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Figure 4.1: Latency-vs-accuracy tradeoff of float vs. integer-only
MobileNets on ImageNet using Snapdragon 835 big cores.

Latency (ms)

B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko,

uction

DM  Type Precision Recall LITTLE big
(ms) (ms)
100% floats 68% 76% 711 337
8 bits 66% 75% 372 154
50%  floats 65% 70% 233 106
8 bits 62% 70% 134 56
25%  floats 56% 64 % 100 44
8 bits 54% 63% 67 28

Table 4.5: Face detection accuracy of floating point and integer-
only quantized models. The reported precision / recall 1s aver-
aged over different precision / recall values where an IOU of =
between the groundtruth and predicted windows is considered a
correct detection, for z in {0.5,0.55,...,0.95}. Latency (ms) of
floating point and quantized models are reported on Qualcomm
Snapdragon 835 using a single LITTLE and big core, respectively.

“Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018



Adversarial Attacks

M. Giacobbe et al, “How Many Bits Does it Take to Quantize Your Neural Network?” TACAS, 2020
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z sign(Ve (6,2,9))  ion(v,J(0, 2, 1))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Goodfellow et al, Explaining and Harnessing Adversarial Examples, ICLR 2015
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Floating-point = Fixed-point

« O|QI].[QF] = fixed-point value with QI integer and QF fractional bits

« (4.4 = Fixed-point value with 4 integer and 4 fractional bits

» Qla].[b]-Qlpl.lq]l =0la+p].[b+q]
e 04.4-04.4 =088 - 08.8>>4 = 08.4 - 04.4 = min(255, max(—256,08.4))
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Floating-point = Fixed-point
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Experimental Setup

Implemented in Python using Gurobi as MILP solver (referred to as MILP)

Comparison with Baranowski et al. which uses PySMT with Boolector
(referred to as BVSMT)

Comparison with Henzinger et al. which improves on BVSMT (referred to
as BV2SMT)

Benchmarks - MNIST, CollisionAvoidance, TwinStream, ACAS Xu

Baranowski et al. “An SMT Theory of Fixed-Point Arithmetic,” IJCAR, 2020
Henzinger et al. “Scalable Verification of Quantized Neural Networks,” AAAI, 2021
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MILP vs BVSMT - CoAv, TwinStream, ACAS Xu
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MILP vs BV2SMT - MNIST & Fashion MNIST

Time (s) # Timeouts
Benchmark  # Props (Mean | Median)

MILP BV2 MILP BV2

MNIST-C 400 5.0315.4 9015 0 82
FASHION-C 400 5.7315.46 4914 0 206
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Conclusion

Order of magnitude improvement in standard benchmarks
Makes it possible to verity larger networks than previously possible
Less than satisfactory performance in some instances

Code & data available at https://ai1thub.com/11tkcpslab/0ONN


https://github.com/iitkcpslab/QNNV

