
An MILP Encoding for Efficient
Verification of Quantized DNNs

Samvid Mistry*, Indranil Saha**, Swarnendu Biswas**

mistrysamvid@gmail.com, {isaha, swarnendu}@cse.iitk.ac.in

EMSOFT - International Conference on Embedded Software, 2022

* = GitHub Inc.
** = Indian Institute of Technology Kanpur

Introduction

B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko,
“Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018

Adversarial Attacks

M. Giacobbe et al, “How Many Bits Does it Take to Quantize Your Neural Network?” TACAS, 2020

Goodfellow et al, Explaining and Harnessing Adversarial Examples, ICLR 2015

Floating-point → Fixed-point

Floating-point → Fixed-point

• = fixed-point value with integer and fractional bitsQ[𝚀𝙸] . [𝚀𝙵] 𝚀𝙸 𝚀𝙵

Floating-point → Fixed-point

• = fixed-point value with integer and fractional bitsQ[𝚀𝙸] . [𝚀𝙵] 𝚀𝙸 𝚀𝙵

• = Fixed-point value with 4 integer and 4 fractional bitsQ4.4

Floating-point → Fixed-point

• = fixed-point value with integer and fractional bitsQ[𝚀𝙸] . [𝚀𝙵] 𝚀𝙸 𝚀𝙵

• = Fixed-point value with 4 integer and 4 fractional bitsQ4.4

• Q[𝚊] . [𝚋] ⋅ Q[𝚙] . [𝚚] = Q[𝚊 + 𝚙] . [𝚋 + 𝚚]

Floating-point → Fixed-point

• = fixed-point value with integer and fractional bitsQ[𝚀𝙸] . [𝚀𝙵] 𝚀𝙸 𝚀𝙵

• = Fixed-point value with 4 integer and 4 fractional bitsQ4.4

• Q[𝚊] . [𝚋] ⋅ Q[𝚙] . [𝚚] = Q[𝚊 + 𝚙] . [𝚋 + 𝚚]

• → → Q4.4 ⋅ Q4.4 = Q8.8 Q8.8 >> 4 = Q8.4 Q4.4 = min(255, max(−256,Q8.4))

Floating-point → Fixed-point

Floating-point → Fixed-point

• 𝚏𝚒𝚡𝚎𝚍𝚙𝚘𝚒𝚗𝚝 = 𝚒𝚗𝚝(𝚏𝚕𝚘𝚊𝚝𝚒𝚗𝚐𝚙𝚘𝚒𝚗𝚝 ⋅ 2F)

Floating-point → Fixed-point

• 𝚏𝚒𝚡𝚎𝚍𝚙𝚘𝚒𝚗𝚝 = 𝚒𝚗𝚝(𝚏𝚕𝚘𝚊𝚝𝚒𝚗𝚐𝚙𝚘𝚒𝚗𝚝 ⋅ 2F)

• for all nodes of networkQ4.4

Floating-point → Fixed-point

• 𝚏𝚒𝚡𝚎𝚍𝚙𝚘𝚒𝚗𝚝 = 𝚒𝚗𝚝(𝚏𝚕𝚘𝚊𝚝𝚒𝚗𝚐𝚙𝚘𝚒𝚗𝚝 ⋅ 2F)

• for all nodes of networkQ4.4

• x1 = 𝚒𝚗𝚝(2.09375 ⋅ 24) = 𝚒𝚗𝚝(33.5) = 33

Floating-point → Fixed-point

• 𝚏𝚒𝚡𝚎𝚍𝚙𝚘𝚒𝚗𝚝 = 𝚒𝚗𝚝(𝚏𝚕𝚘𝚊𝚝𝚒𝚗𝚐𝚙𝚘𝚒𝚗𝚝 ⋅ 2F)

• for all nodes of networkQ4.4

• x1 = 𝚒𝚗𝚝(2.09375 ⋅ 24) = 𝚒𝚗𝚝(33.5) = 33

• x2 = 𝚒𝚗𝚝(1 ⋅ 24) = 𝚒𝚗𝚝(16) = 16

Floating-point → Fixed-point

• 𝚏𝚒𝚡𝚎𝚍𝚙𝚘𝚒𝚗𝚝 = 𝚒𝚗𝚝(𝚏𝚕𝚘𝚊𝚝𝚒𝚗𝚐𝚙𝚘𝚒𝚗𝚝 ⋅ 2F)

• for all nodes of networkQ4.4

• x1 = 𝚒𝚗𝚝(2.09375 ⋅ 24) = 𝚒𝚗𝚝(33.5) = 33

• x2 = 𝚒𝚗𝚝(1 ⋅ 24) = 𝚒𝚗𝚝(16) = 16

• 𝚏𝚕𝚘𝚊𝚝𝚒𝚗𝚐𝚙𝚘𝚒𝚗𝚝 = 𝚏𝚒𝚡𝚎𝚍𝚙𝚘𝚒𝚗𝚝/2F

Floating-point → Fixed-point

• 𝚏𝚒𝚡𝚎𝚍𝚙𝚘𝚒𝚗𝚝 = 𝚒𝚗𝚝(𝚏𝚕𝚘𝚊𝚝𝚒𝚗𝚐𝚙𝚘𝚒𝚗𝚝 ⋅ 2F)

• for all nodes of networkQ4.4

• x1 = 𝚒𝚗𝚝(2.09375 ⋅ 24) = 𝚒𝚗𝚝(33.5) = 33

• x2 = 𝚒𝚗𝚝(1 ⋅ 24) = 𝚒𝚗𝚝(16) = 16

• 𝚏𝚕𝚘𝚊𝚝𝚒𝚗𝚐𝚙𝚘𝚒𝚗𝚝 = 𝚏𝚒𝚡𝚎𝚍𝚙𝚘𝚒𝚗𝚝/2F

• y1 = 33/24 = 2.0625

Sound Encoding of Rounding - Example

Sound Encoding of Rounding - Example

• Let and η = 55 F = 2

Sound Encoding of Rounding - Example

• Let and η = 55 F = 2

• where ζ = 𝚒𝚗𝚝(η) η = η ⋅ 2−2 = 13.75

Sound Encoding of Rounding - Example

• Let and η = 55 F = 2

• where ζ = 𝚒𝚗𝚝(η) η = η ⋅ 2−2 = 13.75

• 1 − 2−2 ≤ 𝚘𝚏𝚏𝚜𝚎𝚝 < 1 → 0.75 ≤ 𝚘𝚏𝚏𝚜𝚎𝚝 < 1

Sound Encoding of Rounding - Example

• Let and η = 55 F = 2

• where ζ = 𝚒𝚗𝚝(η) η = η ⋅ 2−2 = 13.75

• 1 − 2−2 ≤ 𝚘𝚏𝚏𝚜𝚎𝚝 < 1 → 0.75 ≤ 𝚘𝚏𝚏𝚜𝚎𝚝 < 1

η − 𝚘𝚏𝚏𝚜𝚎𝚝 ≤ ζ → 13 ≤ ζ

ζ ≤ η → ζ ≤ 13.75

MILP Encoding of QNN

Constrain
Inputs

Align Radix
Point

Multiply
weights,
add bias

Convert to
target type

Apply
activation
function

Align Radix
Point

Multiply
weights,
add bias

Convert to
target type

Encode
negation of

property

Input Layer Hidden Layer Output Layer

Floating-point DNN → Fixed-point DNN

MILP Encoding of QNN - Example
A1,1

A1,2

X2,1

X2,2

pr2,1

pr2,2

γ2,1

γ2,2

q2,1

q2,2

z2,1

z2,1

y

Floating point

input

Floating point

input

Floating point

output

• Encode input bounds 
 

 33 ≤ A1,1 ≤ 48
8 ≤ A1,2 ≤ 16

MILP Encoding of QNN - Example
A1,1

A1,2

X2,1

X2,2

pr2,1

pr2,2

γ2,1

γ2,2

q2,1

q2,2

z2,1

z2,1

y

Floating point

input

Floating point

input

Floating point

output

• Encode input bounds 
 

 
 

• Copy values in  
 

33 ≤ A1,1 ≤ 48
8 ≤ A1,2 ≤ 16

X

∀j ∈ [|T2 |] . ∀r ∈ [|T1 |] . X2,j
r = A1,r

MILP Encoding of QNN - Example
A1,1

A1,2

X2,1

X2,2

pr2,1

pr2,2

γ2,1

γ2,2

q2,1

q2,2

z2,1

z2,1

y

Floating point

input

Floating point

input

Floating point

output

• Encode input bounds 
 

 
 

• Copy values in  
 

 

• Dot product with weights, add bias 
 

 

33 ≤ A1,1 ≤ 48
8 ≤ A1,2 ≤ 16

X

∀j ∈ [|T2 |] . ∀r ∈ [|T1 |] . X2,j
r = A1,r

pr2,1 = [16, − 16]𝖳 ⋅ X2,1 + 0
pr2,2 = [−16,16]𝖳 ⋅ X2,2 + 0

MILP Encoding of QNN - Example
A1,1

A1,2

X2,1

X2,2

pr2,1

pr2,2

γ2,1

γ2,2

q2,1

q2,2

z2,1

z2,1

y

Floating point

input

Floating point

input

Floating point

output

• Encode input bounds 
 

 
 

• Copy values in  
 

 

• Dot product with weights, add bias 
 

 

33 ≤ A1,1 ≤ 48
8 ≤ A1,2 ≤ 16

X

∀j ∈ [|T2 |] . ∀r ∈ [|T1 |] . X2,j
r = A1,r

pr2,1 = [16, − 16]𝖳 ⋅ X2,1 + 0
pr2,2 = [−16,16]𝖳 ⋅ X2,2 + 0

• Result is , shift right by 4 and round down to get  
 

 
 

Q8.8 Q8.4

pr2,1 ⋅ 2−4 − 𝚘𝚏𝚏𝚜𝚎𝚝 ≤ γ2,1 ≤ pr2,1 ⋅ 2−4

pr2,2 ⋅ 2−4 − 𝚘𝚏𝚏𝚜𝚎𝚝 ≤ γ2,2 ≤ pr2,2 ⋅ 2−4

MILP Encoding of QNN - Example
A1,1

A1,2

X2,1

X2,2

pr2,1

pr2,2

γ2,1

γ2,2

q2,1

q2,2

z2,1

z2,1

y

Floating point

input

Floating point

input

Floating point

output

• Encode input bounds 
 

 
 

• Copy values in  
 

 

• Dot product with weights, add bias 
 

 

33 ≤ A1,1 ≤ 48
8 ≤ A1,2 ≤ 16

X

∀j ∈ [|T2 |] . ∀r ∈ [|T1 |] . X2,j
r = A1,r

pr2,1 = [16, − 16]𝖳 ⋅ X2,1 + 0
pr2,2 = [−16,16]𝖳 ⋅ X2,2 + 0

• Result is , shift right by 4 and round down to get  
 

 
 

• Saturate the result to get  
 

 

Q8.8 Q8.4

pr2,1 ⋅ 2−4 − 𝚘𝚏𝚏𝚜𝚎𝚝 ≤ γ2,1 ≤ pr2,1 ⋅ 2−4

pr2,2 ⋅ 2−4 − 𝚘𝚏𝚏𝚜𝚎𝚝 ≤ γ2,2 ≤ pr2,2 ⋅ 2−4

Q4.4

q2,1 = min(255, max(−256,γ2,1))
q2,2 = min(255, max(−256,γ2,2))

MILP Encoding of QNN - Example
A1,1

A1,2

X2,1

X2,2

pr2,1

pr2,2

γ2,1

γ2,2

q2,1

q2,2

z2,1

z2,1

y

Floating point

input

Floating point

input

Floating point

output

• Encode input bounds 
 

 
 

• Copy values in  
 

 

• Dot product with weights, add bias 
 

 

33 ≤ A1,1 ≤ 48
8 ≤ A1,2 ≤ 16

X

∀j ∈ [|T2 |] . ∀r ∈ [|T1 |] . X2,j
r = A1,r

pr2,1 = [16, − 16]𝖳 ⋅ X2,1 + 0
pr2,2 = [−16,16]𝖳 ⋅ X2,2 + 0

• Result is , shift right by 4 and round down to get  
 

 
 

• Saturate the result to get  
 

 
 

• Apply ReLU 
 

 

Q8.8 Q8.4

pr2,1 ⋅ 2−4 − 𝚘𝚏𝚏𝚜𝚎𝚝 ≤ γ2,1 ≤ pr2,1 ⋅ 2−4

pr2,2 ⋅ 2−4 − 𝚘𝚏𝚏𝚜𝚎𝚝 ≤ γ2,2 ≤ pr2,2 ⋅ 2−4

Q4.4

q2,1 = min(255, max(−256,γ2,1))
q2,2 = min(255, max(−256,γ2,2))

z2,1 = max(0,q2,1)
z2,2 = max(0,q2,2)

Experimental Setup

Experimental Setup

• Implemented in Python using Gurobi as MILP solver (referred to as MILP)

Experimental Setup

• Implemented in Python using Gurobi as MILP solver (referred to as MILP)

• Comparison with Baranowski et al. which uses PySMT with Boolector
(referred to as BVSMT)

Experimental Setup

• Implemented in Python using Gurobi as MILP solver (referred to as MILP)

• Comparison with Baranowski et al. which uses PySMT with Boolector
(referred to as BVSMT)

• Comparison with Henzinger et al. which improves on BVSMT (referred to
as BV2SMT)

Experimental Setup

• Implemented in Python using Gurobi as MILP solver (referred to as MILP)

• Comparison with Baranowski et al. which uses PySMT with Boolector
(referred to as BVSMT)

• Comparison with Henzinger et al. which improves on BVSMT (referred to
as BV2SMT)

• Benchmarks - MNIST, CollisionAvoidance, TwinStream, ACAS Xu

Experimental Setup

• Implemented in Python using Gurobi as MILP solver (referred to as MILP)

• Comparison with Baranowski et al. which uses PySMT with Boolector
(referred to as BVSMT)

• Comparison with Henzinger et al. which improves on BVSMT (referred to
as BV2SMT)

• Benchmarks - MNIST, CollisionAvoidance, TwinStream, ACAS Xu

Baranowski et al. “An SMT Theory of Fixed-Point Arithmetic,” IJCAR, 2020
Henzinger et al. “Scalable Verification of Quantized Neural Networks,” AAAI, 2021

MILP vs BVSMT - MNIST

MILP vs BVSMT - CoAv, TwinStream, ACAS Xu

MILP vs BV2SMT - MNIST & Fashion MNIST

Conclusion

Conclusion

• Order of magnitude improvement in standard benchmarks

https://github.com/iitkcpslab/QNNV

Conclusion

• Order of magnitude improvement in standard benchmarks

• Makes it possible to verify larger networks than previously possible

https://github.com/iitkcpslab/QNNV

Conclusion

• Order of magnitude improvement in standard benchmarks

• Makes it possible to verify larger networks than previously possible

• Less than satisfactory performance in some instances

https://github.com/iitkcpslab/QNNV

Conclusion

• Order of magnitude improvement in standard benchmarks

• Makes it possible to verify larger networks than previously possible

• Less than satisfactory performance in some instances

• Code & data available at https://github.com/iitkcpslab/QNNV

https://github.com/iitkcpslab/QNNV

