaction. While each non-transactional access conceptually executes in its own

unary transaction, our implementation reuses prior work’s optimization [73], which merges

consecutive unary transactions not interrupted by an incoming or outgoing cross-thread

edge.

Each transaction maintains (1) a list of its outgoing edges to other transactions and (2)

(for single-run mode or the second run of multi-run mode) a read/write log that is an ordered

list of precise memory access entries. Each read/write log entry records information about

one access: the base object reference, field address, and read versus write. The read/write

log has special entries that correspond to incoming and outgoing cross-thread edges, since

PCD needs to know the access order with respect to cross-thread edges.

Transactions and their read/write logs are regular Java objects in our implementation,

so garbage collection (GC) naturally collects them as they become transitively unreachable

from each thread’s current transaction reference. The implementation treats read/write log

entries as weak references22 to avoid memory leaks. When a reference in a read/write log

entry dies, our modified GC replaces the reference in the log with the old field address and

the current GC invocation count, distinguishing the field precisely.

Our technique, DoubleChecker, and Velodrome do not summarize the dependence graph,

but they do rely on garbage collection (GC) to collect transactions not transitively reachable

22http://www.ibm.com/developerworks/java/library/j-jtp11225/

143

http://www.ibm.com/developerworks/java/library/j-jtp11225/

from any thread’s current transaction (“last access” references from objects are treated as

weak references), which reduces space overhead in practice.

Still, DoubleChecker can add substantial space overhead, especially to maintain single-

run mode’s read/write logs. Future work might be able to apply summarization tech-

nique [63] to DoubleChecker to reduce space overhead.

Instrumenting program accesses. The compilers add read and write barriers at (object

and static) field and array accesses. Our experiments focus on evaluating only instrumenting

field accesses and only in application (not Java library) methods, which imitates closely

related prior work [67,73], although we also evaluate the performance of instrumenting array

accesses (Section 5.6.4). The compilers instrument program synchronization by treating

acquire operations like object reads, and release operations like object writes.

In single-run mode or the second run of multi-run mode, ICD adds instrumentation to

record read/write logs. Although logs are ordered, duplicate entries with no incoming or

outgoing edges between them can be elided to save space. To elide duplicate entries on the

fly, ICD tracks, for each field, the value of a per-thread timestamp of the last access (and

whether it was a read or write) to the object; RdSh objects have up to one timestamp per

thread. Every time a new transaction starts, or a transaction has an incoming or outgoing

edge, a thread increments its current timestamp. It stores this information in per-field

metadata for WrEx and RdEx objects and per-thread hash tables for RdSh objects.

5.5.2 Velodrome

Our DoubleChecker and Velodrome implementations share features as much as possible:

they instrument the same accesses, demarcate transactions the same way, and represent

dependence graphs the same way. The Velodrome implementation does not use Octet. It

144

adds two words for each object and static field: one references the transaction to write

the field, and the other references the last transaction(s) (up to one per thread) to read the

field since the last write. To capture release–acquire dependences, each object has an extra

header word to track the last transaction to release the object’s lock. The implementation

treats metadata references as weak references to avoid memory leaks in the transaction

dependence graph.

At each access, instrumentation detects cross-thread dependences, adds them to the

dependence graph, detects cycles (and reports a precise atomicity violation for each cycle),

and updates the field’s last-access information. To provide atomicity of the instrumentation

together with the program access and thus track cross-thread dependences accurately, the

instrumentation and access execute in a small critical section that “locks” a word of the

field’s metadata using an atomic operation.

5.6 Evaluation

This section evaluates the correctness and performance of our prototype implementation

of DoubleChecker in both single- and multi-run modes and compares with Velodrome.

5.6.1 Methodology

Benchmarks. Our experiments run the following programs: the multithreaded DaCapo

benchmarks [22] that Jikes RVM 3.1.3 can execute successfully: eclipse6, hsqldb6, lusearch6,

xalan6, avrora9, jython9, luindex9, lusearch9,23 pmd9, sunflow9, and xalan9 (suffixes ‘6’

and ‘9’ distinguish benchmarks from versions 2006-10-MR2 and 9.12-bach, respectively).

We also execute the following programs used in prior work [67, 73]: the microbenchmarks

23We use a version of lusearch9 that fixes a serious memory leak [191].

145

elevator, hedc, philo, sor, and tsp [182]; and moldyn, montecarlo, and raytracer from the

Java Grande benchmark suite [171].

Experimental setup. We build a high-performance configuration of the JVM (FastAdaptive)

that optimizes the JVM, adaptively optimizes the application and uses the default high-

performance, generational, stop-the-world Immix garbage collector [23] (GenImmix). We let

the JVM adjust the heap size automatically. Our experiments use the small workload size of

the DaCapo benchmarks, since otherwise DoubleChecker’s single-run mode and (to a lesser

extent) Velodrome run out of memory with larger workload sizes for a few benchmarks.

DoubleChecker’s single-run mode also runs out of memory with the standard small size of

moldyn and raytracer, so we modify the benchmarks to use an even smaller input, which all

atomicity checkers execute. The JVM, which targets the IA-32 platform, is limited to a heap

of roughly 1.5–2 GB; a 64-bit implementation could avoid these out-of-memory errors. For

the other benchmarks, we use the same input configurations described in prior work [67,73].

For DoubleChecker’s multi-run mode, we execute 10 trials of the first run, take the union

of the transactions reported as part of ICD cycles, and use it as input for the second run. This

methodology represents a point in the accuracy–performance tradeoff that we anticipate

would be used in practice: combining information from multiple first runs should help a

second run find more atomicity violations but also increase its overhead.

Platform. The experiments execute on a workstation with a 3.30 GHz 4-core Intel i5

processor, with 4 GB memory running 64-bit RedHat Enterprise Linux 6.5, kernel 2.6.32.

146

main; run;
callers of join,
notify, wait,

etc.

Velodrome
atomicity

specification

new violations
reported? No

Yes

DoubleChecker /

exclude from
specification

Figure 5.6: Iterative refinement methodology to generate a program’s atomicity specification.

Deriving atomicity specifications. Atomicity specifications for the benchmarks either

have not been determined by prior work (DaCapo) or are not publicly available (non-

DaCapo). We derive specifications for all the programs using an iterative refinement

methodology used successfully by prior work [67, 72, 73, 184] (Section 2.3.1). Figure 5.6

illustrates iterative refinement. First, all methods are assumed to be atomic with a few

exceptions: top-level methods (e.g., main() and Thread.run()) and methods that contain

interrupting calls (e.g., to wait() or notify()). We also exclude the DaCapo benchmarks’

driver thread (which launches worker threads that actually run the benchmark program)

from the atomicity specification, since we know it executes non-atomically. Iterative

refinement repeatedly removes methods from the specification when they are “blamed” for

detected atomicity violations. We terminate iterative refinement only when no new atomicity

violations are reported after 10 trials, in order to approximate well-tested software, which

has an accurate atomicity specification and few, if any, known atomicity violations.

We use iterative refinement in two ways. First, we use it to evaluate the soundness of

DoubleChecker’s single- and multi-run modes by comparing the set of atomicity violations

reported by Velodrome and DoubleChecker’s single- and multi-run modes (Section 5.6.2).

For each of the three configurations, we perform iterative refinement to completion and

collect all methods blamed as non-atomic along the way.

147

Second, we use iterative refinement to determine the final specifications, i.e., spec-

ifications that lead to few or no atomicity violations, in order to evaluate performance

(Section 5.6.3). To prepare the final specification for each program, we take the intersection

of the finalized specifications (no more violations reported in 10 trials) for both Velodrome

and DoubleChecker (single-run mode, since it is fully sound by design), to avoid any bias

toward one approach.

We adjust the specifications in a few cases because of out-of-memory errors. raytracer

and sunflow9 have one and two long-running transactions, respectively, that execute atomi-

cally and that ICD passes to PCD, causing PCD to run out of memory, so we exclude the

corresponding methods from the specifications. On the flip side, refining the specification of

xalan6 leads to so many transactions being created that DoubleChecker run out of memory,

so we use an intermediate (not fully refined) specification for xalan6.

5.6.2 Soundness

DoubleChecker’s single-run mode is sound and precise by design. By comparing it to

Velodrome, we sanity-check our implementations while also observing the effect of timing

differences between the two algorithms. Multi-run mode is not fully sound, so by comparing

it to Velodrome and single-run mode, we evaluate how sound it is in practice. A caveat of

this section’s comparison is that the first and second runs use the same program inputs, thus

representing an upper bound on soundness guarantees.

Table 5.2 shows, for each atomicity checker, the total number of violations reported

during all steps of iterative refinement. Each violation in Table 5.2 represents a method

identified by blame assignment at least once during this process. At a given step of iterative

refinement, a violation reported in one trial may not always be reported in other trials, due

148

Velodrome DoubleChecker
Total (Unique) Single-run Multi-run (Unique)

eclipse6 230 (8) 244 190 (8)
hsqldb6 10 (0) 57 57 (0)
lusearch6 1 (0) 1 1 (0)
xalan6 57 (0) 69 54 (0)
avrora9 23 (0) 25 18 (0)
jython9 0 (0) 0 0 (0)
luindex9 0 (0) 0 0 (0)
lusearch9 41 (1) 40 38 (0)
pmd9 0 (0) 0 0 (0)
sunflow9 13 (1) 13 13 (0)
xalan9 78 (0) 82 69 (0)
elevator 2 (0) 2 2 (0)
hedc 3 (1) 3 2 (0)
philo 0 (0) 0 0 (0)
sor 0 (0) 0 0 (0)
tsp 7 (0) 7 7 (0)
moldyn 0 (0) 0 0 (0)
montecarlo 2 (0) 2 2 (0)
raytracer 0 (0) 0 0 (0)
Total 467 (11) 545 453 (8)

Table 5.2: Static atomicity violations reported by our implementations of Velodrome and
DoubleChecker. For Velodrome and multi-run mode, Unique counts how many violations
were not reported by single-run mode.

to nondeterministic thread interleavings. Overall, the violations reported by Velodrome

and DoubleChecker’s single-run mode match closely. Both implementations are sound

and precise, so (assuming correct implementations) differences are due to different thread

interleavings caused by run-to-run nondeterminism and timing differences between the two

analyses. The Unique value in parentheses counts violations reported by Velodrome but not

by single-run mode; it is nonzero for just four programs, indicating single-run mode finds

nearly all violations found by Velodrome. Single-run also mode finds several violations not

found by Velodrome. We investigated the program with the greatest discrepancy, hsqldb6.

149

By inserting random timing delays in Velodrome, we were able to reproduce six violations

reported by DoubleChecker, providing some evidence that differences are due to timing

effects.

Not surprisingly, multi-run mode does not detect quite as many violations as the sound

single-run mode. Overall, multi-run modes detects 83% of all violations detected by single-

run mode. Normalizing the detection rate across programs with at least one violation,

multi-run mode detects 90% of a program’s violations on average, which may be worthwhile

in exchange for multi-run mode’s lower run-time overhead (discussed next). Multi-run mode

finds violations not found by single-run mode only for eclipse6; some but not all of these are

the same violations found by Velodrome but not single-run mode.

5.6.3 Performance

This section compares the performance of Velodrome, DoubleChecker’s single-run

mode, and the first and second runs of DoubleChecker’s multi-run mode. We use the final

specifications for our performance experiments (Section 5.6.1), and exclude elevator, hedc,

and philo, since they are not compute bound [73].

Figure 5.7 shows the execution time of Jikes RVM running various configurations of the

Velodrome and DoubleChecker implementations. Execution times are normalized to the

first configuration, Unmodified Jikes RVM. Each bar is the median of 25 trials to minimize

effects of any machine noise. We also show the mean as the center of 95% confidence

intervals. Sub-bars show the fraction of time taken by GC.

Velodrome. Our implementation of Velodrome slows programs by 6.1X on average. This

result corresponds with the 12.7X slowdown reported in prior work [73], although it is

hard to compare results since we implement Velodrome in a JVM and use an overlapping

150

ec
li
ps

e6

hs
ql

db
6

lu
se

ar
ch

6xa
la

n6

av
ro

ra
9

jy
th

on
9

lu
in

de
x9

lu
se

ar
ch

9pm
d9

su
nf

lo
w

9xa
la

n9

so
r

ts
p

m
ol

dy
n

m
on

te
ca

rl
ora
yt

ra
ce

r

ge
om

ea
n

01234567

Normalized execution time

U
n
m

o
d
if

ie
d
 J

ik
es

 R
V

M

V
el

o
d
ro

m
e

S
in

g
le

-r
u
n
 (

IC
D

+
P

C
D

)

F
ir

st
 r

u
n
 (

IC
D

 w
/o

 l
o
g
g
in

g
)

S
ec

o
n
d
 r

u
n
 (

IC
D

+
P

C
D

)

1
6

.77
.21
7

.3

1
0

.38
.2

7
.7

1
1

.8
2

4
1

.6
2

9
.01
3

.8
4

3
.71
3

.4

Fi
gu

re
5.

7:
R

un
-t

im
e

pe
rf

or
m

an
ce

co
m

pa
ri

so
ns

of
V

el
od

ro
m

e,
D

ou
bl

eC
he

ck
er

’s
si

ng
le

-r
un

m
od

e,
an

d
th

e
fir

st
an

d
se

co
nd

ru
ns

of
D

ou
bl

eC
he

ck
er

’s
m

ul
ti-

ru
n

m
od

e.
T

he
su

b-
ba

rs
sh

ow
G

C
tim

e.
T

he
ge

om
ea

n
G

C
tim

e
ex

cl
ud

es
sh

or
t-

ru
nn

in
g
so
r,

w
hi

ch
ne

ve
r

tr
ig

ge
rs

G
C

.

151

but different set of benchmarks. Comparing results for the benchmarks evaluated by prior

work, we find that our implementation adds substantially more overhead in several cases. In

particular, the Velodrome paper reports 71.7X, 4.5X, and 9.2X slowdowns for tsp, moldyn,

and raytracer, respectively [73]. It is somewhat surprising that our implementation in a

JVM would add more overhead than the dynamic bytecode instrumentation approach by the

Velodrome authors [70, 73]. By running various partial configurations, we find that 82% of

this overhead comes from synchronization required to provide analysis–access atomicity,

which is unsurprising since atomic operations can lead to remote cache misses on otherwise

mostly-read-shared accesses.

According to the Velodrome authors [75], their implementation eschews synchronization

when metadata does not actually need to change, i.e., the current transaction is already the

last writer or reader. We have implemented and evaluated this variant, which is unsound

and can miss dependences in the presence of concurrent accesses, and in fact it crashes on

avrora9 due to races accessing metadata. This unsound variant slows programs by 4.1X

on average, providing the most help to the programs afflicted most. DoubleChecker still

outperforms this unsound variant of Velodrome.

DoubleChecker’s single-run mode. The remaining configurations in Figure 5.7 are for

DoubleChecker. Single-run (ICD+PCD) shows the time incurred to run ICD and PCD in the

same execution. This configuration slows programs by 3.6X (260% overhead) on average.

Using partial configurations, we find that about two-fifths of this overhead comes from Octet,

building the IDG, and detecting IDG cycles. (This partial configuration is similar to the first

run of multi-run mode, presented next.) Logging read and write accesses as part of ICD

accounts for nearly all of the remaining overhead. Less than one-tenth of the overhead on

152

average comes from PCD, since ICD filters out most transactions. Single-run mode spends

a high fraction of time in GC for several programs, largely because of the memory footprint

of long-lived read/write logs. Overall, DoubleChecker’s single-run mode avoids much of

Velodrome’s costs and adds 1.9 times less overhead than Velodrome.

Velodrome outperforms DoubleChecker’s single-run mode for one program, xalan6.

When executing xalan6, ICD detects many imprecise dependences, triggering SCC detection

frequently, and SCC detection finds many imprecise SCCs, leading to high PCD overhead.

ICD detects SCCs serially, and PCD detects cycles serially; making them parallel could

alleviate this bottleneck.

DoubleChecker’s multi-run mode. First run (ICD w/o logging) executes only ICD,

without logging accesses. Its functionality is similar to a subset of single-run mode evaluated

above, and its overhead is unsurprising: it slows programs by 1.9X (90% overhead) on

average. The first run of multi-run mode is significantly faster than single-run mode because

the former avoids logging.

Second run (ICD+PCD) executes both ICD and PCD (similar to single-run mode),

except it only instruments transactions statically identified by the first run, and it instruments

non-transactional accesses if and only if the first run identified any non-transactional accesses

involved in cycles. The second run slows programs by 2.4X (140% overhead) on average.

We also evaluate a configuration of the second run that always instruments non-transactional

accesses—regardless of whether the first run detected any cycles involving unary transactions.

Overhead increases to 169%, justifying conditional instrumentation of non-transactional

accesses during the second run.

153

Since the first run detects few imprecise cycles, one might expect the second run would

have little work to do. However, the first run identifies transactions statically by method

signature, leading to many more (dynamic) instrumented accesses in the second run than

the total number of (dynamic) accesses identified as involved in cycles in the first run. The

filter for non-transactional accesses is even coarser; the second run must instrument all

non-transactional accesses in many cases. For this reason, DoubleChecker’s ICD and PCD

analyses perform better than using Velodrome for the second run, i.e., ICD is still effective

as a dynamic transaction filter in the second run. Using Velodrome for the second run (i.e.,

instrumenting only the transactions statically identified by the first run) slows programs by

2.9X.

A promising direction for future work is to devise an effective way for the first run to

more precisely communicate potentially imprecise cycles to the second run.

Summary. Overall, DoubleChecker substantially outperforms prior art. The single-run

mode is a fully sound and precise atomicity checker that adds 1.9 times less overhead than

Velodrome. Multi-run mode does not guarantee soundness, since atomicity checking is

split between two runs, but it avoids the need for logging all program accesses (which the

single-run mode needs in order to perform a precise analysis). The first and second runs

of the multi-run mode add 5.6 and 3.7 times less overhead than Velodrome, respectively,

providing a performance–accuracy tradeoff that is likely worthwhile in practice for providing

more acceptable overhead for checking atomicity. DoubleChecker’s significant performance

benefits justify our design’s key insights: it is indeed cheaper to track cross-thread depen-

dences imprecisely in order to filter most of a program’s execution from processing by a

precise analysis.

154

5.6.4 Other Performance Investigations

The performance results so far use refined atomicity specifications that lead to no

reported atomicity violations. Here we measure the performance of DoubleChecker during

iterative refinement. At the beginning of iterative refinement (i.e., the strictest specification),

DoubleChecker’s single-run mode slows execution by 3.4X. Halfway through iterative

refinement (after the first half of the non-atomic methods have been removed from the

specification), single-run mode’s slowdown is 3.6X. These slowdowns compare closely with

the slowdown after full refinement (3.6X), suggesting that performance during iterative

refinement is similarly reasonable.

The experiments so far evaluate implementations of DoubleChecker and Velodrome

that do not instrument array accesses, since the Velodrome paper also omits this instru-

mentation [73]. Here we evaluate the additional overhead from array instrumentation. For

implementation simplicity, DoubleChecker and Velodrome conflate all elements of an array

by using array-level metadata instead of element-level metadata. This makes not only ICD

but also Velodrome imprecise, so we disable cycle detection for both analyses. Double-

Checker’s single-run mode then runs out of memory for xalan6 and xalan9, so we exclude

these programs. DoubleChecker’s single-run mode’s average slowdown increases from

3.1X (without array instrumentation) to 3.7X (with array instrumentation), and Velodrome’s

slowdown increases from 6.3X to 7.3X. Note that all four slowdowns skip cycle detection

and exclude xalan6 and xalan9.

Finally, to check whether ICD is beneficial as a first-pass filter, we use a “PCD-only”

variant of single-run mode in which PCD processes every executed transaction, not just

transactions identified by ICD’s imprecise cycle detection. The PCD-only variant—which

is something of a straw man since PCD essentially implements a less-efficient version of

155

Velodrome’s algorithm—increases the slowdown of the single-run mode from 3.1X to 16.6X

on average (both results exclude eclipse6, xalan6, avrora9, and xalan9, since the PCD-only

variant runs out of memory when running them). This result confirms that ICD is essential

as a first-pass filter for PCD.

5.6.5 Run-Time Characteristics

Table 5.3 shows execution characteristics of ICD in single-run mode (the first run of

multi-run mode should yield similar results) and the second run of multi-run mode. Each

value is the mean of 10 trials of a special statistics-gathering configuration of DoubleChecker;

otherwise methodology is the same as Figure 5.7. For each of the two configurations, the

table reports the number of regular (non-unary) transactions and accesses instrumented in

both regular and unary transactions, and the number of cross-thread edges and SCCs in the

IDG. Single-run mode instruments everything, while the second run instruments a subset

of transactions. For several programs, the second run avoids instrumenting any accesses

because the first run reports no SCCs. For lusearch9 and raytracer, the second run avoids

instrumenting any non-transactional accesses since no first-run SCC contained a unary

transaction, but non-transactional accesses are instrumented for all the other benchmarks.

For programs where the second run instruments (nearly) all transactions and accesses

(e.g., xalan6 and avrora9), there is little benefit from multi-run mode’s optimization. Even

when they should be the same, the counts sometimes differ across modes due to run-to-run

nondeterminism.

156

Compared to how many memory accesses execute, there are few ICD edges, justifying

ICD’s approach that optimistically assumes accesses are not involved in cross-thread depen-

dences. There are few ICD SCCs in most cases, justifying DoubleChecker’s dual-analysis

approach and explaining why PCD adds low overhead (except for xalan6; Section 5.6.3).

157

Si
ng

le
-r

un
m

od
e

(o
r

fir
st

ru
n

of
m

ul
ti-

ru
n

m
od

e)
Se

co
nd

ru
n

of
m

ul
ti-

ru
n

m
od

e
#

In
st

ru
m

en
te

d
#

In
st

ru
m

en
te

d

N
am

e
R

eg
ul

ar
R

eg
ul

ar
N

on
-t

ra
ns

.
#

ID
G

#
IC

D
R

eg
ul

ar
R

eg
ul

ar
N

on
-t

ra
ns

.
#

ID
G

#
IC

D
tr

an
sa

ct
io

ns
ac

ce
ss

es
ac

ce
ss

es
ed

ge
s

SC
C

s
tr

an
sa

ct
io

ns
ac

ce
ss

es
ac

ce
ss

es
ed

ge
s

SC
C

s
ec
lip
se
6

79
3,

00
0

13
7,

00
0,

00
0

6,
61

0,
00

0
68

,4
00

12
4

61
7,

00
0

46
,4

00
,0

00
7,

10
0,

00
0

38
,9

00
80

hs
ql
db

6
87

,0
00

13
,4

00
,0

00
14

7,
00

0
26

,4
00

76
86

,4
00

10
,1

00
,0

00
14

8,
00

0
26

,2
00

75
lu
se
ar
ch
6

95
,7

00
14

3,
00

0,
00

0
1,

44
0,

00
0

17
0

0
0

0
0

0
xa
la
n6

1,
14

0,
00

0
70

,4
00

,0
00

17
,5

00
,0

00
21

1,
00

0
15

,5
00

1,
17

0,
00

0
70

,9
00

,0
00

16
,9

00
,0

00
21

1,
00

0
15

,7
00

av
ro
ra
9

22
,1

00
,0

00
26

4,
00

0,
00

0
36

2,
00

0,
00

0
2,

31
0,

00
0

85
4

9,
26

0,
00

0
12

2,
00

0,
00

0
36

3,
00

0,
00

0
2,

34
0,

00
0

93
2

jy
th
on

9
8

53
,2

00
,0

00
29

0
0

0
0

0
0

0
lu
in
de
x9

7
8,

61
0,

00
0

25
0

0
0

0
0

0
0

lu
se
ar
ch
9

81
3,

00
0

11
5,

00
0,

00
0

27
,1

00
,0

00
14

1
6

64
,9

00
13

,5
00

,0
00

0
14

2
8

pm
d9

7
2,

65
0,

00
0

25
0

0
0

0
0

0
0

su
nfl

ow
9

35
,0

00
26

3,
00

0,
00

0
12

9,
00

0
1,

08
0

25
10

,6
00

17
6,

00
0,

00
0

12
9,

00
0

1,
02

0
24

xa
la
n9

1,
58

0,
00

0
67

,0
00

,0
00

14
,5

00
,0

00
66

,5
00

44
4

1,
48

0,
00

0
66

,5
00

,0
00

15
,1

00
,0

00
67

,0
00

45
7

el
ev
at
or

3,
20

0
17

,0
00

5,
59

0
41

9
24

3,
18

0
16

,1
00

5,
59

0
42

7
23

he
dc

79
38

,4
00

11
4

83
3

25
37

,2
00

11
4

85
3

ph
ilo

6
16

45
8

14
4

0
0

0
0

0
0

so
r

2
16

18
,7

00
18

9
0

0
0

0
0

0
ts
p

12
,0

00
38

6,
00

0
69

4,
00

0,
00

0
14

,1
00

0
1,

34
0

6,
65

0
69

1,
00

0,
00

0
11

,5
00

0
m
ol
dy
n

57
3,

00
0

19
4,

00
0,

00
0

50
,5

00
,0

00
38

0
0

0
0

0
0

m
on

te
ca
rlo

10
2,

00
0

17
9,

00
0,

00
0

93
,3

00
,0

00
30

,6
00

2,
86

0
89

,7
00

14
5,

00
0,

00
0

10
8,

00
0,

00
0

30
,8

00
2,

73
0

ra
yt
ra
ce
r

25
,7

00
89

0,
00

0,
00

0
10

8,
00

0,
00

0
21

5
1

4
11

3
0

9
1

Ta
bl

e
5.

3:
R

un
-t

im
e

ch
ar

ac
te

ri
st

ic
s

of
D

ou
bl

eC
he

ck
er

fo
rt

he
si

ng
le

-r
un

an
d

th
e

se
co

nd
ru

n
in

th
e

m
ul

ti-
ru

n
m

od
e.

E
ac

h
av

er
ag

e
is

ro
un

de
d

to
a

w
ho

le
nu

m
be

rw
ith

at
m

os
tt

hr
ee

si
gn

ifi
ca

nt
di

gi
ts

.

158

5.7 Contributions and Impact

This work presents a new direction for dynamic sound and precise atomicity checking

that divides work into two cooperating analyses: a lightweight analysis that detects cross-

thread dependences, and thus atomicity violations, soundly but imprecisely; and a precise

analysis that focuses on potential cycles and rules out false positives. These cooperating

analyses can execute in a single run, or the imprecise analysis can run alone and inform a

second run, providing a performance–soundness tradeoff. The primary contributions of this

work are as follows:

• a novel sound and precise dynamic atomicity checker based on using two new, coop-

erating analyses:

1. an imprecise analysis that shows it can be cheaper to overapproximate depen-

dence edges rather than compute them precisely, and thus detect cycles whose

transactions are a superset of the true (precise) cycles, and

2. a precise analysis that processes an execution history of only those transactions

that are involved in potential cycles;

• two modes of execution that provide two choices for balancing soundness and perfor-

mance;

• publicly available implementations of DoubleChecker and Velodrome; and

• an evaluation that shows DoubleChecker outperforms current state-of-art, Velodrome,

significantly, with multi-run mode providing better performance without sacrificing

much soundness in practice.

159

DoubleChecker outperforms existing sound and precise atomicity checking, suggesting

that its new direction has the potential to enable more widespread use of atomicity checking

in the real world. For example, an analysis like DoubleChecker can be integrated in a

managed language runtime. A programmer can annotate critical regions of code as atomic,

and the runtime system can monitor the region for potential atomicity violations. Future

IDEs can incorporate support for checking atomicity violations of atomic code regions to

flag errors. Such automated support would lead to fewer errors by helping programmers

debug and fix concurrency errors arising because of atomicity violations. The end goal is

much safer and more reliable concurrent software that would help the society at large.

160

Chapter 6: Related Work

Chapter 2 covered prior work closely related to data races, memory models, and atomicity.

This section presents other work that is related to our proposed techniques, and was not

covered in Chapter 2.

Leveraging static analysis. Whole-program static analysis can soundly identify definitely

DRF accesses, which dynamic analyses such as data race detectors and dynamic atomicity

checkers need not instrument. Prior work that takes this approach can reduce the cost of

dynamic analysis somewhat but not enough to make it practical for always-on use [49, 57,

106, 182]. These techniques typically use static analyses such as thread escape analysis and

thread fork–join analysis. Whole-program static analysis is not well suited for dynamically

loaded languages such as Java, since all of the code may not be available in advance.

Our FastTrack, FastRCD, and Valor implementations in Chapter 3 employ intrapro-

cedural static redundancy analysis to identify accesses that do not need instrumentation

(Section 3.8.2). These implementations could potentially benefit from more powerful static

analyses, although practical considerations (e.g., dynamic class loading and reflection) and

inherent high imprecision for large, complex applications, limit the real-world opportunity

for using static analysis to optimize dynamic analysis substantially.

161

Region serializability. Section 2.2.2.2 covered the closest related work on providing

SFRSx [20, 115]. Notably, CE and Valor check for conflicting SFRs [20, 115], generating

an exception if and only if an execution is not SFR conflict free (shown in Figure 4.1). In

contrast, RCC provides SFRSx through a combination of conflict checking and consistency

enforcement, leading it to allow some executions with SFR conflicts to execute without

exceptions (but still guarantee SFR serializability). The figure labels these as the Exception-

free executions in RCC. RCC is more flexible than CE because it only assumes that access

metadata is available at region boundaries and private cache evictions, not eagerly at each

access. Unlike CE, Valor and RCC avoids the costs of directly detecting all conflicts by

instead inferring some conflicts indirectly (via read validation).

An alternative to detecting region conflicts (i.e., potential violations of region serializ-

ability) is to enforce end-to-end region serializability. Existing approaches either enforce

serializability of full synchronization-free regions (SFRs) [139] or bounded regions [7, 161].

They rely on support for expensive speculation that often requires complex hardware support.

Other dynamic approaches can tolerate the effects of data races by providing isolation

from them [149, 151], but the guarantees are limited (Section 2.1).

In other work, Ouyang et al. enforce SFR serializability using a speculation-based

approach that relies on extra cores to avoid substantial overhead [139].

Other prior work supports memory models based on serializability of bounded regions

(i.e., weaker than SFRSx) that are in general shorter than full SFRs [7,42,116,121,161,167].

These memory models are weaker than SFR serializability, but the corresponding approaches

can achieve somewhat lower hardware complexity or run-time overhead, although the

hardware still requires extensions to existing cache coherence protocols to support conflict

detection and/or speculative execution. To provide end-to-end guarantees, these approaches

162

also require corresponding compiler modifications to prohibit reordering across region

boundaries [7,121,167]; or else they provide region serializability for the compiled program

only.

Transactional memory. Transactional memory (TM) is a general mechanism for provid-

ing speculation-based serializable execution of code regions [88, 91]. When TM detects

a conflict between regions, instead of generating an exception, it aborts one or more spec-

ulatively executing regions (called transactions). As such, TM systems need not provide

precise conflict detection, whereas SFRSx requires precise conflict detection; on the other

hand, to support speculative execution, TM must ensure that for every speculatively written

piece of memory, an original (non-speculative) copy exists somewhere in the system. In

spite of these differences, TMs fundmantally perform region conflict detection and provide

region serializability, and one could imagine adapting TM designs to the problem of SFR

serializability, to provide either SFRSx or speculation-based SFR serializability.

Software transactional memory (STM) detects conflicts between programmer-specified

regions [86, 88]. To avoid the cost of tracking each variable’s last readers, many STMs use

so-called “invisible readers” and detect read–write conflicts lazily [88]. In particular, McRT-

STM and Bartok-STM detect write–write and write–read conflicts eagerly and read–write

conflicts lazily [89, 156]. These STMs validate reads differently from Valor: if a thread

detects a version mismatch for an object that it last wrote, it detects a write by an intervening

transaction either by looking up the version in a write log [156], or by waiting to update

versions until a transaction ends (which requires read validation to check each object’s

ownership) [89].

163

In contrast, Valor avoids the costs of maintaining this data by checking if the version has

increased by at least two. Another difference is that Valor must detect conflicts precisely,

whereas STMs do not (a false conflict triggers an unnecessary abort and retry). As a result,

STMs typically track conflicts at the granularity of objects or cache lines. More generally,

STMs have not introduced designs that target region conflict detection or precise exceptions.

In some sense, our work applies insights from STMs to the context of data race exceptions.

Some software transactional memory (STM) systems have used mechanisms related

to RCC’s mechanisms, such as version and value validation of reads [52, 87, 89, 138, 156].

Like RCC, NOrec and JudoSTM use value-based validation [52, 138]. NOrec buffers writes

and validates read values lazily, which is similar in spirit to RCC’s mechanism for private

cache lines [52]. NOrec uses a global sequence lock to ensure consistency of read validation

and writing back of buffered writes. RCC avoids a global sequence lock by (1) dividing

performing writes into pre-commit and post-commit and (2) using versions to achieve atomic

read validation (solving the ABA problem24). Related to RCC’s read validation scheme,

Harris and Fraser use value validation as a “second chance” for a committing transaction

that fails version validation [87]. The purpose is to avoid aborts and allow more concurrency,

whereas RCC’s read validation scheme is required in order to avoid false aborts.

Hammond et al. introduce a memory model and associated hardware called Transactional

memory Coherence and Consistency (TCC) that executes all code in transactions [85]. The

programmer specifies TCC transactions and hardware speculatively executes them using

conflict detection and re-execution to enforce atomicity. Speculative execution allows TCC

to track access information for memory regions coarser than a byte (e.g., cache line), but

coarse meta-data tracking puts TCC at risk for false conflicts.

24https://en.wikipedia.org/wiki/ABA_problem

164

https://en.wikipedia.org/wiki/ABA_problem

Like RCC, TCC does not use a conventional cache coherence protocol to detect access

conflicts; instead it uses an update-broadcast system [88]. In update-broadcast systems,

if a transaction reaches its commit point successfully, then it notifies other processors of

its write set. Conversely, if a processor receives a write-set notification which conflicts

with its own read-set, then the processor aborts its own transaction. TCC broadcasts a

transaction’s write set at the end of the transaction to detect conflicts. Follow-up work to

TCC shows that this operation that can be made less inefficient by using a directory [44]

and introducing parallel commit [148]. Despite these optimizations, TCC is fundamentally

limited by its use of bounded eviction and write buffers. When a transaction overflows a

buffer, the executing core must execute non-speculatively, with exclusive commit access

from the point of overflow to the end of the transaction [88]. Non-speculative, exclusive

execution impedes parallelism and performance, as we showed in Section 4.6.

RCC’s novel algorithm, mechanism, and architecture address the essential flaws in TCC.

Unlike TCC, RCC transactions are defined by existing synchronization operations and RCC

tracks precise, byte-granular access information. RCC’s novel algorithm and mechanism

avoids substantial conflict detection cost via read validation (Section 4.3). RCC avoids

speculation, as well as the buffer bounding limitations in its implementation, eliminating a

key impediment to parallel performance.

Like TCC, BulkSC executes bounded regions transactionally, using conflict detection to

enforce coherence and consistency [42, 43]. BulkSC’s regions are dynamically formed and

bounded, and its conflict detection mechanism works by brodcasting a completing region’s

write set, not relying on existing cache coherence support. To ensure progress, BulkSC

dynamically resizes regions, making it inadequate to support SFRSx, which requires fixed

regions.

165

In contrast with BulkSC, with TCC and its variants, and with RCC, most hardware

TMs (HTMs) build on M(O)ESI-based cache coherence protocols to detect and resolve

conflicts [10, 26, 27, 128, 192]. The key challenge encountered by these designs, if they

support unbounded transactions, is when a transaction’s working set overflows the private

cache(s): a conflict on non-privately-cached data does not generate coherence events. These

HTM designs incur substantial cost and complexity to maintain state for overflowed bits

and detect conflicts as they occur. For example, LogTM extends the directory with “sticky”

coherence states for lines in order to detect conflicts on lines that overflow a transaction [128].

In contrast, RCC allows regions to execute largely independently, detecting and inferring

conflicts lazily (upon a cache miss or region boundary).

Other HTMs support conflict detection and speculative execution only for bounded

transactions [91, 193], relying on a software TM (STM) fallback [12, 38, 102, 127]. Intel’s

recent processors provide bounded, best-effort hardware TM; implementations do not

support transactions that overflow private caches [193]. RaceTM uses hardware TM to

detect conflicts that are data races [83]. RaceTM is thus closest to existing hardware-based

conflict detection mechanisms [115, 121, 167].

Detecting conflicts. Last writer slicing (LWS) tracks data provenance, recording only

the last writers of data [114]. LWS and our work share the intuition that to achieve low

run-time overheads, a dynamic analysis should track only the last writer of each shared

memory location. LWS is considerably different from our work in its purpose, focusing on

understanding concurrency bugs by directly exposing last writer information in a debugger.

LWS cannot detect read–write conflicts, and it does not detect races or provide execution

model guarantees.

166

Rethinking cache coherence. Pervasive cache coherence protocols propagate memory

access information across cores eagerly in order to provide hardware consistency models.

This functionality requires eagerly invalidating shared lines in remote caches and also

requires the directory to maintain a list of read sharers. Recently, there have been efforts to

reduce the complexity of coherence protocols and the memory subsystem design by relying

on disciplined parallelism [48, 100]. SARC tries to reduce invalidation traffic on writes by

creating tear-off copies of shared lines [100]. SARC reduces directory indirection by trying

to predict writers. The SARC protocol still needs to communicate eagerly for cache lines

that are not sent to sharers as tear-off copies, and thus complicates the existing protocol.

DeNovo shows that a simple coherence protocol can provide consistency for data-race-

free (DRF) programs [48]. In addition to requiring DRF executions, DeNovo requires

explicit programmer annotations to identify memory regions that need to be self-invalidated

at synchronization boundaries. In contrast, RCC provides consistency for both DRF and

racy executions, and it requires no annotations. DeNovo’s requirement of DRF restricts the

synchronization constructs that can be used in programs, since invalidations in DeNovo are

initiated by readers. This constraint is relaxed in follow-up work [176, 177]. DeNovoND

can allow for well-structured locks with custom hardware for such locks [177], while

DeNovoSync adds single-reader constraints to serialize reads and writes [176].

TSO-CC is a coherence protocol geared toward providing TSO that does not track sharers,

and relies on self-invalidation and detection of potential acquire operations [58]. The VIPS

protocol attempts to simplify MESI by distinguishing shared from private data [154]. For

private data, VIPS uses a write-back policy, while shared data is write-through. Furthermore,

only shared data is flushed from private caches at synchronization points. However, the

work provides coherence for DRF executions only.

167

Distributed shared memory. Some distributed shared memory (DSM) systems provide

release consistency, which allows deferring coherence operations until synchronization

operations [3, 15, 25, 40, 64, 101]. While RCC’s mechanisms are inspired by release con-

sistency mechanisms, RCC’s design is substantially different in order to provide strong

guarantees for racy executions, whereas release consistency assumes data race freedom.

Release consistency mechanisms thus do not require nor include features of RCC’s such as

tracking of access metadata and versions, and read validation and pre-commit operations.

DSM systems are thus intellectually closer to recent work that assumes data race freedom,

such as DeNovo and SARC [48, 100], than to RCC.

168

Chapter 7: Future Work

According to Griffiths (page 97) [82], “Perfection in research is not be found. . . . There

is no hope of doing perfect research.” Griffiths refused the presence of perfect research

in any field of study. According to him, as and when new techniques and innovations are

made in a field of study, the old research becomes outdated and ends up being subsumed

by the newer techniques. I agree with Griffiths’ observation: the techniques presented in

this dissertation are not perfect either. We are aware of a few opportunities for improvement

in each of the three techniques presented, and there are possibly several more that readers

might think of. In the following, we have discussed possible improvements and extensions

to each technique.

7.1 Valor

In this dissertation, we have advocated for and presented the advantages of exception-

based memory model semantics (Section 2.2.2). For example, SFRSx provides well-

defined semantics even for racy executions. Under SFRSx, data races are potential fail-stop

errors, which is analogous to fixing existing memory errors, such as buffer overflows

and null pointer exceptions, for which memory- and type-safe languages such as Java

provide fail-stop semantics. Ideally, programmers would eliminate nearly all data races

by addressing consistency exceptions encountered during testing and early production

169

runs (e.g., alpha and beta testing). Nonetheless, even well-tested software may contain

unknown data races that may manifest only under certain production environments, inputs,

or thread interleavings [107, 145, 179] (Section 2.1), leading to unexpected consistency

exceptions which may frustrate developers and users more than today’s often silent and

unknown consequences under DRF0-based memory models. Any racy execution can throw

a consistency exception, essentially trading availability for strong, well-defined semantics.

Unexpected exceptions hurt the availability (i.e., exception freedom) of production systems.

Future research could target to extend FastRCD and Valor or develop new analysis to

check if consistency exceptions can be tolerated, thereby improving availability [195], and

still provide strong memory consistency based on a some notion of region isolation.

7.2 RCC

A requirement for providing the SFRSx memory model in hardware is to precisely track

access metadata at the granularity of bytes. The RCC design achieves this by extending

the private cache lines to store access metadata. Since it is impractical to store the access

information for all cores for each LLC line in the LLC, therefore, RCC adds a metadata

cache, called the AIM cache, which is connected on a bus shared with the LLC. However,

the AIM cache might not scale well with large number of cores, since a larger AIM structure

would imply increased area-on-chip and energy consumption. Furthermore, large region

sizes and large number of cores might lead to more AIM cache misses with reasonable-sized

AIM caches, which is expensive (e.g., canneal in Section 4.6.2).

A potential direction of future work is to provide alternative memory models that are

stronger than DRF0-based variants and where the access information can be approximated

(e.g., tracked imprecisely). This would mean that the AIM cache is no longer required,

170

implying fewer customizations to current commodity processors. That would also reduce

the required area-on-chip and the energy consumption in the new design.

7.3 DoubleChecker

In the following, we present possible extensions to DoubleChecker:

• A conflict serializability-based atomicity checker needs to check for presence of cycles

in the transactional dependence graph [18, 73]. DoubleChecker performs lazy cycle

detection, and hence checks for presence of strongly connected components (SCCs) in

the dependence graph (Section 5.3.3). Our evaluation shows that there is some scope

to improve the overhead of detecting SCCs during imprecise cycle detection phase.

Our current implementation of cycle detection is single-threaded, for implementation

simplicity. A possible extension could be to investigate concurrent cycle detection

algorithms from the reference counting-based garbage collection literature [144], and

improve the implementation.

• A potential drawback of DoubleChecker is that it needs to log program accesses to

pass from the imprecise to the precise analysis, in order to recover precision. This

stresses the memory requirements of the approach, and increases garbage collection

overhead. A potential area of work could explore summarization techniques that

would analyze the transactions on the fly and dynamically shrink the read/write logs

by soundly dropping accesses that cannot be part of a future atomicity violation [63].

171

Chapter 8: Conclusion

Current shared-memory systems are afflicted by a critical problem, namely poor and

unsatisfactory semantics for racy program executions. Given that there are no known

techniques to deal with all data races satisfactorily, it is imperative to strengthen existing

memory models to provide strong semantic guarantees to all program executions.

In this dissertation, we propose efficient techniques to provide strong region serializability-

based memory consistency. This dissertation proposes two solutions to solve the problem

by providing a strong memory model called SFRSx to all program executions, by efficiently

detecting and/or inferring conflicting accesses between SFRs. In addition, we extend the

scope of the dissertation’s work by providing serializability of programmer-defined atomic

regions.

In the following, we summarize this dissertation’s contributions and discuss how the

techniques presented help in solving the stated problem.

8.1 Summary

• Chapter 3 presents two new software-based region conflict detectors, one of which,

Valor, has overheads low enough to provide practical semantic guarantees to a lan-

guage specification. The key insight behind Valor is that detecting read–write conflicts

lazily retains necessary semantic guarantees and has better performance than eager

172

conflict detection. Valor provides the SFRSx memory model end-to-end in software,

and its overhead is potentially low enough to use all-the-time conflict exceptions in

various settings, from in-house testing to alpha and beta testing to potentially even

some production systems. Overall, Valor represents an advance in the state of the art

for providing strong semantic guarantees for racy executions.

• Chapter 4 presents RCC, an architecture design that provides end-to-end SFRSx,

ensuring strong, well-defined semantics for all executions, including executions with

data races. RCC’s insights and contributions lie in its novel mechanism for detecting

regions conflicts that ensures write atomicity and checks read consistency. RCC’s

support for region serializability enables coherence to be deferred to SFR bound-

aries. An unoptimized design of RCC incurs significant costs to provide coherence

conservatively; we show how optimizations reduce these costs substantially.

Our evaluation shows that RCC compares favorably, in terms of execution time and

on- and off-chip traffic, with prior work that detects region conflicts for memory

consistency or transactional memory; RCC’s novel mechanism avoids the high costs

and scalability bottlenecks incurred by the prior work’s mechanisms [85, 115]. Fur-

thermore, RCC is competitive with the evaluation baseline that provides no conflict

detection support or strong consistency guarantees. By eschewing the limitations that

make prior work unimplementable, and providing significantly stronger guarantees

than current shared-memory systems at comparable cost, RCC is a compelling design

for future systems and advances the state of the art in parallel architecture consistency

and coherence.

173

• Chapter 5 presents DoubleChecker, an efficient sound and precise dynamic software-

only atomicity checking technique. DoubleChecker is a novel technique that presents

a new direction for dynamic sound and precise atomicity checking to provide serializ-

ability of arbitrarily-sized regions. Specifically, we show that it is often cheaper to

imprecisely track cross-thread dependences and speed up the common case of no de-

pendences between accesses. The key insight of DoubleChecker lies in its separation

of concerns into two new staged and cooperating dynamic analyses—an imprecise

and a precise analysis. Its imprecise analysis tracks cross-thread dependences soundly

but imprecisely with significantly better performance than a fully precise analysis. Its

precise analysis is more expensive but only needs to process a subset of the execution

identified as potentially involved in atomicity violations by the imprecise analysis.

This separation of concerns allows DoubleChecker to improve the performance of

dynamic atomicity checking substantially compared with existing state-of-the-art

detectors (e.g., [73]).

8.2 Impact and Meaning

Software is pervasive in our modern society, with an aim to aid human beings in every

aspect of their daily lives. Software is everywhere, ranging from complex machines like

nuclear reactors, space shuttles, cars, to the more simple devices and household appliances

such as microwaves, wrist watches, etc. The ultimate goal is for software to be a boon

to humanity and not a bane. A prerequisite for software to be a boon is “software that

does what it is intended for,” i.e., software of good quality. Unfortunately, as Mark Paulk

from Carnegie Mellon University’s Software Engineering Institute noted, “A fundamental

174

problem with software quality is that programmers make mistakes.”25 Programming is a

human activity and humans are prone to making errors [92].

We are beyond a “point of no return” with the prevalence of parallel computer systems.

To serve critically important health, resource discovery, economic, and security applications

with the extreme scale and performance afforded by today’s parallel hardware, developers

are faced with the daunting, complex task of writing parallel software. Today’s inscrutable

and inadequate programming language memory consistency models lead to errors that, in

the absence of (intractable) exhaustive testing, persist in deployed parallel software. System

failures stemming from data races have real financial [145] and social [107, 179] costs, and

finding and fixing software errors is the dominant cost of a computer system (Chapter 2).

Memory models for current languages have largely been designed from a system-

centric point of view that complies to optimizations originally designed for sequential

languages [119]. According to Adve and Boehm [2],

[I]t is time to rethink how we design our languages and systems.

. . .

We also believe some of the messiness of memory models today could have been
averted with closer cooperation between hardware and software.

Our work certainly fits the theme championed by prior research [2, 41, 115]. The

techniques proposed in this proposal have the potential to be the foundation on which future

languages and systems are based to provide SFR serializability to all program executions.

As discussed, such strong guarantees help simplify programming language specifications,

permits aggressive optimizations by the compiler and the hardware within SFRs, and they

help debug problematic data races by making them a fail-stop condition. The work in

25Information Week, Issue on Software Quality, January 21 2002.

175

this dissertation will help benefit society by fundamentally simplifying programming and

increasing reliability of software for parallel computers. The techniques will, if adopted

successfully, address a long-standing problem for parallel computing systems, leading to

more reliable and scalable systems, benefiting all aspects of society that rely on computation.

176

Bibliography

[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for Safe Locking: Static Race
Detection for Java. TOPLAS, 28(2):207–255, 2006.

[2] S. V. Adve and H.-J. Boehm. Memory Models: A Case for Rethinking Parallel
Languages and Hardware. CACM, 53:90–101, 2010.

[3] S. V. Adve, A. L. Cox, S. Dwarkadas, R. Rajamony, and W. Zwaenepoel. A Compari-
son of Entry Consistency and Lazy Release Consistency Implementations. In HPCA,
pages 26–37, 1996.

[4] S. V. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorial.
IEEE Computer, 29:66–76, 1996.

[5] S. V. Adve and M. D. Hill. Weak Ordering—A New Definition. In ISCA, pages 2–14,
1990.

[6] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer. Detecting Data Races on
Weak Memory Systems. In ISCA, pages 234–243, 1991.

[7] W. Ahn, S. Qi, M. Nicolaides, J. Torrellas, J.-W. Lee, X. Fang, S. Midkiff, and
D. Wong. BulkCompiler: High-performance Sequential Consistency through Cooper-
ative Compiler and Hardware Support. In MICRO, pages 133–144, 2009.

[8] J. Alglave, A. Fox, S. Ishtiaq, M. O. Myreen, S. Sarkar, P. Sewell, and F. Z. Nardelli.
The Semantics of Power and ARM Multiprocessor Machine Code. In DAMP, pages
13–24, 2008.

[9] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng, J. Dolby,
S. Fink, D. Grove, M. Hind, K. S. McKinley, M. Mergen, J. E. B. Moss, T. Ngo, and
V. Sarkar. The Jikes Research Virtual Machine Project: Building an Open-Source
Research Community. IBM Systems Journal, 44:399–417, 2005.

[10] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and S. Lie. Unbounded
Transactional Memory. In HPCA, pages 316–327, 2005.

177

[11] J. Arulraj, P.-C. Chang, G. Jin, and S. Lu. Production-Run Software Failure Diagnosis
via Hardware Performance Counters. In ASPLOS, pages 101–112, 2013.

[12] L. Baugh, N. Neelakantam, and C. Zilles. Using Hardware Memory Protection to
Build a High-Performance, Strongly-Atomic Hybrid Transactional Memory. In ISCA,
pages 115–126, 2008.

[13] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. CoreDet: A Compiler
and Runtime System for Deterministic Multithreaded Execution. In ASPLOS, pages
53–64, 2010.

[14] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe Multithreaded Program-
ming for C/C++. In OOPSLA, pages 81–96, 2009.

[15] B. N. Bershad and M. J. Zekauskas. Midway: Shared Memory Parallel Programming
with Entry Consistency for Distributed Memory Multiprocessors. Technical Report
CMU-CS-91-170, Carnegie Mellon University, 1991.

[16] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton University,
2011.

[17] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark Suite: Charac-
terization and Architectural Implications. In PACT, pages 72–81, 2008.

[18] S. Biswas, J. Huang, A. Sengupta, and M. D. Bond. DoubleChecker: Efficient Sound
and Precise Atomicity Checking. In PLDI, pages 28–39, 2014.

[19] S. Biswas, M. Zhang, and M. D. Bond. Lightweight Data Race Detection for
Production Runs. Technical Report OSU-CISRC-1/15-TR01, Computer Science
& Engineering, Ohio State University, 2015. ftp://ftp.cse.ohio-state.edu/
pub/tech-report/2015/TR01.pdf.

[20] S. Biswas, M. Zhang, M. D. Bond, and B. Lucia. Valor: Efficient, Software-Only
Region Conflict Exceptions. In OOPSLA, pages 241–259, 2015.

[21] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and Water? High Performance
Garbage Collection in Java with MMTk. In ICSE, pages 137–146, 2004.

[22] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo Benchmarks: Java Benchmarking Development
and Analysis. In OOPSLA, pages 169–190, 2006.

178

ftp://ftp.cse.ohio-state.edu/pub/tech-report/2015/TR01.pdf
ftp://ftp.cse.ohio-state.edu/pub/tech-report/2015/TR01.pdf

[23] S. M. Blackburn and K. S. McKinley. Immix: A Mark-Region Garbage Collector
with Space Efficiency, Fast Collection, and Mutator Performance. In PLDI, pages
22–32, 2008.

[24] B. H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors. CACM,
13:422–426, 1970.

[25] M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. W. Felten, and J. Sandberg. Virtual
Memory Mapped Network Interface for the SHRIMP Multicomputer. In ISCA, pages
142–153, 1994.

[26] C. Blundell, J. Devietti, E. C. Lewis, and M. M. K. Martin. Making the Fast Case
Common and the Uncommon Case Simple in Unbounded Transactional Memory. In
ISCA, pages 24–34, New York, NY, USA, 2007.

[27] J. Bobba, N. Goyal, M. D. Hill, M. M. Swift, and D. A. Wood. TokenTM: Efficient
Execution of Large Transactions with Hardware Transactional Memory. In ISCA,
pages 127–138, 2008.

[28] R. L. Bocchino, Jr., V. S. Adve, S. V. Adve, and M. Snir. Parallel Programming Must
Be Deterministic by Default. In HotPar, pages 4–9, 2009.

[29] H.-J. Boehm. How to miscompile programs with “benign” data races. In HotPar,
2011.

[30] H.-J. Boehm. Position paper: Nondeterminism is Unavoidable, but Data Races are
Pure Evil. In RACES, pages 9–14, 2012.

[31] H.-J. Boehm and S. V. Adve. Foundations of the C++ Concurrency Memory Model.
In PLDI, pages 68–78, 2008.

[32] H.-J. Boehm and S. V. Adve. You Don’t Know Jack about Shared Variables or
Memory Models. CACM, 55(2):48–54, 2012.

[33] H.-J. Boehm and B. Demsky. Outlawing Ghosts: Avoiding Out-of-Thin-Air Results.
In MSPC, pages 7:1–7:6, 2014.

[34] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer: Proportional Detection of
Data Races. In PLDI, pages 255–268, 2010.

[35] M. D. Bond, M. Kulkarni, M. Cao, M. Zhang, M. Fathi Salmi, S. Biswas, A. Sen-
gupta, and J. Huang. Octet: Capturing and Controlling Cross-Thread Dependences
Efficiently. In OOPSLA, pages 693–712, 2013.

[36] C. Boyapati, R. Lee, and M. Rinard. Ownership Types for Safe Programming:
Preventing Data Races and Deadlocks. In OOPSLA, pages 211–230, 2002.

179

[37] J. Burnim, K. Sen, and C. Stergiou. Testing Concurrent Programs on Relaxed Memory
Models. In ISSTA, pages 122–132, 2011.

[38] I. Calciu, J. Gottschlich, T. Shpeisman, G. Pokam, and M. Herlihy. Invyswell: A
Hybrid Transactional Memory for Haswell’s Restricted Transactional Memory. In
PACT, pages 187–200, 2014.

[39] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras, and S. Chatterjee.
Software Transactional Memory: Why Is It Only a Research Toy? CACM, 51(11):40–
46, 2008.

[40] M. Castro, P. Guedes, M. Sequeira, and M. Costa. Efficient and Flexible Object
Sharing. In ICPP, August 1996.

[41] L. Ceze, J. Devietti, B. Lucia, and S. Qadeer. A Case for System Support for
Concurrency Exceptions. In HotPar, 2009.

[42] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: Bulk Enforcement of
Sequential Consistency. In ISCA, pages 278–289, 2007.

[43] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk Disambiguation of Speculative
Threads in Multiprocessors. In ISCA, pages 227–238, 2006.

[44] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. C. Minh, W. Baek,
C. Kozyrakis, and K. Olukotun. A Scalable, Non-blocking Approach to Transactional
Memory. In HPCA, pages 97–108, 2007.

[45] Q. Chen, L. Wang, Z. Yang, and S. D. Stoller. HAVE: Detecting Atomicity Violations
via Integrated Dynamic and Static Analysis. In FASE, pages 425–439, 2009.

[46] S. Cherem, T. Chilimbi, and S. Gulwani. Inferring Locks for Atomic Sections. In
PLDI, pages 304–315, 2008.

[47] L. Chew and D. Lie. Kivati: Fast Detection and Prevention of Atomicity Violations.
In EuroSys, pages 307–320, 2010.

[48] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V. Adve, V. S.
Adve, N. P. Carter, and C.-T. Chou. DeNovo: Rethinking the Memory Hierarchy for
Disciplined Parallelism. In PACT, pages 155–166, 2011.

[49] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan. Efficient
and Precise Datarace Detection for Multithreaded Object-Oriented Programs. In
PLDI, pages 258–269, 2002.

[50] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,
chapter 11. The MIT Press, McGraw-Hill Book Company, 2nd edition, 2001.

180

[51] L. Dalessandro and M. L. Scott. Sandboxing Transactional Memory. In PACT, pages
171–180, 2012.

[52] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: Streamlining STM by Abolish-
ing Ownership Records. In PPoPP, pages 67–78, 2010.

[53] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Deterministic Shared Memory
Multiprocessing. In ASPLOS, pages 85–96, 2009.

[54] J. Devietti, B. P. Wood, K. Strauss, L. Ceze, D. Grossman, and S. Qadeer. RADISH:
Always-On Sound and Complete Race Detection in Software and Hardware. In ISCA,
pages 201–212, 2012.

[55] K. Du Bois, J. B. Sartor, S. Eyerman, and L. Eeckhout. Bottle Graphs: Visualizing
Scalability Bottlenecks in Multi-threaded Applications. In OOPSLA, pages 355–372,
2013.

[56] L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, and H.-J. Boehm. IFRit:
Interference-Free Regions for Dynamic Data-Race Detection. In OOPSLA, pages
467–484, 2012.

[57] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A Race and Transaction-Aware Java
Runtime. In PLDI, pages 245–255, 2007.

[58] M. Elver and V. Nagarajan. TSO-CC: Consistency directed cache coherence for TSO.
In HPCA, pages 165–176, 2014.

[59] D. Engler and K. Ashcraft. RacerX: Effective, Static Detection of Race Conditions
and Deadlocks. In SOSP, pages 237–252, 2003.

[60] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk. Effective Data-Race
Detection for the Kernel. In OSDI, pages 1–16, 2010.

[61] M. Eslamimehr and J. Palsberg. Race Directed Scheduling of Concurrent Programs.
In PPoPP, pages 301–314, 2014.

[62] A. Farzan and P. Madhusudan. Causal Atomicity. In CAV, pages 315–328, 2006.

[63] A. Farzan and P. Madhusudan. Monitoring Atomicity in Concurrent Programs. In
CAV, pages 52–65, 2008.

[64] C. Fensch and M. Cintra. An OS-Based Alternative to Full Hardware Coherence on
Tiled CMPs. In HPCA, pages 355–366, 2008.

[65] C. Flanagan. Verifying Commit-Atomicity Using Model-Checking. In SPIN, pages
252–266, 2004.

181

[66] C. Flanagan and S. N. Freund. Type-Based Race Detection for Java. In PLDI, pages
219–232, 2000.

[67] C. Flanagan and S. N. Freund. Atomizer: A Dynamic Atomicity Checker for Multi-
threaded Programs. SCP, 71(2):89–109, 2008.

[68] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise Dynamic Race
Detection. In PLDI, pages 121–133, 2009.

[69] C. Flanagan and S. N. Freund. Adversarial Memory for Detecting Destructive Races.
In PLDI, pages 244–254, 2010.

[70] C. Flanagan and S. N. Freund. The RoadRunner Dynamic Analysis Framework for
Concurrent Programs. In PASTE, pages 1–8, 2010.

[71] C. Flanagan and S. N. Freund. RedCard: Redundant Check Elimination for Dynamic
Race Detectors. In ECOOP, pages 255–280, 2013.

[72] C. Flanagan, S. N. Freund, M. Lifshin, and S. Qadeer. Types for Atomicity: Static
Checking and Inference for Java. TOPLAS, 30(4):20:1–20:53, 2008.

[73] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A Sound and Complete Dynamic
Atomicity Checker for Multithreaded Programs. In PLDI, pages 293–303, 2008.

[74] C. Flanagan and S. Qadeer. A Type and Effect System for Atomicity. In PLDI, pages
338–349, 2003.

[75] S. Freund, 2013. Personal communication.

[76] S. N. Freund, 2015. Personal communication.

[77] K. Gharachorloo and P. B. Gibbons. Detecting Violations of Sequential Consistency.
In SPAA, pages 316–326, 1991.

[78] K. Gharachorloo, A. Gupta, and J. Hennessy. Performance Evaluation of Memory
Consistency Models for Shared-memory Multiprocessors. In ASPLOS, pages 245–
257, 1991.

[79] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy.
Memory Consistency and Event Ordering in Scalable Shared-memory Multiproces-
sors. In ISCA, pages 15–26, 1990.

[80] P. Godefroid and N. Nagappan. Concurrency at Microsoft – An Exploratory Survey.
In EC2, 2008.

182

[81] J. L. Greathouse, Z. Ma, M. I. Frank, R. Peri, and T. Austin. Demand-Driven Software
Race Detection using Hardware Performance Counters. In ISCA, pages 165–176,
2011.

[82] M. Griffiths. Educational Research For Social Justice: getting off the fence. Open
University Press, 1998.

[83] S. Gupta, F. Sultan, S. Cadambi, F. Ivančić, and M. Rötteler. Using Hardware
Transactional Memory for Data Race Detection. In IPDPS, pages 1–11, 2009.

[84] C. Hammer, J. Dolby, M. Vaziri, and F. Tip. Dynamic Detection of Atomic-Set-
Serializability Violations. In ICSE, pages 231–240, 2008.

[85] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M. K.
Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional Memory Coherence
and Consistency. In ISCA, pages 102–113, 2004.

[86] T. Harris and K. Fraser. Language Support for Lightweight Transactions. In OOPSLA,
pages 388–402, 2003.

[87] T. Harris and K. Fraser. Revocable Locks for Non-Blocking Programming. In PPoPP,
pages 72–82, 2005.

[88] T. Harris, J. Larus, and R. Rajwar. Transactional Memory. Morgan and Claypool
Publishers, 2nd edition, 2010.

[89] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing Memory Transactions.
In PLDI, pages 14–25, 2006.

[90] J. Hatcliff, Robby, and M. B. Dwyer. Verifying Atomicity Specifications for Concur-
rent Object-Oriented Software using Model-Checking. In VMCAI, pages 175–190,
2004.

[91] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support for
Lock-Free Data Structures. In ISCA, pages 289–300, 1993.

[92] G. J. Holzmann. The Logic of Bugs. In FSE, pages 81–87, 2002.

[93] D. R. Hower, P. Montesinos, L. Ceze, M. D. Hill, and J. Torrellas. Two Hardware-
Based Approaches for Deterministic Multiprocessor Replay. CACM, 52:93–100,
2009.

[94] J. Huang, P. O. Meredith, and G. Rosu. Maximal Sound Predictive Race Detection
with Control Flow Abstraction. In PLDI, pages 337–348, 2014.

[95] Intel. Intel R© CoreTM i7-3970X Processor Extreme Edition. http://ark.intel.
com/products/70845.

183

http://ark.intel.com/products/70845
http://ark.intel.com/products/70845

[96] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Automated Atomicity-Violation
Fixing. In PLDI, pages 389–400, 2011.

[97] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea. Deadlock Immunity: Enabling
Systems to Defend Against Deadlocks. In OSDI, pages 295–308, 2008.

[98] B. Kasikci, C. Zamfir, and G. Candea. Data Races vs. Data Race Bugs: Telling the
Difference with Portend. In ASPLOS, pages 185–198, 2012.

[99] B. Kasikci, C. Zamfir, and G. Candea. RaceMob: Crowdsourced Data Race Detection.
In SOSP, pages 406–422, 2013.

[100] S. Kaxiras and G. Keramidas. SARC Coherence: Scaling Directory Cache Coherence
in Performance and Power. IEEE Micro, 30(5):54–65, 2010.

[101] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release Consistency for Software
Distributed Shared Memory. In ISCA, pages 13–21, 1992.

[102] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid Transactional
Memory. In PPoPP, pages 209–220, 2006.

[103] H. Labs. CACTI 5.3. http://quid.hpl.hp.com:9081/cacti/.

[104] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
CACM, 21(7):558–565, 1978.

[105] L. Lamport. How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Computer, 28:690–691, 1979.

[106] D. Lee, P. M. Chen, J. Flinn, and S. Narayanasamy. Chimera: Hybrid Program
Analysis for Determinism. In PLDI, pages 463–474, 2012.

[107] N. G. Leveson and C. S. Turner. An Investigation of the Therac-25 Accidents. IEEE
Computer, 26(7):18–41, 1993.

[108] B. R. Liblit. Cooperative Bug Isolation. PhD thesis, University of California at
Berkeley, 2004.

[109] C. Lin, V. Nagarajan, and R. Gupta. Efficient Sequential Consistency Using Condi-
tional Fences. In PACT, pages 295–306, 2010.

[110] C. Lin, V. Nagarajan, R. Gupta, and B. Rajaram. Efficient Sequential Consistency via
Conflict Ordering. In ASPLOS, pages 273–286, 2012.

[111] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Prentice Hall
PTR, 2nd edition, 1999.

184

http://quid.hpl.hp.com:9081/cacti/

[112] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mistakes: A Comprehensive
Study on Real World Concurrency Bug Characteristics. In ASPLOS, pages 329–339,
2008.

[113] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting Atomicity Violations via
Access-Interleaving Invariants. In ASPLOS, pages 37–48, 2006.

[114] B. Lucia and L. Ceze. Data Provenance Tracking for Concurrent Programs. In CGO,
pages 146–156, 2015.

[115] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm. Conflict Exceptions:
Simplifying Concurrent Language Semantics with Precise Hardware Exceptions for
Data-Races. In ISCA, pages 210–221, 2010.

[116] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-Aid: Detecting and Surviving
Atomicity Violations. In ISCA, pages 277–288, 2008.

[117] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In PLDI, pages 190–200, 2005.

[118] J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In POPL, pages
378–391, 2005.

[119] D. Marino, T. D. Millstein, M. Musuvathi, S. Narayanasamy, and A. Singh. The
Silently Shifting Semicolon. In SNAPL, pages 177–189, May 2015.

[120] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace: Effective Sampling for
Lightweight Data-Race Detection. In PLDI, pages 134–143, 2009.

[121] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and S. Narayanasamy. DRFx: A
Simple and Efficient Memory Model for Concurrent Programming Languages. In
PLDI, pages 351–362, 2010.

[122] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and S. Narayanasamy. A Case for
an SC-Preserving Compiler. In PLDI, pages 199–210, 2011.

[123] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why On-Chip Cache Coherence is
Here to Stay. CACM, 55(7):78–89, July 2012.

[124] J. F. Martínez, J. Renau, M. C. Huang, M. Prvulovic, and J. Torrellas. Cherry:
Checkpointed Early Resource Recycling in Out-of-order Microprocessors. In MICRO,
pages 3–14, 2002.

[125] H. S. Matar, I. Kuru, S. Tasiran, and R. Dementiev. Accelerating Precise Race
Detection Using Commercially-Available Hardware Transactional Memory Support.
In WoDet, 2014.

185

[126] F. Mattern. Virtual Time and Global States of Distributed Systems. In Workshop on
Parallel and Distributed Algorithms, pages 215–226, 1988.

[127] A. Matveev and N. Shavit. Reduced Hardware NOrec: A Safe and Scalable Hybrid
Transactional Memory. In ASPLOS, pages 59–71, 2015.

[128] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood. LogTM:
Log-based Transactional Memory. In HPCA, pages 254–265, 2006.

[129] M. Musuvathi and S. Qadeer. Iterative Context Bounding for Systematic Testing of
Multithreaded Programs. In PLDI, pages 446–455, 2007.

[130] A. Muzahid, D. Suárez, S. Qi, and J. Torrellas. SigRace: Signature-Based Data Race
Detection. In ISCA, pages 337–348, 2009.

[131] M. Naik and A. Aiken. Conditional Must Not Aliasing for Static Race Detection. In
POPL, pages 327–338, 2007.

[132] M. Naik, A. Aiken, and J. Whaley. Effective Static Race Detection for Java. In PLDI,
pages 308–319, 2006.

[133] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder. Automatically
Classifying Benign and Harmful Data Races Using Replay Analysis. In PLDI, pages
22–31, 2007.

[134] N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight Dynamic
Binary Instrumentation. In PLDI, pages 89–100, 2007.

[135] H. Nishiyama. Detecting Data Races using Dynamic Escape Analysis based on Read
Barrier. In VMRT, pages 127–138, 2004.

[136] R. O’Callahan and J.-D. Choi. Hybrid Dynamic Data Race Detection. In PPoPP,
pages 167–178, 2003.

[137] C. O’Hanlon. A Conversation with John Hennessy and David Patterson. Queue,
4(10):14–22, Dec. 2006.

[138] M. Olszewski, J. Cutler, and J. G. Steffan. JudoSTM: A Dynamic Binary-Rewriting
Approach to Software Transactional Memory. In PACT, pages 365–375, 2007.

[139] J. Ouyang, P. M. Chen, J. Flinn, and S. Narayanasamy. ...and region serializability
for all. In HotPar, 2013.

[140] C. H. Papadimitriou. The Serializability of Concurrent Database Updates. J. ACM,
26(4):631–653, 1979.

186

[141] M. S. Papamarcos and J. H. Patel. A Low-Overhead Coherence Solution for Multi-
processors with Private Cache Memories. In ISCA, pages 348–354, 1984.

[142] C.-S. Park and K. Sen. Randomized Active Atomicity Violation Detection in Concur-
rent Programs. In FSE, pages 135–145, 2008.

[143] S. Park, S. Lu, and Y. Zhou. CTrigger: Exposing Atomicity Violation Bugs from
Their Hiding Places. In ASPLOS, pages 25–36, 2009.

[144] H. Paz, D. F. Bacon, E. K. Kolodner, E. Petrank, and V. T. Rajan. An Efficient
On-the-Fly Cycle Collection. TOPLAS, 29(4):1–43, 2007.

[145] PCWorld. Nasdaq’s facebook glitch came from race conditions, 2012.
http://www.pcworld.com/article/255911/nasdaqs_facebook_glitch_
came_from_race_conditions.html.

[146] E. Pozniansky and A. Schuster. MultiRace: Efficient On-the-Fly Data Race Detection
in Multithreaded C++ Programs. CCPE, 19(3):327–340, 2007.

[147] P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH: Context-Sensitive Correlation
Analysis for Race Detection. In PLDI, pages 320–331, 2006.

[148] S. H. Pugsley, M. Awasthi, N. Madan, N. Muralimanohar, and R. Balasubramonian.
Scalable and Reliable Communication for Hardware Transactional Memory. In PACT,
pages 144–154, 2008.

[149] S. Rajamani, G. Ramalingam, V. P. Ranganath, and K. Vaswani. ISOLATOR: Dy-
namically Ensuring Isolation in Concurrent Programs. In ASPLOS, pages 181–192,
2009.

[150] P. Ranganathan, V. Pai, and S. Adve. Using Speculative Retirement and Larger
Instruction Windows to Narrow the Performance Gap between Memory Consistency
Models. In SPAA, pages 199–210, 1997.

[151] P. Ratanaworabhan, M. Burtscher, D. Kirovski, B. Zorn, R. Nagpal, and K. Pattabi-
raman. Detecting and Tolerating Asymmetric Races. In PPoPP, pages 173–184,
2009.

[152] M. C. Rinard and M. S. Lam. The Design, Implementation, and Evaluation of Jade.
TOPLAS, 20:483–545, 1998.

[153] C. G. Ritson and F. R. Barnes. An Evaluation of Intel’s Restricted Transactional
Memory for CPAs. In CPA, pages 271–292, 2013.

[154] A. Ros and S. Kaxiras. Complexity-Effective Multicore Coherence. In PACT, pages
241–252, 2012.

187

http://www.pcworld.com/article/255911/nasdaqs_facebook_glitch_came_from_race_conditions.html
http://www.pcworld.com/article/255911/nasdaqs_facebook_glitch_came_from_race_conditions.html

[155] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser. Dingo: Taming Device Drivers. In
EuroSys, pages 275–288, 2009.

[156] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg. McRT-
STM: A High Performance Software Transactional Memory System for a Multi-Core
Runtime. In PPoPP, pages 187–197, 2006.

[157] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Understanding
POWER Multiprocessors. In PLDI, pages 175–186, 2011.

[158] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A
Dynamic Data Race Detector for Multi-Threaded Programs. In SOSP, pages 27–37,
1997.

[159] C. Segulja and T. S. Abdelrahman. Clean: A Race Detector with Cleaner Semantics.
In ISCA, pages 401–413, 2015.

[160] K. Sen. Race Directed Random Testing of Concurrent Programs. In PLDI, pages
11–21, 2008.

[161] A. Sengupta, S. Biswas, M. Zhang, M. D. Bond, and M. Kulkarni. Hybrid Static–
Dynamic Analysis for Statically Bounded Region Serializability. In ASPLOS, pages
561–575, 2015.

[162] K. Serebryany, A. Potapenko, T. Iskhodzhanov, and D. Vyukov. Dynamic Race
Detection with LLVM Compiler. pages 110–114, 2012.

[163] J. Ševčík and D. Aspinall. On Validity of Program Transformations in the Java
Memory Model. In ECOOP, pages 27–51, 2008.

[164] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen. x86-tso: A rigorous
and usable programmer’s model for x86 multiprocessors. CACM, 53(7):89–97, 2010.

[165] D. Shasha and M. Snir. Efficient and Correct Execution of Parallel Programs that
Share Memory. TOPLAS, 10(2):282–312, 1988.

[166] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer, D. Grossman, R. L.
Hudson, K. F. Moore, and B. Saha. Enforcing Isolation and Ordering in STM. In
PLDI, pages 78–88, 2007.

[167] A. Singh, D. Marino, S. Narayanasamy, T. Millstein, and M. Musuvathi. Efficient
Processor Support for DRFx, a Memory Model with Exceptions. In ASPLOS, pages
53–66, 2011.

[168] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and M. Musuvathi. End-to-End
Sequential Consistency. In ISCA, pages 524–535, 2012.

188

[169] A. Sinha, S. Malik, C. Wang, and A. Gupta. Predictive Analysis for Detecting
Serializability Violations through Trace Segmentation. In MEMOCODE, pages
99–108, 2011.

[170] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan. Sound Predictive
Race Detection in Polynomial Time. In POPL, pages 387–400, 2012.

[171] L. A. Smith, J. M. Bull, and J. Obdrzálek. A Parallel Java Grande Benchmark Suite.
In SC, pages 8–8, 2001.

[172] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory Consistency and
Cache Coherence. Morgan & Claypool Publishers, 2011.

[173] F. Sorrentino, A. Farzan, and P. Madhusudan. PENELOPE: Weaving Threads to
Expose Atomicity Violations. In FSE, pages 37–46, 2010.

[174] C. SPARC International, Inc. The SPARC Architecture Manual: Version 8. 1992.

[175] W. N. Sumner, C. Hammer, and J. Dolby. Marathon: Detecting Atomic-Set Serializ-
ability Violations with Conflict Graphs. In RV, pages 161–176, 2012.

[176] H. Sung and S. V. Adve. DeNovoSync: Efficient Support for Arbitrary Synchroniza-
tion Without Writer-Initiated Invalidations. In ASPLOS, pages 545–559, 2015.

[177] H. Sung, R. Komuravelli, and S. V. Adve. DeNovoND: Efficient Hardware Support
for Disciplined Non-Determinism. In ASPLOS, pages 13–26, 2013.

[178] Z. Sura, X. Fang, C.-L. Wong, S. P. Midkiff, J. Lee, and D. Padua. Compiler
Techniques for High Performance Sequentially Consistent Java Programs. In PPoPP,
pages 2–13, 2005.

[179] U.S.–Canada Power System Outage Task Force. Final Report on the August 14th
Blackout in the United States and Canada. Technical report, Department of Energy,
2004.

[180] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn, and
S. Narayanasamy. DoublePlay: Parallelizing Sequential Logging and Replay. In
ASPLOS, pages 15–26, 2011.

[181] C. von Praun and T. R. Gross. Object Race Detection. In OOPSLA, pages 70–82,
2001.

[182] C. von Praun and T. R. Gross. Static Conflict Analysis for Multi-Threaded Object-
Oriented Programs. In PLDI, pages 115–128, 2003.

[183] J. W. Voung, R. Jhala, and S. Lerner. RELAY: Static Race Detection on Millions of
Lines of Code. In ESEC/FSE, pages 205–214, 2007.

189

[184] L. Wang and S. D. Stoller. Accurate and Efficient Runtime Detection of Atomicity
Errors in Concurrent Programs. In PPoPP, pages 137–146, 2006.

[185] L. Wang and S. D. Stoller. Runtime Analysis of Atomicity for Multithreaded Pro-
grams. IEEE TSE, 32:93–110, 2006.

[186] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. A. Mahlke. Gadara: Dynamic
Deadlock Avoidance for Multithreaded Programs. In OSDI, pages 281–294, 2008.

[187] J. Wilcox, P. Finch, C. Flanagan, and S. N. Freund. Array Shadow State Compression
for Precise Dynamic Race Detection. Technical Report CSTR-201510, Williams
College, 2015.

[188] B. P. Wood, L. Ceze, and D. Grossman. Low-Level Detection of Language-Level
Data Races with LARD. In ASPLOS, pages 671–686, 2014.

[189] M. Xu, R. Bodík, and M. D. Hill. A Serializability Violation Detector for Shared-
Memory Server Programs. In PLDI, pages 1–14, 2005.

[190] X. Yang, S. M. Blackburn, D. Frampton, and A. L. Hosking. Barriers Reconsidered,
Friendlier Still! In ISMM, pages 37–48, 2012.

[191] X. Yang, S. M. Blackburn, D. Frampton, J. B. Sartor, and K. S. McKinley. Why
Nothing Matters: The Impact of Zeroing. In OOPSLA, pages 307–324, 2011.

[192] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M. Swift, and
D. A. Wood. LogTM-SE: Decoupling Hardware Transactional Memory from Caches.
In HPCA, pages 261–272, 2007.

[193] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance Evaluation of Intel
Transactional Synchronization Extensions for High-Performance Computing. In SC,
pages 19:1–19:11, 2013.

[194] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efficient Detection of Data Race
Conditions via Adaptive Tracking. In SOSP, pages 221–234, 2005.

[195] M. Zhang, S. Biswas, and M. D. Bond. All That Glitters is Not Gold: Improving
Availability and Practicality of Exception-Based Memory Models. Technical Report
OSU-CISRC-4/16-TR01, Computer Science & Engineering, Ohio State University,
2016.

[196] P. Zhou, R. Teodorescu, and Y. Zhou. HARD: Hardware-Assisted Lockset-based
Race Detection. In HPCA, pages 121–132, 2007.

190

	Abstract
	Dedication
	Acknowledgments
	Vita
	List of Tables
	List of Figures
	1. Introduction
	1.1 Motivation and Problem Statement
	1.2 Proposed Solutions for Practical Support for Strong, Serializability-Based Memory Consistency
	1.2.1 Providing SFR Serializability in Software
	1.2.2 Providing SFR Serializability in Hardware
	1.2.3 Checking Serializability of Programmer-Defined Regions

	1.3 Contributions and Impact
	1.4 Outline

	2. Background and Related Work
	2.1 Data Races
	2.1.1 Definitions
	2.1.2 Detecting Data Races

	2.2 Memory Models
	2.2.1 Weak Memory Models
	2.2.2 Strong Memory Models

	2.3 Checking Atomicity of Programmer-Defined Regions
	2.3.1 Overview
	2.3.2 Detecting Atomicity Violations

	3. Valor: Providing RSx Efficiently in Software
	3.1 Introduction
	3.2 Efficient Region Conflict Detection
	3.3 FastRCD: Detecting Conflicts Eagerly in Software
	3.4 Valor: Detecting Read–Write Conflicts Lazily
	3.4.1 Overview
	3.4.2 Analysis Details
	3.4.3 Providing Valor's Guarantees

	3.5 Extending the Region Conflict Detectors
	3.5.1 Demarcating Regions
	3.5.2 Correctness of RFR Conflict Detection
	3.5.3 Reporting Conflicting Sites

	3.6 Alternate Metadata and Analysis for Valor
	3.7 Valor Is Sound and Precise
	3.8 Implementation
	3.8.1 Jikes RVM: Our Implementation Infrastructure
	3.8.2 Features Common to All Implementations
	3.8.3 FastTrack and FastRCD
	3.8.4 Valor

	3.9 Evaluation
	3.9.1 Methodology
	3.9.2 Run-Time Overhead
	3.9.3 Architectural Sensitivity
	3.9.4 Scalability
	3.9.5 Space Overhead
	3.9.6 Run-Time Characteristics
	3.9.7 Data Race Detection Coverage
	3.9.8 Comparing FastTrack Implementations
	3.9.9 Summary

	3.10 Contributions and Impact

	4. RCC: Practical Architecture Support for Region-Serializability-Based Consistency
	4.1 Introduction
	4.2 Hardware Memory Models and Cache Coherence Protocols
	4.3 Design Overview of RCC
	4.3.1 RCC's Goals and Guarantees
	4.3.2 Overview and Insights
	4.3.3 Design Details

	4.4 Architecture of RCC
	4.4.1 Private Access Information Management
	4.4.2 LLC Access Information Management
	4.4.3 Consistency Controller (CC)

	4.5 Design Optimizations
	4.5.1 Avoiding Self-Invalidation
	4.5.2 Optimizing Region Commit

	4.6 Evaluation
	4.6.1 Simulation Methodology
	4.6.2 Run-Time Performance and Traffic
	4.6.3 Impact of Optimizations
	4.6.4 Sensitivity to AIM Cache Size
	4.6.5 Comparison with TCC
	4.6.6 Summary

	4.7 Contributions and Impact

	5. DoubleChecker: Efficient Sound and Precise Atomicity Checking
	5.1 Introduction
	5.2 Design of DoubleChecker
	5.2.1 Overview

	5.3 Imprecise Cycle Detection
	5.3.1 Efficient Tracking of Cross-Thread Dependences
	5.3.2 Identifying Cross-Thread Dependences
	5.3.3 Cycle detection
	5.3.4 Maintaining Read/Write Logs
	5.3.5 Soundness Argument

	5.4 Precise Cycle Detection
	5.5 Implementation
	5.5.1 DoubleChecker
	5.5.2 Velodrome

	5.6 Evaluation
	5.6.1 Methodology
	5.6.2 Soundness
	5.6.3 Performance
	5.6.4 Other Performance Investigations
	5.6.5 Run-Time Characteristics

	5.7 Contributions and Impact

	6. Related Work
	7. Future Work
	7.1 Valor
	7.2 RCC
	7.3 DoubleChecker

	8. Conclusion
	8.1 Summary
	8.2 Impact and Meaning

	Bibliography

