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ABSTRACT

The performance of sparse matrix-vector multiplication kernels
(SpMV) depends on the sparse matrix storage format and the archi-
tecture and the memory hierarchy of the target processor. Many
sparse matrix storage formats along with corresponding SpMV al-
gorithms have been proposed for improved SpMV performance.
Given a sparse matrix and a target architecture, supervised Machine
Learning techniques automate selecting the best formats. However,
existing supervised approaches suffer from several drawbacks. They
depend on large representative datasets and are expensive to train.
In addition, retraining to incorporate new classes of matrices or
different processor architectures is just as costly since new training
data must be generated by benchmarking many instances. Fur-
thermore, it is hard to understand the results of many supervised
systems.

We propose using semi-supervised machine learning techniques
for format selection. We highlight the challenges in using the K-
Means clustering for the sparse format selection problem and show
how to adapt the algorithm to improve its performance. An em-
pirical evaluation of our technique shows that the performance of
our proposed semi-supervised learning approach is competitive
with supervised methods, in addition to providing flexibility and
explainability.

CCS CONCEPTS

« Mathematics of computing — Mathematical software per-
formance; - Computing methodologies — Learning paradigms.
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1 INTRODUCTION

Sparse Matrix-Vector (SpMV) multiplication is a linear algebra ker-
nel that is used in many application domains such as graph and data
analytics, machine learning, and computational sciences. SpMV is
a level-2 Basic Linear Algebra Subprograms operation of the form
Yy = AX, where X and y are dense vectors and A is a sparse matrix.
Real-world applications such as PageRank and sparse convolu-
tion neural networks invoke the SpMV kernel many times during
execution. SpMV has little data reuse, which makes it memory
bandwidth-bound, and its irregular data access patterns can further
reduce performance. Optimizing an SpMV kernel is challenging be-
cause the performance depends on the combination of architectural
details and the sparsity pattern of each input matrix.

There has been extensive research on improving SpMV perfor-
mance [1-3,5,7, 11, 18, 19, 28, 30, 31, 36, 38, 40]. Several studies have
focused on optimizing the memory requirements of sparse matrices
by defining sophisticated storage formats that enable the use of ad-
vanced architectural features like vectorization [1, 4, 20, 22, 29, 35].
However, no single format is optimal across all matrices and archi-
tectures. Therefore, it is desirable to select the format that has the
best SpMV performance on the target platform for each matrix
individually. This is known as the sparse format selection problem.

The problem. Recent work has adopted automated techniques
that use supervised Machine Learning (ML) models for predicting
the best sparse format for a given matrix on a target architecture [3,
24, 28, 30, 38-40]. However, these supervised learning techniques
suffer from several limitations in the context of SpMV.

e Supervised techniques assume the availability of represen-
tative training datasets. The ML models for sparse format
selection are often trained on the SuiteSparse matrix collec-
tion! or similar libraries. Given that these datasets are much
smaller than other ML datasets such as ImageNet [10], it is
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not guaranteed that they include all possible sparse matrix
types. Creating much larger training datasets is a conceiv-
able option for the future, but it exacerbates challenges that
we will discuss soon.

e We are currently observing an explosion in the number of
hardware platforms, which has been labeled “a new golden
age for computer architecture” [12]. Numerical computations
for machine learning are performed no longer only by high-
performance computing systems but also by a wide variety of
low-power devices with vastly different hardware character-
istics. Thus, it is important to support the train once, deploy
multiple times workflow. It is challenging to implement this
workflow efficiently for kernels like SpMV since the output
of an ML model trained for format selection on one archi-
tecture may not be portable across architectures. Even small
changes such as different algorithm implementations for the
same format or even differences in compiler toolchains can
affect performance and thus reduce the prediction accuracy
of models trained under different parameters. Therefore, it
becomes increasingly infeasible to pre-train models for the
exact situation under which they are being used.

e Supervised techniques require benchmarking the dataset.
Given a training set of M matrices, F sparse matrix for-
mats, and N repetitions to reduce noise, it implies running
M x Fx N experiments. Although each SpMV run may be in-
expensive, the total time taken by all runs amount to several
days given the overhead of reading from files and format
conversion of sparse matrices.

Recent work has trained Deep Learning (DL) models like CNNs
for improved classification accuracy [28, 38]. An undesirable side
effect is that the DL models require large training data to achieve
good accuracy and are expensive to train. These challenges are
further exacerbated since new sparse formats are regularly pro-
posed to optimize for new sparsity patterns and architectural fea-
tures [4, 20, 22, 35]. This makes repeated benchmarking on large
datasets across multiple architectures and retraining the DL models
infeasible.

It is desirable to develop a sparse format selection method that
addresses the above challenges. Such an automated approach should
meet the following requirements:

(1) Given any sparse matrix, the accuracy of the approach should
be competitive with existing supervised learning techniques.

(2) The proposed solution should be less tightly coupled to a
particular architecture, and the model predictions should be
easily portable to different hardware platforms.

(3) Given a matrix with a new sparsity pattern, the approach
should be reasonably flexible to incorporate new data.

Existing supervised approaches do not meet the above require-
ments because they rely on large amounts of labeled data. For the
format selection problem, labels denote which format is fastest for
a given matrix. Thus, obtaining such a label requires benchmarking
a matrix over all the available formats on all the available archi-
tectures. It is advisable to move away from black-box approaches
toward a more explainable algorithm to overcome these limitations.
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Our approach. We propose a semi-supervised approach for the
sparse format selection problem based on clustering similar ma-
trices. We extract statistical features from sparse matrices and use
popular clustering algorithms such as K-Means for format selection.
Preliminary experiments showed that a naive application of the
idea is not competitive with existing supervised models. We ana-
lyze the benchmark dataset and use the insights, such as applying
logarithmic transformations, to refine the clustering-based format
selection model. The performance of the resulting model is compa-
rable with existing supervised approaches. The resulting model is
semi-supervised since we still have to assign an optimal format to
each cluster. The clusters are largely platform-independent, thereby
enabling easy portability of the model across architectures. Further-
more, it is more efficient to merge and split clusters or change their
optimal format when new sparse matrices are added to the dataset,
especially compared to retraining large DL models.

Contributions. The contributions of this work are as follows.

e To the best of our knowledge, we present the first semi-
supervised approach for the format selection problem that
is also more explainable than most supervised models.

e We perform an extensive empirical evaluation of our ap-
proach and compare it to different supervised models. Un-
like previous work in the area, we assess performance using
measures that reflect the multi-class nature of the problem.
Our results show that the semi-supervised approach delivers
competitive performance while avoiding the problems of the
supervised models.

2 BACKGROUND AND MOTIVATION

In this section, we discuss sparse matrix formats, the associated
format selection problem, and the challenges with existing work.

2.1 Sparse Matrix Storage Formats

Sparse matrices for many applications can be very large. Sparse
matrix storage formats save space by not storing zero elements.
A number of sparse storage formats have been proposed over the
years [1, 2, 4, 7, 20, 22, 29, 35], and several high-performance li-
braries like Intel MKL [14], and CUSP [25] and cuSPARSE [26] from
NVIDIA provide support for the more popular storage formats.
The coordinate (COO) format stores the matrix in three dense
arrays of length NNZ (number of nonzeros) called row, column, and
value. The position of every nonzero value in the matrix is given
explicitly. The compressed sparse row (CSR) format, which is the
most popular format, compresses the row array to store the start
positions of all rows in the corresponding column and value arrays.
Formats like CSR and COO are general, i.e., they require O (n)
space for matrices with n nonzeros. The ELLPACK (ELL) format
stores a sparse matrix A as a dense rectangular matrix by shifting the
nonzeros in each row to the left and zero-padding all rows that have
fewer nonzeros than the maximum. The storage size of ELL thus
depends on the maximum number of nonzeros in a row of A, which
is problematic for matrices with a large deviation in the number of
nonzeros per row. The hybrid (HYB) format alleviates this problem
by using ELL for storing most of the matrix A and COO to store
additional entries in rows with many nonzeros. This reduces the
required amount of padding while maintaining some advantages of
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Feature Description

nrows Number of rows

ncols Number of columns

nnz Number of nonzeros

nnz_frac Fraction of nonzeros

nnz_mu Average number of nonzeros per row

nnz_min Minimum number of nonzeros per row

nnz_max Maximum number of nonzeros per row

nnz_sig Standard deviation of nonzeros per row

max_mu Difference between nnz_max and nnz_mu

mu_min Difference between nnz_mu and nnz_min

csr_max Maximum number of rows a particular warp will process in
the CSR kernel

sig_lower Root mean square (RMS) of difference between row nonzero
counts which are less than nnz_mu

sig_higher RMS of difference between row nonzero counts which are

greater than nnz_mu
hyb_ell_size  Size of ELL structure in HYB representation of the matrix
hyb_coo Number of nonzeros in COO part of the HYB representation
hyb_ell_frac  Number of nonzeros stored in ELL part of HYB representation

diagonals Number of diagonals which are not empty

dia_size Number of entries which will be stored in the DIA structure
dia_frac Fraction of entries in DIA which will be true nonzeros
ell_frac Fraction of true nonzero entries in the ELL structure
ell_size Size of the ELL structure in ELL format

Table 1: Sparse matrix features popularly used for auto-
mated format selection.

ELL. Other formats, like diagonal (DIA), take advantage of specific
sparsity patterns but can also take O (n?) space in the worst case.
More recent proposals aim to exploit microarchitectural features
like vectorization and the compute capabilities of GPUs [4, 20,
22, 35]. We refer the reader to existing literature for an in-depth
discussion [1, 11, 29].

2.2 Automated Sparse Matrix Format Selection

The performance of an SpMV kernel is sensitive to the size and the
sparsity pattern of the input matrix and the target architecture. Al-
though CSR is general and is the most-used format, there is no single
format that suits all sparsity patterns and target architectures [30].
Slowdowns amounting to two orders of magnitude from subopti-
mal sparse formats are often observed in practice. For example, we
observe a maximum slowdown of 194.85X when using CSR with
the mawi_201512012345 matrix from the SuiteSparse Matrix Collec-
tion [9] on an NVIDIA Quadro RTX 8000 GPU, for which HYB is
the optimal format. To avoid such slowdowns, a large body of work
has focused on automatically predicting the best sparse storage
format for a given sparse matrix [3, 18, 19, 24, 28, 30, 31, 38-40].
Automated sparse storage format selection requires identifying
features that help differentiate classes of sparse matrices [3]. Some
aspects of SpMV performance are easily understood by analyzing
the suitability of the features to the properties of the different for-
mats. For example, ELL can be efficient if all the matrix rows have a
similar number of nonzeros. However, manually designing heuris-
tics is error-prone, since it can be hard to generalize rules across a
variety of inputs and target platforms. This fact, together with the
recent advances in Machine Learning (ML), has spurred work on
using sophisticated models to learn the performance characteristics
of SpMV kernels. Format-specific SpMV kernels are benchmarked
with many input matrices across different formats. Supervised ML
models are trained offline on the benchmark results to predict the
SpMV performance of input matrices for each format. Based on
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these predictions, the system recommends the best format to use
for a given matrix. The ML models can be either regression or
classification based, and the performance and accuracy of these
techniques depend on the predictive power of the models. Prior
work has used Decision Trees and Random Forests [30], Support
Vector Machines [3], and XGBoost models for automated format
selection. Convolutional Neural Networks (CNNs) are popular deep
learning models used for image classification. Recent work employs
CNN-based deep learning (DL) models for format selection by en-
coding the sparse matrix as an image and showcase good predictive
accuracy [28, 38].

Table 1 shows statistical features that are commonly used by ex-
isting non-DL supervised-learning-based approaches. Note that fea-
ture identification in SpMV mostly ignores domain-specific knowl-
edge, since that would restrict the approach’s applicability.

2.3 Motivation

There are several challenges in optimizing the performance of an
SpMV kernel, which depend on several factors, such as the sparsity
pattern of the matrix and the target architecture. Since computing
platforms are becoming increasingly heterogeneous, an application
may be run on many architectures, each having characteristics that
affect the performance of different SpMV formats. However, most
existing work proposes techniques that focus on automating the
format selection problem for a single architecture. For example,
ML-based techniques usually run profiles, train, and expect the
inference to be run on the same architecture. But the profile data
and hence the labels in supervised learning differ significantly
across architectures. Most prior techniques ignore the challenges
in predicting optimal storage format for any given architecture. A
naive way to deal with this problem is to build models on every
architecture, but the need for extensive training, possibly under
different tuning parameters, is computationally expensive and can
become intractable.

Given the overhead of benchmarking and training CNN mod-
els, prior work briefly discusses transfer learning strategies for
CNNs [38]. They test a single transfer, i.e., Intel to AMD CPUs, and
conclude that transfer learning can be used for SpMV problems.
However, training a CNN model is very costly. In our test environ-
ment, we use 5-fold cross-validation for training. The training time
on a GeForce GTX1080 GPU is around 3 hours for one split. With 5
splits, it takes ~15 hours to get one set of results.

3 LEARNING SPMV PERFORMANCE

Prior work uses supervised models to improve SpMV performance
where sparsity patterns are learned from training data that is anno-
tated with ground truth labels. In contrast, unsupervised learning
methods such as clustering can capture new sparsity patterns in
an architecture-independent way. Hence, clustering provides a sig-
nificant benefit toward model portability if we can ensure that
most matrices in a cluster actually have the same optimal format.
A clustering-based approach still requires cluster labels because it
is not sufficient to determine that a cluster of matrices is similar. A
cluster label is the optimal format for the cluster. Thus, the method
is semi-supervised. The cluster labels might differ between the plat-
forms, but due to the clustering, we only need to benchmark a few
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matrices to retrain the system for a new architecture (one matrix
per cluster in an ideal case). Small clusters will be more accurate,
but at the same time, clusters should be as large as possible to save
on training time. The use of clustering for portability improves
upon supervised learning models where the prediction accuracy
might suffer when the target architecture changes. One can think of
the supervised approaches as having a cluster size of one. We elab-
orate on the training of semi-supervised learning in the following
section.

Enabling porting of SpMV model results. Sparse format prediction
consists of two stages: training an offline model and inference of
the predicted optimal format. Training a format predictor involves
benchmarking a training set of sparse matrices across different
sparse formats for a given platform. Given the sensitivity of SpMV
performance to the architecture, the optimal format for the same
sparse matrix is often different on different architectures. Thus, ex-
isting models for sparse matrix format selection cannot be assumed
to be portable across architectures. An ML model may perform sub-
optimally when deployed on a platform different from the training
platform. For example, we trained an XGBoost classifier using pro-
file information on the NVIDIA GeForce GTX 1080 platform, where
the classifier gives high accuracy (90.65%) (Table 6). However, when
the same classifier is used on the NVIDIA Volta V100 platform, accu-
racy drops to 71.03% (Table 7). The speedup (compared to running
all matrices in the CSR format) drops from 1.07X to 0.97X, which
means that using the model in that setting has no practical value.

For a pre-trained model to be accurate on a new architecture,
it needs to learn some characteristics of the new architecture and
predict formats accordingly. For example, ELL provides memory
access coalescing at the cost of a larger memory footprint. It stores
k entries for all rows in the sparse matrix, where k is the maximum
number of nonzeros among all rows of the matrix. This can result
in many padding entries for matrices where there is a significant
variation in the number of nonzeros in a row. On the Quadro RTX
8000 (see Section 5.1), there is sufficient memory to accommodate
ELL structures for large matrices. On GPUs with smaller memory,
such as GeForce GTX 1080, storing a large ELL matrix may not
be possible. Furthermore, implementations like CUSP use a single
thread to process a particular row of each matrix. Thus, the relative
efficiency of row-based formats such as CSR and ELL versus COO
may depend on the number of threads that are available on the
GPU.

4 SEMI-SUPERVISED LEARNING

Unlike prior work, we explore semi-supervised learning to solve the
portability problem of SpMV format selection. The idea is to cluster
matrices such that the matrices in each group will have the same op-
timal format irrespective of the architecture. Given such a clustering,
a transfer learning scheme would have to ideally benchmark only
one matrix from each cluster on the target platform to provide full
prediction accuracy. The clusters are formed using the matrices
from the training set. For predicting the format of matrix M, the
format assigned to the cluster whose centroid is closest to the data
point associated to M will be assigned to M when using centroid-
based clustering. Unlike in the supervised methods, a fraction of
matrices from each cluster can be benchmarked after the clusters
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have been formed. Clusters are assumed to be invariant across plat-
forms, while the assignment of labels is platform-specific. Naturally,
this requires a relatively fine-grained clustering. Note, the strategy
is not limited to using any particular clustering algorithm.

Creating clusters. The main challenge in creating clusters is to
define a distance metric that quantifies the similarity of two sparse
matrices with respect to performance on any given architecture.
To compare different metrics, we first define the purity of a cluster
cas

purity ©) = maxy count (c, f)
le
where count (c, f) is the number of matrices in cluster ¢ having f as
the optimal format, and |c| represents the total number of matrices
in c. For effectively using clustering for format selection, we need
to create clusters with high purity.

The K-Means clustering algorithm is suitable for creating these
clusters, with the statistical features forming the feature space for
K-Means. As there are no inherent clusters in the space of statistical
features, a centroid-based clustering algorithm is appropriate.

Computing the values for the features listed in Table 1 requires
traversing the entire matrix, thus taking time proportional to the
number of nonzeros. If the features related to diagonal count are
dropped, for a matrix in CSR format, the features can be computed
in time proportional to the number of rows. We have chosen only
features that can be computed in time proportional to the number
of nonzeros, so calculating these for a sparse matrix dataset is inex-
pensive. Moreover, these features are completely invariant across
architectures, so they have to be computed only once. However, a
naive application of a clustering algorithm with the features shown
in Table 1 does not work well. This is due to the distribution of the
statistical features—due to the varying sizes and nonzero distribu-
tions of sparse matrices, there will be matrices that have unusually
high values for some features such as nnz, nnz_max, or nnz_mu.
Since basic clustering algorithms such as K-Means exclusively use
Euclidean distance as the similarity metric, this results in the for-
mation of small clusters containing outliers and impure clusters
containing matrices that are not similar. An examination of the
distribution of feature values reveals that some features follow a
power-law distribution. Applying the log transformation to these
features before clustering gave clusters with fairly uniform sizes
and high purity.

In our approach, a log transform or a square root transform is
applied to all features which have a sparse distribution (irrespective
of whether they have a power-law distribution). Afterward, min-
max scaling is used to scale each feature to a range of [0, 1]. This is
essential when performing classification based on a distance metric,
unlike tree-based classifiers, which do not depend on such scaling.
We then use Principal Component Analysis (PCA) to decompose
the features to a feature vector of size 8. We have thus created a
feature space where the Euclidean distance between two matrix
datapoints is correlated with their similarity. The position of each
matrix in the feature space is then used as an input to the clustering
algorithm. Many clustering algorithms such as K-Means require
giving a number of clusters K, which presents a tradeoff. Having
more small clusters will increase accuracy, while having fewer large
clusters reduces training time and limits the risk of overfitting. We
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p-architecture Pascal Volta Turing
Model GTX 1080 V100 SXM3 RTX 8000
# of SMs 20 80 72
L1 cache per SM 48 KiB 128 KiB 64 KiB
L2 cache 2048 KiB 6144 KiB 6144 KiB
Memory (GB) 8 (GDDR5) 32 (HBM2) 48 (GDDR6)
Memory bandwidth 320 GB/s 897 GB/s 672 GB/s

Table 2: Different NVIDIA GPUs used in our experiments.

ran a series of preliminary experiments to determine a good choice
of K for each clustering algorithm and architecture.

The fact that K-Means and other clustering algorithms use Eu-
clidean distance as a similarity metric suggests that a KNN predic-
tor which uses the same feature set and the same preprocessing
transformations should also be competitive. We test this idea in
Section 5.

Of course, we cannot assume the clustering to be perfectly pure,
i.e. result in all matrices in a cluster having the same best format.
To deal with impure clusters, it is beneficial to benchmark multiple
matrices from each cluster and apply a decision rule such as majority
voting to select the format label for each cluster.

Example. Suppose there are 10 matrices in a particular cluster, of
which the ELL format is optimal for 9 on a Turing GPU, while CSR is
optimal for the remaining. On a Pascal GPU, the CSR format might
be optimal for 8 of the matrices in the same cluster and HYB for the
remaining 2. We benchmark a single matrix from the cluster when
setting up the predictor for the Turing GPU. With 90% likelihood,
it will vote for ELL as its format, and it will then classify 9 out of 10
matrices correctly. If it votes for CSR instead, it will only classify 1
out of 10 matrices correctly, for a total prediction accuracy of 82%.
For the Pascal GPU, the same cluster would have a 68% accuracy,
which clearly illustrates the importance of high-purity clusters. If
two matrices are benchmarked in the latter case, the likelihood of
picking the correct label, i.e., CSR, rises to 96% and the accuracy
to 78%, which is close to the upper bound set by the purity of the
cluster.

Clustering methods. As we have seen, the semi-supervised ap-
proach depends on clustering in combination with a classification al-
gorithm, and its performance can be sensitive to the chosen method.
For that reason, we implement and test our approach with a variety
of clustering algorithms, including the well-known K-Means [16],
as well as Mean-Shift [8] and Birch clustering [37]. For each clus-
tering algorithm, we test three different classification algorithms:
Majority Vote (VOTE), Logistic Regression (LR), and Random
Forest (RF). This gives us a total of nine combinations that are
used in the experiments. As these techniques in themselves are
well-established, we do not explain their details here and refer the
reader to their respective sources.

5 EVALUATION

In this section, we present a comprehensive evaluation of our pro-
posed semi-supervised approach and compare it to state-of-the-art
supervised techniques for automated sparse format selection.
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Common Subset
Pascal Volta Turing

COO 92 4 415 79 4 15
CSR 6019 4417 6629 4008 4138 4671
ELL 2796 2126 1721 1868 1968 1399
HYB 217 3 40 158 3 28
Total | 9124 6550 8805 6113
Table 3: Distribution of the best sparse formats across GPUs.

Pascal Volta Turing

5.1 Experimental Setup

Platform. We run our experiments on three different NVIDIA
GPU platforms, namely the older Pascal and the more recent Turing
and Volta architectures. The NVIDIA GeForce GTX 1080 (Pascal)
is a desktop card intended for gaming. NVIDIA Quadro RTX 8000
(Turing) is a workstation card, and NVIDIA Volta V100 (Volta) is
a GPU intended for high-performance computing. Table 2 shows
technical details of the three GPUs. We will refer to the GPUs by
their architecture names.

Implementation. We have reimplemented several existing auto-
mated sparse matrix format selection approaches that use super-
vised learning [3, 30, 38]. We use the scikit-learn library [27] to
implement classifiers based on Decision Tree (DT), Random Forest
(RF), Support Vector Machine (SVM), K-Nearest Neighbors (KNN),
and XGBoost models. Each supervised algorithm uses an optimized
subset of the features from Table 1. The input features are selected
based on the best performance for that method. We mostly use the
default hyper-parameters suggested by the library, excepting the
following changes that improve the performance of the models.
For RF, we use 100 estimators with a maximum depth of 6. For
XGBoost, we set a learning rate of 0.1 and the number of rounds to
100. We have reimplemented the publicly available convolutional
neural network model (CNN) from prior work [38] using the Ten-
sorFlow v2 framework. We use the NVIDIA CUDA toolkit v9.2 and
the NVIDIA CUSP [25] libraries for obtaining the SpMV benchmark
results.

Benchmarks. We test all models using sparse matrices from the
SuiteSparse Matrix Collection [9]. Due to limited memory, very
large matrices cannot be run on some GPUs, and they are omitted.
We also omit matrices where the CUSP library failed to generate
the ELL variant because of restrictions on the size (noted by prior
work [3]). This leaves a total of 1929 matrices from the collection,
which execute successfully across all the GPU platforms. To effec-
tively train the CNN model, we derived additional instances from
the SuiteSparse matrices by performing simple row and column
permutations similar to prior work [28, 38]. We thus generated
an augmented dataset combining the original SuiteSparse and the
permuted matrices.

We limit benchmarking to four sparse formats, namely CSR,
COO, ELL, and HYB since the implementations are readily avail-
able as part of the CUSP library [25]. Prior work also use these
formats because of their popularity and generality and the avail-
ability of high-performance libraries. Evaluating sparse format im-
plementations from other sources is not a fair comparison because
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Pascal Volta Turing

Algorithm: NC | MCC ACC F1 NC | MCC ACC F1 NC | MCC ACC F1

K-Means-VOTE 400 | 0.422 0.749 0.726 | 100 | 0.448 0.770 0.740 | 300 | 0.629 0.882 0.877
K-Means-LR 200 | 0312 0.712 0.677 | 100 | 0.388 0.750  0.707 | 150 | 0.537 0.86  0.845
K-Means-RF 400 | 0.404 0.735 0.719 | 100 | 045 0.771 0.742 | 200 | 0.631 0.875 0.873
Mean-Shift-VOTE | 32 | 0.154 0.673 0.554 | 30 | 0.169 0.687 0.574 | 30 | 0.137 0.792 0.710
Mean-Shift-LR 32 | 0.128 0.671 0.553 | 30 | 0.152 0.685 0.570 | 30 | 0.111 0.790 0.705
Mean-Shift-RF 32 | 0.145 0.672 0.554 | 30 | 0.170 0.687 0.575 | 30 | 0.145 0.793 0.713
Birch-VOTE 400 | 0.435 0.753 0.732 | 400 | 044 0.767 0.736 | 150 | 0.622 0.881 0.874
Birch-LR 150 | 0.289 0.709 0.643 | 50 | 0.332 0.727 0.659 | 100 | 0.354 0.822 0.777
Birch-RF 400 | 0.404 0.738 0.719 | 150 | 0.441 0.768 0.74 | 200 | 0.628 0.879 0.874

Table 4: Performance of the semi-supervised approach using different clustering algorithms on different GPUs. The best per-
formance for each architecture is marked in bold. NC is the number of clusters generated by the algorithms.

of implementation differences. The time measured for each kernel
and input matrix is the average over 100 trials. The benchmark re-
sults serve as labels (i.e., ground truth) for training the ML models.
Columns 2-4 in Table 3 show the final number of matrices used for
each GPU architecture. The Common Subset columns indicate the
overlapping set of matrices that executed successfully on all three
GPUs and formed the basis of our transfer learning experiments.

Training the Classifiers. We perform a series of experiments that
compare the different sparse format classification strategies. The
classifiers are trained and evaluated on the same augmented bench-
mark data (Table 3). All experiments are performed with 5-fold
cross-validation to reduce the possibility of overfitting, and average
results are reported for the different metrics. As shown in Table 3,
the classes obtained are highly unbalanced, with the majority of
matrices having CSR as the best format.

5.2 Testing the Semi-Supervised Approach

We evaluate the semi-supervised method by training and testing
on each of the three GPU architectures using all 9 clustering algo-
rithms. Table 4 shows the MCC score, the ACCuracy, and the F1
score. Prior work mostly use ACC and F1, we also use Matthew’s cor-
relation coefficient (MCC) since the classes are highly unbalanced.
MCC is a statistical rate that produces a high score only if the
predictions obtained good results in all the cells of the confusion
matrix, proportional to the number of elements in each class of the
dataset [23]. MCC is widely regarded as a superior metric, espe-
cially for multiclass problems [6]. In addition, NC gives the number
of clusters used. Note that Mean-Shift does not take NC as input
but determines the number of clusters automatically. We observe
that all variants of the Mean-Shift algorithm perform poorly while
Birch-VOTE, K-Means-VOTE, and K-Means-RF perform well. The
main reason for this seems to be the fact that Mean-Shift finds many
clusters which are too small to capture meaningful differences in
performance, while the other algorithms are given a sufficient num-
ber of clusters. Interestingly, the quality of prediction is much better
for the Turing GPU compared to the other architectures.

Our next experiment evaluates the accuracies of the different
alternatives in the transfer setting, which means that the training
and test platforms differ. Since we have three GPUs, this gives us

six different combinations of transfer source and target architec-
ture. Furthermore, we show results for three different amounts of
retraining. In the first case, no retraining on the test architecture
has been performed, while in the second and third cases, 25 and
50% of the training data were used, respectively. Table 5 shows the
results of this portability experiment. Here, the difference between
the clustering methods is even more pronounced, with either K-
Means-VOTE or K-Means-RF being the best alternative in all cases.
Among the different architectures, the predictions for the Tur-
ing GPU are much more accurate than those for the other GPUs,
even when the system was only trained on a different GPU and no
retraining occurred. The higher accuracy compared to the single
device results seems to be because the test set is smaller. Based on
the numbers in Table 3, the most likely reason for this behavior is
the fact that Turing has the highest number of CSR instances, and
the system tends to overpredict CSR. When using the better clus-
tering algorithm, the classification performance in the transfer case
is relatively high without retraining. On the other hand, additional
retraining only provides a moderate increase in performance.

5.3 Comparison to Supervised Classifiers

We study the performance of all supervised classifiers in the local
setting (i.e., training and inference on the same platform). Table 6
summarizes the results. Columns 2-4 show the accuracy (ACC), F1
score (F1), and MCC metrics. In addition, the GT column shows the
speedup from the model predictions compared to an oracle scheme,
which always makes the correct prediction. Consequently, all en-
tries are 1 or lower. The CSR column shows the speedup achieved
over the strategy of always using the CSR format as the default.
Values in both columns represent the geometric mean over all the
matrices. The column Threshold shows the number of matrices that
experience a significant slowdown of >1.5X over the CSR baseline
due to mispredictions; lower values indicate better classification
performance. All the floating-point values are rounded to two points
after the decimal. The best result in each column is emphasized,
and we break ties using a higher precision not shown in the table.

Based on the MCC score, we observe that both Random For-
est (RF) and XGBoost perform well, while KNN, Decision Tree
(DT), SVM, and CNN models show somewhat weaker results. The
CNN model [38] has good results for the Turing platform, but its
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0% Training Data | 25% Training Data | 50% Training Data

Algorithm NC MCC ACC F1 MCC ACC F1 MCC ACC F1
K-Means-VOTE 1250 | 0.605 0.866 0.870 | 0.638 0.881 0.880 | 0.645 0.882 0.886
S K-Means-LR 125 0.582 0.872 0.861 | 0.592 0.875 0.863 | 0.576 0.870  0.859
g K-Means-RF 200 | 0.630 0.873 0.872 | 0.642 0.873 0.874 | 0.645 0.875 0.875
i Mean-Shift-VOTE 32 0.197 0.798 0.724 | 0.210 0.799 0.726 | 0.185 0.797 0.723
,_: Mean-Shift-LR 32 0.188 0.798 0.725 | 0.201 0.799 0.727 | 0.103 0.790 0.707
% Mean-Shift-RF 32 0.194 0.799 0.727 | 0.206  0.799 0.729 | 0.180 0.797 0.724
A& Birch-VOTE 175 0.593 0.864 0.866 | 0.610 0.878 0.871 0.632 0.880 0.879
Birch-LR 100 0482 0.849 0.825 | 0.544 0.862 0.847 | 0.520 0.857  0.839
Birch-RF 200 0.611 0.872 0.869 | 0.613 0.879 0.870 | 0.643 0.855 0.862
K-Means-VOTE 125 0.365 0.726  0.724 | 0.426 0.760 0.731 0.432  0.766  0.739
« K-Means-LR 125 0.392 0.753 0.724 | 0393 0.751 0.714 | 0.403 0.758 0.724
s K-Means-RF 125 | 0.432 0.767 0.743 | 0.445 0.770 0.740 | 0.449 0.774 0.747
>o Mean-Shift-VOTE 32 0.185 0.691 0.582 | 0.201 0.692 0.587 | 0.197 0.696 0.591
v—<: Mean-Shift-LR 32 0.197 0.694 0.588 | 0.209 0.694 0.591 0.202  0.697  0.593
é Mean-Shift-RF 32 0.205 0.695  0.591 0.216  0.695 0.593 | 0.209 0.699 0.596
" Birch-VOTE 125 0.361 0.732  0.720 | 0.401 0.751 0.726 | 0.418 0.761 0.725
Birch-LR 80 0.370  0.744 0.698 | 0.402 0.754 0.715 | 0.368 0.745 0.696
Birch-RF 100 0.388 0.748 0.733 | 0.430 0.765 0.740 | 0.413 0.760  0.722
K-Means-VOTE 1750 | 0.440 0.759 0.730 | 0.460 0.766 0.736 | 0.462 0.769 0.739
= K-Means-LR 150 0.324 0.719 0.675 | 0339 0.724 0.672 | 0.344 0.728 0.677
% K-Means-RF 300 0.395 0.722 0.712 | 0402 0.733 0.718 | 0.403 0.735 0.720
C; Mean-Shift-VOTE 30 0.123  0.669 0.545 | 0.118 0.667 0.543 | 0.130 0.672  0.551
% Mean-Shift-LR 30 0.083 0.664 0.535 | 0.089 0.664 0.535 | 0.090 0.668 0.540
E Mean-Shift-RF 30 0.109 0.668 0.543 | 0.107 0.666  0.541 0.114 0.671  0.548
EE Birch-VOTE 1750 | 0.428 0.755 0.721 | 0.380 0.737 0.696 | 0.393 0.744 0.704
Birch-LR 100 0.250 0.698  0.628 | 0.238 0.693 0.605 | 0.344 0.728 0.671
Birch-RF 100 0.300 0.708 0.670 | 0.332 0.720 0.679 | 0.375 0.729  0.709
K-Means-VOTE 2000 | 0.472 0.780 0.765 | 0.461 0.774 0.759 | 0.467 0.779 0.764
« K-Means-LR 100 0.361 0.742  0.697 | 0399 0.754 0.718 | 0.379 0.749  0.706
;g K-Means-RF 100 0.419 0.761 0.726 | 0.443 0.769 0.740 | 0.438 0.769  0.736
2 Mean-Shift-VOTE 30 0.158 0.686 0.571 | 0.161 0.685 0.569 | 0.171 0.691 0.577
2 Mean-Shift-LR 30 0.113  0.681  0.559 | 0.132 0.681 0.560 | 0.135 0.686  0.567
g Mean-Shift-RF 30 0.163 0.688 0.575 | 0.168 0.686 0.573 | 0.175 0.692  0.580
& Birch-VOTE 2000 | 0.410 0.758 0.733 | 0416 0.758 0.721 0.408 0.758  0.717
Birch-LR 80 0.295 0.722  0.671 | 0364 0.740 0.691 0.361 0.742  0.687
Birch-RF 100 0.375 0.746  0.701 0.398 0.752  0.711 0.403 0.756  0.713
K-Means-VOTE 1750 | 0.402 0.746 0.700 | 0.425 0.753 0.712 | 0.449 0.765 0.730
= K-Means-LR 150 0.349 0.728 0.682 | 0.355 0.729 0.679 | 0.328 0.723  0.673
% K-Means-RF 250 0.390 0.739 0.710 | 0.403 0.730 0.717 | 0.408 0.733 0.721
A Mean-Shift-VOTE 30 0.115 0.668 0.545 | 0.116 0.667 0.543 | 0.119 0.672  0.549
*3 Mean-Shift-LR 30 0.097 0.666 0.540 | 0.095 0.664 0.537 | 0.114 0.671 0.548
‘2 Mean-Shift-RF 30 0.110 0.668 0.544 | 0.106 0.666  0.541 0.114 0.671  0.548
> Birch-VOTE 1750 | 0352  0.729  0.675 | 0.371 0.734 0.684 | 0.371 0.737  0.689
Birch-LR 100 0.272  0.704 0.631 | 0.276 0.704 0.636 | 0.300 0.715  0.655
Birch-RF 175 0.370  0.725 0.705 | 0.402 0.735 0.718 | 0.372 0.728 0.707
K-Means-VOTE 1750 | 0.670 0.896 0.889 | 0.708 0.906 0.901 | 0.724 0.912 0.907
o K-Means-LR 150 0.577 0.869 0.859 | 0.570 0.868 0.856 | 0.583  0.870 0.861
é K-Means-RF 175 0.631 0.876 0.874 | 0.646 0.882 0.879 | 0.651 0.886  0.882
EE Mean-Shift-VOTE 30 0.145 0.794 0.714 | 0.141 0.793 0.713 | 0.120 0.792  0.710
42 Mean-Shift-LR 30 0.121  0.793 0.710 | 0.114 0.791 0.707 | 0.095 0.791 0.705
= Mean-Shift-RF 30 0.141 0.794 0.714 | 0.138 0.793 0.712 | 0.117 0.792  0.710
= Birch-VOTE 1750 | 0.575 0.871 0.857 | 0.607 0.879 0.867 | 0.614 0.881 0.871
Birch-LR 100 0.460 0.844 0.816 | 0494 0.850 0.829 | 0.549 0.864 0.849
Birch-RF 200 0.569 0.835 0.841 | 0.632 0.849 0.856 | 0.602 0.869 0.866

Table 5: Comparison of the effectiveness in sparse matrix format selection of different automated techniques using transfer
learning across different GPUs. The best values in each scenario are marked in bold. NC is the number of clusters used.
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MLM ACC F1 MCC GT CSR Thresh.

DT 84.86  0.84 0.67 097  1.06 172
RF 8594  0.85 0.69 098  1.06 124
= SVM 81.75  0.81 0.59 097  1.05 161
% KNN 89.47  0.90 0.78 098  1.07 86
A~ XGBoost 90.65 0.91 0.80 099 1.07 79
CNN 77.79  0.85 0.52 090  1.02 466
DT 79.66  0.78 0.52 096  1.04 199
RF 80.58 0.79 0.54 096 1.04 201
<~ SVM 79.66  0.77 0.52 096  1.04 210
S KNN 7295 0.73 0.39 095  1.02 260
= XGBoost  80.23  0.78 0.53 096  1.04 200
CNN 66.32  0.76 0.20 091  1.02 248
DT 94.36  0.94 0.83 099  1.05 17
RF 95.04  0.95 0.85 1 1.05 11
o SVM 93.85 0.94 0.81 099 1.04 21
=1
§ KNN 94.81  0.95 0.85 099 1.05 15
= XGBoost 95.62 0.96 0.87 1 1.05 11
CNN 90.45 0.94 0.72 098 1.04 14

Table 6: Performance of ML models on different GPUs.

performance drops significantly for the Pascal and Volta architec-
tures , which we believe is due to the composition of the training
dataset. Among the three architectures, we observe that the MCC
scores for Volta are far lower than for Pascal or Turing. Further-
more, the MCC scores for the CNN are weak. The CNN model
attains 90.45% accuracy for the Turing GPU, which is close to prior
work [38], while the results for the other two architectures are
much poorer. We believe these differences arise due to the differ-
ences in datasets and due to the known difficulty CNNs face with
unbalanced training sets.

Table 7 shows the results for the transfer case for the supervised
classifiers. All supervised models are trained on their full training
set. Note that we use a subset of matrices that is common across all
the architectures (Table 3). We evaluate them when directly trans-
ferred to the target architecture, i.e., with 0% retraining, as well
as 25 and 50% retraining on the target architecture. The 0/25/50%
retraining results show the attainable prediction performance after
retraining with part of the training data of the target architecture.
We omit evaluating the CNN model since it has poor performance
on the Pascal and Volta architectures, and each experiment takes
~ 15 hours to complete. Following the structure of Table 5, there are
six possible combinations of the transfer scenario with three GPUs.
However, due to lack of space, we omit Volta to Pascal as it is very
similar to the Turing to Pascal case. Across the architectures and
classifiers, we observe a performance improvement when going
from 0 to 25%, and in some cases also from 25 to 50%. The improve-
ment is greater than in the semi-supervised case, indicating that the
supervised methods depend more on retraining. While the accuracy
scores are reasonably high in this scenario, the MCC scores are
noticeably lower than those presented in Table 6. This indicates
that in the transfer case, matrices belonging to the smaller classes
are often misclassified.

The classification performance on Volta is far lower than on the
other two architectures in the non-transfer scenario. This is still true
in the transfer case, although the difference is much less pronounced.
However, this number is very sensitive to the composition of the
dataset and should not be generalized.

Dhandhania et al.

Unlike in the non-transfer case, there is no clear winner among
the different classifiers. Thus, without retraining, K-Means is com-
parable to a given supervised classifier. However, with substantial
retraining, the supervised classifiers improve more than the semi-
supervised approach. Thus, overall, K-Means attains classification
performance that is comparable to the other classifiers. Its advantage
lies in the fact that it depends less on retraining, obtains comparable
results more efficiently, and it is easy to explain its classification.

5.4 Comparing time

We compare the performance of the classifiers according to the
time taken for benchmarking and training. The main steps involved
in benchmarking are (i) reading matrices from . mtx files into mem-
ory, (ii) converting matrices from the default CSR format to other
formats, (iii) iteratively performing the SpMV multiplication ker-
nel to reduce the impact of noise and average the final result. On
average, the first two steps contribute more to the time taken for
benchmarking.

Table 8 shows the relative cost in format conversion, normal-
ized to the cost of performing SpMV with the default CSR format
(adapted from prior work [39]). The table shows the time taken to
benchmark the matrices on each platform (Table 3), assuming an
average time of 5 seconds for reading the .mtx files from disk. The
estimates are a lower bound because it ignores the overheads of
other function calls; profiling on each GPU platform takes close to
two days.

Table 9 compares the different ML models according to the time
taken to train. The results are intuitive; the training times for the
non-DL models are reasonable and depend on the amount of train-
ing data. The CNN model comparatively takes much longer to train
and presents a poor choice in the context of frequent retraining for
model portability and to deal with new sparse matrices. The time
taken for training in the local setting is similar to transfer with 0%
additional data. Please note that the absolute numbers depend on
the implementation, the amount of training data, and the training
platform.

6 RELATED WORK

Given the importance of the SpMV computation, there has been ex-
tensive research to optimize the performance of SpMV kernels [21,
29]. In the following, we briefly discuss prior work on devising
sparse matrix formats and techniques for format selection.

Devising sparse matrix formats. Prior work has studied the perfor-
mance of SpMV on multicore CPUs [34] and GPUs [2] and defined
some basic formats. Since then, many additional formats such as
yaSpMV [36], generalized sliced ELL [15], CSR5 [22], CVR [35],
CSR2 [4], and VBSF [20] have been proposed. Sparse matrix storage
formats can be divided into two types: single format (for e.g., CSR,
DIA, COO, CSR5) and mixed format (HYB, ELLPACK-RP). Such
formats aim at reducing the data size by storing sub-blocks or by
increasing the opportunities for vectorization.

Selecting sparse matrix formats. The multitude of formats natu-
rally leads to the question of selecting the best format for a given ma-
trix. Recent work has focused on using ML models [3, 11, 28, 30, 38].
Of particular interest is the question of overhead-conscious for-
mat selection which requires quantitative rather than qualitative
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0% Training Data 25% Training Data 50% Training Data

MLM ACC F1  MCC GT CSR | ACC F1 MCC GT CSR | ACC F1 MCC GT CSR
£ DT 7898 0.78 050 096 1.03 | 8090 0.80 052 096 1.03 | 81.01 0.8 052 096 1.03
s RF 79.34 0.78 0.51 096 1.03 | 8232 0.82 055 0.96 1.03 | 8192 0.1 0.55 096 1.03
*Eo SVM 79.03  0.78 0.5 095 1.03 | 8201 081 054 096 1.03 | 81.64 0.8 054 0.96 1.03
é KNN 7756 077 046 095 1.02 | 8144 081 053 096 1.03 | 825 082 0.57 09 1.03
{E‘ XGBoost | 79.11  0.78 0.5 095 1.03 | 8233 082 0.55 09 103 | 81.78 0.81 054 096 1.03
£ DT 7270  0.73 0.38 0.92 1 78.64  0.78 0.47 095 1.01 | 78.09 0.78 0.46 095 1.01
2 RF 7491 0.75 042 093 1 79.08 0.79 048 094 1.01 | 79.44 079 049 095 1.02
2 SsvMm 74.68  0.75 041 094 1.01 | 7815 0.78 046 095 1.01 | 7893 0.78 048 0.95 1.02
Té KNN 69.25 0.71 033 089 096 | 7524 076 043 091 098 | 77.25 0.78 048 093 0.99
& XGBoost | 71.03 0.72 0.37 0.9 0.97 76.3 0.77 0.44 092 099 | 76.98 0.77 0.45 0.93 1
E DT 77.67  0.75 0.49 095 1.04 | 80.76  0.79 0.55 096 1.04 | 80.63 0.79 0.55 096 1.05
é? RF 7847 0.76 051 095 1.05 | 81.29 079 056 096 1.05 | 80.51 0.78 0.55 096 1.05
2 SVM 79.47 0.77 054 096 1.05 | 81.88 080 0.57 097 1.06 | 81.36 0.79 0.57 0.96 1.06
2 KNN 7723 075 048 095 1.04 | 8148 0.80 057 096 1.05 | 83.65 083 0.63 096 1.06
'E XGBoost 77.8 0.76 0.5 095 1.04 | 81.21 0.79 0.56 096 1.05 | 81.41 0.8 0.57 096 1.05
ED DT 81.06 082 055 097 1.03 | 8699 087 0.65 098 1.04 | 89.61 090 071 099 1.05
;_5: RF 8485 086 0.63 098 1.04 | 88.94 089 0.70 096 1.05 | 91.50 0.92 0.76 0.99 1.05
8 SVM 8549 086 0.64 098 1.04 | 83.04 088 068 098 104 | 90.02 09 073 099 1.05
= KNN 76.23 0.78 046 095 1.01 | 81.08 083 054 096 1.02 | 8411 085 0.61 097 1.03
z XGBoost | 77.47 0.79 049 096 1.02 | 8358 0.85 0.60 097 103 | 86.83 088 0.66 098 1.04
¥ DT 89.55 0.89 0.69 098 1.05 | 9185 091 076 099 1.05 | 9246 092 078 099 1.05
E RF 90.77 090 0.73 099 1.05| 92.70 092 0.78 099 1.05 | 93.23 0.93 080 0.99 1.05
o SVM 89.69 089 0.70 098 1.04 | 9087 090 072 099 1.05 | 90.98 0.90 073 099 1.05
E KNN 77.54 0.78 0.45 096 1.02 | 80.92 0.82 0.52 097 1.03 | 84.85 0.85 0.61 098 1.04
;5 XGBoost | 90.18 090 0.72 099 1.05 | 91.87 091 076 099 1.05 | 93.30 093 0.80 0.99 1.05

Table 7: Comparison of the effectiveness in sparse matrix format selection of different automated techniques using transfer

learning across different GPUs.

Format Conversion Cost

COO 9
ELL 102
HYB 147
Platform  Time (Hours)
Pascal 27
Quadro 24
Volta 19

Table 8: Relative cost of format conversion (adapted
from [39]) and the time (rounded to the nearest hour) for
benchmarking,.

Transfer data

0% 25% 50%
DT 32 39 49
RF 75 94 115
SVM 59 76 91
KNN 60 77 89
XGBoost 26 31 36
CNN ~ 27,000 > 30,000 > 30,000
K-Means-VOTE 5 6 7
K-Means-LR 11 15 20
K-Means-RF 7 9 10

Table 9: Average training times (rounded to seconds) of the
models in the local and the transfer setting.

predictions [39, 40]. Other approaches focus on auto-tuning of op-
timization parameters [7, 18, 28, 31, 32]. In some cases the SpMV
format is one of the tunable parameters by applying some heuris-
tics [13, 33]. A completely different method of optimizing SpMV
performance is the use of probabilistic modeling [19].

SpMV performance can also be enhanced by increasing the reuse
of the vector data in cache [17]. This requires reordering the matrix,
which may be combined with optimizing the format. However,
formats such as sliced ELL, which reorder the rows, may reduce
cache reuse, thus causing a performance tradeoff [15].

7 CONCLUSION

Due to the importance of the SpMV kernel, combined with its high
performance sensitivity to sparsity patterns and the architecture,
the problem is an interesting candidate for the use of ML tech-
niques. However, so far, only supervised methods have been used.
In this work, we have extended the toolbox by presenting a semi-
supervised approach based on clustering. Its main advantage is that
it separates determining the similarity between matrices from the
selection of the optimal format and exposes these aspects to the
user. This has the advantage of providing explainable classifications
and is well-suited for the transfer case. Furthermore, unlike the
supervised methods, the semi-supervised approach would also be
suitable for an online learning scenario where new matrices are
added, and new clusters are formed continuously. However, this
would require an incremental clustering algorithm, which is beyond
the scope of this work.
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We have performed a range of experiments to find the best imple-
mentation of the semi-supervised approach, which is characterized
by the clustering and the classification algorithms and the chosen
number of clusters k, both in the local and in the transfer sce-
nario. We compared the classification performance of our method
to state-of-the-art and show that our method attains comparable
performance. In contrast to earlier studies, we have used MCC
scores which better reflect performance in this highly unbalanced
multiclass problem. We have found that Random Forest and XG-
Boost still have somewhat better classification performance, while
the CNN approach does not provide a performance that would
offset its high computational cost. For all models, we observed that
the classification performance varies widely among the different
GPU architectures. The reason for this is the large variance in the
number of matrices in the COO and HYB class. This is a general
problem that occurs when using the SuiteSparse dataset for this
purpose, and it affects the newer GPU architectures more than older
GPUs and CPUs. In the future, we will target improvements to the
semi-supervised model to match the classification performance of
all supervised models. We will build upon this work to create an
online classification system that makes full use of the clustering-
based approach by being able to learn from SpMV operations while
they are being performed.
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