
SLAMBooster: An Application-aware Online
Controller for Approximation in Dense SLAM

Yan Pei
University of Texas at Austin

Austin, USA
ypei@cs.utexas.edu

Swarnendu Biswas
Indian Institute of Technology

Kanpur, India
swarnendu@cse.iitk.ac.in

Donald S. Fussell
University of Texas at Austin

Austin, USA
fussell@cs.utexas.edu

Keshav Pingali
University of Texas at Austin

Austin, USA
pingali@cs.utexas.edu

Abstract—Simultaneous Localization and Mapping (SLAM) is
the problem of constructing a map of a mobile agent’s en-
vironment while localizing the agent within the map. Dense
SLAM algorithms perform reconstruction and localization at
pixel granularity. These algorithms require a lot of computational
power, which has hindered their use on low-power resource-
constrained devices.

Approximate computing can be used to speed up SLAM
implementations as long as the approximations do not prevent
the agent from navigating correctly through the environment.
Previous studies of approximation in SLAM have assumed that
the entire trajectory of the agent is known before the agent
starts, and they have focused on offline controllers that set
approximation knobs at the start of the trajectory. In practice,
the trajectory is usually not known ahead of time, and allowing
knob settings to change dynamically opens up more opportunities
for reducing computation time and energy.

In this paper, we describe SLAMBooster, an application-aware,
online control system for dense SLAM that adaptively controls ap-
proximation knobs during the motion of the agent. SLAMBooster
is based on a control technique called proportional-integral-
derivative (PID) controller but our experiments showed this
application-agnostic controller led to an unacceptable reduction
in localization accuracy. To address this problem, SLAMBooster
also exploits domain knowledge for controlling approximation by
performing smooth surface detection and pose correction.

We implemented SLAMBooster in the open-source SLAM-
Bench framework and evaluated it on more than a dozen
trajectories from both the literature and our own study. Our
experiments show that on the average, SLAMBooster reduces
the computation time by 72% and energy consumption by 35%
on an embedded platform, while maintaining the accuracy of
localization within reasonable bounds. These improvements make
it feasible to deploy SLAM on a wider range of devices.

Index Terms—Approximate computing, SLAM, KinectFusion,
control theory

I. INTRODUCTION

Approximate computing has been shown to be useful in
reducing power and energy requirements in computational
science applications [1]–[7].

Emerging problem domains like autonomous vehicles, robot
navigation, augmented reality and the Internet of Things have
opened up new opportunities for the use of approximate com-
puting. Many of these applications need to run on embedded
and low-power devices, so reducing their power and energy
requirements permits them to be deployed on a wider range
of devices for longer durations. However, they are usually
streaming applications in which inputs are not provided at

the start of the program as they are in computational science
applications but are supplied to the application over a period
of time. Approximation in such programs must be performed
in an adaptive, time-dependent manner to exploit temporal
properties of the streaming input.

This paper is a case study of the use of principled approxima-
tion in Simultaneous Localization and Mapping (SLAM) [8]–
[22], which is an important problem in domains such as robot
navigation, augmented reality, and control of drones, robots and
other autonomous agents. Unmanned agents have sensors like
cameras or LIDAR to probe their environments. The SLAM
problem is to use this sensory input to (i) construct a map of the
agent’s environment (mapping), and (ii) determine the agent’s
position and orientation in this environment (localization). The
mapping and localization steps are performed repeatedly as
the agent explores the environment.

Dense SLAM algorithms [9], [13] require a lot of compu-
tation for several reasons. They utilize all frame pixels for
reconstruction (in contrast, sparse SLAM algorithms utilize
only a subset of features [11]), so there is a lot of data to
process. The mapping phase requires repeated application of
floating-point-intensive kernels such as stencil computations
and filters [9], [12], [23] for reducing noise in incoming
frames when operating in real-world environments [24], [25].
Computationally intensive algorithms such as iterative closest
point [9] and Gauss-Newton minimization [14] are used
in the localization process. Therefore to achieve real-time
performance, dense SLAM needs a lot of computational power,
and deployment of dense SLAM on battery-operated, low-
power devices often leads to poor performance even though
these devices are natural targets for SLAM.

A. Approximating SLAM

Approximate computing can be used to reduce the time and
energy requirements of SLAM implementations as long as
the approximations do not prevent the agent from navigating
correctly through the environment. Implementations of SLAM
algorithms usually expose a number of algorithmic parameters,
also called knobs, that trade off computation for accuracy
of localization and mapping. Several strategies have been
explored in the literature to control knobs in SLAM and other
applications with streaming inputs.



Offline control: Prior work by Bodin et al. in PACT 2016 has
studied approximation in SLAM under the assumption that the
entire trajectory is known before the agent starts to move [24].
Design space exploration for the given trajectory is performed
by executing actual trials and the results are used to select
good knob settings that are used for the entire trajectory [24].
This is an example of offline control since knob settings are
determined once and for all before the computation begins.
Subsequent studies along this line highlighted opportunities
for exploiting approximation in SLAM algorithms [25], [26].
In most applications of SLAM, however, trajectories are not
known ahead of time. Permitting knobs to be controlled
adaptively during the navigation of the agent also opens up
more opportunities for reducing time and energy requirements.

Application-agnostic control: Several application-agnostic
control systems have been proposed for trading off power or en-
ergy consumption for performance and program accuracy [27]–
[30]. These controllers are based on general control-theoretic
principles. We investigated several such controllers but found
that they do not work well for SLAM (Sections IV and V-E).

SLAMBooster: In this paper, we present SLAMBooster, an
application-aware online control system for a popular dense
SLAM algorithm called KinectFusion [8], [9], which allows
real-time reconstruction of a room-size environment on desktop
computers. The contributions of this paper are as follows.

• To the best of our knowledge, SLAMBooster is the first
controller that can successfully perform online control of
approximation in a SLAM algorithm.

• The correctness of SLAM algorithms is defined using
properties of the entire trajectory. For online control, these
correctness criteria must be described using quantities that
can be measured during motion. Section III shows how
we accomplish this for SLAM.

• SLAMBooster is based on the application-agnostic
proportional-integral-derivative (PID) approach to control,
but the PID controller is not effective in controlling SLAM
by itself. We show that augmenting this controller with
domain knowledge is effective in solving the SLAM
control problem (Section IV).

• We implemented SLAMBooster in the open-source SLAM-
Bench framework and evaluated it on more than a dozen
trajectories (Section V). Our experiments show that on the
average, SLAMBooster reduces the computation time by
72% and the energy consumption by 35% on an embedded
platform while maintaining the accuracy of the localization
within bounds.

SLAMBooster therefore is an important step towards en-
abling efficient execution of dense SLAM algorithms on a
wider range of platforms; more generally, it provides a case
study of how to control approximation online in streaming
applications in a principled way.

II. KINECTFUSION AND SLAMBENCH

This section describes the KinectFusion algorithm (Sec-
tion II-A) and the SLAMBench infrastructure (Section II-B)
in enough detail to explain what knobs are available and what

(a) Depth frame captured by an
agent

(b) 3D reconstructed surface

Figure 1. KinectFusion takes depth frames as inputs and produces a 3D
reconstructed surface with the trajectory of the agent in that environment.

they do. We also highlight the performance challenges in using
KinectFusion (and SLAM algorithms in general) on resource-
constrained platforms (Section II-C).

A. Brief Description of KinectFusion

KinectFusion is one of the most well-known dense SLAM
algorithms [8], [9], and recent innovations in dense SLAM
have been implemented on top of KinectFusion [10], [13], [16],
[31].

The KinectFusion algorithm performs the following high-
level steps for each input frame [8], [9], [24].

1) Acquisition: an input depth frame such as the one shown
in Figure 1a is read in either from a camera or from disk.

2) Preprocessing: depth values in the frame are normalized
and a bilateral filter is applied for noise reduction.

3) Localization: a new estimate of the position and orientation
(together called a pose) of the camera is computed using
the Iterative Closest Point (ICP) algorithm. The algorithm
determines the difference in the alignment of the current
normalized depth frame with the depth frame computed
from the previous camera pose (see raycasting below).
This phase is also called tracking in the SLAM literature.

4) Integration: the existing 3D map is updated to incorporate
the aligned data for the current frame using the pose
determined in the tracking phase.

5) Raycasting: a depth frame from the new camera pose is
computed from the global 3D map by raytracing.

6) Rendering: a visualization of the 3D surface is generated,
as shown in Figure 1b.

B. SLAMBench

The open-source SLAMBench [32] implementation of the
KinectFusion algorithm exposes the following algorithmic
parameters (knobs), which are set to certain default values
in SLAMBench.

1) Compute size ratio (csr): resolution of the depth frame
used as input.

2) Tracking rate (tr): rate at which tracking and localization
are performed.

3) Integration rate (ir): rate at which new frames are
integrated to the scene.

4) ICP threshold (icp): threshold for the ICP algorithm.
5) Pyramid level iterations (pd): maximum number of

iterations that the ICP algorithm can perform on each
level of the image pyramid.



lr0 lr1 lr2 lr3
0.00

0.01

0.02

0.03
Co

m
pu

ta
tio

n 
Ti

m
e 

(s
)

DEFAULT
ACCURATE

(a) Computation time

lr0 lr1 lr2 lr3
0

5

10

15

AT
E 

(c
m

)

DEFAULT
ACCURATE

(b) ATE

lr0 lr1 lr2 lr3
0.0

0.1

0.2

0.3

0.4

0.5

Co
m

pu
ta

tio
n 

Ti
m

e 
(s

)

DEFAULT
ACCURATE

(c) Computation time (in seconds)

lr0 lr1 lr2 lr3
0

5

10

AT
E 

(c
m

)

DEFAULT
ACCURATE

(d) ATE

Figure 2. Performance of the default and the most accurate configurations
of KinectFusion. The top row shows performance on an Intel Xeon system,
while the bottom row shows performance with an ODROID XU4 system.

6) Volume resolution (vr): resolution at which the scene is
reconstructed.

7) µ distance (mu): the truncation distance in the output
volume representation.

These knobs can be tuned to optimize the computation
time or energy required for processing each frame1. However,
this tuning needs to be done under the constraint that the
output quality is acceptable since otherwise KinectFusion can
construct inaccurate 3D maps or trajectories when too much
approximation is introduced.

The constraints on output quality are defined as follows. The
difference between the actual and the computed location of
the agent at any frame is defined as instantaneous trajectory
error (ITE). One widely used quality metric used for SLAM
is the average trajectory error (ATE), which is the average
of the ITE over all the frames of the trajectory. Since ATE is
a property of the entire trajectory, it is not known until the
end of the trajectory. Furthermore, it requires knowing ground
truth (i.e., the actual trajectory taken by the agent), which is
usually not available except in simulated SLAM environments.
Online control of knobs in SLAM therefore requires a proxy
for the ITE that can be computed at each frame. Section III-B
describes the proxy used in SLAMBooster.

C. Performance of KinectFusion in SLAMBench

To get a sense of the performance of KinectFusion with
the default knob settings used in SLAMBench, we ran an
unmodified OpenCL implementation of KinectFusion on two
platforms with different compute capabilities. The first platform
is an Intel Xeon E5-2630 desktop system with a Nvidia Quadro
M4000 GPU, and the other is an ODROID XU4 board which
is a widely used platform for emulating embedded systems.
The ODROID XU4 has an octa-core Exynos 5422 big.LITTLE
processor and a Mali-T628 MP6 GPU. The top row in Figure 2
shows the computation time per frame and ATE on the Xeon
system, while the bottom row shows these values for the

1In our study, we ignore the image acquisition time and rendering time
since acquisition time is platform-independent and rendering is not a necessary
step in KinectFusion.

ODROID system. In each figure, the horizontal axis shows
four living room trajectories named lr0-lr3 from the ICL-NUIM
dataset [33]. The dataset includes ground truth, so it is possible
to compute the ATE for these trajectories.

For computation time performance, the vertical axis shows
the computation time required by KinectFusion to process
each input frame. For the ATE, the vertical axis shows the
average deviation between the reconstructed trajectories and
the ground truth. In SLAM literature, an ATE of 5 cm or
less is considered reasonable [24]; the horizontal dashed lines
in Figures 2b and 2d show the 5 cm constraint on the ATE.
The left bar, DEFAULT, represents the default settings of the
parameters in KinectFusion as set in SLAMBench. ACCURATE
represents the most accurate configuration of the parameters for
KinectFusion and thus incurs more overhead than DEFAULT.
(Note that neither DEFAULT nor ACCURATE can process
lr3 well because lr3 has frames that are too difficult to be
accurately tracked, so the difference in the amount of error for
lr3 introduced by DEFAULT and ACCURATE can be ignored.)

From Figure 2, we see that the best frame rate attainable
by KinectFusion on the high-end Xeon system is approxi-
mately 90 fps, but it is only 3-4 fps on the big.LITTLE
embedded system. Thus, while KinectFusion can achieve
real-time processing rates on high-end hardware, it performs
poorly on an embedded system with constraints on resources
such as hardware capabilities, energy or power consumption,
and peak frequency. One way around this problem is to use
approximation, but this needs to be done without reducing the
quality of the output to an unacceptable level. The rest of the
paper explores how this is done in SLAMBooster.

III. DESIGN CHOICES IN APPROXIMATION CONTROLLER

In this section, we describe the main choices made in the
design of SLAMBooster.

A. Offline vs. Online Control of Knobs

An offline control system for SLAM would use fixed knob
settings for the entire computation, and it would choose the
knob settings using cost and error models built from training
data, and features of the input trajectory. Offline control
has been used successfully to control approximation in long-
running compute-intensive programs [34] but there are some
obvious drawbacks in using this approach for SLAM. In
most applications of SLAM such as robot navigation, the
environment is discovered while moving through it so the
trajectory is not known before the SLAM computation begins.
Furthermore, online control permits knob settings to be set
adaptively, utilizing information from each frame, and this
can be more efficient than setting the knobs once and for
all at the start of the SLAM computation. For example, if
the scene has objects like chairs or tables, localization and
integration are relatively easy and the SLAM computation can
be performed with lower precision. Conversely, when the scene
has only smooth surfaces like walls, it complicates the process
of tracking and aligning frames, and a more precise computation
may be needed to avoid large tracking error. A quantitative



comparison between online control and offline control is given
in Section V-B. For these reasons, SLAMBooster uses online
control of approximation.

However, online control of SLAM poses several technical
challenges. Many approximation controllers assume that if
approximation fails, the controller can back up and redo the
computation with higher precision [35]. This is not an option
for SLAM which is used in control of mobile devices. SLAM
controllers have to be input-sensitive but inputs to SLAM
(frames) are very diverse. The controller design is further
complicated because while ground truth is not available and
the knob space is huge, control of approximation in SLAM
should have low overhead to run on embedded devices.

B. Proxy for Instantaneous Trajectory Error

An online control system needs online metrics to monitor the
performance of the application during execution. As discussed
in Section II, the usual error metric used in SLAM is the
Average Trajectory Error (ATE) but this is a property of the
entire trajectory so it cannot be used directly as an online
error estimator. If ground truth is available, we can use the
instantaneous trajectory error (ITE) but in most applications
of SLAM, ground truth is not available.

To devise a proxy for ITE, we exploit the basic assumption
in the KinectFusion algorithm that the movement of the
agent between successive frames is small (the algorithm for
localization is based on this assumption). To make use of this
observation, we evaluated several plausible metrics including
the inter-frame difference in depth values and the alignment
error as online proxies for error; intuitively, large values of
these metrics suggest that the scene is changing suddenly,
requiring higher precision computation to avoid large tracking
error. However, our experiments showed that there is no strong
correlation between these metrics and the ITE. The metric
which correlated best with the ITE is the velocity of the
agent. Large velocity indicates successive scenes (and thus
frames) may be very different and the ICP algorithm used
for localization fails to align frames well, which leads to a
large ITE. The localization phase in the KinectFusion algorithm
estimates the pose of the agent, and by looking at the difference
in poses between successive frames (assuming every frame
is tracked), we can estimate the velocity of the agent. We
used Lasso [36] to confirm a positive correlation between the
velocity and the ITE for the four ICL-NUIM trajectories for
which we have ground truth. Therefore, we use the estimated
velocity of the agent as a proxy for the ITE.

C. Reducing the Knob Space

Precise modeling of the relationship between knob settings
and computation time or error requires extensive exploration
of the knob space and is input-sensitive, which makes it
intractable [24]. To make the control problem more tractable,
we ignore knobs that are ill-suited for online tuning, such as vr
and mu, since they’re input dependent and require recomputing
the global map data structure, which is expensive. We also
do not control the tracking rate tr or integration rate ir and

lr0 lr1 lr20.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm

al
iz

ed
 C

om
pu

ta
tio

n 
Ti

m
e

csr icp pd0 pd1 pd2

(a) Ranking knobs for computation time

lr0 lr1 lr20

1

2

3

4

5

6

7

8

No
rm

al
iz

ed
 A

TE

csr icp pd0 pd1 pd2

(b) Ranking knobs for ATE

Figure 3. Ranking knobs by importance for ATE and computation time

we set them to one, since every frame should be tracked and
integrated in an effort to not violate the assumption that the
movement between successive frames is small.

We ranked the remaining knobs by their influence on ATE
and computation time, using orthogonal line search. These
knobs are csr, icp, and pd. The knob pd has three components,
referred to as pd0, pd1, and pd2. Figures 3a and 3b show how
computation time and ATE change for the first three living
room trajectories from the ICL-NUIM dataset when knobs are
changed one at a time, keeping all other knobs fixed at their
default values. We find that knobs csr, icp and pd0 have the
most impact on performance, and this finding is consistent
with prior work [24]. Among the three, csr has dominant
impact on computation time and also significantly impacts
ATE, which is intuitive since it controls the resolution of the
depth image to be used for computation. Knob pd1 and pd2
did not significantly influence ATE or computation time, and
hence are less interesting for control. Therefore, we only use
csr, icp and pd0 for approximation control in SLAMBooster.

IV. SLAMBOOSTER ONLINE CONTROL SYSTEM

This section describes SLAMBooster in stages. Section IV-A
presents a proportional-integral-derivative (PID) controller
that controls the knobs identified in Section III-C. This PID
controller is successful in reducing computation time and power
consumption but it violates the error constraint by a significant
margin for some trajectories. Therefore, we improve it by



Algorithm 1 Online controller in SLAMBooster for the
KinectFusion algorithm applied on each input frame Framet.

1: Framet ← KF.acquisition()
2: if t ≤ BOOTSTRAP_FRAMES then . Do not approximate
3: Knobt ← Knobt−1

4: Framet ← KF.preprocessing(Framet, Knobt)
5: Poset ← KF.tracking(Framet, Knobt)
6: KF.integration(Poset, Framet, Knobt)
7: KF.raycasting(Poset, Knobt)
8: KF.rendering(Poset, Knobt)
9: else . Check for approximation opportunities

10:
11: Knobt ← PID (Vt−1, Vref ) . PID controller
12: surface_trigger ← SurfaceDetection(Framet)
13: if surface_trigger or correction_triggert−1 then
14: Knobt ← Knobt - 1 . Increase precision
15: end if
16:
17: Framet ← KF.preprocessing(Framet, Knobt)
18: Poset ← KF.tracking(Framet, Knobt)
19:
20: Vt ← Poset - Poset−1 . Compute velocity
21: correction_triggert ← (Vt > CORRECTION_THRES)
22: if correction_trigger then
23: Poset ← Tt−1 * Poset−1

24: Tt ← Tt−1

25: else
26: Tt ← Poset * Pose−1

t−1

27: end if
28:
29: KF.integration(Poset, Framet, Knobt)
30: KF.raycasting(Poset, Knobt)
31: KF.rendering(Poset, Knobt)
32: end if

exploiting domain-specific knowledge of the KinectFusion
algorithm, using smooth surface detection (Section IV-B)
and pose correction (Section IV-C). The computation time
performance is further improved by using reduced-precision
floating-point operations in some of the computation phases
(Section IV-D).

A. PID Controller

In its simplest form, a PID controller [37] is like an
automobile cruise control - it adjusts knob settings by looking
at the difference between a reference value and a value that
is derived from the state of the system. This is a proportional
(P) controller. To make control more smooth, we can take
history into account by considering also the integral (I) of
this difference over a time window, and we can make the
controller more reactive by considering the derivative (D) of
this difference [37].

Algorithm 1 shows the pseudocode for SLAMBooster and
incorporates the refinements discussed later in this section. KF

in Algorithm 1 stands for KinectFusion, and lines showing
operations on KF represent logic from the unmodified Kinect-
Fusion algorithm. For simplicity, knobs settings are described
in discrete levels. Increasing the level means introducing more
approximation, or vice versa. The highlighted code implements
optimizations to the baseline controller, and should be ignored
for now (Section IV-B and IV-C).

• Line 1 shows an input frame, Framet, is acquired
from the I/O device. The rest of Algorithm 1 shows
computations performed on Framet. Frame pixels are
depth values.

• After acquiring the frame, the controller determines
whether it is still in the bootstrap phase. No approximation
is done for the first few frames to allow KinectFusion
to initialize an accurate global 3D map, so the original
KinectFusion algorithm is executed (lines 3–8).

• If SLAM is not in the bootstrap phase, the controller picks
the knob settings (denoted by Knobt) based on a PID
controller (line 11), which compares the agent’s current
velocity (denoted by Vt) and a reference velocity (denoted
by Vref ). Vt is estimated using the difference between the
poses in the current frame and the previous frame (line 20).
The level of the knobs is set proportionately to the
difference between Vt and Vref if Vt is smaller than Vref .
A larger difference means more approximation. When Vt

is larger than Vref , the most accurate knob setting will
be applied because higher velocity usually implies higher
ITE. After being estimated by the proportional (P) part,
the knob settings will be further refined by the integral
(I) part and the derivative (D) part of the controller.

• The I part is a sliding window of the history of Vt and
tracks the average velocity over the current window. It
adjusts the knob level by comparing the average velocity
with a predefined threshold. The length of the velocity
window is set to the length of the bootstrap phase. On
the other hand, the D part checks whether the velocity is
consistently increasing or decreasing over the same sliding
window that the I part uses. If the velocity is consistently
decreasing, the knob level can be increased to exploit
more approximation and vice versa.

Our experiments showed that although this PID controller
is effective in reducing the computation time by more than
half, it fails to meet the trajectory error constraint for many of
our real-world trajectories (see Section V-C). This application-
agnostic approach itself is not enough to balance the trade-off
between computation time and localization accuracy for the
following two reasons:

• This controller does not utilize any information from the
input frame. The controller would introduce approximation
too aggressively when Vt is low, while low Vt doesn’t
necessarily mean that the next frame is easy to track. For
example, smooth surfaces are much more difficult to track
than scenes with table and chairs.

• For several reasons such as noisy frames, SLAM algo-
rithms may produce a wrong pose that differs substantially



ignored
pixels

sample

1 2

3 4

Figure 4. Smooth surface detection heuristic. We compute the intra-sample
deviation from samples in the depth image.

from the previous pose. This controller cannot react to
such potential incorrect estimations.

Next, we show how to improve the controller by incorporat-
ing domain knowledge.

B. Smooth Surface Detection

In the tracking and integration phases, KinectFusion merges
information from the current depth frame with the global
3D map. Each incoming depth frame in KinectFusion is an
abstraction of the scene at which the camera is pointing. If
the scene has objects like chairs and tables, it is easier for
the algorithm to align and integrate a depth frame with the
existing 3D map than if the scene is a blank wall for example.
Therefore, it is desirable to adapt the level of approximation to
the scene: the smoother the surface is, the more the accuracy
that is needed.

The degree of smoothness of a frame is represented by
calculating the standard deviations of representative regions of
a frame. Lower standard deviation means smoother surfaces.
To implement this idea, we sample the four quadrants of the
input depth frame, leaving out pixels at the margins of the
frame since the Kinect sensor is known to potentially produce
invalid depth pixels at the periphery (Figure 4). To reduce
computational overhead, a fixed number of pixels are sampled
from each quadrant, independent of the resolution of the frame;
this number is chosen so that at the lowest resolution, all
pixels are sampled. At the second lowest resolution, every
other pixel is sampled, etc. We then compute the standard
deviation of depth values within each quadrant. If all these
standard deviations are below some threshold value (determined
empirically), the camera might be pointing to a smooth surface
so the control system increases the precision of KinectFusion
computation.

Algorithm 1 shows the augmented control system using
smooth surface detection. The SurfaceDetection function
(line 12) implements smooth surface detection (Figure 4). This
additional information is used by the controller to manipulate
knobs (line 13). Our experiments indicate that compared with
the PID controller, this improves the ATE with little additional
computation overhead.

C. Pose Correction

The final enhancement we make to the basic PID control
system is to use a simple form of Kalman filtering [38], [39]
to recompute the pose when it appears that the agent has made
a sudden movement. Informally, Kalman filtering is a method

for combining a number of uncorrelated estimates of some
unknown quantity to obtain a more reliable estimate. In many
practical problems, the unknown quantity is the state of a
dynamical system, and there are two estimates of this state at
each time step, one from a model of state evolution and one
from measurement, that are combined using Kalman filtering.

In the context of SLAM, the unknown state is the pose
of the agent. When a frame is processed by KinectFusion,
the tracking module uses the measured depth values in the
frame to provide an estimate of the new pose, as shown in
line 18 in Algorithm 1. However, if this estimated pose differs
substantially from the pose in the previous frame, it violates the
assumption that the movement of the agent between successive
frames should be small. This indicates that KinectFusion has
potentially inferred an inaccurate pose, and the pose estimate
from the tracking module may be unreliable.

In the spirit of Kalman filtering, we use a simple model
to estimate the pose if the estimate from the measurement
produced by the tracking module is substantially different from
the pose in the previous frame. Lines 22–27 in Algorithm 1
show the pseudocode. KinectFusion represents the live 6DOF
camera pose estimate by a rigid body transformation matrix.
Tt−1 represents the transformation matrix calculated at frame
t − 1 when Poset−1 is computed from Poset−2. The logic
compares Vt with a threshold (3.5 cm between successive
frames) to check whether correcting Poset is required. If the
velocity is below the threshold, the matrix Tt will be calculated
using the current and the previous pose. On the other hand, if
the difference in poses is abnormally large, Poset is recomputed
by applying Tt−1 to Poset−1, following the assumption that
the movement between successive frames should be small.
Downstream KinectFusion kernels work using this corrected
estimate of Poset.

Section V-C shows that correcting pose estimations in this
way improves the accuracy of the trajectory reconstruction
substantially, with minimal control overhead.

D. Reduced-precision Floating-point Format

Finally, we explored the benefit of using half-precision
floating-point numbers instead of the default single-precision
floating-point numbers. Half-precision format can potentially
improve vector operation efficiency and cache miss rates.
OpenCL extension cl_khr_fp16 has support for half scalar
and vector types as built-in types that can be used for arithmetic
operations, type casts, etc.

Some phases in KinectFusion such as Localization and
Integration have constants that are too small to be represented in
half-precision format. Therefore, we manually transformed only
the Raycasting and Preprocessing phases to use half-precision
format. Since these phases perform a large number of vector
operations, use of reduced precision can be beneficial [25].

V. EXPERIMENTAL RESULTS

This section evaluates the benefits and effectiveness of
SLAMBooster for approximating KinectFusion.



lr0 lr1 lr2 ktcn0 ktcn1 lab0 lab1 lab2 lab3 mr0 mr1 mr2 off0 off1 off2 pd0 pd1 geomean
0.0

2.0

4.0

6.0
AT

E 
(c

m
)

DEFAULT SLAMBooster

(a) Absolute ATE.

lr0 lr1 lr2 ktcn0 ktcn1 lab0 lab1 lab2 lab3 mr0 mr1 mr2 off0 off1 off2 pd0 pd1 geomean
0.0

0.1

0.2

0.3

Co
m

pu
ta

tio
n 

Ti
m

e 
(s

)

DEFAULT SLAMBooster

(b) Average Computation Time Per Frame.

lr0 lr1 lr2 ktcn0 ktcn1 lab0 lab1 lab2 lab3 mr0 mr1 mr2 off0 off1 off2 pd0 pd1 geomean
0.0

1.0

2.0

En
er

gy
 (J

ou
le

) DEFAULT SLAMBooster

(c) Average Energy Consumption Per Frame.

Figure 5. ATE, computation time and energy performance on embedded platform

A. Methodology

We implemented SLAMBooster in the open-source SLAM-
Bench [32] infrastructure2.

Platform: Figure 2 shows that unmodified KinectFusion
achieves good performance (∼90 fps) on a high-end Intel
Xeon E5-2630 system with a Nvidia Quadro M4000 GPU.
Our experiments with the Intel Xeon system show that
SLAMBooster is able to improve the performance further
(∼200 fps) without failing the accuracy constraint. We do not
show results with the Intel Xeon system for lack of space.
Instead, we present detailed results with SLAMBooster on a
low-power embedded environment using an ODROID XU4
board with a Samsung Exynos 5422 octa-core processor. The
Exynos processor has four Cortex-A15 cores running at 2 GHz
and four Cortex-A7 cores running at 1.4 GHz, and has 2 GB
LPDDR3 RAM. The XU4 board is equipped with a Mali-T628
MP6 GPU that supports OpenCL 1.2, and runs Ubuntu 16.04.4
LTS with Linux Kernel 4.14 LTS. The XU4 board does not
have on-board power monitors. We use a SmartPower23 device
to monitor energy consumption for the whole board.

Benchmark trajectories: SLAMBench supports the ICL-
NUIM RGB-D living room dataset4, which is used for bench-
marking SLAM algorithms [33]. This dataset is obtained by
using the Kintinuous system [10] with ground truth trajectory.
Each scene has several synthetically-generated trajectories. We
excluded benchmark lr3 from our experiments since even the
ACCURATE configuration cannot meet the error constraint

2https://github.com/pamela-project/slambench
3https://wiki.odroid.com/accessory/power_supply_battery/smartpower2
4http://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html

(Figure 2). Therefore, we use three trajectories with the living
room scene, referred to as lr0, lr1 and lr2 in this paper.

To increase the diversity of trajectories, we used a first-
generation Kinect camera to collect fourteen additional trajec-
tories from real-world scenes in an indoor environment. The
fourteen trajectories are: ktcn0, ktcn1, lab0, lab1, lab2, lab3,
mr0, mr1, mr2, off0, off1, off2, pd0, and pd1. All the inputs are
collected at 30 fps with resolution 640x480. We do not have
ground truth for these trajectories, hence we use the trajectory
computed by the most accurate setting of KinectFusion as a
stand-in for ground truth. We have verified using SLAMBench
GUI that KinectFusion is able to rebuild the trajectories and
3D map correctly. Column 2 in Table I shows the length of
each trajectory.

The extended SLAMBench implementation and collected
trajectories are publicly available5.

B. Performance of SLAMBooster

Figure 5 shows the ATE, average computation time per
frame, and average energy consumption per frame for the
benchmark trajectories on the embedded platform. The figures
compare two configurations: using the default knob settings
in SLAMBench, and using SLAMBooster to control knobs
online. Each bar is the average of three trials. Performance
numbers are shown in a tabular form in Table I.

For most trajectories, ATE is higher when knobs are con-
trolled with SLAMBooster, as expected. The average increase
in ATE is 0.88 cm. Nevertheless, all individual ATEs are less
than 5 cm and therefore meet the required quality constraint.
Figure 5b shows the average computation time for each frame.

5https://github.com/IntelligentSoftwareSystems/SLAMBooster



Default KinectFusion SLAMBooster

# frames Comp. ATE Energy (J)/ Comp. ATE Energy (J)/
time (ms) (cm) frame time (ms) (cm) frame

lr0 1510 235 0.98 2.13 62 1.30 1.41
lr1 967 234 0.61 2.19 60 1.51 1.44
lr2 882 246 1.07 2.28 86 1.03 1.50

ktcn0 1550 225 1.05 1.87 63 0.97 1.23
ktcn1 800 204 2.70 1.94 66 2.00 1.31
lab0 800 239 0.63 1.96 64 4.62 1.30
lab1 1250 212 0.39 1.85 62 1.21 1.22
lab2 1250 230 3.63 1.95 65 2.14 1.23
lab3 1250 226 0.65 1.96 65 3.14 1.35
mr0 929 273 0.97 2.18 74 2.93 1.28
mr1 1494 255 2.19 2.15 82 3.10 1.31
mr2 1450 236 0.49 2.06 64 1.22 1.33
off0 750 215 0.17 1.92 69 0.52 1.33
off1 1050 248 0.78 2.20 82 0.49 1.41
off2 1200 221 0.45 1.91 68 0.83 1.28
pd0 1600 251 0.21 2.12 59 2.85 1.26
pd1 1500 216 0.57 2.01 58 4.06 1.34
geomean 232 0.75 2.04 67 1.63 1.32

Table I
DETAILED RESULTS WITH INPUT TRAJECTORIES CONTROLLED BY THE SLAMBOOSTER ON THE ODROID XU4 PLATFORM.

The average speedup of SLAMBooster over DEFAULT is 3.6x
and achieves a throughput of 15 fps. Although this frame rate
does not meet real time constraints, 15 fps can provide smooth
user experience for navigation.

Figure 5c shows another important metric, the average energy
consumed for processing a frame. The idle power dissipation
of an ODROID XU4 board is ∼4 Watt, which we factor from
our computation. The energy saving for each frame is ∼35%.
The reduction in energy per frame is not as significant as the
reduction in computation time per frame because frequent up
and down scaling of certain data structures are required while
tuning the csr knob.

a) Control overhead: The overhead of SLAMBooster’s
control logic (not including surface detection and pose correc-
tion) arises mainly from data structure down sampling and up
sampling when tuning knob csr. Measurements show that the
average overhead introduced by the controller is ∼1 ms on
ODROID XU4 board, which is ∼1% of the total computation
time. Therefore, the overhead of the control logic is negligible.
Surfce detection introduces a ∼8% computation overhead
(∼6ms) and pose correction’s overhead is less than 1%.

b) 3D map comparison: Since SLAM is mainly used for
navigation, the 3D map is mainly a means to an end rather
than an end in itself; nevertheless it is interesting to study the
quality of the 3D map produced by SLAMBooster. Figure 6
compares a typical global 3D map built by using the most
accurate knob settings (Figure 6a) with the one built by using
SLAMBooster (Figure 6b). Figure 6c is a diff of these two
maps in which pixels that are substantially different are marked
in red. From the figure, we see that using SLAMBooster does
not impact the quality of the 3D map substantially.

c) Use only csr in control: Since knob csr dominates the
knob space, it is interesting to see how the controller performs
without knob icp and pd0. Our experiment shows that the

saving in computation time and energy with only csr is 58%
and 29% respectively, compared to 72% and 35% with icp and
pd0. Having more knobs in the controller makes the control
problem more interesting, and helps improve the performance
of SLAMBooster.

C. Impact of Optimizations

Figure 7 shows the incremental impact of the different opti-
mizations on the PID controller. The controller configurations
are listed below.

• DEFAULT setting provided by SLAMBench
• PID control
• PID control + smooth surface detection
• PID control + smooth surface detection + pose correction
• SLAMBooster: PID control + smooth surface detection +

pose correction + half-precision floating point
Figures 7a and 7b show the ATE and computation time

respectively for the different controller configurations. The
PID controller by itself achieves much of the time savings but
violates the error constraint for 5 out of 17 inputs. This is not
acceptable since nearly a third of the inputs fail to meet the
error constraint. When smooth surface detection is incorporated
into the controller, the overall error performance is improved,
but 4 inputs still fail to meet the 5 cm error constraint.

When pose correction is incorporated, all the benchmarks
meet the error constraint. It is interesting to note that this
reduces the overall computation time compared to using only
smooth surface detection. The reason is that this setting
improves localization and mapping, so more approximation can
be done safely, leading to reduced computation time. Finally,
when half-precision floating-point arithmetic is added, the
overall computation time is improved by ∼5% at the cost
of slightly worse error. Note that for a few of the trajectories,
SLAMBooster produces lower ATE than “PID controller +



(a) 3D surface reconstructed by ACCURATE (b) 3D surface reconstructed by SLAMBooster (c) 3D surface difference

Figure 6. Evaluation of the quality of 3D maps

lr0 lr1 lr2 ktcn0 ktcn1 lab0 lab1 lab2 lab3 mr0 mr1 mr2 off0 off1 off2 pd0 pd1 geomean
0.0

5.0

10.0

15.0

AT
E 

(c
m

)

DEFAULT PID Controller PID Controller + Detection PID Controller + Detection + Correction SLAMBooster

(a) Absolute ATE.

lr0 lr1 lr2 ktcn0 ktcn1 lab0 lab1 lab2 lab3 mr0 mr1 mr2 off0 off1 off2 pd0 pd1 geomean
0.0

0.1

0.2

0.3

Co
m

pu
ta

tio
n 

Ti
m

e 
(s

)

DEFAULT PID Controller PID Controller + Detection PID Controller + Detection + Correction SLAMBooster

(b) Average Computation Time Per Frame.

Figure 7. Incremental optimization impact on ATE and computation time

Detection + Correction” does. This is because KinectFusion is
highly non-linear so although increasing precision generally
produces better accuracy, the reduction in precision may also
affect the results in a unexpected (positive) way.

D. Effectiveness of Online Control

The results in the previous section showed the effectiveness
of SLAMBooster for entire trajectories. To get a better sense
of how online control in SLAMBooster works, it is useful to
visualize how knob settings change from the beginning to the
end of a complete trajectory. Figure 8 is such a visualization for
the mr1 trajectory, which is one of the most difficult trajectories
in our benchmark set. The PID controller, even with smooth
surface detection, fails to meet the error constraint. In Figure 8,
the x axis represents frame number in chronological order. The
black line in Figure 8a shows instantaneous trajectory error
(ITE) over time when SLAMBooster is used for the entire
trajectory. Those ITEs are computed after the execution by
comparing the reconstructed trajectory with the ground truth,
which is assumed to be the trajectory reconstructed with the
most accurate setting of KinectFusion. Figure 8b and Figure 8c
show the settings of the csr knob and the activation of smooth
surface triggers and pose correction triggers respectively.

To demonstrate the effectiveness of SLAMBooster, we show
another configuration in Figure 8a (represented by the gray
line). In this configuration, we switch SLAMBooster to the PID

controller after frame 500. During frames 520–590, the camera
encounters a smooth surface and the PID controller cannot
deal with it by itself. As shown in Figure 8a, ITE increases
dramatically (peak ITE is ∼100 cm and is too large to be
plotted on this scale) and never comes down to an acceptable
level. This shows that the optimization techniques used in
SLAMBooster are critical for complex trajectories like mr1.

Figure 8b shows the activity of the most important knob csr.
Frames 200 to 400 are relatively easy and speed is low, so
SLAMBooster tunes the knob all the way up to approximate
the computation. For frames between 700 to 1200, ITE gets
larger because the velocity of the agent increases. As a result,
csr is set to the most accurate value by SLAMBooster in order
to handle the drift in the trajectory.

This example shows that SLAMBooster can control the
knobs dynamically to exploit opportunities to save computation
time and energy while ensuring that the localization error is
within some reasonable bound.

E. Comparison with Other Control Strategies

This section compares SLAMBooster with controllers based
on two very different design philosophies: offline control and
application-agnostic control.

Comparison with offline control: We compare the perfor-
mance of SLAMBooster with offline control, given the best
offline knob setting of each trajectory. The best offline knob



0 200 400 600 800 1000 1200 1400
0
2
4
6
8

10
12
14

Er
ro

r (
cm

)
SLAMBooster
Stop optimization at frame 500

(a) Trajectory Error

0 200 400 600 800 1000 1200 1400
0

2

4

CS
R 

Kn
ob

 L
ev

el

(b) Knob Activity: csr

0 200 400 600 800 1000 1200 1400
0

1

On
 o

r O
FF

Surface Trigger Pose Correction Trigger

(c) Trigger Activity: Surface Trigger and Pose Correction Trigger

Figure 8. Trajectory error, knob activity and trigger activity in chronological order for benchmark: mr1

setting is conducted by exhaustively searching the knob space
described in Section III-C for each input with the same error
bound of 5 cm. On average, SLAMBooster is 1.32x faster than
offline control. Interestingly, SLAMBooster is 1.39x faster for
real-world inputs while the best offline knob setting is slightly
faster (3%) for synthetic inputs (lr0, lr1, lr2). The reason is that
SLAMBooster is designed to deal with complicated real-world
inputs whereas synthetic inputs can be easier to process.

Comparison with application-agnostic control: We com-
pare SLAMBooster with an application-agnostic control system
for software applications. Application-agnostic control systems
have been used successfully in the literature to control a diverse
set of applications [29], [40]. Next, we first briefly present a
general strategy to design such a control system, which we
call TC, and then describe our adaptions to SLAM.

• The application execution is divided into intervals or
windows of some size (e.g., 32 or 64 frames in our
experiments). TC tries to meet the desired performance
constraints and objectives on the average for each window.

• In each interval, TC tracks how well the performance
constraint has been met, and this information is used to
decide whether the system should be sped up or slowed
down in the next interval to better meet the performance
constraint. This desired performance level is normalized by
the performance obtained by setting knobs to their default
values, and this dimensionless quantity ("performance
speedup") is used to find the knobs for the next interval.

• To find knob settings for a desired performance speedup,
TC consults a configuration table, which returns Pareto
optimal knob settings for a given performance speedup
(in some cases, it returns a pair of knob configurations
but this detail can be ignored). The configuration table is

constructed ahead of time by profiling the program using
representative inputs and knob configurations.

We implemented an online controller for SLAM following
the traditional control design scheme described above. Instead
of a performance speedup requirement, each time interval is
given an error budget (i.e., the total amount of error allowed in
the next interval) whose value is computed using TC’s strategy
for determining performance speedup. Since ground truth is
not available for most of our trajectories, we use velocity as a
proxy for the actual error in each interval (a reference velocity
is defined as the required velocity). The base velocity for each
window, corresponding to the base performance in the original
traditional controller, is provided by ground truth instead of
implementing Kalman filtering [29]. Note that this value is at
least as accurate as what Kalman filtering estimates. We used
two approaches to build the configuration table. The first one
used the three synthetically-generated living room trajectories
lr0, lr1 and lr2 for profiling. Since these trajectories are not
representative of the entire set of trajectories in our benchmark
set, we would expect the performance of the controller to be
poor. The second approach is to use a more diverse set of
inputs, one from each scene in the benchmark set (for example,
mr1 is picked from the meeting room category).

Table II shows the performance of the traditional control
scheme compared to SLAMBooster. The evaluation includes
running all the benchmarks using the traditional controller on
each configuration table with different values for the reference
velocity. The Error Violated column shows the number of
inputs that violate the 5 cm error constraint, while the Better
Time column shows the number of trajectories that satisfy
the error constraint and have less computation time than with
SLAMBooster. When the configuration table is built using



Living Rooms Config Diverse Rooms Config
Ref # Error # Better # Error # Better
Velocity Violated Time Violated Time
0.004 3.5 1 1 0
0.005 5.5 2 1 0
0.006 7 3 1 0
0.008 10 3 2 0
0.010 10 5 2 0
0.012 10 6 2 0

Table II
TRADITIONAL ONLINE CONTROLLER PERFORMANCE

only the living room trajectories (Living Rooms Config), the
controller introduces approximation too aggressively because
the profiling set, living room trajectories (lr0, lr1, lr2), are
relatively simple to approximate comparing to other real-world
trajectories. When the error budget (reference velocity) gets
looser, more trajectories achieve better computation time at
the cost of unacceptable tracking error. On the other hand,
when profiling is done with the diverse trajectory set (Diverse
Rooms Config), the error constraint is rarely violated but the
computation times are slower than with SLAMBooster because
the configuration table is overly conservative.

Prior work has shown that a traditional controller can
control a diverse set of applications [29], [40]. However,
high input sensitivity and low error tolerance characteristic of
SLAM makes it difficult for a traditional controller to control
KinectFusion. Intuitively, the configuration table is a model of
system behavior that averages over all the trajectories used in
the profiling (training) phase, so the controller cannot optimize
the behavior of the system for the particular trajectory of
interest in a given execution. In addition, this controller does
not exploit the SLAM-specific techniques in SLAMBooster
such as smooth surface detection and pose correction, which
proved essential in Section V-D.

VI. RELATED WORK

We discuss work on approximation in SLAM algorithms
and on using control-theoretic approaches for optimal resource
management.

A. Approximating SLAM

Recent work has used KinectFusion and the SLAMBench
infrastructure to study the performance impact of reduced-
precision floating-point arithmetic in SLAM algorithms [25],
[41]. Unlike SLAMBooster, these approaches do not exploit
approximation at the algorithmic level.

Offline control of KinectFusion has been explored by Bodin
et al. [24] using an active learning technique. Given the entire
trajectory ahead of time, they use a random forest of decision
trees to characterize the input trajectory, and generate a Pareto
optimal set of configurations that trades off computation time,
energy consumption and the ATE. In addition to algorithmic
knobs, they also explore approximation of compiler and
hardware-level knobs. Their study is limited to a subset of
frames for one synthetically-generated trajectory. Follow-up
work utilizes the motion information of the autonomous agent to
improve offline control and evaluates the offline approximation

technique on other SLAM algorithms [26], [42]. In contrast,
SLAMBooster performs online control so it does not need to
know the entire trajectory before the agent begins to move.
Adaptive control of knobs also permits SLAMBooster to
optimize knob settings dynamically to take advantage of diverse
environments, which is not possible with offline control.

B. Adaptive Resource Management
Several systems have been proposed that aim to balance

power or energy consumption along with performance and
program accuracy [27]–[30]. Rumba is an online quality
management system for detection and correction of large
approximation errors in an approximate accelerator-based
computing environment. Rumba applies lightweight checks
during the execution to detect large approximation errors
and then fixes these errors by exact re-computation [30].
However, recomputation is not feasible in the context of SLAM
algorithms because it takes a stream of frame as input and the
result of SLAM is used for real-time control. JouleGuard
is a runtime control system that coordinates approximate
applications with system resource usage to provide control-
theoretic guarantees on energy consumption (i.e., will not
exceed a given threshold), while maximizing accuracy [27].
The control system uses reinforcement learning to identify the
most energy-efficient configuration, and uses an adaptive PID
controller-like mechanism to maintain application accuracy.
POET measures program progress and power consumption,
uses feedback control theory to ensure the timing goals
are met, and solves a linear optimization problem to select
minimal energy resource allocations based on a user-provided
specification [29]. MeanTime is a approximation system for
embedded hardware that uses control theory for resource
allocation [28]. These techniques combine PID-like control
techniques to various parts of the system, and provide em-
pirical demonstrations of overall system behavior without
taking domain knowledge into consideration. Recent work on
optimal resource allocation focuses on designing sophisticated
control systems using linear quadratic Gaussian control for
example [43]–[45]. Unlike SLAMBooster, they also do not
exploit application-specific properties to perform control.

VII. CONCLUSION

SLAM algorithms are increasingly being deployed in low-
power systems but a big obstacle to widespread adoption of
SLAM is its computational expense. In this work, we present
SLAMBooster, a PID control system, to approximate the
computation in KinectFusion, which is a popular dense SLAM
algorithm. We show that the SLAMBooster, augmented with
insights from the application domain, is effective in reducing the
computation time and the energy consumption, with acceptable
bounds on the localization accuracy.

ACKNOWLEDGMENTS

This work was supported by NSF grants 1337281, 1406355,
and 1618425, and by DARPA contracts FA8750-16-2-0004 and
FA8650-15-C-7563. The authors would like to thank Behzad
Boroujerdian for helpful discussions about SLAM.



REFERENCES

[1] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing Performance vs. Accuracy Trade-offs With Loop Perforation,”
in Proceedings of the 19th ACM SIGSOFT Symposium and the 13th

European Conference on Foundations of Software Engineering, ser.
ESEC/FSE ’11. New York, NY, USA: ACM, 2011, pp. 124–134.

[2] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke, “Paraprox: Pattern-
Based Approximation for Data Parallel Applications,” in Proceedings
of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’14.
New York, NY, USA: ACM, 2014, pp. 35–50.

[3] M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard, “Proving Accept-
ability Properties of Relaxed Nondeterministic Approximate Programs,”
in Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’12. New York, NY,
USA: ACM, 2012, pp. 169–180.

[4] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying Quantitative
Reliability for Programs That Execute on Unreliable Hardware,” in
Proceedings of the 2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages & Applications, ser.
OOPSLA ’13. New York, NY, USA: ACM, 2013, pp. 33–52.

[5] J. Park, H. Esmaeilzadeh, X. Zhang, M. Naik, and W. Harris, “FlexJava:
Language Support for Safe and Modular Approximate Programming,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2015. New York, NY, USA: ACM, 2015,
pp. 745–757.

[6] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: Approximate Data Types for Safe and General
Low-Power Computation,” in Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’11. New York, NY, USA: ACM, 2011, pp. 164–174.

[7] A. Sampson, P. Panchekha, T. Mytkowicz, K. S. McKinley, D. Grossman,
and L. Ceze, “Expressing and Verifying Probabilistic Assertions,” in
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’14. New York, NY,
USA: ACM, 2014, pp. 112–122.

[8] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon,
“KinectFusion: Real-time 3D Reconstruction and Interaction Using a
Moving Depth Camera,” in Proceedings of the 24th annual ACM
symposium on User interface software and technology. ACM, Oct.
2011, pp. 559–568.

[9] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon,
“KinectFusion: Real-Time Dense Surface Mapping and Tracking,” in
IEEE ISMAR. IEEE, Oct. 2011.

[10] T. Whelan, J. Mcdonald, M. Kaess, M. Fallon, H. Johannsson, and J. J.
Leonard, “Kintinuous: Spatially Extended KinectFusion,” in 3rd RSS
Workshop on RGB-D: Advanced Reasoning with Depth Cameras, 2012.

[11] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardøs, “ORB-SLAM: A
Versatile and Accurate Monocular SLAM System,” IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147–1163, Oct. 2015.

[12] S. Borthwick and H. Durrant-Whyte, “Simultaneous Localisation and
Map Building for Autonomous Guided Vehicles,” in Intelligent Robots
and Systems ’94. ’Advanced Robotic Systems and the Real World’, IROS

’94. Proceedings of the IEEE/RSJ/GI International Conference on, vol. 2,
Sep. 1994, pp. 761–768 vol.2.

[13] T. Whelan, S. Leutenegger, R. S. Moreno, B. Glocker, and A. Davison,
“ElasticFusion: Dense SLAM Without A Pose Graph,” in Proceedings of
Robotics: Science and Systems, Rome, Italy, Jul. 2015.

[14] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-Scale
Direct Monocular SLAM,” in European conference on computer vision.
Springer, 2014, pp. 834–849.

[15] K. Tateno, F. Tombari, I. Laina, and N. Navab, “Cnn-slam: Real-time
dense monocular slam with learned depth prediction,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 6243–6252.

[16] O. Kähler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. Torr, and D. Murray,
“Very High Frame Rate Volumetric Integration of Depth Images on Mobile
Devices,” IEEE transactions on visualization and computer graphics,
vol. 21, no. 11, pp. 1241–1250, 2015.

[17] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual–inertial odometry using nonlinear optimization,”

The International Journal of Robotics Research, vol. 34, no. 3, pp. 314–
334, 2015.

[18] K. Boikos and C. S. Bouganis, “Semi-Dense SLAM on an FPGA SoC,”
in 2016 26th International Conference on Field Programmable Logic
and Applications (FPL), Aug. 2016, pp. 1–4.

[19] A. Ratter, C. Sammut, and M. McGill, “GPU Accelerated Graph SLAM
and Occupancy Voxel Based ICP for Encoder-Free Mobile Robots,”
in 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Nov. 2013, pp. 540–547.

[20] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM:
Real-Time Single Camera SLAM,” IEEE Transactions on Pattern
Analysis & Machine Intelligence, no. 6, pp. 1052–1067, 2007.

[21] G. Klein and D. Murray, “Parallel Tracking and Mapping for Small AR
Workspaces,” in Proceedings of the 2007 6th IEEE and ACM International
Symposium on Mixed and Augmented Reality. IEEE Computer Society,
2007, pp. 1–10.

[22] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast Semi-Direct
Monocular Visual Odometry,” in 2014 IEEE international conference
on robotics and automation (ICRA). IEEE, 2014, pp. 15–22.

[23] R. Sim, P. Elinas, M. Griffin, J. J. Little et al., “Vision-based SLAM using
the Rao-Blackwellised Particle Filter,” in IJCAI Workshop on Reasoning
with Uncertainty in Robotics, vol. 14, no. 1, 2005, pp. 9–16.

[24] B. Bodin, L. Nardi, M. Z. Zia, H. Wagstaff, G. Sreekar Shenoy, M. Emani,
J. Mawer, C. Kotselidis, A. Nisbet, M. Lujan, B. Franke, P. H. Kelly, and
M. O’Boyle, “Integrating Algorithmic Parameters into Benchmarking and
Design Space Exploration in 3D Scene Understanding,” in Proceedings
of the 2016 International Conference on Parallel Architectures and
Compilation, ser. PACT ’16. New York, NY, USA: ACM, 2016, pp.
57–69.

[25] O. Palomar, A. Nisbet, J. Mawer, G. Riley, and M. Lujan, “Reduced
precision applicability and trade-offs for SLAM algorithms,” in Third
Workshop on Approximate Computing, ser. WACAS, 2017.

[26] S. Saeedi, L. Nardi, E. Johns, B. Bodin, P. Kelly, and A. Davison,
“Application-oriented Design Space Exploration for SLAM Algorithms,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, Jul. 2017, pp. 5716–5723.

[27] H. Hoffmann, “JouleGuard: Energy Guarantees for Approximate Appli-
cations,” in Proceedings of the 25th Symposium on Operating Systems
Principles, ser. SOSP ’15. New York, NY, USA: ACM, 2015, pp.
198–214.

[28] A. Farrell and H. Hoffmann, “MEANTIME: Achieving Both
Minimal Energy and Timeliness with Approximate Computing,”
in 2016 USENIX Annual Technical Conference (USENIX ATC
16). Denver, CO: USENIX Association, Jun. 2016, pp. 421–435.
[Online]. Available: https://www.usenix.org/conference/atc16/technical-
sessions/presentation/farrell

[29] C. Imes, D. H. K. Kim, M. Maggio, and H. Hoffmann, “POET: A Portable
Approach to Minimizing Energy Under Soft Real-time Constraints,”
in 21st IEEE Real-Time and Embedded Technology and Applications
Symposium, Apr. 2015, pp. 75–86.

[30] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke, “Rumba: An
Online Quality Management System for Approximate Computing,” in
2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2015, pp. 554–566.

[31] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard,
and J. McDonald, “Real-time large-scale dense RGB-D SLAM with
volumetric fusion,” The International Journal of Robotics Research,
vol. 34, no. 4-5, pp. 598–626, 2015.

[32] L. Nardi, B. Bodin, M. Z. Zia, J. Mawer, A. Nisbet, P. H. J. Kelly, A. J.
Davison, M. Luján, M. F. P. O’Boyle, G. Riley, N. Topham, and S. Furber,
“Introducing SLAMBench, a performance and accuracy benchmarking
methodology for SLAM,” in IEEE International Conference on Robotics
and Automation (ICRA), May 2015, arXiv:1410.2167.

[33] A. Handa, T. Whelan, J. McDonald, and A. J. Davison, “A Benchmark
for RGB-D Visual Odometry, 3D Reconstruction and SLAM,” in 2014
IEEE International Conference on Robotics and Automation (ICRA),
May 2014, pp. 1524–1531.

[34] X. Sui, A. Lenharth, D. S. Fussell, and K. Pingali, “Proactive Control of
Approximate Programs,” in Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’16. New York, NY, USA: ACM,
2016, pp. 607–621.



[35] W. Baek and T. M. Chilimbi, “Green: A Framework for Supporting
Energy-Conscious Programming using Controlled Approximation,” in
Proceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’10. New York, NY,
USA: ACM, 2010, pp. 198–209.

[36] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,”
Journal of the Royal Statistical Society, vol. 58, no. 1, pp. 267–288,
1996.

[37] N. Nise, Control Systems Engineering. Wiley Interscience, 1994.
[38] M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory and Practice

with MATLAB, 4th ed. Wiley-IEEE Press, 2014.
[39] Yan Pei, Swarnendu Biswas, Donald S. Fussell, and Keshav Pingali, “An

Elementary Introduction to Kalman Filtering,” Communications of the
ACM, 2019, to appear.

[40] A. Filieri, H. Hoffmann, and M. Maggio, “Automated Design of Self-
adaptive Software with Control-Theoretical Formal Guarantees,” in Pro-
ceedings of the 36th International Conference on Software Engineering,
ser. ICSE 2014. New York, NY, USA: ACM, 2014, pp. 299–310.

[41] J. Oh, J. Choi, G. C. Januario, and K. Gopalakrishnan, “Energy-
Efficient Simultaneous Localization and Mapping via Compounded
Approximate Computing,” in 2016 IEEE International Workshop on
Signal Processing Systems (SiPS), Oct 2016, pp. 51–56. [Online].
Available: https://doi.org/10.1109/SiPS.2016.17

[42] L. Nardi, B. Bodin, S. Saeedi, E. Vespa, A. J. Davison, and P. H. J. Kelly,
“Algorithmic Performance-Accuracy Trade-off in 3D Vision Applications
Using HyperMapper,” ArXiv e-prints, Feb. 2017.

[43] R. P. Pothukuchi, A. Ansari, P. Voulgaris, and J. Torrellas, “Using
Multiple Input, Multiple Output Formal Control to Maximize Resource
Efficiency in Architectures,” in Proceedings of the 43rd International
Symposium on Computer Architecture, ser. ISCA ’16. Piscataway,
NJ, USA: IEEE Press, 2016, pp. 658–670. [Online]. Available:
https://doi.org/10.1109/ISCA.2016.63

[44] N. Mishra, C. Imes, J. D. Lafferty, and H. Hoffmann, “CALOREE:
Learning Control for Predictable Latency and Low Energy,” in
Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’18. New York, NY, USA: ACM, 2018, pp. 184–
198. [Online]. Available: http://doi.acm.org/10.1145/3173162.3173184

[45] A. M. Rahmani, B. Donyanavard, T. Müch, K. Moazzemi, A. Jantsch,
O. Mutlu, and N. Dutt, “SPECTR: Formal Supervisory Control
and Coordination for Many-core Systems Resource Management,”
in Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’18. New York, NY, USA: ACM, 2018, pp. 169–
183. [Online]. Available: http://doi.acm.org/10.1145/3173162.3173199



APPENDIX
ARTIFACT EVALUATION

A. Abstract

The accompanying artifact implements the SLAMBooster
online control system for dense SLAM. SLAMBooster adap-
tively controls approximation knobs during the motion of an
autonomous agent to tradeoff run-time performance and energy
consumption with the error in reconstructing trajectories and
mapping. SLAMBooster is based on a control technique called
proportional-integral-derivative (PID) controller. In addition,
SLAMBooster exploits domain knowledge for controlling
approximation by performing smooth surface detection, pose
correction, and reduced precision computation.

We implement SLAMBooster in the open-source SLAM-
Benchframework using C++/OpenCL and evaluate it on more
than a dozen trajectories from both the literature and our own
study. Our hardware platform is an heterogeneous embedded
ODROID XU4 board, equipped with four big cores, four
LITTLE cores, and two MALI GPU cores. The board runs
Ubuntu 18.04.1 with Linux Kernel 4.14 LTS. The XU4 board
does not have on-board power monitors. We use a SmartPower2
device to monitor energy consumption for the whole board.
We have setup a dedicated ODROID XU4-based platform
with all dependencies already installed to help with artifact
evaluation. We provide detailed instructions to access the board,
and provide Bash scripts to automate running experiments and
plotting results. The full experiments may take around twenty
four hours to complete. The scripts help validate most of the
important results claimed in the accompanying paper.

Our experiments show that on the average, SLAMBooster
reduces the computation time by 72% and energy consumption
by 35% on average on the embedded platform, while main-
taining the accuracy of localization within reasonable bounds.
These improvements make it feasible to deploy SLAM on a
wider range of devices.

B. Artifact check-list (meta-information)
• Algorithm: An online application-aware PID controller for

approximating the KinectFusion algorithm for dense SLAM.
• Program: Modified SLAMBench infrastructure (all modifica-

tions along with the source are included).
• Compilation: C++, OpenCL.
• Transformations: No.
• Binary: Instructions to compile the source and generate the

binary are included.
• Data set: Trajectories from the ICL-NUIM data set, and other

trajectories collected for this work.
• Run-time environment: Ubuntu Mate 18.04.1 LTS, with neces-

sary packages already installed (CMake, C++ compiler, OpenCL
support).

• Hardware: ODROID XU4 board, platform must support half-
precision.

• Run-time state: No.
• Execution: Automated with Bash shell scripts.
• Metrics: Average Trajectory Error, Computation time and Energy

consumption per frame.
• Output: Trajectory and run-time status.
• Experiments: Run auto_simple.sh and auto_full.sh

scripts provided in the program folder. The script automates
most of the validation tasks.

• How much disk space required (approximately)?: 50GB,
primarily because of the input trajectories.

• How much time is needed to prepare workflow (approxi-
mately)?: 10 minutes. Most of the environment should already
be set up.

• How much time is needed to complete experiments (approx-
imately)?: 3 hours to run auto_simple.sh for functionality
verification. 24 hours to run auto_full.sh for an exhaustive
evaluation.

• Publicly available?: The extended SLAMBench implementation
and collected trajectories are publicly available6.

• Code licenses (if publicly available)?:
• Data licenses (if publicly available)?:
• Workflow framework used?: None.
• Archived (provide DOI)?: None.

C. Description

1) How delivered: We provide access to an ODROID XU4
board that has been set up to help with artifact evaluation.
The board includes all software dependencies, scripts for
automation, and all inputs. The access details has been sent to
the AE chair.

2) Hardware dependencies: ODROID XU4 board with the
SmartPower2 device to monitor power consumption.

3) Software dependencies: Modified version of SLAM-
Bench7, OpenCL support.

4) Data sets: We use a few trajectories from the ICL-NUIM8

data set. In addition, we collected additional trajectories in an
indoor environment with a first-generation Kinect device.

D. Installation

Run the following commands after logging in to the
ODROID XU4 board.

cd Workspace/slambench;
make clean;
make;

E. Experiment workflow

• Program: /home/odroid/Workspace/slambench
• Scripts: /home/odroid/Workspace/slambench/ae_scripts
• Inputs: /home/odroid/Workspace/slam_inputs
• Runtime stats: /home/odroid/Workspace/slam_outputs
Before starting the experiment, make sure the system is

using the “performance” governor. Current system governor
can be checked by running
cpufreq-info -o;

Set the governor to “performance” if needed by running
sudo cpufreq-set -c 0 -g performance;
sudo cpufreq-set -c 7 -g performance;

Run the following commands to quickly verify the proper
functionality of the experiment flow.
cd /home/odroid/Workspace/slambench/ae_scripts;
./auto_simple.sh;

6https://github.com/IntelligentSoftwareSystems/SLAMBooster
7https://github.com/pamela-project/slambench
8https://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html



Run the following commands to verify most of the experi-
mental results reported in the paper.
cd /home/odroid/Workspace/slambench/ae_scripts;
./auto_full.sh;

Details can also be found in the AE_README.md file in
the ae_scripts directory. Feel free to comment out lines
in auto_*.sh to skip over a few test cases or to only plot
results.

F. Evaluation and expected result
The provided script(s) will build the source code, and run

experiments as described in Section V of the paper. The
auto_simple.sh script runs tests over a subset of inputs
that compare the unmodified KinectFusion algorithm (as im-
plemented in the SLAMBench framework) with SLAMBooster.
At the end of the script, it will plot figures similar to Figure 5
but with fewer inputs. The figures will be saved in the directory
ae_scripts/figs_simple.

The script auto_full.sh runs experiment with all the
inputs. It also compares the unmodified KinectFusion algo-
rithm with SLAMBooster. The script also includes different
incremental configurations of SLAMBooster to highlight the
effectiveness of the different optimizations as described in
Section V-C. The figures will be saved in the directory
ae_scripts/figs_full.

The provided script(s) automates plotting the results. The
experiments run and the results obtained should correspond
with Figures 5 and 7.

G. Experiment customization

Not needed

H. Notes

1. The current setup is focused to ease artifact evaluation.
The implementation and the complete dataset will be released
publicly by the camera-ready version deadline.

2. We found that energy numbers on this board are generally
slightly lower than what we reported, and the savings is even
better than what is reported in the paper.

3. Modifications to the original SLAMBench infrastructure
can be found in the following source files.

• kfusion/include/control.hpp

• kfusion/src/benchmark.cpp

• kfusion/src/opencl/kernel.cl.half

• kfusion/src/opencl/kernel.cpp.half

• kfusion/src/opencl/kernel.cl.float

• kfusion/src/opencl/kernel.cpp.float

I. Methodology

Submission, reviewing and badging methodology:
• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/artifact-

review-badging


