EMSOFT - International Conference on Embedded Software, 2022

An MILP Encoding for Efficient
Verification of Quantized DNNs

Samvid Mistry*, Indranil Saha™, Swarnendu Biswas™*

mistrysamvid@gmail.com, {isaha, swarnendu}@cse.iitk.ac.in

* = GitHub Inc.
** = Indian Institute of Technology Kanpur

70 |
L]
L]
9 .
§ 60 . -
<
o
o' 90 =
= Float
m 8-bit
40 = J ‘
15 30 60 120

Figure 4.1: Latency-vs-accuracy tradeoff of float vs. integer-only
MobileNets on ImageNet using Snapdragon 835 big cores.

Latency (ms)

B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko,

uction

DM Type Precision Recall LITTLE big
(ms) (ms)
100% floats 68% 76% 711 337
8 bits 66% 75% 372 154
50% floats 65% 70% 233 106
8 bits 62% 70% 134 56
25% floats 56% 64 % 100 44
8 bits 54% 63% 67 28

Table 4.5: Face detection accuracy of floating point and integer-
only quantized models. The reported precision / recall 1s aver-
aged over different precision / recall values where an IOU of =
between the groundtruth and predicted windows is considered a
correct detection, for z in {0.5,0.55,...,0.95}. Latency (ms) of
floating point and quantized models are reported on Qualcomm
Snapdragon 835 using a single LITTLE and big core, respectively.

“Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018

Adversarial Attacks

M. Giacobbe et al, “How Many Bits Does it Take to Quantize Your Neural Network?” TACAS, 2020

+.007 x

z sign(Ve (6,2,9)) ion(v,J(0, 2, 1))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Goodfellow et al, Explaining and Harnessing Adversarial Examples, ICLR 2015

Floating-point = Fixed-point

Floating-point = Fixed-point

« O|QI].[QF] = fixed-point value with QI integer and QF fractional bits

Floating-point = Fixed-point

« O|QI].[QF] = fixed-point value with QI integer and QF fractional bits

« (4.4 = Fixed-point value with 4 integer and 4 fractional bits

Floating-point = Fixed-point

« O|QI].[QF] = fixed-point value with QI integer and QF fractional bits

« (4.4 = Fixed-point value with 4 integer and 4 fractional bits

 QOlal.[b]-0Olpl.[q]l =0la+p].[b+q]

Floating-point = Fixed-point

« O|QI].[QF] = fixed-point value with QI integer and QF fractional bits

« (4.4 = Fixed-point value with 4 integer and 4 fractional bits

» Qla].[b]-Qlpl.lq]l =0la+p].[b+q]
e 04.4-04.4 =088 - 08.8>>4 = 08.4 - 04.4 = min(255, max(—256,08.4))

Floating-point = Fixed-point

Floating-point = Fixed-point

. fixedpoint = int(floatingpoint - 27)

Floating-point = Fixed-point

. fixedpoint = int(floatingpoint - 27)

e (4.4 for all nodes of network

Floating-point = Fixed-point

. fixedpoint = int(floatingpoint - 27)

e (4.4 for all nodes of network

. x; = int(2.09375 - 2% = int(33.5) = 33

Floating-point = Fixed-point

. fixedpoint = int(floatingpoint - 27)

e (4.4 for all nodes of network

. x; = int(2.09375 - 2% = int(33.5) = 33

. x, =1int(l - 2% = int(16) = 16

Floating-point = Fixed-point

L1 . 1 X
2.09375, 3] @\
—1

o

—1 —1
T2 - @/
0.5, 1] ’
fixedpoint = int(floatingpoint - 21 » floatingpoint = fixedpoint/2

(4.4 for all nodes of network
x; = int(2.09375 - 2% = int(33.5) = 33

x, = int(1 - 2%) = int(16) = 16

Floating-point = Fixed-point

L1 . 1 X
2.09375, 3] @\
—1

— Y1
(D)

1 _
T2 - @/
0.5, 1] ’
fixedpoint = int(floatingpoint - 27) + floatingpoint = fixedpoint/2"
(4.4 for all nodes of network * N = 33/2* = 2.0625

x; = int(2.09375 - 2% = int(33.5) = 33

x, = int(1 - 2%) = int(16) = 16

Sound Encoding of Rounding - Example

Sound Encoding of Rounding - Example

e Lety=55and F =2

Sound Encoding of Rounding - Example

e Lety=55and F =2

+ £ =1int(y) wherey =7 - 27 = 13.75

Sound Encoding of Rounding - Example

e Lety=55and F =2

£ =1int(y) wheren =7-27*=13.75

e 1 =272 < offset <1 — 0.75 < offset < 1

Sound Encoding of Rounding - Example

e Lety=55and F =2

£ =1int(y) wheren =7-27*=13.75

e 1 =272 < offset <1 — 0.75 < offset < 1

Input Layer

Constrain

MILP Encoding of QNN

&

Hidden Layer

Multiply

Inputs

> weights,
add bias

Output Layer

\Y []1d]e])Y,
weights,
add bias

Convert to
target type

Encode
mmmmne Negation of
property

Floating-point DNN — Fixed-point DNN

X1 (o 1 X
2.09375, 3] @\
—1

MILP Encoding of QNN - Example

FIoa’Fing point _> > > >
Input
Floating point
/////’ output
Floating pOint > — XY 44 beeeeenannn B Nyl peeecenaes P 122 heeecenann B g%c beceeeann >
input

 Encode input bounds

33<A, ;<48
8<A,<16

MILP Encoding of QNN - Example
Foatng po _,_,

X

 Encode input bounds

33<A;, <48
8<A,<16

 Copy values in X

Vie[|T,|1.Vre[|T;]]1.X;7 =

Al,r

Floating point
output

Floatingpoint /[+—\ (22 \... > . . S /
input

MILP Encoding of QNN - Example

FIoa’Fing point @ , , , >
Input
Floating point
/ output
Floating point __ . o 522 Vo, o[22 V.l o[22 Voo, >
input

 Encode input bounds

33 <A, <48
8<A,<16

e Copy values in X

VielIT|1.Vrel|Ti|]1.X}Y =4,
* Dot product with weights, add bias

Py = [16,— 16]7 - X>' + 0
pry; = [—16,16]" - X** 4+ 0

MILP Encoding of QNN - Example

FIoa’Fing point @ , > > k
Input
Floating point
/ output
Floating point e N22 ey 22 o 22 N 22 e,
input

 Encode input bounds

33 <A, <48
8<A,,

<16
B » Result is 08.8, shift right by 4 and round down to get 08.4

« Copy values in X

Prhy - 2~% — offset

— - S pr2,1 ‘2_4
VielIT,|1.Vre[IT||1.X;/=A, DTy, 27" — offset <

1 S
) <

R

Phs - 27

* Dot product with weights, add bias

Py = [16,— 16]7 - X>' + 0
pry; = [—16,16]" - X** 4+ 0

MILP Encoding of QNN - Example

Floating point @ , ,
Input
Floating point
/////’ output
Floating point __, (X2 o 5722 N, . o 722 Ve, .
input

 Encode input bounds

33<A;, <48 e Result is 08.8, shift right by 4 and round down to get 08.4
8<A,<16
p?‘z,l * 2_4 - Offset S E S prz,l * 2_4
» Copy values in X Drys - ™% — offset < Yon S DIy 24
Vie[|T,|1.Vre[|T,|].X% = A, » Saturate the result to get 04.4
* Dot product with weights, add bias g, ; = min(255, max(—256,7, 1))

o7 =[16,—16]" X211 d>, = min(255, max(—256,7, ,))
2,1 — LY)

Py, = [—16,16]T - X>? 40

MILP Encoding of QNN - Example
o () ()

Floating point
input

X

—>—> } >

 Encode input bounds

8 <

33 <A, <48
—

< 16

e Copy values in X

Vie[|T,|1.Vre[|T|]1.X% =4,

* Dot product with weights, add bias

Py = [16,— 16]7 - X>' + 0

Py, = [16,16]T - X>2 40

......... @ ‘\
yd
......... , .

» Result is 08.8, shift right by 4 and round down to get 08.4

Pryy - 2™* — offset < Y21 S DIy
SV2=DPh)

“U“B

prz,z ¢ 2_4 - Offset
 Saturate the result to get 04.4

dr1 = min(255, max(—256,7, 1))
dr, = min(255, max(—256,7,,))

 Apply RelLU

1= maX(O,E)
Zp, = max(0,g;,)

()

Floating point

output

127
2—4

Experimental Setup

Experimental Setup

* Implemented in Python using Gurobi as MILP solver (referred to as MILP)

Experimental Setup

* Implemented in Python using Gurobi as MILP solver (referred to as MILP)

 Comparison with Baranowski et al. which uses PySMT with Boolector
(referred to as BVSMT)

Experimental Setup

* Implemented in Python using Gurobi as MILP solver (referred to as MILP)

 Comparison with Baranowski et al. which uses PySMT with Boolector
(referred to as BVSMT)

 Comparison with Henzinger et al. which improves on BVSMT (referred to
as BV2SMT)

Experimental Setup

Implemented in Python using Gurobi as MILP solver (referred to as MILP)

Comparison with Baranowski et al. which uses PySMT with Boolector
(referred to as BVSMT)

Comparison with Henzinger et al. which improves on BVSMT (referred to
as BV2SMT)

Benchmarks - MNIST, CollisionAvoidance, TwinStream, ACAS Xu

Experimental Setup

Implemented in Python using Gurobi as MILP solver (referred to as MILP)

Comparison with Baranowski et al. which uses PySMT with Boolector
(referred to as BVSMT)

Comparison with Henzinger et al. which improves on BVSMT (referred to
as BV2SMT)

Benchmarks - MNIST, CollisionAvoidance, TwinStream, ACAS Xu

Baranowski et al. “An SMT Theory of Fixed-Point Arithmetic,” IJCAR, 2020
Henzinger et al. “Scalable Verification of Quantized Neural Networks,” AAAI, 2021

3500 -
3000 -
2500 -

{.”j 2000 -

= 1500-
1000 1

500 1

MILP vs BVSMT - MNIST

MILP (Single) performance

Vo

7

(O

IO:DOO

_ ==

MNIST-SMALL MNIST-DEEP MNIST-TALL MNIST-EC

ILP 8-threa

M
-
o
o
o

MILP multithreaded performance

x MNIST-DEEP
MNIST-TALL

+ MNIST-SMALL

< MNIST-FC

% . .

X+

+'¥ .I?I-(_I-!-x + +
+ qu
- Wxﬂ»(X x*

X

X 4
X XX Xx

0 1000 2000 3000
MILP single thread

MILP vs BVSMT - CoAv, TwinStream, ACAS Xu

MILP Time (s)

Collision Avoidance

X

+

MILP Single
MILP Parallel

. a, 3000-
= 20001

20 40 60
BV-SMT Time (s)

80

TwinStream

7000-

6000-
% 5000-
£ 40001

1000 -

* * ¥

1

0 2000 4000

BV-SMT Time (s)

6000

3500-
3000-
G 2500-
£ 20001

MILP T

500 1
. &;&+xﬁ* 4 * % *

1500 -
1000 -

0

1000 2000
BV-SMT Time (s)

3000

MILP vs BV2SMT - MNIST & Fashion MNIST

Time (s) # Timeouts
Benchmark # Props (Mean | Median)

MILP BV2 MILP BV2

MNIST-C 400 5.0315.4 9015 0 82
FASHION-C 400 5.7315.46 4914 0 206

Conclusion

Conclusion

* Order of magnitude improvement in standard benchmarks

https://github.com/iitkcpslab/QNNV

Conclusion

* Order of magnitude improvement in standard benchmarks

 Makes it possible to verify larger networks than previously possible

https://github.com/iitkcpslab/QNNV

Conclusion

* Order of magnitude improvement in standard benchmarks
 Makes it possible to verify larger networks than previously possible

* |ess than satisfactory performance in some instances

https://github.com/iitkcpslab/QNNV

Conclusion

Order of magnitude improvement in standard benchmarks
Makes it possible to verity larger networks than previously possible
Less than satisfactory performance in some instances

Code & data available at https://ai1thub.com/11tkcpslab/0ONN

https://github.com/iitkcpslab/QNNV

