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Abstract

Regression test selection techniques for embedded programs
have scarcely been reported in the literature. In this paper,
we propose a model-based regression test selection technique
for embedded programs. Our proposed model, in addition to
capturing the data and control dependence aspects, also rep-
resents several additional program features that are impor-
tant for regression test case selection of embedded programs.
These features include control flow, exception handling, mes-
sage paths, task priorities, state information and object rela-
tions. We select a regression test suite based on slicing our
proposed graph model. We also propose a genetic algorithm-
based technique to select an optimal subset of test cases from
the set of regression test cases selected after slicing our pro-
posed model.

Keywords: Regression testing, Regression test selection,
Embedded software, Regression test optimization, Real-time,
Safety critical.

1 Introduction

Over the last decade, there has been a proliferation of em-
bedded systems and a variety of embedded applications have
infiltrated into almost every facet of our daily lives, for exam-
ple entertainment, automobiles, medical devices etc. With
every passing year, the embedded applications are becom-
ing more and more sophisticated resulting in a rapid in-
crease in their size and complexity. Procedural languages
and techniques are usually suited for the development of sim-
ple embedded systems like device drivers. However, object-
oriented technologies are being increasingly adopted for de-
velopment of embedded systems having more sophisticated
interfaces such as automobile infotainment etc. The popu-
larity of object-oriented techniques is largely attributable to
the advantages they offer to handle complexity during design,
development and maintenance of large software products as
compared to the traditional design approaches. [Mal08]). On
the other hand, satisfactory testing of object-oriented pro-
grams has turned out to be a challenging research problem
[Bin99, MS01]. The real-time and safety-critical nature of
embedded programs adds another dimension of complexity
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Figure 1: A partition of the initial test suite

in testing of embedded programs [SPE+07, SPT05, TFB90].
Every software product typically undergoes frequent

changes in its lifetime. These changes are necessitated on
account of various reasons such as fixing defects, enhancing
or modifying existing functionalities, or adapting to newer
execution environments. Whenever a program is modified, it
is necessary to carry out regression testing to ensure that no
new errors (called regression errors) have been introduced.
Regression testing is an expensive activity as it consumes
large amounts of time and computing resources, and often
accounts for more than half of the software maintenance costs
[LW89].

The regression test suite of a product is a carefully chosen
subset of the initial test suite. Figure 1 shows the classes
into which test cases from the initial test suite can be par-
titioned after a modification has been made to a program
[LW89, Mat08]. Obsolete test cases (To) are those test cases
which are no longer valid for testing the modified program as
they execute program elements that have been deleted in the
modified version. Redundant test cases (Tu) execute only the
unchanged parts of a program. Hence, although redundant
test cases are valid (i.e., not obsolete), there is no need to re-
execute them during regression testing. Regression test cases
(Tr) are those test cases that execute the modified parts of a
program, and hence, need to be run during regression test-
ing. In Figure 1, only the test set Tr ⊆ T should be used
to revalidate the modified program. However, the set of test
cases Tr selected for regression testing can be optimized by
ignoring test cases which execute those modified parts that
have already been covered by other test cases. In Figure 1,
Tor ⊆ Tr represents the set of optimized regression test cases.
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Regression test cases are usually selected from an initial
test suite either based on expert judgment or based on man-
ual analysis of the program. In either of these cases, even
a very small change to the original program might require a
large number of test cases to be rerun, leading to an unneces-
sarily high overhead in regression testing. What is probably
more disconcerting is the fact that many test cases which
could have potentially detected regression errors are over-
looked during test selection [Bin99]. On the other hand,
regression test selection techniques focus on automatically
selecting only those test cases for retesting an application
that are relevant to the modifications made to the original
program.

Regression testing of real-time, safety-critical embedded
applications is accepted as one of the most challenging
tasks in the lifecycle of these applications [SPE+07, SPT05,
TFB90]. Additional complexities are introduced during re-
gression testing because of timing constraints and concurrent
executions which are typical characteristics of embedded pro-
grams. Another dimension in regression testing of real-time
and safety-critical embedded applications is that the execu-
tion of the test cases can be very expensive. The high cost of
test setup for embedded applications, while being tested us-
ing hardware-in-loop (HIL) techniques or on fully operational
systems (implemented on specialized hardware), contributes
to the high expenses incurred during testing.

Automated selection of an optimal set of regression test
cases from the initial test suite is a promising way of reduc-
ing the expenses incurred in regression testing. An important
area of research, in this context, is the development of a tech-
nique for selection of an optimal suite of regression test cases
for embedded applications such that the thoroughness of re-
gression testing is not compromised. The problem of regres-
sion test selection (RTS) for procedural and object-oriented
programs has been investigated by many researchers, and
over the years many novel RTS techniques have been pro-
posed [Bin97, GHS96, HJL+01, RH97, RHD00]. But these
techniques cannot satisfactorily be applied to embedded pro-
grams, since embedded programs have many features that
are very different from those of the traditional programs.
Some of the important features that make it difficult to use
RTS techniques designed for traditional programs for RTS
of embedded programs are the following:

• Embedded programs are usually composed of a set of
tasks. Each task is generally associated with specific
priority and criticality information. For a safety-critical
real-time system, any failure of the high priority and
critical tasks are not tolerated, though occasional fail-
ures of low priority and less critical tasks may be accept-
able. Hence, test cases should be selected such that the
higher priority and critical tasks get more thoroughly
tested compared to the low priority tasks.

• A real-time task is usually associated with a deadline by
which it needs to complete its execution. Thus, all test
cases testing the timing aspects of a modified task need
to included.

• Embedded programs are concurrent and event-driven.
These features can result in subtle bugs in the program
that need to be specifically tested.

• Embedded programs use explicit exception handling
mechanisms. This is especially true for safety-critical
applications where error situations need to be properly
handled. When an exception is thrown, the normal flow
of control in a program usually gets altered. Hence,
while testing a program, all possible control flows in the
program need to be tested.

Several existing RTS techniques for traditional programs
are based solely on static program analysis. However, a static
analysis of programs has several shortcomings. It is compu-
tationally expensive, and various types of relations (like state
transitions, message paths, task criticality etc.) among the
program elements are not explicit in the code. Further, selec-
tion of regression test cases based on code analysis becomes
more problematic if different parts of a program are writ-
ten in different programming languages. The drawbacks of
RTS techniques based on only code analysis is further ac-
centuated for software products that are large, complex, and
are frequently modified. Moreover, maintenance of softwares
products evolving over many years adds to the complexi-
ties in the code. These drawbacks of code analysis-based
RTS techniques have lead to an increased research focus on
model-based regression testing techniques.

Model-based analysis is efficient and has several inherent
advantages. A model is a compact representation of pro-
grams, and algorithms used for processing those models are
more efficient than those for text analysis. Further, model-
based regression testing can help take into consideration sev-
eral aspects of embedded programs that are not easily ex-
tracted from the code. Such program aspects include object
state, message path information, exception handling, tim-
ing characteristics etc. Some of these information can eas-
ily be extracted from design models, and the others from
the requirements specification document (SRS) and incor-
porated in the model representing the program under test.
An analysis of such a model, that has been augmented with
the information extracted from the design and analysis mod-
els, can help to accurately identify all the relevant regression
test cases. This model can also be used for prioritizing the
regression test cases and selecting an optimal test suite.

In this paper, we propose a model-based RTS technique for
embedded programs. We first propose a graph model that is
constructed from program analysis and captures the different
characteristics of embedded programs that are relevant for
RTS. We subsequently enhance this model with information
extracted from the SRS document, and the analysis and the
design models. We then discuss our approach for RTS and
regression test suite optimization based on the constructed
model.

This paper is organized as follows: Section 2 contains
an overview of our approach. In Section 3, we discuss our
proposed intermediate representation of embedded programs
and the construction of the same from analysis of the code,
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design models and the SRS document. We present our RTS
and optimization strategies in Sections 4 and 5 respectively.
In Section 6, we compare our approach with the related work
available in the literature. Section 7 concludes the paper.

2 Overview of Our Approach

We have named our technique M odel-based Regression Test
Selection for Embedded Software (MTest). Our technique
is essentially based on first constructing suitable models for
the original as well as the modified embedded program. The
constructed models are then analyzed to identify the model
elements that might be directly or indirectly affected due
to the code modifications. Test cases executing the affected
elements of the model are selected for revalidating the mod-
ified program. Considering that even for small code changes
a large number of regression test cases can get selected, we
propose a technique to select any desired number of test cases
from the regression test suite to reduce the regression testing
effort without unduly diluting the thoroughness of testing.

The important steps of our approach have schematically
been shown in Figure 2. In Figure 2, rectangular blocks rep-
resent artifacts such as code, design, SRS etc. The ellipses in
the figure represent processing activities such as instrumen-
tation, slicing etc. We now briefly discuss the different steps
involved in our approach.

(i) The Intermediate Model Constructor constructs the in-
termediate model for the original program. The con-
structed model also contains additional information
from the analysis and the design models (e.g., SRS,
UML diagrams).

(ii) The Code Instrumenter instruments the original pro-
gram, and the instrumented code is executed on the
initial test suite (T ) by the Program Execution module.
The instrumented code helps to determine the model el-
ements which are covered by each test case. Each model
element is marked with the test cases that execute it.

(iii) The Model Differencer analyzes the modified source
code and identifies the model elements that are mod-
ified and tags those elements on the model.

(iv) The Slicer performs a forward slice [HRB90] on the
modified marked model to identify the affected model
elements that need to be retested. Each modified model
element and the definition or use of all the variables at
that point act as the slicing criterion [MM06]. Thus,
all the directly or indirectly affected regions of code are
identified through slicing. The set of test cases1 which
execute the affected elements are selected for regression
testing of the embedded application.

(v) The Optimizer analyzes additional information about
the program components gathered from the operational
profile [Mus93], and prioritizes the test cases based on
the criteria used in the operational profile module. A

1Corresponds to Tr in Figure 1.
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Figure 2: Schematic representation of our proposed RTS ap-
proach

subset of test cases2 from the prioritized test suite is
chosen for regression testing of the software.

3 EClDG: Our Proposed Model

In this Section, we first highlight the drawbacks of existing
graphical models which render them inadequate to repre-
sent all the important characteristics of an embedded pro-
gram. We extend an existing graph representation (i.e.,
ClDG [LM96, RH94a, RH94b]) to incorporate the neces-
sary information that would be useful in RTS of embed-
ded programs. We have named our proposed model EClDG
(Extended-ClDG).

3.1 Existing Models

The System Dependence Graph (SDG) [HRB90] was pro-
posed as an intermediate representation of procedural pro-
grams. SDGs have been used for a wide variety of appli-
cations, including program slicing [LH98, SHR99], impact
analysis [KK07], reverse engineering [CHH06] etc. SDGs
were extended to capture the special features of object-
oriented programs, and the Class Dependence Graph (ClDG)
[LM96, RH94a, RH94b] was proposed. ClDG is an exten-
sively used model for intermediate representation of object-
oriented programs. But embedded programs have several
features that are not captured in a ClDG. Moreover, repre-
senting information available from the design model is impor-
tant for embedded programs. This is because certain features
such as object state, message paths, timing information, task
priority and criticality of embedded programs are not easily
identifiable from code analysis, but are explicitly available

2Corresponds to Tor in Figure 1.
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}

int x = 0;

CE1   class A {

S4           B *bptr = new B();

S6           try {

E2        void mA() {
S3           int a = 0;

CE13  class B {

S16         if ( y < 0 )
S17            throw new E2();

S19       catch(E2 &e2) {

S11            cout<<"Error"<<endl; }
S10         catch(...) {

S5           cin>>a;

C7             bptr−>mB(a); }

S9              cout<<"Error E1"<<endl; }
S8           catch(E1 &e1) {

S15      try {

S18         x = sqrt(y); }

S20          cout<<"Error E2"<<endl;

E14       float mB( int y ) {

S12         cout<<x<<endl; }
};

};

S21           throw; }
S22       cout<<x<<endl; }

E23   main(int argc, char *argv[]) {
S24        A *aptr = new A();
C25        aptr−>mA();

Figure 3: A sample program

from the design model. Hence, a ClDG representation is in-
sufficient to model embedded programs. The following list
summarizes the aspects of embedded programs that are not
represented in a ClDG.

• In an embedded program, the criticality and timing in-
formation is usually associated with threads. ClDG does
not represent the control flow of a program and hence
cannot represent threads or their associated timing and
criticality information.

• ClDG does not represent exception handling mechanism
in embedded programs.

• SDG does not support any mechanism to represent in-
formation about object states, and state behavior.

3.2 EClDG Model

We have extended a ClDG model to incorporate additional
features which capture the aspects specific to an embedded
program. We augment a ClDG with the following additional
information:

• Control flow.
• Exception handling.
• Information available from design models, such as:

– Method sequences and message paths.
– Timing and priority information.
– Object state information.

In the following, we discuss how the above information is
represented in our EClDG model.

3.2.1 Representation of Control Flow Information

Embedded programs usually consist of many co-operating
tasks. Each task is associated with a deadline, as well as
with certain priority and criticality information. To repre-
sent the priority and criticality information of tasks, we first
need a way of representing the tasks in the EClDG. For this,
we propose a mechanism to represent threads in the EClDG.

CE1

E2

S3 S4 S5 S6 S8 S12

C7

S9 S10

S11

y_in = a x_in = x x = x_out

control dependence edges

data dependence edges

E14

y = y_in x = x_in x_out =x

S15 S16 S18 S19 S22

S17 S20 S21

Figure 4: ClDG for class A for the program in Figure 3

CE13

E14

y = y_in x = x_in x_out = x

S15 S16 S18 S19 S22

S17 S20 S21

control dependence edges
data dependence edges

Figure 5: ClDG for class B for the program shown in Figure
3

A thread can be represented in terms of the sequence of state-
ments constituting the thread. Therefore, it is necessary to
incorporate control flow information in the EClDG to repre-
sent threads.

Computation of control flow information can be deter-
mined from the program by analyzing the sequence of pro-
gram statements and the method calls. We have introduced
control flow edges in the EClDG to represent the order in
which the statements within a given method are executed.

Example 1 Figures 4 and 5 show the ClDG for the classes
A and B of Figure 3. Figure 6 shows the ClDG for the entire
program. The ClDG of Figure 6 augmented with the control
flow information is shown in Figure 7. The control depen-
dence and data dependence edges in the ClDG of Figure 7
is represented by continuos and dotted edges. The dashed
edges in the figure represent the control flow information.

3.2.2 Representation of Exception Handling Infor-
mation

Exception handling [Str04] is an important feature of object-
oriented and embedded programs. Exceptions raised in a

4
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Figure 6: ClDG for the program given in Figure 3

program can alter the flow of control in that program, and
may also change the dependence relationships for some vari-
ables [JZSJ06]. For example, execution of a throw statement
in a C++ program would alter the normal control flow of the
program. Therefore, it is necessary to represent all these pos-
sible alternate paths in the EClDG. In such cases, the data
dependencies may also be affected as the exception handling
mechanism may alter the definition-use sequences for some
variables. For example in the sample program shown in Fig-
ure 3, in the absence of an exception in the method B::mB(),
the value of the variable x in line S12 is dependent on the
value of x in line S18, otherwise it is dependent on the global
value of x [JZSJ06].

An exception can result in the following possible intra-
function execution paths [JZSJ06]:

• An exception is raised in a try block [Str04]. The cor-
responding catch block handles the exception and the
execution exits normally from the method.

• An exception is raised in a try block. The correspond-
ing catch block handles the exception but rethrows or
raises another exception. This exception is then han-
dled by the enclosing try blocks (if nested) in a similar
manner. If there are no more enclosing try blocks, then
the exception is propagated to the calling function.

• An exception is raised in a try block but no correspond-
ing catch block is found for handling the exception. This
exception is then handled by the enclosing try blocks (if
nested) or is passed to the calling function.

Exception handling can induce the following possible inter-
function execution paths [JZSJ06]:

• The called function propagates the exception back to
the calling function which then handles the exception.

• The called function propagates the exception back to the
calling function, but the calling function is not able to
handle the exception. The exception is then propagated
upwards along the method invocation chain until a han-
dler is found. If no handler is found for the exception,
then the default handler is invoked.

Improvements in representing the exception handling
mechanism have been proposed in previous works [AH03,
JZSJ06, SH98, SH00, SOH04]. However, the work proposed
in [SH98, SH00] suffer from the fact that the catch/throw
nodes in the model have only one outgoing edge and hence
are not able to adequately represent the data and control de-
pendence information [JZSJ06]. Our approach to represent
the exception handling information in the EClDG is based on
the work reported in [AH03, JZSJ06]. We have introduced
the following additional nodes in the EClDG to represent ex-
ception handling information: try, catch, throw, normal exit,
exceptional exit, normal return and exceptional return nodes.
The throw and catch statements are treated as conditional
statements which alters the flow of control depending on
the evaluation of the conditional expression. Therefore, the
throw and the catch nodes are treated similar to predicate
nodes. The try node depicts the start of the try block in the
code. The normal return, normal exit, exceptional return and
exceptional exit nodes represent normal and exceptional exits
from a method.

Consider the sample program shown in Figure 3. The
EClDG model corresponding to the program is shown in Fig-
ure 7. The exception handling information is represented in
the EClDG by means of additional nodes. For example, in
Figure 3, method B::mB() has a try-catch block. This infor-
mation is represented in the EClDG model (see Figure 7) by
two nodes, a normal exit and an exceptional exit. Nodes nor-
mal return and exceptional return have also been introduced
in the EClDG model of Figure 7.

3.2.3 Representation of Information from UML
Models

UML diagrams such as state charts, activity diagrams (se-
quence and collaboration diagrams) are used to model the
dynamic behavior of embedded applications. Therefore, in-
formation pertaining to object states, state transitions, and
message paths which are required for RTS can be extracted
from an analysis of the UML models and represented in the
EClDG.

• Representation of method sequences and mes-
sage paths: Along with the control flow information,
it is important to represent the different sequences in
which methods may be invoked in an embedded pro-
gram. For this, it is necessary to first identify the
messages which trigger a particular sequence of method
calls. Zhao and Lin [ZL06] and Jorgensen and Erickson
[JE94] have proposed the concept of a Method-Message
path (MM-Path) which represents the sequence of meth-
ods and the corresponding messages which triggered the
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Figure 7: EClDG for the program given in Figure 3

methods. We assign an unique identifier to each method
sequence. We augment the ClDG with the method
sequence information by introducing method-sequence
edges. For example, the EClDG model in Figure 7 rep-
resents the method sequence information with method-
sequence edges. The method-sequence edges are labeled
with the tuple <method sequence identifier, message>.
The message information is also required for identify-
ing message sequences because, in object-oriented pro-
grams, dynamic polymorphism enables the same mes-
sage to invoke different methods during runtime.

• Representation of timing and priority informa-
tion: In embedded applications, threads are used to
represent concurrent activities. For real-time tasks, each
thread may be associated with specific timing infor-
mation and different threads may have different priori-
ties. A thread is usually implemented either as a single
method or a sequence of methods. We represent the pri-
ority information of each thread in the start node of the
corresponding method sequence in the EClDG.

• Representation of object state information: An
object state is defined by the values of the state vari-
ables stored in that object. A state transition for an ob-
ject occurs when the corresponding state variables are
modified. This usually occurs as a consequence to some
event or on invocation of certain operations on that ob-
ject. The initial state and the guard condition for a
transition determine the final state to which the object
would transit. The pair (initial state, guard condition)
can be used to uniquely identify all possible state tran-
sitions for an object. We represent the different object
states and possible transitions among those states for

Empty

Partially
Full

Full

e = 1, pop

e <n, push
e =n-1, push

e > 1, pop

e > 1, pop
e <n-1, push

Figure 8: Statechart diagram for the Stack class

each object by means of a transition table. This infor-
mation is represented in the EClDG by storing the state
transition table of a class object in each class entry node
of that particular class.

Example 2 We illustrate the construction of the transition
table using the example of a Stack class. The Stack class is
characterized by three states: empty, full and partially-full,
and it can hold a maximum of ‘n’ elements. Let us assume
that the guard conditions for the Stack class is defined based
on the number of elements stored in the stack at a given in-
stant. The transitions of a Stack object for a given operation
are defined on the combination of the current state and the
guard condition. The operations defined on the Stack are
push and pop. The push operation inserts an element into
the stack if it is not full. Pop operation removes an element
from the stack if it is not empty.

Figure 8 shows the statechart diagram for such a Stack
class. In Figure 8, the rectangular blocks with curved edges
denote states, and the edges represent possible transitions
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Table 1: State transition table for the statechart of a Stack
class shown in Figure 8.

Initial State Condition Operation Final State

empty e < n push partially full

empty pop ND

partially full e > 1 pop partially full

partially full e < n-1 push partially full

partially full e = 1 pop empty

partially full e = n-1 push empty

full e > 1 pop partially full

full push ND

between the states. The edges are labeled with the condition
and the operations triggering the transition. The transition
table for the statechart diagram in Figure 8 is shown in Table
1.

4 Regression Test Selection

Our RTS approach is based on those program elements of the
EClDG model that are exercised during the execution of a
test case. For this, the original program is instrumented, and
the instrumented code is executed with each test case from
the initial regression test suite. The instrumented code when
executed marks the EClDG such that each model element is
made to store an identifier for the test case which executed
it. This approach of storing the test history information
is space efficient especially for large programs and makes
the later processing and searching steps efficient. After the
program is modified, the modifications are identified by the
Model Differencer and the EClDG model is augmented with
the information of all the changed model elements. We call
the EClDG model augmented with the test history and the
change information as the Modified Marked Model (see Fig-
ure 2).

The parts of the program that are affected by the code
modifications are identified by the Slicer by computing for-
ward slices [HRB90] on the modified marked model. Each
modified element of the modified marked model and the vari-
ables defined in the modified model elements are used as the
slicing criterion [MM06]. Forward slicing on the modified
marked model determines all the directly or indirectly af-
fected elements of the model. After all the affected model
elements are identified by the Slicer, the test cases that ex-
ecute those modified model elements are selected for regres-
sion testing (see Figure 2). The test case identification step
becomes trivial since the test cases executing the modified
elements are already stored in the corresponding model ele-
ments.

Note that object state information in the EClDG has not
been incorporated into the above RTS approach. How to use
this information to improve the RTS approach is currently
under investigation.

C
rit

ic
al

ity
 o

f a
 te

st
 c

as
e

B

E

O

A

C Pareto front

D

Cost of execution of a test case

Figure 9: Pareto optimality in multi-objective optimization

5 Regression Test Suite Optimiza-
tion

As compared to traditional approaches, our RTS technique
takes into consideration many additional relationships be-
tween program elements that arise in an embedded applica-
tion. However, due to the additional dependencies that are
considered, the number of test cases selected for regression
testing can become considerably larger than the traditional
techniques. But executing a large number of regression test
cases especially for minor changes to the code is impractical
for many embedded applications such as automobiles where
execution of each test case is usually very expensive. There-
fore, we optimize the selected regression test suite to reduce
the size.

Our optimization approach aims at selecting a subset of re-
gression test cases according to the criticality of the program
elements. Our optimization approach reduces the size of the
regression test suite without affecting the achieved coverage
of the test suite selected by our RTS technique. The objec-
tive of our optimization approach is to maximize the number
of times the critical program elements are executed during
regression testing. The criticality of the program elements
can be determined by identifying the critical and high pri-
ority tasks in the embedded application. The information
from the operation profile [Mus93] of the system helps in
determining the features that are executed most frequently.

Our test suite optimization approach is based on the fol-
lowing criteria:

(i) Maximize the sum of priorities of the selected test cases.
(ii) Ensure maximum coverage of the different model ele-

ments in proportion to their priorities.
(iii) Minimize the cost of testing.

These various parameters used for optimization are com-
peting in nature, i.e., increase in one may be at the cost of
decreasing the value of some other parameter. For example,
test cases which execute critical and high priority program
elements may also be more expensive to execute as com-
pared to test cases which execute lower priority and less crit-
ical elements. These competing factors make our test suite
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optimization problem a multi-objective optimization prob-
lem. Evolutionary techniques like Genetic Algorithms (GA)
[Gol00] have successfully been used to solve various multi-
objective optimization problems. These evolutionary tech-
niques have also been used in studies related to prioritizing
regression test cases [HCP08, LHH07]. We use a GA-based
approach for our test suite optimization problem. For multi-
objective optimization problems, the concept of Pareto-
optimal solution is used to identify a set of good solutions
(called the Pareto-optimal set) [FF93, Gol00, YH07, ZT98].
The concept of dominance is used to explain whether one
solution is better than the other with respect to some or all
the parameters considered in the optimization process.

For example, in Figure 5, solution B is dominated by so-
lution C with respect to both the parameters, cost of test
cases and the criticality value of a test case. But the so-
lutions A, C, and D in Figure 5 are not dominated by any
other solution, and hence constitute the Pareto-optimal set.
Our technique chooses an optimal set of test cases from the
computed Pareto-optimal set.

6 Comparison with Related Work

Many RTS techniques have been proposed in the literature
for regression testing of traditional programs [Bin97, GHS96,
HJL+01, RH94a, RH97, RHD00]. But we could not find
any work focusing on RTS of embedded programs. In the
absence of any directly comparable work, we compare our
technique with the reported work on RTS of procedural and
object-oriented programs. Existing model-based approaches
for traditional programs [HJL+01, RH94a, RH97, RHD00]
construct graphical models based solely on source code anal-
ysis of the programs. In contrast, our proposed EClDG
model is constructed from source code analysis and is also
augmented with information from the analysis and design
models. Our model improves upon the existing ones by ex-
plicitly considering object state, exception handling, message
path information, criticality etc. Since our approach consid-
ers control and data dependencies along with other types of
possible code relations among program elements, our pro-
posed test selection technique is safe3. Another advantage
inherent to our approach is that the test history information
is not stored in a separate file as in some other RTS tech-
niques [RH94a, RH97]. In contrast, each model element is
associated with the test cases that execute it. This helps to
save storage space and makes the RTS process more efficient
especially for large programs having hundreds of test cases.
We also optimize the set of test cases selected for regression
testing to reduce the regression test effort.

3A safe RTS technique selects all the relevant test cases from the
initial test suite that can potentially reveal defects in the modified pro-
gram [RH96].

7 Conclusion

RTS of embedded applications requires addressing additional
issues such as control flow, message path information, crit-
icality etc. as compared to RTS techniques for traditional
programs. Therefore, the test suites selected using tradi-
tional RTS techniques for regression testing of embedded pro-
grams are unsafe. Many of the required information for RTS
of embedded programs are easily obtained from the SRS doc-
ument and the design models. Therefore, we have proposed
a model for embedded programs which is enriched with the
required information. However, due to the additional depen-
dencies that are considered in our approach, larger number
of test cases are likely to be identified as compared to the
traditional techniques. Subsequently, to reduce the number
of selected test cases, we use a GA-based optimization tech-
nique. Case studies carried out by us on several small ap-
plications show that our approach indeed selects all the test
cases that are important for regression testing, and at the
same time, does not unduly increase the size of the selected
test suite.
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