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Introduction

B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko, 
“Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018



Adversarial Attacks

M. Giacobbe et al, “How Many Bits Does it Take to Quantize Your Neural Network?” TACAS, 2020

Goodfellow et al, Explaining and Harnessing Adversarial Examples, ICLR 2015
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Sound Encoding of Rounding - Example



Sound Encoding of Rounding - Example

• Let  and η = 55 F = 2



Sound Encoding of Rounding - Example

• Let  and η = 55 F = 2

•  where ζ = 𝚒𝚗𝚝(η) η = η ⋅ 2−2 = 13.75



Sound Encoding of Rounding - Example

• Let  and η = 55 F = 2

•  where ζ = 𝚒𝚗𝚝(η) η = η ⋅ 2−2 = 13.75

• 1 − 2−2 ≤ 𝚘𝚏𝚏𝚜𝚎𝚝 < 1 → 0.75 ≤ 𝚘𝚏𝚏𝚜𝚎𝚝 < 1



Sound Encoding of Rounding - Example

• Let  and η = 55 F = 2

•  where ζ = 𝚒𝚗𝚝(η) η = η ⋅ 2−2 = 13.75

• 1 − 2−2 ≤ 𝚘𝚏𝚏𝚜𝚎𝚝 < 1 → 0.75 ≤ 𝚘𝚏𝚏𝚜𝚎𝚝 < 1

 
η − 𝚘𝚏𝚏𝚜𝚎𝚝 ≤ ζ → 13 ≤ ζ

ζ ≤ η → ζ ≤ 13.75



MILP Encoding of QNN
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Experimental Setup

• Implemented in Python using Gurobi as MILP solver (referred to as MILP)

• Comparison with Baranowski et al. which uses PySMT with Boolector 
(referred to as BVSMT)

• Comparison with Henzinger et al. which improves on BVSMT (referred to 
as BV2SMT)

• Benchmarks - MNIST, CollisionAvoidance, TwinStream, ACAS Xu

Baranowski et al. “An SMT Theory of Fixed-Point Arithmetic,” IJCAR, 2020
Henzinger et al. “Scalable Verification of Quantized Neural Networks,” AAAI, 2021



MILP vs BVSMT - MNIST



MILP vs BVSMT - CoAv, TwinStream, ACAS Xu



MILP vs BV2SMT - MNIST & Fashion MNIST



Conclusion



Conclusion

• Order of magnitude improvement in standard benchmarks

https://github.com/iitkcpslab/QNNV


Conclusion

• Order of magnitude improvement in standard benchmarks

• Makes it possible to verify larger networks than previously possible

https://github.com/iitkcpslab/QNNV


Conclusion

• Order of magnitude improvement in standard benchmarks

• Makes it possible to verify larger networks than previously possible

• Less than satisfactory performance in some instances

https://github.com/iitkcpslab/QNNV


Conclusion

• Order of magnitude improvement in standard benchmarks

• Makes it possible to verify larger networks than previously possible

• Less than satisfactory performance in some instances

• Code & data available at https://github.com/iitkcpslab/QNNV

https://github.com/iitkcpslab/QNNV

