
074 0 -74 59 /19©2019 I E E E MARCH/APRIL 2019 | IEEE SOFTWARE 73

FOCUS: BUILDING LONG-LIVED ADAPTIVE SYSTEMS

FOR ALMOST 20 YEARS, software
engineers have recognized the neces-
sity of building self-adaptive software
systems.1–3 Self-adaptation increases
software lifetime, allowing soft-
ware to modify its own behavior in
response to environmental changes
that would otherwise cause failure.
Adaptivity has only become more
important as computing transitions
from batch processes to interactive
applications running on energy-con-
strained devices. We interact with
such applications constantly, and we
are frustrated when they are too slow.
Modern devices, however, are highly
sensitive to resource consumption.
Battery life is precious, and running
our devices flat out will generate too
much heat, damaging either the de-
vice or the user. Despite exponential
improvements in hardware technol-
ogy, these systems still rely heavily on
efficient software. Complicating mat-
ters, these systems run in challeng-
ing environments, with constantly
changing operating conditions and
output requirements.

Achieving software adaptivity is
challenging, requiring robust mecha-
nisms for making decisions about
what and when to adapt. Typically,
engineers implementing adaptive soft-
ware must be experts in both their ap-
plication domain and in some other
field—like control theory. Thus, most
software systems have a limited ability
to adapt to the types of environmen-
tal changes that are inevitable in long-
lived software, particularly in ways
that minimize resource consumption
and maximize efficiency.

An ideal interactive application—
whether interacting with mobile users
or embedded sensors—should adapt
to environmental changes to meet
performance goals while minimizing
resource usage. Such adaptivity can-
not be realized through heuristics or

Proteus: Language
and Runtime
Support for Self-
Adaptive Software
Development
Saeid Barati, University of Chicago
Ferenc A. Bartha, Rice University
Swarnendu Biswas, University of Texas at Austin
Robert Cartwright and Adam Duracz, Rice University
Donald S. Fussell, University of Texas at Austin
Henry Hoffmann and Connor Imes, University of Chicago
Jason E. Miller, Massachusetts Institute of Technology
Nikita Mishra, University of Chicago
Arvind, Massachusetts Institute of Technology
Dung Nguyen and Krishna V. Palem, Rice University
Yan Pei and Keshav Pingali, University of Texas at Austin
Ryuichi Sai, Rice University
Andrew Wright, Massachusetts Institute of Technology
Yao-Hsiang Yang, Rice University
Sizhuo Zhang, Massachusetts Institute of Technology

// Our software framework, Proteus, treats

adaptation as a first-class object, enabling rapid

development of robust, adaptive applications.

Proteus developers specify their programs’

intent and adaptable components (or knobs).

A control-theoretic runtime continually

monitors the running application, adjusting

knobs so that the specified intent is met. //

Digital Object Identifier 10.1109/MS.2018.2884864
Date of publication: 22 February 2019

74 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: BUILDING LONG-LIVED ADAPTIVE SYSTEMS

custom solutions—it requires a disci-
plined system design methodology
with tools enabling software engineers
to benefit without becoming experts in
new domains. To this end, we are de-
veloping Proteus, a software develop-
ment ecosystem supporting application
adaptivity as a first-class construct,
which promotes software longevity
through resilience to environmental
changes and separation of application
logic and intent.

Proteus manages applications using a
control-theoretic approach, augmented
with machine learning (ML), and pro-
gramming language tools for captur-
ing user intent and implementation
variants. Proteus recognizes that most
interactive applications have the latent
ability to trade computational cost
for output fidelity. We refer to these
tunable parameters as knobs. To cope
with unpredictable changes that arise
over the course of a mission, Proteus
dynamically adjusts knob settings in
deployed software to provide flexibil-
ity and efficiency that would other-
wise be impossible.

Developing an Adaptive
Video Encoder With
Proteus
Video encoders find redundancy in
video streams and then represent
that redundancy in a compact man-
ner. Video-encoding standards spec-
ify how to encode redundancy, but
developers are free to find the redun-
dancy in many possible ways.4

Searching for redundancy requires
tradeoffs: the more resources, e.g., time
or energy, spent looking for similar
pixels, the higher the encoding qual-
ity. To make an encoder as general as
possible, developers expose these trad-
eoffs to users as parameters that can be
set for individual deployments.5 While
these parameters provide great flex-
ibility, they also introduce two major

challenges that transcend video encod-
ing and are common to large, interac-
tive applications:

• Complexity: These parameters
affect different modules in the
larger system and can interact
in nonintuitive ways.6,7 For
example, two parameters may
both individually increase qual-
ity but reduce it when set simul-
taneously. Thus, the complexity
challenge is modeling combina-
tions of parameter settings.

• Dynamics: Optimal settings
can vary with environmental
changes, however.8 For example,
the effect of parameters often
depends both on the input and
the availability of resources such
as central processing unit cores.
Thus, the dynamics challenge is
finding optimal parameter set-
tings as the input and the under-
lying system change.

Proteus makes it easy to develop
robust adaptive software by directly
addressing the twin challenges of
complexity and dynamics (see Figure 1).
Proteus users do not specify specific
parameter (or knob) settings because
it is too hard and the optimal settings
may change. Instead, users specify
their intent as to the high-level goals
the program should achieve. For ex-
ample, we intend for our video en-
coder to operate at 30 frames/s while
maximizing quality. Proteus develop-
ers specify changeable components
or knobs. In our video encoder, we
have identified many knobs that af-
fect encoding time and quality.9 Pro-
teus learns the complex interactions
of specified knobs10 and then con-
trols knob settings to maintain intent
in dynamic environments.11,12 Two
key Proteus contributions are the sys-
tem design and interfaces allowing

learning and control to be applied
simultaneously.

Learning Video
Performance/Accuracy
Tradeoffs
Given a set of user-specified knobs,
Proteus must model their effects on
the intended behavior. This is a com-
plex modeling problem because knobs
combine in complicated ways and
because behavior can vary between
inputs. To get a sense of this com-
plexity, we show results when using
ML to model our video encoder.10
Figure 2(a) presents the results of en-
coding a variety of input videos with
different knob settings. Each point in
the figure represents the cost (frame
encoding latency in milliseconds) and
error (inverse of peak-signal-to-noise
ratio) for one input video and knob
settings. Points that correspond to the
same input are colored identically.

Even for a single input, there are
many knob combinations that pro-
duce the same output error but that
have widely different costs. Given an
input video and output error, we mini-
mize cost by considering only the left-
most point for each knob combination.
Figure 2(b) shows these Pareto-opti-
mal points for each input. Since these
Pareto-optimal curves vary by input,
this is a difficult learning problem. A
naïve strategy would exhaustively ex-
plore all knob settings, but this space is
huge and it is quite likely that the video
scene would change before the explo-
ration even finished.

For complex applications, the per-
formance and quality are nonlinear,
nonconvex functions of the inputs
and knobs. So, it is difficult—if not
impossible—to derive closed-form ex-
pressions for them. Our prior work
uses ML to characterize application
performance and quality, and Proteus
builds off this article.10 Thus, Proteus

 MARCH/APRIL 2019 | IEEE SOFTWARE 75

needs a set of training inputs and met-
rics to evaluate the quality and perfor-
mance. The offline learning runs the
program on these inputs using a va-
riety of knob settings and learns per-
formance and quality models. At this
stage, Proteus assumes the underlying
environment is stable.

The effectiveness of Proteus depends
on the prediction accuracy of its ma-
chine-learned models. To mitigate the
effect of bad models, the Proteus con-
troller detects conditions that could

arise from such models and requests
new models based on execution-time
data. Our implementation of online
ML uses random forests. To update
the model, the decision trees are re-
built using a weighted average of his-
torical data and observations since the
last update.

Controlling Video
Encoder Intent
Control theory has recently received
a great deal of attention because it

provides formal guarantees for reason-
ing about a software system’s dynamic
behaviors.13 In this section, we assume
a ground truth model relating specific
video encoder settings to their perfor-
mance and quality. We then use exist-
ing techniques to synthesize a controller
to meet a user-specified frame rate.9,14
The controller is a virtualized adap-
tive proportional-integral-derivative
controller. Unlike traditional control
systems, the Proteus controller first
computes a virtualized control signal,

FIGURE 1. An overview of the Proteus approach to building dynamically adaptive software. Using the FAST programming language,

developers specify not just the functionality of programs but also their nonfunctional intent (e.g., performance, quality, and energy

goals) and configurable knobs that affect the intent. At compile time, offline ML models the relationship between intent and knobs.

At runtime, online ML and control theoretic components monitor the application’s behavior and continually adjusts knob settings to

ensure the intent is met.

Transformations,
Adaptations, and
Resource Usage Observable

Behavior

Updated
Models

Constraints

Input Stream Output Stream

Observable
Behavior

FAST
Program

Offline ML

Online ML

Approximate
Optimizer

Anomaly Detector

Feedback Controller

Application
Logic

Intent
Specification and

Adaptable
Components

Measure Models
(Quality, Performance, and Power)

Model
Update Requests

Application and
System

76 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: BUILDING LONG-LIVED ADAPTIVE SYSTEMS

and then, a separate optimization step
realizes that signal with specified knobs.

Figure 3(a) shows the benefits of
control. We encode a 1,180-frame
video with the intent of 30 frames/s
and the highest possible quality. We
compare control (turquoise line)—
which dynamically adjusts knob
settings—to selecting a single config-
uration based on the learned model
(green line). After 670 frames, the
input changes from a relatively easy
scene, with ample redundancy, to
a much harder one, which requires
spending more time finding redun-
dancy or sacrificing quality. The sys-
tem is not explicitly aware that this
change has occurred, but Proteus de-
tects the change when performance
dips below the goal. Proteus auto-
matically adjusts knobs to bring per-
formance back to the intent, while
minimizing quality loss. The learned
model puts the encoder into a good
initial state, but it lacks a mechanism

to adapt to scene change. Control en-
ables this adaptation but requires the
model to guide its changes.

Combining Learning
and Control
Our prior work10 shows learning builds
accurate models of complex software,
while control handles unpredictable
environmental changes. Each over-
comes a unique challenge. Intuitively,
their combination should provide the
benefits of both. The challenge is de-
fining abstractions allowing the learn-
er’s output to be used by a control
system, while ensuring that the result-
ing combination still provides useful
formal guarantees, so that Proteus
users can be sure their intent will be
met. There are two specific obstacles.
First, the learner produces nonlin-
ear models of a discrete knob space,
while most control designs assume
continuous linear systems. Second,
there is uncertainty in the learned

models, i.e., many knob setting com-
binations are estimated and never
measured, which can negatively affect
the controller.

To overcome these obstacles, Pro-
teus builds on our prior work pro -
posing abstract controllers.11,12 Whereas
most software controllers manage
literal values—i.e., set a specific pa-
rameter to a known value—Proteus
controls virtual values. For example,
to meet a performance goal, Proteus
controls speedup rather than some
specific knobs.

This abstract control system cre-
ates a layer of indirection between
the behavior the controller is enforc-
ing and the specific knob settings
that achieve it. The Proteus runtime
maps the virtual control signal to spe-
cific knob settings using the learned
models. This abstract controller is
thus quite general, operating with a
number of different artificial intelli-
gence (AI)/ML engines and allowing

1

0.8

0.6

0.4

0.2

0

N
or

m
al

iz
ed

 E
rr

or

1

0.8

0.6

0.4

0.2

0

N
or

m
al

iz
ed

 E
rr

or

0 10,000 20,000 30,000

Normalized Cost Normalized Cost(a) (b)

40,000 50,000 0
25

0
50

0
75

0
1,

00
0

1,
25

0
1,

50
0

1,
75

0
2,

00
0

2,
25

0

FIGURE 2. Learning tradeoffs for video encoding. This figure highlights that (a) many knob settings are not useful—sacrificing quality

for no benefit and (b) the optimal tradeoffs vary greatly per input.

 MARCH/APRIL 2019 | IEEE SOFTWARE 77

the combination to be easily ported
to many different platforms.11 Fur-
thermore, the abstract controller
detects when intent is not met and
requests a new model from Proteus’s
online learner. Compared to exist-
ing work on model predictive con-
trol (MPC), the Proteus controller is
much more flexible, supporting both
dynamic changes in available knobs
and a much wider range of objective
functions. Existing MPC approaches
would have to be resynthesized if a
knob becomes unavailable.

While the Proteus controller works
on higher abstractions than typical
controllers, it still provides formal
guarantees that it will converge to
the desired intent.11 These guarantees
are probabilistic and based on confi-
dence intervals (which correspond to
uncertainties due to measurement er-
ror and inherent system variability)
provided by the learners. Thus, while
any AI/ML approach could be paired
with the controller, the best results
will come from those which provide
accurate confidence intervals.

Figure 3(b) shows the benefits of
the Proteus approach (orange line)
compared to a naïve combination of
learning (with random forests) and
control (pink line). The naïve com-
bination simply uses existing con-
trol synthesis methodologies13 with a
learned model instead of an empiri-
cally measured model. In this case,
the behavior may fail to stabilize at
the goal. In contrast, Proteus’s com-
bination of an abstract control sys-
tem and self-monitoring converges
to the desired behavior even when it
starts with a bad model.

The second experiment [Figure 3(b)]
compares Proteus to a straightfor-
ward approach of combining learn-
ing and control (denoted by naïve).
Naïve simply replaces the standard
modeling procedure for control

design with a learned model. In this
case, the model is obtained using a
training set (of videos) that poorly
represents the current input. The
naïve combination of learning and
control oscillates wildly from low
to high performance, alternately
violating and exceeding the intent

(sacrificing encoding quality). In
contrast, Proteus also begins oscil-
lating, detects that its initial model
is inappropriate for this input and
dynamically constructs a new one.
Proteus then brings the performance
back to the intent and still adapts to
the scene change.

FIGURE 3. A summary of results from several experiments that compare different

approaches to control a video encoder application. The horizontal axis corresponds

to the frames of a video with two scenes—changing at frame 670—with the first being

much easier to encode than the second. The gray line shows the desired target of

achieving 30 frames/s. (a) The first experiment evaluates how ML and control respond

to the dynamism in the environment. ML finds an initial configuration that delivers the

performance, but then it falls well below 30 frames/s when the scene changes. Control

starts with the same model, but it adjusts to the scene change to get performance back

to the intent. (b) The second experiment is also shown.

2001000 300 400 500 600 700 800 900 1,000 1,100

2001000 300 400 500 600 700 800 900 1,000 1,100
Frames(a)

Frames(b)

10

5

0

15

20

25

30

35

40

45

50

Naïve
Proteus

Target

ML
Control
Target

10

5

0

15

20

25

30

35

40

45

50

F
ra

m
es

/s
F

ra
m

es
/s

78 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: BUILDING LONG-LIVED ADAPTIVE SYSTEMS

Programming Language
Support
Proteus exposes three abstractions
to make programming with intent
simple, yet expressive:

1) A runtime that interprets the
intent and orchestrates applica-
tion execution, measurement,
control, configuration, and
learning.

2) A library used to specify the
following: measures, what
the runtime should monitor;
knobs, the variables that can
(re-)configure the running ap-
plication; and the controllable
code, e.g., the video encoder’s
main loop.

3) An intent specification language.

Modifying applications for adap-
tation using Proteus requires only a
few lines of library code and a declar-
ative intent specification, whose syn-
tax encodes the goals and constraints:

intent x264 max(quality) such
that performance == 30

and specifies the configuration space
that the learner explores and the
controller manages:

knobs subme = [1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11]
 reference 7

utilizedCores = [1,2,3,4]
 reference 4

…

Decoupling intent specifications
from the application code has sev-
eral benefits. It lends itself to flexible
interpretation, e.g., using different
optimization algorithms to solve the
optimization problem they encode.
Decoupling enables modification and
extension of the intent specification
without changing the application
code, useful both during execution—
where a change in the application’s
mission might be served by chang-
ing the intent—and during design—
where changes to the intent do not
require changing application code.
Considering an application’s entire
life-cycle, decoupling also makes it
possible to extend the intent specifi-
cation language itself, with little or
no change to the core application.

The need for an intent expression
language becomes apparent when
we consider possible extensions. For
example, seen as an encoding of a
mathematical programming prob-
lem, the intent may be naturally
extended to support multiple con-
straints, which requires generalizing
the constraint syntax to a logic. Ap-
plications with complex knobs also
require more sophisticated syntax for
expressing their configuration space.
For example, assigning a value to some
knob may only be meaningful when
another knob has a particular value.

P roteus provides language
and runtime support for devel-
oping adaptive applications

that meet goals in complex, dynamic
environments. Proteus puts ML and
control theory in developers’ hands
without requiring expertise in either
field. Instead, developers focus on
their application domains and spec-
ify their program’s intents, making
the development of adaptive, resil-
ient software easier for the broader
community of software developers.
The Proteus language makes intent
specification and adaptations first-
class objects. The Proteus runtime
uses those adaptations to ensure
goals are met, which makes it con-
venient to set execution goals and
update them on the fly. To show-
case the practicality and ease-of-use
of developing with Proteus, we
have used it to control three com-
plex, real-world applications. While
this article motivates our approach
through the case study of a video
encoder, we have used Proteus com-
ponents on many applications and
systems.10–12

References
1. R. Laddaga, “Guest editor’s intro-

duction: Creating robust software

through self-adaptation,” IEEE

Intell. Syst., vol. 14, no. 3, pp. 26–29,

May 1999.

2. J. O. Kephart and D. M. Chess, “The

vision of autonomic computing,”

IEEE Computer, vol. 36, no. 1, pp.

41–50, Jan. 2003.

3. B. H. Cheng, et al., “Software en-

gineering for self-adaptive systems:

A research roadmap,” in Software

Engineering for Self-Adaptive Sys-

tems, B. H. Cheng, R. Lemos, H.

Giese, P. Inverardi, and J. Magee,

Eds. Berlin: Springer-Verlag, 2009,

pp. 1–26.

4. J. L. Ozer, Video Encoding by the

Numbers: Eliminate the Guesswork

From Your Streaming Video. Galax,

VA: Doceo Publishing, 2016.

The effectiveness of Proteus
depends on the prediction accuracy

of its machine-learned models.

 MARCH/APRIL 2019 | IEEE SOFTWARE 79

5. VideoLAN Organization, “x264,”

2013. [Online]. Available:

http://www .videolan.org/developers

/x264.html

6. N. Siegmund, A. Grebhahn, S. Apel,

and C. Kästner, “Performance-influence

models for highly configurable sys-

tems,” in Proc. 2015 10th Joint Meeting

on Foundations of Software Engineer-

ing, 2015, pp. 284–294.

7. J. Meinicke, C.-P. Wong, C. Käst-

ner, T. Thüm, and G. Saake, “On

essential configuration complexity:

Measuring interactions in highly-

configurable systems,” in Proc.

31st IEEE/ACM Int. Conf. Auto-

mated Software Engineering, 2016,

pp. 483–494.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

SAEID BARATI is a Ph.D. student at

the University of Chicago. His research

interests include self-aware systems, ap-

proximate computing, resource scheduling

and optimization, and embedded systems.

Contact him at saeid@cs.uchicago.edu.

ROBERT CARTWRIGHT is a professor

of computer science at Rice University. His re-

search interests include program verification,

program semantics, exact real arithmetic,

and typing systems. Cartwright received a

Ph.D. in computer science from Stanford

University. He is a former member of the ACM

Education Board and the CRA Board of Direc-

tors. He is a fellow of the ACM. Contact him at

cork@rice.edu.

FERENC A. BARTHA was a research

scientist at Rice University and is currently a

research scientist at the University of Szeged,

Hungary. His research interests include dy-

namical systems, resource-aware systems,

and validated numerical methods. Bartha

received a Ph.D. in mathematics from the

University of Bergen, Norway. Contact him at

barfer@math.u-szeged.hu.

ADAM DURACZ is a research scientist

at the Rice University Center for Comput-

ing at the Margins. His research interests

include modeling, simulation, verifica-

tion, and learning of dynamical systems.

Duracz received a Ph.D. in computer sci-

ence from Halmstad University, Sweden,

in 2017. Contact him at adam.duracz@

rice.edu.

SWARNENDU BISWAS is an as-

sistant professor in the Department

of Computer Science and Engineering

at the Indian Institute of Technol-

ogy, Kanpur. His research interests

include program analysis, concurrency

and memory models, compilers and

runtime systems, parallel computing,

and approximate computing. Biswas

received a Ph.D. from The Ohio State

University. He is a member of the ACM.

Contact him at swarnendu@cse.iitk.

ac.in.

DONALD S. FUSSELL is the Trammell Crow

Regents professor and chair of the Computer

Science Department, director of the Laboratory

for Graphics and Parallel Systems, a member

of the Computer Engineering Research Center

of the Electrical and Computer Engineering

Department, and a fellow of the IC2 Institute at

the University of Texas at Austin. His research

interests include computer graphics, computer

games, computer architecture, and computer

systems design. Fussell received a Ph.D. in

mathematical sciences from the University

of texas at Dallas. Contact him at fussell@

cs.utexas.edu.

80 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: BUILDING LONG-LIVED ADAPTIVE SYSTEMS

8. P. Jamshidi, N. Siegmund, M. Velez,

C. Kästner, A. Patel, and Y. Agarwal,

“Transfer learning for performance

modeling of configurable systems: An

exploratory analysis,” in Proc.

32nd IEEE/ACM Int. Conf.

 Automated Software Engineering,

2017, pp. 497–508.

9. H. Hoffmann, S. Sidiroglou, M. Car-

bin, S. Misailovic, A. Agarwal, and M.

Rinard, “Dynamic knobs for respon-

sive power-aware computing,” in Proc.

16th Int. Conf. Architectural Support

for Programming Languages and Op-

erating Systems, 2011, pp. 199–212.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

HENRY HOFFMANN is an associate

professor of computer science at the Uni-

versity of Chicago. His research interests

include self-aware computing systems.

Hoffmann received a Ph.D. in electrical

engineering and computer science from

the Massachusetts Institute of Technol-

ogy. He is a Member of the IEEE and the

ACM. Contact him at hankhoffmann@

cs.uchicago.edu.

NIKITA MISHRA is a researcher at

the University of Chicago. Her research

interests include developing machine-

learning models to alleviate computing

system performance, such as power

management and computing resources

prediction. Mishra received a Ph.D. in

computer science from the University of

Chicago. Contact her at nikitamishra07@

gmail.com.

CONNOR IMES is a computer scientist

at the University of Southern California

Information Sciences Institute. His

research interests include self-aware/

goal-oriented computing, fault tolerance,

and long-lived systems. Imes received

a Ph.D. in computer science from the

University of Chicago. Contact him at

cimes@isi.edu.

ARVIND is the Johnson Professor of Computer

Science and Engineering at the Massachusetts

Institute of Technology, where he is a member

of the Computer Science and Artificial Intel-

ligence Laboratory. His research interests

include parallel systems and software, high-

level hardware synthesis languages, and

enabling rapid development of embedded

systems. Arvind received a Ph.D. in computer

science from the University of Minnesota, Min-

neapolis. He is a Fellow of the IEEE and

the ACM and a member of the National

Academy of Engineering. Contact him at

arvind@csail.mit.edu.

JASON E. MILLER is a research

 scientist at the Computer Science and

Artificial Intelligence Laboratory at the

Massachusetts Institute of Technol-

ogy (MIT). His research interests

include parallel processor and system

architectures, architectural simula-

tors, and adaptive self-optimizing

systems. Miller received a Ph.D. in

computer science from MIT. Contact

him at jasonm@csail.mit.edu.

DUNG NGUYEN is a research scientist

at Rice University. His research interests

include software engineering with special

interests in object-oriented modeling, de-

sign patterns, and programming. Nguyen

received a Ph.D. in mathematics from the

University of California, Berkeley. Contact

him at dxnguyen@rice.edu.

 MARCH/APRIL 2019 | IEEE SOFTWARE 81

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

KRISHNA V. PALEM is the Ken and Audrey

Kennedy professor of computer science at

Rice University. His research interests in-

clude embedded and nanoscale computing,

with emphasis on ultralow energy systems

through inexactness. Palem received a Ph.D.

in electrical and computer engineering from

the University of Texas at Austin. He is a

Fellow of the IEEE, ACM, and AAAS.

Contact him at palem@rice.edu.

ANDREW WRIGHT is a Ph.D. student at

the Massachusetts Institute of Technol-

ogy (MIT). His research interests include

flexible processor design, accelerators,

and processor specification and verifica-

tion. Wright received an S.M. in electrical

engineering and computer science from

MIT. He is a Student Member of the IEEE.

Contact him at acwright@mit.edu.

YAN PEI is a Ph.D. student at the University

of Texas at Austin. His research interests

include high-performance computing,

control theory, and approximate computing.

Pei received a B.S. in electrical engineering

from Shanghai Jiao Tong University, China.

Contact him at ypei@cs.utexas.edu.

YAO-HSIANG YANG is a Ph.D. student

at Rice University. His research interests

are formal semantics and statistical ma-

chine learning. Yang received an M.Sc. in

computer science from National Taiwan

University, Taipei City. Contact him at

yy45@rice.edu.

KESHAV PINGALI is the W.A. “Tex”

Moncrief chair of grid and distributed

computing in the Institute for Com-

putational Engineering and Science

and a professor in the Department of

Computer Science at the University of

Texas at Austin. His research interests

include programming languages,

compilers, and runtime systems for

multicore and manycore processors.

Pingali received an Sc.D., E.E., and

S.M. from the Massachusetts Institute

of Technology. He is a Fellow of the

IEEE, ACM, and AAAS. Contact him at

pingali@cs.utexas.edu.

SIZHUO ZHANG is a Ph.D. student at

the Massachusetts Institute of Technol-

ogy (MIT). His research interests include

processor design, memory system,

and accelerators. Zhang received an

M.S. from MIT. He is a Student Member

of the IEEE and ACM. Contact him at

szzhang@csail.mit.edu.

RYUICHI SAI is a Ph.D. student at

Rice University. His research interests

include programming languages,

compiler construction, and software

engineering. He received an M.Sc.

degree from University of Houston.

Contact him at ryuichi@rice.edu.

82 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: BUILDING LONG-LIVED ADAPTIVE SYSTEMS

10. X. Sui, A. Lenharth, D. S. Fussell,

and K. Pingali, “Proactive control of

approximate programs,” in Proc.

21st Int. Conf. Architectural

Support for Programming Lan-

guages and Operating Systems, 2016,

pp. 607–621.

11. N. Mishra, C. Imes, J. D. Lafferty,

and H. Hoffmann, “CALOREE:

Learning control for predictable

latency and low energy,” in Proc.

23rd Int. Conf. Architectural Sup-

port for Programming Languages

and Operating Systems, 2018, pp.

184–198.

12. C. Imes, D. H. K. Kim, M. Maggio,

and H. Hoffmann, “POET: A por-

table approach to minimizing energy

under soft real-time constraints,” in

Proc. 21st IEEE Real-Time and Em-

bedded Technology and Applications

Symposium, 2015, pp. 75–86.

13. A. Filieri, et al., “Control strategies for

self-adaptive software systems,” ACM

Trans. Auton. Adapt. Syst, vol. 11, no.

4, pp. 1–31, Feb. 2017.

14. H. Hoffmann, “JouleGuard: En-

ergy guarantees for approximate

applications,” in Proc. 25th Symp.

Operating Systems Principles, 2015,

pp. 198–214.

Access all your IEEE Computer
Society subscriptions at

computer.org
/mysubscriptions

From the analytical engine to the supercomputer,
from Pascal to von Neumann, from punched
cards to CD-ROMs—IEEE Annals of the History
of Computing covers the breadth of computer
history. � e quarterly publication
is an active center for the collection and
dissemination of information on historical
projects and organizations, oral history activities,
and international conferences.

www.computer.org/annals

