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ABSTRACT
This paper proposes a methodology for exploiting approximate
computing to reduce the time and energy requirements of Simul-
taneous Localization and Mapping (SLAM) algorithms, which are
used in important problem domains like robotics and autonomous
driving in which autonomous agents navigate through unknown
environments. Algorithms for SLAM use sensors to probe the envi-
ronment, integrate this information into a map of the surroundings
(mapping), and determine where the agent is in this map (localiza-
tion). Visual SLAM algorithms use cameras as sensors. They can be
used in places where GPS information is not available, but they have
high computational requirements, leading to poor performance and
high energy usage on embedded platforms.

Existing studies of approximation in SLAM have mostly used
offline control, which requires the trajectory be known before the
agent starts to move. This is not realistic in most SLAM applications.
In this paper, we present a general methodology for applying prin-
cipled online approximation to visual SLAM algorithms. We imple-
mented our proposed methodology in four visual SLAM algorithms
(including one visual inertial SLAM algorithm) and evaluated them
on several platforms. Our experimental results show that across
different algorithms and platforms, our proposed methodology re-
sults in savings of up to 77% and 40% in computation time and
energy consumption respectively with acceptable quality loss in
localization and mapping accuracy over a variety of inputs.
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1 INTRODUCTION
Approximate computing can be used to reduce the time and energy
required to execute certain kinds of programs. Abstractly, these
programs have a number of parameters, usually called knobs, that
can be tuned to control the quality of the approximation and the
running time or energy consumption of the program for a given
input. For example, in iterative linear solvers, the “number of itera-
tions” is a knob that can be dialed up to increase the quality of the
solution at the cost of increased running time and energy [2].

Strategies for introducing approximation into program execu-
tion include skipping loop iterations [56], randomly discarding
tasks [48], and relaxing synchronization operations in parallel pro-
grams [13, 49]. In the programming languages community, there
has been work on identifying program patterns that are amenable
to approximation [53], and providing language-level support for
approximation through program analyses and transformations [8,
14, 15, 43, 54, 55]. These studies have largely focused on study-
ing opportunities for exploiting approximate computing without
providing guarantees on output quality.

To control approximation in a principled way, it is necessary to
have a quality estimator (in the context of finite-element methods,
this is called an error estimator [35]). An a priori estimator provides
an estimate of output quality for given input and knob settings
without running the program, and it can be used to perform proac-
tive control in which knobs are set optimally for a given input before
execution. For example, Xin et al. use machine learning to build
inexpensive proxy models for a priori estimation of the quality and
running time of a program, and they use these models together with
features of the input to perform proactive control of approximation
in programs such as hierarchical graph partitioners [58].

In contrast, an a posteriori quality estimator provides an esti-
mate of output quality for a given input and knob settings after the
program is executed. A posteriori estimators are useful for stream-
ing programs in which the system is presented with a stream of
inputs and it can be assumed that the output quality and run-time
behavior of the program for successive inputs is stationary. In such
programs, the a posteriori error estimate obtained after processing
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an input can be used to tune knobs for the next input, an approach
which is called reactive online control. A posteriori error estimation
is straightforward if the ground truth, i.e., the output produced
without making any approximation, is available. For example, the
Green system periodically executes the exact version of the pro-
gram in parallel with the approximate version to determine the a
posteriori error for a given input, and tunes knobs based on this
for the next epoch [1]. Online control has been used to reduce
the energy requirements of programs by clever task scheduling on
heterogeneous processors and to exploit DVFS [45, 46, 61].

In this paper, we consider the problem of principled control of
approximation in Simultaneous Localization and Mapping (SLAM)
algorithms. SLAM solves the problem of determining the poses
(position and orientation) of an autonomous agent in an unknown
environment while constructing a map of that environment [7, 9,
17, 18, 20, 26, 27, 30, 33, 34, 37, 40, 47, 59, 63, 64]. It is used widely in
robotics, autonomous vehicles, and computer vision. Visual SLAM
has become popular because of the ubiquity of affordable cameras in
the embedded and mobile spaces [21, 52]. However, the algorithms
have high computational costs given their reliance on compute-
intensive kernels such as bundle adjustment [60], iterative closest
point [3], and loop closure detection [23]. These high computational
requirements lead to poor performance such as low frame rates
and limited battery life, resulting in suboptimal user experience
and presenting a practical barrier to deploying SLAM algorithms
on embedded and resource-constrained devices.

One solution is approximate computing but introducing approxi-
mation into visual SLAM algorithms is difficult for several reasons.

• In problems like n-body methods and graph partitioners,
the input to the program is available at the beginning of
the computation so it can be inspected to determine how to
exploit approximation. In SLAM, the agent must react to an
unknown environment while navigating through it.
• Knob settings should be changed dynamically during naviga-
tion to obtain the best performance. For example, in scenes
in which there are many landmarks, navigation is simple
so more approximation can be used; conversely, more ac-
curate computation might be advisable when there are few
landmarks.
• Problems for which online control has been used success-
fully such as DVFS can be viewed abstractly as unconstrained
optimization problems. In contrast, introducing approxima-
tion into SLAM is a constrained optimization problem since
approximation must not prevent the agent from navigating
through the environment.
• Online approximation controllers such as Rumba [29] as-
sume that if the error is unacceptable, the controller can
back up and redo the computation with less approximation.
Re-computation is not allowed for SLAM because it is used
for real-time control such as autonomous vehicle navigation
where failure is not an option.
• The exact pose of the agent (ground truth) can never be
determined exactly so ground truth cannot be used to come
up with a posteriori error estimates.

In this paper, we propose a general methodology to introduce
principled online approximation in visual SLAMalgorithms to trade-
off computation time and energy consumption for an acceptable
loss in accuracy. Our proposed methodology controls knobs in a
visual SLAM algorithm in an online fashion during the motion of
the autonomous agent without requiring a priori knowledge of the
environment and trajectory. We implemented the proposed method-
ology in four popular visual (or visual inertial1) SLAM algorithms
— ElasticFusion [63, 65], KinectFusion [26, 40], ORB-SLAM2 [37, 38]
and ICE-BA [34] — which are widely used in this area. We eval-
uated our methodology on a variety of real-world inputs on two
platforms, a heterogeneous ODROID-XU4 big.LITTLE system and
an NVIDIA Jetson TX2 board.

The primary contributions of this paper are as follows:

• We propose a general methodology to introduce and control
approximation in visual SLAM algorithms. This method-
ology works across different combinations of SLAM algo-
rithms, programming language implementations, and hard-
ware platforms.
• We designed an online controller that adapts to a variety of
real-world input datasets.
• We describe how this methodology can be used for four
diverse visual or visual inertial SLAM algorithms: ElasticFu-
sion, KinectFusion, ORB-SLAM2 and ICE-BA.
• Our experiments show that the proposed methodology is
able to reduce the computation time and energy consump-
tion by up to 77% and 40% across different visual SLAM al-
gorithms and platforms, while limiting accuracy loss within
reasonable bounds.

The system design principles for online control of approxima-
tion presented in this paper are general and can be applied to other
problems where one has to make trade-offs between different ob-
jectives, such as online resource managers in multicore processors,
checkpointing for fault-tolerance [10, 11], inter-processor communi-
cation [16, 32, 50], and choosing formats for sparse matrices [31, 36].
Using concepts from control theory, like we do in this paper, may
make these systems more efficient and robust.

2 SLAM ALGORITHMS AND MOTIVATION
This section describes the visual (or visual inertial) SLAM algo-
rithms used in this paper and their performance on resource-constrained
platforms.

2.1 Visual SLAM algorithms
In visual SLAM algorithms, the processing of a frame is divided
into two phases: localization and mapping.

(1) Localization (also known as tracking): The incoming frame
is aligned with the surface of the existing map to determine
the new pose (position and orientation) of the agent, assum-
ing that the agent’s movement between successive frames is
small. Alignment algorithms are usually iterative methods
that can be based on pixels (direct method) or on features

1Besides camera, visual inertial SLAM also uses IMU sensor.



extracted from the frame (indirect method). The difference af-
ter the alignment provides a measure of the motion between
the old pose and the new one.

(2) Mapping: In the mapping phase, the map is incrementally
updated based on the new pose and the pixels (densemethod)
or features (sparse method) in the current frame.

Figure 1 shows ORB-SLAM2 tracking a sequence of frames and
building the 3D point cloud.

Figure 1: A screenshot of ORB-SLAM2 [38] tracking camera
poses (blue tetrahedrons) while simultaneously building the
3D point cloud. The top picture shows the point cloud and
the inset picture shows the actual scene.

Wepick four representative open-source visual SLAM algorithms
that use different tracking and mapping methods, described briefly
below. Table 1 shows the important knobs for these algorithms.

• ElasticFusion is a direct dense visual SLAM algorithm that in-
crementally captures dense globally-consistent surfel-based
maps of room-scale scenes using an RGB-D camera [63].
ElasticFusion uses frame-to-model camera tracking and win-
dowed surfel-based fusion coupled with frequent model
refinement through non-rigid surface deformations. Dur-
ing the tracking phase, ElasticFusion uses both photometric
(RGB) tracking and iterative closest point (ICP) by default.
The importance of RGB tracking and ICP is weighted by the
knob icp_rgb.
• KinectFusion is a direct dense SLAM system [26, 40] that
uses ICP for tracking and volumetric representations for
mapping. Knob csr determines the frame resolution at which
KinectFusion processes input frames and knob icp controls
how fast the tracking alignment converges. A lot of work in
this area builds on KinectFusion [27, 62–64].
• ORB-SLAM2 is an indirect sparse visual SLAM algorithm [37,
38], and can be used in diverse environments ranging from
room-sized scenes to several city blocks. For each input
frame, ORB-SLAM2 extracts orb features, which are fast
to compute and are used for both tracking and mapping [51].
• ICE-BA represents incremental, consistent and efficient bun-
dle adjustment [34], which is a state-of-the-art backend of
visual inertial SLAM. The frontend of the visual inertial
SLAM algorithm can be adopted from ORB-SLAM2. We use
ICE-BA to refer to a whole visual inertial SLAM algorithm
in this paper.

Algorithm Knob Description

ElasticFusion

confi surfel confidence threshold
cut cutoff distance for depth processing
icp_rgb relative ICP/RGB tracking weight
reloc enable relocalization
fo use one level pyramid fast odometry
nso disable SO(3) pre-alignment
lc enable loop closure

KinectFusion

csr input frame resolution
tr rate at which tracking is performed
ir rate at which mapping is performed
icp threshold for the ICP algorithm
vr volume resolution to build map
mu truncation distance used in volume
pd0-pd2 maximum number of iterations al-

lowed on each image pyramid level

ORB-SLAM2

mf framemaximum number of features
sl number of levels in image pyramid
sf scale between levels in pyramid
ift 1st threshold of FAST algorithm
sft 2nd threshold of FAST algorithm
lc enable loop closure

ICE-BA
feat_cap framemaximum number of features
feat_ratio scale number of new features

Table 1: List of selected knobs in different SLAM algorithms
that potentially can be tuned for approximation.

Knobs can be tuned to affect the performance and accuracy of
SLAM algorithms. Each knob is set to a default value, chosen by
the implementers as a reasonable value for that knob. We use the
term DEFAULT to refer to a configuration of a SLAM algorithm
that uses these default values.

2.2 Baseline visual SLAM performance
Since desktops are not natural deployment targets for visual SLAM
algorithms, we tested the performance of ElasticFusion, KinectFu-
sion, ORB-SLAM2, and ICE-BA on two embedded platforms, an
ODROID XU4 board and an NVIDIA Jetson TX2 board equipped
with low-power ARM cores (details in Section 6.1). Each SLAM
algorithm is tested over its own reference dataset. ElasticFusion
and ORB-SLAM2 use the TUM dataset [57], KinectFusion uses the
standard ICL-NUIM living room dataset [22], and ICE-BA uses the
EuRoC dataset [12].

To get a sense of how the algorithms perform on these platforms,
we used two configurations: DEFAULT and APPROX (all knobs are
set to their lowest fidelity value). On the Jetson TX2, ElasticFusion in
DEFAULT knob configuration took 326ms per frame on the average,
but only 147 ms per frame in the APPROX knob configuration. For
KinectFusion, the corresponding times are 313 ms and 68 ms on the
Odroid XU4, and 61 ms and 24 ms on the Jetson TX2. These results
show that there is a lot of scope for exploiting approximation to
reduce running time.

Unfortunately, we found that the APPROX knob settings of-
ten compromised the ability of the agent to navigate successfully
through the environment because it introduced a large tracking



error. The metric used in the literature to quantify tracking error is
called Trajectory Root Mean Square Error (TE) in the SLAM litera-
ture [57]. The TE measures the root mean square of the difference
between the actual and computed poses of the agent at each frame.
The increase of TE because of approximation as a proportion of
the longest dimension in the frame is required to be within a given
bound for the solution to be acceptable. Formally,

𝑄𝑙𝑜𝑠𝑠 =
𝑚𝑎𝑥 (𝑇𝐸−𝑇𝐸𝐷 ,0)

𝐿
< 1% (1)

where TE𝐷 is the TE when using the default setting and L is the
longest dimension of the input’s scene. For example, a TE increase
of 5 cm is usually considered acceptable in room-sized scenes
(∼5m×5m×5m). The TE constraint means that approximation can-
not be done in a naïve way such as by using the APPROX configura-
tion for all the knobs. For example, knobmf controls the maximum
number of features extracted from a frame in ORB-SLAM2 and thus
affects the computation time. Computation time per frame is almost
halved for input fr1_desk if knob mf is set to its lowest fidelity, but
this introduces a TE of 87 cm (𝑄𝑙𝑜𝑠𝑠 = 17%) in a room-sized scene,
which is unacceptable.

The goal of this paper is to develop a generic methodology to
introduce approximation in visual SLAM algorithms in a principled
fashion so that the computation time and energy consumption can
be improved without unacceptable tracking quality loss.

3 RELATEDWORK ON APPROXIMATION IN
SLAM

We summarize the most relevant studies below.

Application-agnostic control. The systems community has pro-
posed many application-agnostic control systems for trading off
power or energy for performance and program accuracy [19, 24,
25, 29]. These controllers do not use domain knowledge and usu-
ally involve offline training on inputs before the actual execution.
However, inputs are not known ahead of time for SLAM. In our
experience, they do not work well for controlling visual SLAM [44].

Control of SLAM algorithms. Most prior work on approximating
SLAM assume that the entire video of frames is known before the
agent starts to move [4, 42, 52]. Design space exploration [4] for a
given video input is performed by executing actual trials and the
results are used to select good knob settings that are then used for
the entire input. This is an example of offline control since knob set-
tings are determined once and for all before the computation begins.
Subsequent studies along this line highlighted opportunities for ex-
ploiting approximation in SLAM algorithms [5, 39, 42, 52]. In most
applications of SLAM however, video inputs are not known ahead
of time. Prior work [44] shows that permitting knobs to be con-
trolled adaptively during the navigation of the agent reduces time
and energy requirements more than fixing knobs during execution.
This work explored the use of a SLAM-specific controller for the
KinectFusion algorithm on one embedded platform for one dataset,
but does not give a general methodology for introducing approxi-
mation in visual SLAM algorithms. Another recent work focuses
on dynamically controlling DVFS on embedded platforms [28], but
embedded platforms usually do not have the base computational
power to permit turning down the voltage/frequency for visual

SLAM algorithms without loss of tracking. The performance advan-
tages of reduced-precision arithmetic in SLAM have been explored
in other work [41, 42]. Exploiting reduced-precision is orthogonal
to our concerns in this paper.

4 METHODOLOGY FOR DESIGNING SLAM
CONTROLLERS

This section presents a general methodology for principled approxi-
mation in visual SLAM systems. There are four problems that must
be addressed.

• Offline control is not an option for SLAM because entire
inputs are not available ahead of time, so we use online
control. Online control of SLAM requires an error estimator
that can be used to adjust knobs whenever a new frame is
received. TE is not useful for this because it requires ground
truth. Section 4.1 describes an error estimator of our design
that performs well for all the SLAM algorithms studied in
this paper.
• The next problem is to choose an online control strategy.
Section 4.2 describes a modified PID (proportional-integral-
derivative) controller that is suitable for application to various
visual SLAM systems.
• In most SLAM systems, the number of knobs is very large,
and it is not feasible to control all of them simultaneously.
Section 4.3 describes how we choose a subset of knobs that
are tuned by the controller.
• PID controllers have the advantage that they are domain-
independent, but our experiments show that exploiting SLAM-
specific information to improve on the basic PID strategy is
essential to achieve good performance. Section 4.4 describes
two SLAM-specific optimizations that are selectively applied
to SLAM systems.

4.1 Error estimator for controlling visual SLAM
Online control requires an error estimator that can be used by the
controller to tune knobs when a new frame is received. As discussed
earlier, TE is not useful for this because it needs ground truth.

One possibility is to define an Instantaneous Trajectory Error
(ITE): intuitively, this is the difference between where the agent
thinks it is and where it actually is (i.e., ground truth). The controller
can integrate the ITE over time and by comparing this with the
TE target, it can determine how much to approximate. However,
ground truth is not available during SLAM execution. What is
needed therefore is a proxy for ITE.

Based on our experiments, we recommend using pose distance as
the error estimator, where pose distance is defined as the distance be-
tween the estimated poses of successive frames. Since visual SLAM
algorithms assume that the agent’s movement between successive
frames is small, a large pose distance between successive frames in-
dicates that either the tracking error is large or the scene is difficult
to track (for example, the camera is moving fast). Compared to the
error estimator velocity suggested by [44], pose distance permits
faster reaction time. This is crucial for visual SLAM algorithms
because the tracking quality of every frame has an impact on latter
frames. Figure 2 shows the relationship between pose distance and
ITE for the input lr0 in KinectFusion using its default setting (ITE is



calculated using ground truth). We see that there is a good correla-
tion between ITE and pose distance, especially when pose distance
has spikes. This correlation is widely observed in different input
trajectories (correlation > 0.4 across the ICL-NUIM dataset). This
means that a large pose distance between frames is a good indicator
of large tracking error. Less approximation should be introduced
when a large pose distance is observed.
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Figure 2: Correlation between the ITE and pose distance of
input lr0 in KinectFusion.

We studied several other error estimators, but they were uncor-
related to ITE (correlation < 0.1) and some are costly to compute.

4.2 Online Control Strategy
We use a proportional-integral-derivative (PID) controller as the
basic controller for visual SLAM algorithms. This controller is opti-
mized using domain-specific information in Section 4.4.

The simplest PID controllers are just proportional (P) controllers:
they compare instantaneous estimates of some quantity of interest
with a reference value for that quantity (called the set-point), and
make adjustments to knobs proportionate to this difference. Cruise
controllers in cars and thermostats are simple examples. More so-
phisticated controllers integrate (sum) this difference over time,
and use the accumulated value as well for control; these are PI con-
trollers. Finally, PID controllers can also use the derivative of the
quantity of interest in their control strategy (this is useful to reduce
overshooting the set-point through over-aggressive control).

In our study, we adopt a slightly modified PID controller. The
P portion of our PID controller determines the knob setting by
comparing the agent’s current pose distance with two dynamic
pose distance set-points, 𝐷ℎ𝑖𝑔ℎ and 𝐷𝑙𝑜𝑤 :

𝐷ℎ𝑖𝑔ℎ = 𝛼∗𝐷𝑎𝑣𝑔 + (1 − 𝛼)∗𝐷𝑚𝑎𝑥 (2)
𝐷𝑙𝑜𝑤 = (1 − 𝛼)∗𝐷𝑎𝑣𝑔 + 𝛼∗𝐷𝑚𝑖𝑛 (3)

where 𝐷𝑎𝑣𝑔 , 𝐷𝑚𝑎𝑥 , and 𝐷𝑚𝑖𝑛 are the average, maximum and mini-
mum pose distances from the beginning to the current pose during
one execution. The value 𝛼 determines how those values are com-
bined. As shown in Figure 3, when pose distance is smaller than
𝐷𝑙𝑜𝑤 , the knob that provides the most approximation (APPROX)
will be applied because the agent is not moving fast. On the other
hand, when pose distance is larger than 𝐷ℎ𝑖𝑔ℎ , the knob setting of
DEFAULT will be applied. Approximation is set to different knob
values (Section 4.3) proportionally when pose distance is between
𝐷𝑙𝑜𝑤 and 𝐷ℎ𝑖𝑔ℎ : the closer to 𝐷𝑙𝑜𝑤 , the more approximate knob
setting is applied. Dynamic set-points can adapt more quickly to
changing trajectories than fixed set-points [44]. Intuitively, if a
trajectory is fast and DEFAULT is able to track it, 𝐷𝑙𝑜𝑤 and 𝐷ℎ𝑖𝑔ℎ

should be set higher to avoid overly conservative control.
The knob setting determined by the P term is further refined

by the I and D terms. The I part in our proposed controller is a

0 𝐷𝑙𝑜𝑤 𝐷ℎ𝑖𝑔ℎ

APPROX DEFAULTProportional

Pose Distance

Figure 3: Modified PID controller

sliding window of the recent history of the difference between
pose distance and the pose distance set-points. The knob settings
computed by the P part are adjusted by computing the average
difference over the sliding window. The D part checks whether
the pose distance in the sliding window is constantly increasing
or decreasing. If the pose distance is increasing, a more accurate
knob setting should be applied accordingly to deal with potential
difficult scene.

A PID controller determines the exact knob value, which implies
that the knob setting may frequently oscillate between different
values. One alternative is to let knob settings change incrementally
toward the desired value over many time steps. This alternative
has a longer reaction time but may have better stability. It can be
useful when changing knobs is costly.

4.3 Knob Importance Analysis
Given the PID controller and error estimator, we must decide which
knobs should be controlled. The SLAM algorithms in our study
have a large number of knobs as Table 1 shows, and some knobs
have a wide range of possible values. Controlling all the knobs is
neither necessary nor advantageous. We classify knobs into three
categories: infeasible, ineffective, and effective knobs. Knobs which
are suitable for tuning and which have a meaningful impact on
computation time, energy consumption, and accuracy are classified
as effective.

Identifying infeasible knobs. Knobs are infeasible if their values
cannot or should not be changed dynamically. Changing infeasible
knobs may lead to incorrect results or is expensive.

Visual SLAM systems assume that the camera’s motion between
successive frames is small. Modifying some knobs may violate this
fundamental assumption. For example, knobs tr and ir of KinectFu-
sion affect the rate at which tracking and mapping is performed.
Lower tr and ir increase the pose distance between successive
frames substantially, thereby increasing the difficulty for the track-
ing module. In addition, knobs that are expensive to tune need
to be excluded. Knob vr in KinectFusion determines the scale of
the global map. Changing vr involves rescaling the whole 3D map
to the new resolution, which is costly to do repeatedly. For the
same reason, mu is also classified as infeasible. Furthermore, knob
reloc in ElasticFusion determines whether relocalization should be
performed, but the information required to tune these knobs is not
easy to get.

Ranking knobs by impact. To identify effective knobs, we rank
the remaining knobs based on their impact on the output. The
ranking is done by orthogonal line search, where we change only
one knob at a time and keep all other knobs fixed at their default
values. We first shrink the range of feasible values of a knob by
discretization. For example, the default value of knob mf in ORB-
SLAM2 is 1000 and its minimum value is 5102, so we discretize
2In ORB-SLAM2, mf value less than 510 may cause segmentation fault.



the range of mf to [1000, 900, 800, 700, 600, 510]. The inputs used
are the standard living room trajectories from ICL-NUIM RGB-D
dataset. For each knob, we measure its impact on the computation
time, energy usage, and the TE.

Algorithm Knob Knob range

ORB-SLAM2 mf [1000, 900, 800, 700, 600, 510]

ElasticFusion
fo [false, true]
icp_rgb [10, 100]
lc [true, false]

KinectFusion
csr [1, 2, 4, 8]
icp [1e-05, 1e-04, 1e-03, 1]
pd0 [10, 8, 6, 4]

ICE-BA feat_cap [1000, 30, 20, 10, 5]
feat_ratio [3, 2, 1, 0.5, 0.25]

Table 2: List of effective knobs for each SLAM algorithm.

Table 2 lists the effective knobs for each SLAM algorithm. For a
given knob, the settings are listed in an increasing order of approxi-
mation. The default setting uses knob values with the least amount
of approximation. For KinectFusion, ORB-SLAM2, and ICE-BA, all
knobs are tuned simultaneously while ElasticFusion’s knobs are ad-
justed in the order of fo, icp_rgb, and lc to avoid bang-bang control.
Some knobs should not be disabled for a long period such as knob
lc, which controls loop closure, so knob lc is forced to be enabled
at least every four frames in our control system.

4.4 Improving the controller using domain
knowledge

The PID control strategy is domain-agnostic and easy to implement,
but our experiments showed that it sometimes performed poorly,
such as when the scene has few features for accurate alignment
of successive frames. We recommend adding two SLAM-specific
optimizations to the controller to ameliorate these problems.

Pose extrapolation using an inertia model. For some difficult video
inputs, a single noisy frame may cause the tracking module to
produce a pose estimate that is very far from the pose estimate
at the previous frame. Since the basic assumption in all SLAM
algorithms is that the frame rate is sufficient to ensure that the
agent’s actual pose does not change drastically between successive
frames, this is a sign that the pose estimate produced for the new
frame is probably incorrect. If left uncorrected, this potentially
incorrect pose will be propagated to future time steps and the agent
may lose tracking altogether. The PID controller cannot react to
such incorrect estimates since these are inputs to the PID controller.

To avoid this problem, we use a simple inertia model to gen-
erate a different estimate for the pose, as illustrated in Figure 4.
The difference between two poses can be viewed as a rigid body
transformation. Let 𝑃𝑡−1 represent the pose and 𝑇𝑡−1 represent the
transformation matrix at time 𝑡−1 (i.e., 𝑃𝑡−1 = 𝑇𝑡−1 ∗ 𝑃𝑡−2).

At time 𝑡 , the pose extrapolation module calculates the pose
distance between 𝑃𝑡 and 𝑃𝑡−1. If this distance is suspicious (i.e.,
larger than some predefined threshold), the 𝑃𝑡 estimate from the
tracking module is discarded and 𝑃𝑡 is recomputed by applying𝑇𝑡−1

𝑃𝑡−2

𝑇𝑡−1
𝑃𝑡−1

𝑇𝑡−1
Extrapolated 𝑃𝑡

Original 𝑃𝑡

Figure 4: Pose extrapolation is performed when a pose esti-
mate is substantially distant from the previous pose.

to 𝑃𝑡−1. Note that pose extrapolation is different from the relocal-
ization technique in ElasticFusion and ORB-SLAM2. Relocalization
deals with tracking loss or scene changes while pose extrapola-
tion tries to correct the pose whenever needed based on an inertia
model. Pose extrapolation is effective in maintaining the accuracy
for pure visual SLAM systems such as ElasticFusion, KinectFusion,
and ORB-SLAM2.

Structure Detection. The final domain-specific optimization we
use is to exploit additional information in the incoming frames to de-
termine how to control approximation for visual SLAM algorithms
that use the direct method, such as ElasticFusion and KinectFu-
sion. The direct method processes frames at the pixel level for
tracking, and the alignment is performed using iterative methods.
For example, KinectFusion uses only ICP, while ElasticFusion uses
ICP together with RGB tracking. If successive frames are feature-
rich (e.g., a room with many chairs and tables), then alignment is
relatively easy and the controller can get away with more approxi-
mation; conversely, if successive frames are feature-poor (e.g., the
scene is mostly empty), then tracking is more difficult and approx-
imation should be reduced. Note that the PID controller and the
pose extrapolation module cannot react to this in time because pose
distance is calculated after the frame is processed; in ElasticFusion,
RGB tracking should be turned on before ElasticFusion starts to
process the frame if the frame is likely to cause problems.

To estimate whether a frame is feature-rich, we use a structure
detection module to calculate the standard deviations of pixel depth
values of a frame. Intuitively, a feature-rich frame will have a higher
standard deviation than a feature-poor one. In our implementation,
we divide the frame into four rectangles. In each rectangle, a uni-
form sampling of a fixed number (40×30) of points is performed to
calculate the standard deviation regardless of frame resolution. If
the standard deviations are small, we classify the frame as feature-
poor and apply less approximation to process it.

5 IMPLEMENTATION
This section describes how we implemented the control methodol-
ogy for the four SLAM algorithms. The processing of each frame
in visual SLAM algorithms can be abstracted into three main steps:
reading, tracking, and mapping. One advantage of our methodol-
ogy is that it can be implemented as plugins into these three steps
without modifying the code.

Figure 5 shows the flow chart for our implementation. Box b0
reads an input frame, denoted as 𝐹𝑡 . A bootstrap phase is used
to permit SLAM to run without approximation and to initialize
an accurate map (Box b1). In this phase, the algorithm’s execution
follows its original procedure, where the pose (𝑃𝑡 ) and the map (𝑀𝑡 )
at time 𝑡 are calculated by the tracking and the mapping module
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Figure 5: Diagram of the proposed methodology

with knobs (𝐾𝑡 ) set to DEFAULT respectively. The length of the
bootstrap phase is set equal to the length of the sliding window in
the PID controller’s I part.

Control of the SLAM algorithm starts after the bootstrap phase.
The PID controller determines the knob setting 𝐾𝑡 for processing
the current frame (Box b2). The input to the PID controller is the
pose distance between the last two frames (𝐷𝑡−1) and two dynamic
pose distance set-points (𝐷𝑙𝑜𝑤 and 𝐷ℎ𝑖𝑔ℎ).
• If no optimization is applied (ignore highlighted boxes for
now), the tracking algorithm will use the new knob setting
and calculate the pose (𝑃𝑡 ) for the current frame (Box b5). The
pose distance between the current frame and the previous
frame (𝐷𝑡 ) is calculated in Box b6, and this value is fed into
the PID controller for the next frame. The mapping module
takes 𝑃𝑡 as its input (Box b10), and outputs the map𝑀𝑡 after
processing of this frame.
• The logic of pose extrapolation and structure detection are
shown in the highlighted boxes. The need for applying pose
extrapolation for the current frame is checked in Box b7
by comparing 𝐷𝑡 with a predefined threshold according to
different datasets (3.5 cm for ICL-NUIM dataset and 4.5 cm
for TUM datset). If pose extrapolation is required, then 𝑃𝑡 is

recomputed using a transformation matrix 𝑇𝑡−1 calculated
from 𝑃𝑡−1 to 𝑃𝑡−2 (Box b8). The mapping module (Box b10)
takes the recomputed pose as its input. If no pose extrap-
olation is needed, a new transformation matrix (𝑇𝑡 ) is still
generated in case pose extrapolation is needed for the next
frame (Box b9).
Box b3 shows the module of structure detection. If the cur-
rent frame is feature-poor, knobs are tuned to reduce approx-
imation by one level according to Table 2 (Diamond d1 and
Box b4). We denote the operation of reducing approximation
by “-1” for simplicity. We treat each knob of one algorithm
equally so all the knobs are adjusted at the same time except
ElasticFusion. For ElasticFusion, we tune the knobs hierar-
chically, following the order of fo, icp_rgb, and lc, otherwise
the knob space would be too small. Note that if extrapolation
is performed for the previous frame, knob settings are also
tuned to increase accuracy because extrapolation indicates
a difficult scene (Box b7).

In our study, the PID controller is implemented in all four algo-
rithms. Pose extrapolation is added to ElasticFusion, KinectFusion,
and ORB-SLAM2 because ICE-BA is already using inertial informa-
tion. Structure detection is added only to ElasticFusion and Kinect-
Fusion because ORB-SLAM2 and ICE-BA are already extracting
features from frames.

6 EXPERIMENTAL RESULTS
6.1 Experiment Setup
We have implemented our controller in four visual SLAM algo-
rithms, ElasticFusion, KinectFusion, ORB-SLAM2, and ICE-BA, and
evaluated them on different embedded platforms.

Platforms. The first embedded platform is a heterogeneousODROID
XU4 big.LITTLE system, equipped with four Cortex-A15 cores with
2 GHz max frequency, four Cortex-A7 cores with 1.4 GHz max
frequency, and a Mali-T628 MP6 GPU that supports OpenCL 1.2.
The power dissipation on this board is measured by an external
SmartPower2 device3. OpenCL version of KinectFusion and C++
version of ORB-SLAM2 and ICE-BA are tested on this platform.

The second platform is an NVIDIA Jetson TX2 development kit
that has four Cortex-A57 cores and two Denver2 cores running at
2 GHz. The board is equipped with 256-core Pascal GPU running
at 1.3 GHz with CUDA version 10.0. The power dissipation is mea-
sured through its internal i2C interface. The idle power of both
platforms is subtracted from the actual measurements. CUDA ver-
sion of ElasticFusion and KinectFusion, C++ version of ORB-SLAM2
and ICE-BA are evaluated on this board.

Datasets. Each SLAM algorithm comes with its own reference
datasets. For ORB-SLAM2 and ElasticFusion, we use 14 inputs from
the TUM RGB-D SLAM dataset [57]. The dataset includes ground
truth. Most of these inputs can be successfully tracked by the default
setting of both algorithms. Both ORB-SLAM2 and ElasticFusion are
run in RGB-D mode. We use the ICL-NUIM [22] living room dataset
for KinectFusion. The dataset contains four synthetic living room
scenes, with ground truth. We also extended the ICL-NUIM dataset

3https://wiki.odroid.com/accessory/power_supply_battery/smartpower2

https://wiki.odroid.com/accessory/power_supply_battery/smartpower2


Computation Time (ms) Energy Consumption (mJ) Trajectory Error (cm)
Algorithm Language Datasets DEF CTRL Saving DEF CTRL Saving DEF CTRL Max 𝑄𝑙𝑜𝑠𝑠

KinectFusion OpenCL ICL-NUIM Extended 313 73 76.7% 2293 1385 39.6% 1.2 2.1 0.74%
ORB-SLAM2 C++ TUM 386 284 26.4% 1302 984 24.4% 2.3 2.8 0.48%
ICE-BA C++ EuRoC 68 58 14.7% 277 235 15.2% 10.6 11.1 0.55%

Table 3: Overall performance comparison between DEFAULT and CONTROLLED on the ODROID XU4 platform.

Computation Time (ms) Energy Consumption (mJ) Trajectory Error (cm)
Algorithm Language Datasets DEF CTRL Saving DEF CTRL Saving DEF CTRL Max 𝑄𝑙𝑜𝑠𝑠

ElasticFusion CUDA TUM 327 193 41.0% 912 562 38.4% 3.5 4.4 0.76%
KinectFusion CUDA ICL-NUIM Extended 61 26 57.4% 858 550 35.9% 1.0 2.7 0.84%
ORB-SLAM2 C++ TUM 257 191 25.7% 1100 838 23.8% 2.5 2.7 0.96%
ICE-BA C++ EuRoC 48 39 18.8% 410 404 1.5% 11.7 11.4 0.25%

Table 4: Overall performance comparison between DEFAULT and CONTROLLED on the Jetson TX2 platform.

with 14 real-world scenes from the literature [44] for diversity. The
largest dimension for the above two datasets is around ∼5 meters.
ICE-BA is evaluated over the EuRoC MAV dataset [12] (ground
truth is available). The first 5 scenes’ dimension is around 15 meters
and the latter 6’s is 8 meters. The first column of Table 5, 8, 7 and 9
list the inputs for each visual SLAM algorithm used in our study.

6.2 Performance on Embedded Platforms
We perform a quantitative comparison of the trajectory root mean
square error (TE), computation time, and the energy consumption
per frame between two configurations:

• DEFAULT (DEF): knobs are fixed to their default value,
• CONTROLLED (CTRL): knobs are adaptively-controlled by
the proposed methodology during execution.

The overall computation time and energy consumption on each
platform is shown in Table 3 and Table 4 respectively. Each number
is the geomean average of the performance of all the corresponding
inputs of each visual SLAM algorithm. The detailed analysis of each
algorithm is described below.

ElasticFusion. Our proposed methodology improves ElasticFu-
sion’s computation time (or fps) and energy consumption by 41%
and 38% respectively on the Jetson TX2 board. Detailed numbers
are shown in Table 5. Performance numbers for trajectories that
cannot even be tracked by DEFAULT are marked as “-”. In terms
of accuracy, DEFAULT has a TE of 3.5 cm while the TE for CON-
TROLLED is 4.4 cm. The maximum quality loss 𝑄𝑙𝑜𝑠𝑠 is 0.76% with
fr2_dwp, which is considered as acceptable in a room-sized scene.

KinectFusion. The improvement in computation time and energy
usage per frame for KinectFusion is 77% and 40% on ODROID XU4,
57% and 36% on Jetson TX2 board. Due to lack of space, KinectFu-
sion’s, ORB-SLAM2’s, and ICE-BA’s performance data are included
in theAppendix A. Detailed performance of KinectFusion are shown
in Table 7. On ODROID XU4 board, the frame rate increase from
3.2 to 13.7 only with a maximum 𝑄𝑙𝑜𝑠𝑠 of 0.74% (lab0). On Jetson
TX2 board, frame rate (38.5) exceeds the real-time requirement with
maximum 𝑄𝑙𝑜𝑠𝑠 of 0.84% (mr0, lab0). Note that due to architecture
differences, the tracking accuracies are different on each platform.

Computation time improvements from approximation are pro-
nounced because KinectFusion exposes a knob csr which controls

DEFAULT CONTROLLED
RMSE Time E RMSE Time E
(cm) (ms) (mJ) (cm) (ms) (mJ)

fr1_desk 2.6 308 812 3.1 217 597
fr1_desk2 4.3 313 770 4.6 224 557
fr1_floor - - - - - -
fr1_plant 4.6 327 827 6.7 205 530
fr1_room 19.8 327 795 13.9 181 461
fr1_xyz 1.2 327 798 1.8 196 480
fr2_desk 9.8 335 1084 11.4 178 603
fr2_dwp 6.8 338 1106 10.6 187 643
fr2_xyz 2.0 354 971 2.4 171 549
fr3_long 2.4 328 1098 3.4 198 666
fr3_nt_near 3.6 353 902 3.9 246 633
fr3_sn_far 3.1 311 901 4.4 184 556
fr3_st_near 1.0 314 975 2.4 181 582
fr3_st_far 2.6 320 908 2.7 167 497
geomean 3.5 326 912 4.4 193 562
Table 5: ElasticFusion on the Jetson TX2 platform.

Controller RMSE (cm) Time (ms) E (mJ)

SLAMBooster 2.9 83 1437
Proposed Methodology 2.1 73 1385

Table 6: Performance comparison between proposed
methodology with SLAMBooster on ODROID XU4.

the frame resolution, and has significant impact on both computa-
tion time and energy usage. Our methodology outperforms SLAM-
Booster [44] with less TE (Table 6) for two reasons: the use of dy-
namic set-points permits better adaptation to differences in input
scenes, and pose distance reduces the reaction time of the controller
compared to using velocity.

ORB-SLAM2. Our experiment shows that on both platforms,
controlled ORB-SLAM2 is able to reduce the computation time
and energy consumption by 26% and 24% respectively. Table 8 lists
detailed performance numbers for each input on each platform of
ORB-SLAM2. We exclude fr3_sn_far because even DEFAULT yields
a TE over 100 cm. The maximum 𝑄𝑙𝑜𝑠𝑠 is 0.48% (fr1_plant) on the
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Figure 6: Sample computed trajectories by ElasticFusion (a-c), KinectFusion (d,e), ORB-SLAM2 (f-h) and ICE-BA (i, j).

ODROID XU4 and 0.96% (fr1_room) on the Jetson TX2. Our proposed
methodology meets the quality loss bound.

ICE-BA. As shown in Table 9 (see in Appendix A), computation
time and energy usage for ICE-BA are reduced by 15% and 15%
on ODROID XU4, 18% and 1.5% on Jetson TX2 while keeping the
maximnum𝑄𝑙𝑜𝑠𝑠 (V2_02) within quality bound. ICE-BA’s frame rate
increases by 2.6 and 4.8 on two boards respectively. Interestingly,
there is no significant energy saving on the Jetson board. The po-
tential reason is explained in Section 6.8. We believe ICE-BA can be
further improved if more knobs are exposed in the implementation
for tuning.

Figure 6 shows some examples of computed trajectories tracked
by the four visual SLAM algorithms compared to the ground truth.
Using our methodology permits visual SLAM algorithms to main-
tain tracking effectively with approximation for inputs ranging
from room-size scenes to hall-size scenes.

Discussion. Although introducing approximation should gener-
ally increase TE, we found that TE can sometimes decrease after
approximation. This is because visual SLAM algorithms are nonlin-
ear, and approximation can affect the output in unexpected ways.
Given the nonlinearity of the underlying system and the fact that
the decisions made by the controller may be different for differ-
ent inputs, it is difficult to even formulate the notion of optimal
controllers for this problem, let alone design them, but our method-
ology gives a way to design controllers that are easy to implement
and perform well in practice.

6.3 Importance of Domain-specific Control
Optimizations

In Section 4.4, we introduced SLAM-specific control optimizations
such as pose extrapolation and structure detection in the PID con-
troller for better tracking accuracy. In Figure 7, we show the im-
portance of these optimizations when applied to KinectFusion. The
configurations in order are 1) DEFAULT, 2) PID ONLY, 3) PID + S:
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Figure 7: Importance of incorporating domain specific opti-
mizations to the PID controller.

PID with structure detection, 4) PID + E: PID with pose extrapola-
tion, and 5) CONTROLLED: PID with both structure detection and
pose extrapolation.

Figures 7a and 7b show the number of inputs that violoate TE
requirement and the computation time of different configurations
respectively. Compared to DEFAULT, PID by itself improves com-
putation time significantly but suffers large degradation in TE. In
particular, 7 of 17 inputs have a quality loss of more than 1%. Struc-
ture detection optimization improves the TE at the cost of ∼8%
overhead to the computation time, but even then 4 out of 17 inputs
suffer from large tracking error. Pose extrapolation alone can reduce
the number of violated inputs to 2 (kctn1, off2) but these two inputs
can be saved by structure detection. Combining pose extrapolation
and structure detection helps bring the TE down and the average
TE is only worse by 0.9 cm (𝑄𝑙𝑜𝑠𝑠 = 0.74%) over the default setting.

SLAM-specific optimizations are important for the other visual
SLAM algorithms as well. For example, the input fr3_nt_near lacks
structure information. Unlike ORB-SLAM2 or ICE-BA using orb
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Figure 8: ITE of input fr1_desk2with correspondingknob and
pose extrapolation activity with ElasticFusion.

features, ElasticFusion is not able to process this input properly
with only the PID controller. The controller may turn off RGB
tracking (set knob icp_rgb to 100), while only RGB information is
available in this input. This input can be successfully tracked after
structure detection is applied because this optimization helps keep
RGB tracking enabled in scenes that lack structural information.

A more dramatic illustration of the importance of these opti-
mizations is given in Figure 8a, which shows the ITE over time of
the input fr1_desk2 with ElasticFusion for three different ways of
controlling knobs: APPROX (the most approximate configuration,
light gray line), PID ONLY (gray line), and CONTROLLED (black
line). The ITEs are computed after the execution by comparing the
output trajectory with the available ground truth.

The ITE of APPROX increases dramatically after 50 frames, and
tracking never recovers after that. The final TE of this configuration
is over 130 cm. The PID ONLY is able to track the trajectory and its
TE is 7.9 cm. The configuration CONTROLLED performs best and its
TE is 4.6 cm. The ITE between PID ONLY and CONTROLLED differs
significantly around frame 50, the ITE for PID ONLY increases up to
10 cm while CONTROLLED’s stays within 6 cm. The reason for this
is explained by Figure 8b, which shows the evolution of knob level
(black line) and pose extrapolation (gray line) of the configuration
CONTROLLED. Knob level 0 means no approximation, 1 means fo
is true, 2 means fo and icp_rgb are true, 3 means all three knobs are
set. Knob level oscillates from 2 and 3 frequently because lc (loop
closure) should not be disabled for long. At around frame 50, pose
extrapolation is activated by the controller because it detects a pose
anomaly (-1 means activated), which enables CONTROLLED to
continue tracking accurately. In contrast, PID ONLY ingests a pose
that is compromised and the error slowly accumulates over the
rest of the frames, showing the importance of the SLAM-specific
optimizations in our methodology.

6.4 Pose Distance Vs. Velocity
Velocity is computed over several frames while pose distance uses
only the two most recent frames. In our controller, pose distance
is used as the error estimator instead of velocity due to its faster

(a) DEFAULT scene (b) CONTROLLED scene

Figure 9: Controller’s impact on mapping.

reaction time. As illustrated in Figure 8a, TE in the initial stages can
accumulate and propagate to later stages of the execution. Using
pose distance as the error estimator helps the system to be more
responsive to deviations in the trajectory.

Our experiments show that, if velocity is used, average TE in-
creases by 0.9 cm, 0.39 cm, 0.03 cm and 0.87 cm for KinectFusion,
ElasticFusion, ORB-SLAM2 and ICE-BA respectively. The perfor-
mance and energy are not changed significantly and their gain
mainly comes from other optimizations.

6.5 Impact of 𝛼 in the PID Controller
The PID controller in our proposedmethodology uses the parameter
𝛼 , introduced in Section 4, to adjust dynamic pose distance set-
points: the lower 𝛼 is, the larger 𝐷𝑙𝑜𝑤 and 𝐷ℎ𝑖𝑔ℎ can be. Larger
pose distance set-points potentially mean less approximation will
be introduced during execution because the computed pose distance
has a greater chance to fall below 𝐷𝑙𝑜𝑤 and 𝐷ℎ𝑖𝑔ℎ . The impact of
𝛼 on ElasticFusion’s performance is shown below: computation
time and energy usage grow with 𝛼 . We use 0.5 for all the SLAM
algorithms in our paper.

Ratio 𝛼 RMSE (cm) Time (ms) E (mJ)

0.25 4.1 208 601
0.50 4.4 193 562
0.75 5.1 186 544

6.6 Impact on Mapping
Mapping is an integral component of SLAM, so it is important that
approximation should not significantly affect the reconstructed
scenes. Mapping needs to be good enough so that the agent can
still navigate correctly. For example, we compared the scenes re-
constructed by ElasticFusion with the DEFAULT and the CON-
TROLLED configurations in Figure 9. Scene geometry remains the
same despite slight scene resolution degradation. Our proposed
methodology does not affect the quality of the mapping signifi-
cantly.

6.7 Breakdown of Computation Time
The KinectFusion implementation [6]4 provides a detailed break-
down of the time spent in the different stages of computation5. The

4https://github.com/pamela-project/slambench2
5Other algorithms do not provide a breakdown of the computation time.

https://github.com/pamela-project/slambench2
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Figure 10: Breakdown of the impact of approximation on the energy consumption on Jetson TX2 platform.
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Figure 11: Breakdownof the impact of approximation on the
computation time of different stages in KinectFusion.

different stages in KinectFusion are preprocessing, tracking, inte-
gration, raycasting, and rendering. Figure 11 shows the breakdown
of the impact of approximation on the computation time overhead
of the different stages on both platforms. The computation time
of the integration stage has no improvement on both platforms
because we do not control knob vr andmu, which are related to the
integration stage. The amount of computation incurred in prepro-
cessing, tracking, raycasting, and rendering are mainly related to
the frame resolution controlled by knob csr. Therefore, the saving
is the most significant in these four stages. The time reduction of
the tracking stage is further helped by knob icp and pd.

6.8 Breakdown of Energy Consumption
The NVIDIA Jetson TX2 board allows measuring power dissipation
for different on-board hardware components. The power dissipation

is measured through the i2C interface, a serial protocol for low
power devices. Energy usage can be divided into five parts: cpu,
gpu, ddr, soc, and others.

Figure 10a shows the distribution of the energy usage across the
different on-board hardware components for ICE-BA. Computation
time is reduced for ICE-BA by the proposed controller but energy
usage is not improved substantially because power dissipation goes
up in various components to sustain the higher frame rate.

KinectFusion’s energy usage distribution is shown in Figure 10b.
GPU energy is significantly reduced because the knob csr scales
the frame size so that the number of CUDA cores used is largely
reduced.

Figures 10c and 10d show the distribution of the energy usage
for ElasticFusion and ORB-SLAM2. The energy consumption by
the CPU is negligible since ElasticFusion is implemented in CUDA,
while ORB-SLAM2 is a C++ application so GPU energy consump-
tion is minimal. The improvement in the energy usage is propor-
tional to the savings in computation time because ElasticFusion
and ORB-SLAM2’s data throughput is not high. Board components
are still running at the same speed even though computation time
is reduced.

7 CONCLUSION
In this paper, we proposed a general methodology for introduc-
ing principled approximation in visual SLAM algorithms to reduce
their computation and energy requirements. We have implemented
our proposed methodology in four SLAM algorithms and evalu-
ated them across different platforms. Our results show that our
methodology is effective in improving the run-time performance
and energy usage of visual SLAM with negligible loss in accuracy.
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A APPENDIX
This appendix includes detailed performance number of KinectFusion, ORB-SLAM2, and ICE-BA due to page limit.

ODROID XU4 Jetson TX2
DEFAULT CONTROLLED DEFAULT CONTROLLED

# frames RMSE Time E RMSE Time E RMSE Time E RMSE Time E
(cm) (ms) (J) (cm) (ms) (J) (cm) (ms) (J) (cm) (ms) (J)

lr0 1510 1.5 330 2404 1.7 71 1447 1.3 62 903 1.5 23 589
lr1 967 1.9 341 2463 1.6 69 1479 0.6 62 922 1.4 25 597
lr2 882 1.1 352 2564 1.2 103 1569 1.2 63 947 1.7 25 596
ktcn0 1550 0.9 277 2114 1.5 64 1354 1.2 58 829 1.0 25 544
ktcn1 800 2.1 273 2182 3.0 65 1365 3.1 59 816 4.7 26 539
lab0 800 0.8 287 2205 4.5 67 1334 0.5 61 830 4.5 27 542
lab1 1250 0.7 282 2090 2.0 66 1361 0.7 58 810 2.4 28 538
lab2 1250 3.4 292 2191 6.2 73 1361 3.1 59 817 6.8 27 535
lab3 1250 1.2 316 2213 3.5 73 1347 0.7 62 846 1.9 28 543
mr0 929 4.0 357 2449 2.5 80 1401 1.4 67 888 5.6 26 549
mr1 1494 1.3 347 2411 4.9 93 1432 6.8 65 872 9.5 26 542
mr2 1450 0.8 320 2312 1.3 73 1345 0.6 61 842 3.7 26 547
off0 750 0.5 294 2165 0.7 74 1334 0.2 59 821 0.8 27 539
off1 1050 1.3 349 2470 0.8 99 1499 1.7 66 887 5.8 28 561
off2 1200 0.4 296 2155 1.2 68 1294 0.5 60 822 1.2 25 520
pd0 1600 1.3 336 2385 3.1 67 1334 0.3 65 902 2.6 28 544
pd1 1500 1.4 304 2269 4.3 64 1325 0.7 59 851 2.9 26 540
geomean 1.2 313 2292 2.1 73 1385 1.0 61 858 2.7 26 550

Table 7: Performance of KinectFusion on the ODROID XU4 and Jetson TX2 platform.

ODROID XU4 Jetson TX2
DEFAULT CONTROLLED DEFAULT CONTROLLED

# frames RMSE Time E RMSE Time E RMSE Time E RMSE Time E
(cm) (ms) (J) (cm) (ms) (J) (cm) (ms) (J) (cm) (ms) (J)

fr1_desk 573 3.7 536 2032 4.5 365 1410 3.1 394 1741 3.5 284 1254
fr1_desk2 637 3.7 530 2005 5.2 472 1730 4.7 403 1776 4.3 352 1551
fr1_floor 1238 1.9 270 766 2.0 201 555 1.9 161 623 2.1 128 505
fr1_plant 1139 3.3 468 1779 5.7 406 1310 4.9 343 1503 4.2 260 1212
fr1_room 1360 11.8 383 1366 13.8 319 1187 17.1 278 1221 21.9 225 1097
fr1_xyz 792 1.3 411 1451 1.3 341 1316 1.4 281 1239 1.3 237 1041
fr2_desk 2451 2.9 417 1377 2.0 267 969 2.9 267 1090 2.0 191 789
fr2_dwp 3898 1.0 396 1338 1.5 312 1184 0.9 296 1256 1.1 224 964
fr2_xyz 3666 0.5 307 946 0.5 221 765 0.6 171 726 0.5 138 609
fr3_long 2509 2.5 544 1997 4.2 290 1008 2.5 394 1688 5.2 225 971
fr3_nt_near 1646 5.3 261 756 6.6 203 685 4.9 153 651 5.9 116 504
fr3_sn_far 794 - - - - - - - - - - - -
fr3_st_near 908 1.5 342 1093 1.3 226 685 1.5 196 842 1.8 120 528
fr3_st_far 1065 1.4 308 977 2.2 214 709 1.8 198 853 1.8 139 615
geomean 2.3 386 1302 2.8 284 984 2.5 257 1100 2.7 191 838

Table 8: Performance of ORB-SLAM2 on the ODROID XU4 and Jetson TX2 platform.

ODROID XU4 Jetson TX2
DEFAULT CONTROLLED DEFAULT CONTROLLED

# frames RMSE Time E RMSE Time E RMSE Time E RMSE Time E
(cm) (ms) (J) (cm) (ms) (J) (cm) (ms) (J) (cm) (ms) (J)

MH_01 3685 11.8 72 307 12.6 57 227 6.6 51 404 7.7 37 404
MH_02 3043 6.4 72 278 6.4 56 220 11.7 53 408 8.7 36 401
MH_03 2703 7.1 67 286 8.7 60 248 14.3 51 410 8.3 43 407
MH_04 2035 14.2 59 238 18.9 53 206 19.7 44 407 19.7 36 403
MH_05 2276 19.8 60 249 13.4 54 208 15.1 44 408 19.1 33 393
V1_01 2915 5.7 59 244 8.7 55 226 6.2 42 403 5.8 38 406
V1_02 2283 9.6 66 273 7.5 60 244 9.5 46 407 10.7 39 402
V1_03 1713 14.2 73 301 14.3 62 264 15.2 49 421 17.0 43 407
V2_01 2251 9.4 59 228 8.4 54 207 10.5 43 394 8.8 38 394
V2_02 2152 10.9 78 317 15.3 65 277 13.6 52 424 15.6 45 411
V2_03 1925 15.6 88 353 15.2 68 288 13.9 52 424 12.9 44 423
geomean 10.6 68 277 11.1 58 235 11.7 48 410 11.4 39 404

Table 9: Performance of ICE-BA on the ODROID XU4 and Jetson TX2 platform.
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