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FOCUS: BUILDING LONG-LIVED ADAPTIVE SYSTEMS

FOR ALMOST 20 YEARS, software 
engineers have recognized the neces-
sity of building self-adaptive software 
systems.1–3 Self-adaptation increases 
software lifetime, allowing soft-
ware to modify its own behavior in 
response to environmental changes 
that would otherwise cause failure. 
Adaptivity has only become more 
important as computing transitions 
from batch processes to interactive 
applications running on energy-con-
strained devices. We interact with 
such applications constantly, and we 
are frustrated when they are too slow. 
Modern devices, however, are highly 
sensitive to resource consumption. 
Battery life is precious, and running 
our devices flat out will generate too 
much heat, damaging either the de-
vice or the user. Despite exponential 
improvements in hardware technol-
ogy, these systems still rely heavily on 
efficient software. Complicating mat-
ters, these systems run in challeng-
ing environments, with constantly 
changing operating conditions and 
output requirements.

Achieving software adaptivity is 
challenging, requiring robust mecha-
nisms for making decisions about 
what and when to adapt. Typically, 
engineers implementing adaptive soft-
ware must be experts in both their ap-
plication domain and in some other 
field—like control theory. Thus, most 
software systems have a limited ability 
to adapt to the types of environmen-
tal changes that are inevitable in long-
lived software, particularly in ways 
that minimize resource consumption 
and maximize efficiency.

An ideal interactive application—
whether interacting with mobile users 
or embedded sensors—should adapt 
to environmental changes to meet 
performance goals while minimizing 
resource usage. Such adaptivity can-
not be realized through heuristics or 
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custom solutions—it requires a disci-
plined system design methodology 
with tools enabling software engineers 
to benefit without becoming experts in 
new domains. To this end, we are de-
veloping Proteus, a software develop-
ment ecosystem supporting application 
adaptivity as a first-class construct, 
which promotes software longevity 
through resilience to environmental 
changes and separation of application 
logic and intent.

Proteus manages applications using a 
control-theoretic approach, augmented 
with machine learning (ML), and pro-
gramming language tools for captur-
ing user intent and implementation 
variants. Proteus recognizes that most 
interactive applications have the latent 
ability to trade computational cost 
for output fidelity. We refer to these 
tunable parameters as knobs. To cope 
with unpredictable changes that arise 
over the course of a mission, Proteus 
dynamically adjusts knob settings in 
deployed software to provide flexibil-
ity and efficiency that would other-
wise be impossible.

Developing an Adaptive 
Video Encoder With 
Proteus
Video encoders find redundancy in 
video streams and then represent 
that redundancy in a compact man-
ner. Video-encoding standards spec-
ify how to encode redundancy, but 
developers are free to find the redun-
dancy in many possible ways.4

Searching for redundancy requires 
tradeoffs: the more resources, e.g., time 
or energy, spent looking for similar 
pixels, the higher the encoding qual-
ity. To make an encoder as general as 
possible, developers expose these trad-
eoffs to users as parameters that can be 
set for individual deployments.5 While 
these parameters provide great flex-
ibility, they also introduce two major 

challenges that transcend video encod-
ing and are common to large, interac-
tive applications:

•	 Complexity: These parameters 
affect different modules in the 
larger system and can interact 
in nonintuitive ways.6,7 For 
example, two parameters may 
both individually increase qual-
ity but reduce it when set simul-
taneously. Thus, the complexity 
challenge is modeling combina-
tions of parameter settings.

•	 Dynamics: Optimal settings 
can vary with environmental 
changes, however.8 For example, 
the effect of parameters often 
depends both on the input and 
the availability of resources such 
as central processing unit cores. 
Thus, the dynamics challenge is 
finding optimal parameter set-
tings as the input and the under-
lying system change.

Proteus makes it easy to develop 
robust adaptive software by directly 
addressing the twin challenges of 
complexity and dynamics (see Figure 1). 
Proteus users do not specify specific 
parameter (or knob) settings because 
it is too hard and the optimal settings 
may change. Instead, users specify 
their intent as to the high-level goals 
the program should achieve. For ex-
ample, we intend for our video en-
coder to operate at 30 frames/s while 
maximizing quality. Proteus develop-
ers specify changeable components 
or knobs. In our video encoder, we 
have identified many knobs that af-
fect encoding time and quality.9 Pro-
teus learns the complex interactions 
of specified knobs10 and then con-
trols knob settings to maintain intent 
in dynamic environments.11,12 Two 
key Proteus contributions are the sys-
tem design and interfaces allowing 

learning and control to be applied 
simultaneously.

Learning Video 
Performance/Accuracy 
Tradeoffs
Given a set of user-specified knobs, 
Proteus must model their effects on 
the intended behavior. This is a com-
plex modeling problem because knobs 
combine in complicated ways and 
because behavior can vary between 
inputs. To get a sense of this com-
plexity, we show results when using 
ML to model our video encoder.10 
Figure 2(a) presents the results of en-
coding a variety of input videos with 
different knob settings. Each point in 
the figure represents the cost (frame 
encoding latency in milliseconds) and 
error (inverse of peak-signal-to-noise 
ratio) for one input video and knob 
settings. Points that correspond to the 
same input are colored identically.

Even for a single input, there are 
many knob combinations that pro-
duce the same output error but that 
have widely different costs. Given an 
input video and output error, we mini-
mize cost by considering only the left-
most point for each knob combination. 
Figure 2(b) shows these Pareto-opti-
mal points for each input. Since these 
Pareto-optimal curves vary by input, 
this is a difficult learning problem. A 
naïve strategy would exhaustively ex-
plore all knob settings, but this space is 
huge and it is quite likely that the video 
scene would change before the explo-
ration even finished.

For complex applications, the per-
formance and quality are nonlinear, 
nonconvex functions of the inputs 
and knobs. So, it is difficult—if not 
impossible—to derive closed-form ex-
pressions for them. Our prior work 
uses ML to characterize application 
performance and quality, and Proteus 
builds off this article.10 Thus, Proteus 
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needs a set of training inputs and met-
rics to evaluate the quality and perfor-
mance. The offline learning runs the 
program on these inputs using a va-
riety of knob settings and learns per-
formance and quality models. At this 
stage, Proteus assumes the underlying 
environment is stable.

The effectiveness of Proteus depends 
on the prediction accuracy of its ma-
chine-learned models. To mitigate the 
effect of bad models, the Proteus con-
troller detects conditions that could 

arise from such models and requests 
new models based on execution-time 
data. Our implementation of online 
ML uses random forests. To update 
the model, the decision trees are re-
built using a weighted average of his-
torical data and observations since the 
last update.

Controlling Video 
Encoder Intent
Control theory has recently received 
a great deal of attention because it 

provides formal guarantees for reason-
ing about a software system’s dynamic 
behaviors.13 In this section, we assume 
a ground truth model relating specific 
video encoder settings to their perfor-
mance and quality. We then use exist-
ing techniques to synthesize a controller 
to meet a user-specified frame rate.9,14 
The controller is a virtualized adap-
tive proportional-integral-derivative 
controller. Unlike traditional control 
systems, the Proteus controller first 
computes a virtualized control signal, 

FIGURE 1. An overview of the Proteus approach to building dynamically adaptive software. Using the FAST programming language, 

developers specify not just the functionality of programs but also their nonfunctional intent (e.g., performance, quality, and energy 

goals) and configurable knobs that affect the intent. At compile time, offline ML models the relationship between intent and knobs. 

At runtime, online ML and control theoretic components monitor the application’s behavior and continually adjusts knob settings to 

ensure the intent is met.
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and then, a separate optimization step 
realizes that signal with specified knobs.

Figure 3(a) shows the benefits of 
control. We encode a 1,180-frame 
video with the intent of 30 frames/s 
and the highest possible quality. We 
compare control (turquoise line)—
which dynamically adjusts knob 
settings—to selecting a single config-
uration based on the learned model 
(green line). After 670 frames, the 
input changes from a relatively easy 
scene, with ample redundancy, to 
a much harder one, which requires 
spending more time finding redun-
dancy or sacrificing quality. The sys-
tem is not explicitly aware that this 
change has occurred, but Proteus de-
tects the change when performance 
dips below the goal. Proteus auto-
matically adjusts knobs to bring per-
formance back to the intent, while 
minimizing quality loss. The learned 
model puts the encoder into a good 
initial state, but it lacks a mechanism 

to adapt to scene change. Control en-
ables this adaptation but requires the 
model to guide its changes.

Combining Learning 
and Control
Our prior work10 shows learning builds 
accurate models of complex software, 
while control handles unpredictable 
environmental changes. Each over-
comes a unique challenge. Intuitively, 
their combination should provide the 
benefits of both. The challenge is de-
fining abstractions allowing the learn-
er’s output to be used by a control 
system, while ensuring that the result-
ing combination still provides useful 
formal guarantees, so that Proteus 
users can be sure their intent will be 
met. There are two specific obstacles. 
First, the learner produces nonlin-
ear models of a discrete knob space, 
while most control designs assume 
continuous linear systems. Second, 
there is uncertainty in the learned 

models, i.e., many knob setting com-
binations are estimated and never 
measured, which can negatively affect 
the controller.

To overcome these obstacles, Pro-
teus builds on our prior work pro
posing abstract controllers.11,12 Whereas 
most software controllers manage 
literal values—i.e., set a specific pa-
rameter to a known value—Proteus 
controls virtual values. For example, 
to meet a performance goal, Proteus 
controls speedup rather than some 
specific knobs.

This abstract control system cre-
ates a layer of indirection between 
the behavior the controller is enforc-
ing and the specific knob settings 
that achieve it. The Proteus runtime 
maps the virtual control signal to spe-
cific knob settings using the learned 
models. This abstract controller is 
thus quite general, operating with a 
number of different artificial intelli-
gence (AI)/ML engines and allowing 
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FIGURE 2. Learning tradeoffs for video encoding. This figure highlights that (a) many knob settings are not useful—sacrificing quality 

for no benefit and (b) the optimal tradeoffs vary greatly per input.
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the combination to be easily ported 
to many different platforms.11 Fur-
thermore, the abstract controller 
detects when intent is not met and 
requests a new model from Proteus’s 
online learner. Compared to exist-
ing work on model predictive con-
trol (MPC), the Proteus controller is 
much more flexible, supporting both 
dynamic changes in available knobs 
and a much wider range of objective 
functions. Existing MPC approaches 
would have to be resynthesized if a 
knob becomes unavailable.

While the Proteus controller works 
on higher abstractions than typical 
controllers, it still provides formal 
guarantees that it will converge to 
the desired intent.11 These guarantees 
are probabilistic and based on confi-
dence intervals (which correspond to 
uncertainties due to measurement er-
ror and inherent system variability) 
provided by the learners. Thus, while 
any AI/ML approach could be paired 
with the controller, the best results 
will come from those which provide 
accurate confidence intervals.

Figure 3(b) shows the benefits of 
the Proteus approach (orange line) 
compared to a naïve combination of 
learning (with random forests) and 
control (pink line). The naïve com-
bination simply uses existing con-
trol synthesis methodologies13 with a 
learned model instead of an empiri-
cally measured model. In this case, 
the behavior may fail to stabilize at 
the goal. In contrast, Proteus’s com-
bination of an abstract control sys-
tem and self-monitoring converges 
to the desired behavior even when it 
starts with a bad model.

The second experiment [Figure 3(b)] 
compares Proteus to a straightfor-
ward approach of combining learn-
ing and control (denoted by naïve). 
Naïve simply replaces the standard 
modeling procedure for control 

design with a learned model. In this 
case, the model is obtained using a 
training set (of videos) that poorly 
represents the current input. The 
naïve combination of learning and 
control oscillates wildly from low 
to high performance, alternately 
violating and exceeding the intent 

(sacrificing encoding quality). In 
contrast, Proteus also begins oscil-
lating, detects that its initial model 
is inappropriate for this input and 
dynamically constructs a new one. 
Proteus then brings the performance 
back to the intent and still adapts to 
the scene change.

FIGURE 3. A summary of results from several experiments that compare different 

approaches to control a video encoder application. The horizontal axis corresponds 

to the frames of a video with two scenes—changing at frame 670—with the first being 

much easier to encode than the second. The gray line shows the desired target of 

achieving 30 frames/s. (a) The first experiment evaluates how ML and control respond 

to the dynamism in the environment. ML finds an initial configuration that delivers the 

performance, but then it falls well below 30 frames/s when the scene changes. Control 

starts with the same model, but it adjusts to the scene change to get performance back 

to the intent. (b) The second experiment is also shown.
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Programming Language 
Support
Proteus exposes three abstractions 
to make programming with intent 
simple, yet expressive:

1)	A runtime that interprets the 
intent and orchestrates applica-
tion execution, measurement, 
control, configuration, and 
learning.

2)	A library used to specify the 
following: measures, what 
the runtime should monitor; 
knobs, the variables that can 
(re-)configure the running ap-
plication; and the controllable 
code, e.g., the video encoder’s 
main loop.

3)	An intent specification language.

Modifying applications for adap-
tation using Proteus requires only a 
few lines of library code and a declar-
ative intent specification, whose syn-
tax encodes the goals and constraints:

intent x264 max(quality) such 
that performance == 30

and specifies the configuration space 
that the learner explores and the 
controller manages:

knobs subme = [�1, 2, 3, 4, 5, 6, 
7, 8, 9, 10, 11] 
reference 7

utilizedCores = �[1,2,3,4] 
reference 4

…

Decoupling intent specifications 
from the application code has sev-
eral benefits. It lends itself to flexible 
interpretation, e.g., using different 
optimization algorithms to solve the 
optimization problem they encode. 
Decoupling enables modification and 
extension of the intent specification 
without changing the application 
code, useful both during execution—
where a change in the application’s 
mission might be served by chang-
ing the intent—and during design—
where changes to the intent do not 
require changing application code. 
Considering an application’s entire 
life-cycle, decoupling also makes it 
possible to extend the intent specifi-
cation language itself, with little or 
no change to the core application.

The need for an intent expression 
language becomes apparent when 
we consider possible extensions. For 
example, seen as an encoding of a 
mathematical programming prob-
lem, the intent may be naturally 
extended to support multiple con-
straints, which requires generalizing 
the constraint syntax to a logic. Ap-
plications with complex knobs also 
require more sophisticated syntax for 
expressing their configuration space. 
For example, assigning a value to some 
knob may only be meaningful when 
another knob has a particular value.

P roteus provides language 
and runtime support for devel-
oping adaptive applications 

that meet goals in complex, dynamic 
environments. Proteus puts ML and 
control theory in developers’ hands 
without requiring expertise in either 
field. Instead, developers focus on 
their application domains and spec-
ify their program’s intents, making 
the development of adaptive, resil-
ient software easier for the broader 
community of software developers. 
The Proteus language makes intent 
specification and adaptations first-
class objects. The Proteus runtime 
uses those adaptations to ensure 
goals are met, which makes it con-
venient to set execution goals and 
update them on the fly. To show-
case the practicality and ease-of-use 
of developing with Proteus, we 
have used it to control three com-
plex, real-world applications. While 
this article motivates our approach 
through the case study of a video 
encoder, we have used Proteus com-
ponents on many applications and 
systems.10–12 
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