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Abstract

Modern shared-memory systems have erroneous, undefined
behavior for programs that are not well synchronized. A
promising solution is to provide fail-stop memory consistency,
which ensures well-defined behavior for all programs. While
fail-stop consistency avoids undefined behavior, it can lead
to unexpected failures, imperiling performance or progress.
This paper presents architecture support called Peacenik
that avoids failures in the context of fail-stop memory con-
sistency. We demonstrate Peacenik by applying Peacenik’s
general mechanisms to two existing architectures that pro-
vide fail-stop consistency. A simulation-based evaluation
shows that Peacenik eliminates nearly all of the high costs
of fail-stop behavior incurred by the baseline architectures,
demonstrating how to get the benefits of fail-stop consis-
tency without incurring most or all of its costs.
CCS Concepts. - Computer systems organization — Re-
liability; Availability; Processors and memory archi-
tectures; Multicore architectures; - Software and its en-
gineering — Consistency.
Keywords. Data races, fail-stop memory consistency, conflict
exceptions, failure avoidance
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1 Introduction

To achieve high performance, today’s shared-memory sys-
tems use compiler and hardware optimizations that assume
data-race-free (DRF) programs. The DRF assumption is codi-
fied in memory models including the C/C++ and Java mem-
ory models, which ascribe undefined or ill-defined semantics
to programs with data races [3, 4, 13-15, 43]. Data races are
not just erroneous in theory, but can cause serious problems
in practice [36, 37, 48, 65]. Mature, widely used applications
have data races, which are not easy to detect or eliminate
fully [23, 27, 34-37, 40, 48, 65]. Production systems typically
have different run-time characteristics than testing environ-
ments, making it difficult to catch all production-time data
races during in-house testing.

Researchers have sought to provide stronger end-to-end
(i.e., with respect to the source program) memory consistency
by restricting compiler and hardware optimizations—notably
by providing end-to-end SC [5, 58, 61, 64]. (Restricting only
hardware [16, 20, 26, 38, 39, 52] or the compiler [45] fails to
provide end-to-end SC.)

Alternatively, instead of restricting optimizations, a sys-
tem can detect the conditions for weak or undefined seman-
tics and treat them as fail-stop errors [9, 10, 21, 25, 41, 44,
53, 60, 67]. Under fail-stop memory consistency, all programs
have well-defined behavior, and an execution stops if it might
have undefined behavior due to a data race.

Fail-stop consistency solves one problem (undefined, erro-
neous behavior) but introduces another: data races can lead
to unexpected production-time failures [23, 27, 35, 40]. If a
system handles such failures by rebooting (i.e., terminating
and restarting) a program or a component, fail-stop errors
translate into more execution time.

This paper’s goal is to avoid failures due to fail-stop consis-
tency as much as possible, with minimal cost and complexity
while retaining strong consistency guarantees. To that end,
we introduce Peacenik, a set of architecture mechanisms
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that extend a baseline fail-stop consistency design to pro-
vide comprehensive, best-effort support for avoiding failures.
Peacenik’s main components are support for (1) pausing a
core’s execution to avoid conflicts that lead to failures, (2)
restarting regions of code that would otherwise fail, and
(3) cache replacement policy modifications that increase the
chances of a region being eligible for restart. Peacenik cannot
avoid all failures because its mechanisms are best-effort—in
particular, a core cannot restart a region if the dirty data
written by the region escapes from its private caches due
to eviction or a remote coherence request—but Peacenik’s
mechanisms are effective in practice. While Peacenik em-
ploys mechanisms borrowed from hardware transactional
memory (HTM), its design differs from both best-effort and
unbounded HTM (Section 2).

We show the generality and effectiveness of Peacenik by
developing prototype implementations that extend ARC and
Conflict Exceptions (CE), two architectures from prior work
that provide fail-stop consistency [10, 41]. While ARC and
CE—like any system that supports precise, unbounded re-
gion conflict detection—incur significant complexity on their
own, Peacenik’s architecture support for avoiding failures
is relatively simple and incurs low costs and complexity on
top of any underlying system.

A simulation-based evaluation shows that, under fail-stop
consistency semantics without Peacenik, several benchmarks
and real-world programs suffer from fail-stop errors due to
data races. Our experiments model these errors by reboot-
ing the program, or by repeating a request in the case of
server programs, leading to high performance costs from
fail-stop errors. We also find that fail-stop errors incur sig-
nificant costs even if the experiments model idealized pro-
cess checkpointing. In contrast, Peacenik avoids nearly all
fail-stop errors in our experiments, achieving essentially
the same performance as data-race-free programs would
achieve, while also providing strong behavior guarantees.
These results show that simple, effective failure-avoidance
mechanisms can overcome the primary obstacle to practical
fail-stop memory consistency.

2 Background, Problem, and Related Work

This section overviews fail-stop consistency and its costs,
and motivates the importance and challenge of avoiding
failures.

2.1 Fail-Stop Memory Consistency

As Section 1 explained, data races are erroneous and lead to
serious failures [3, 4, 13-15, 36, 37, 43, 48, 65]. Researchers
have proposed systems that provide fail-stop semantics by
generating a consistency exception upon a data race [19, 21, 24,
49, 53, 67]. Since sound and precise dynamic race detection
is expensive [19, 24], efficient systems provide fail-stop con-
sistency by detecting conflicts between concurrently executing

synchronization-free regions (SFRs) [9, 10, 25, 41, 44, 60]. (An
SFR is a sequence of per-thread dynamic instructions demar-
cated by synchronization operations.) In such systems—this
paper’s focus—a conflict indicates a data race, while a conflict-
free execution is equivalent to a serialization of executing
SFRs. The rest of this paper uses the terms “SFR” and “region”
interchangeably.

Lazy and eager conflicts. In this paper, an important dis-
tinction exists between conflicts that are detected lazily ver-
sus eagerly. We define a lazily detected conflict, or a lazy
conflict, as a conflict detected when it is “too late” to ensure
serializability of regions, i.e., if the continued execution can-
not guarantee region serializability. In contrast, an eagerly
detected conflict, or an eager conflict, is detected when it may
still be possible for the execution to achieve region serializ-
ability. Note that, in contrast with typical definitions of eager
conflict detection [29], our definition of an eagerly detected
conflict permits both accesses to have already executed, so
long as serializing the conflicting regions is still feasible. Our
Peacenik design handles both lazy and eager conflicts.

Existing fail-stop consistency systems. DRFx is a system
that provides fail-stop consistency by checking for conflicts
between regions that are bounded (statically limited to a
fixed number of memory accesses) [44, 60]. Bounded regions
reduce DRFx’s hardware requirements but require compiler
modifications that limit cross-region optimization. DRFx de-
tects conflicts lazily by broadcasting an ending region’s read
and write sets to other cores, which check for conflicts.

Valor, Conflict Exceptions (CE), and ARC detect conflicts
between (unbounded) SFRs, i.e., regions bounded only at syn-
chronization operations [9, 10, 41]. The resulting memory
consistency model, called SFRSx, ensures that every execu-
tion is SFR serializable or generates a consistency exception
due to a data race. Software or architecture support alone is
sufficient to provide end-to-end SFRSx: hardware and com-
pilers already restrict optimizations across SFR boundaries
and thus require no complementary modifications.

Valor provides SFRSx in software only, slowing programs
by almost 2 X on average [9]. CE and ARC are architectures
that provide SFRSx [10, 41]. CE detects all conflicts eagerly,
while ARC detects some conflicts eagerly and others lazily.

By adding simple hardware components, Peacenik’s mech-
anisms (Section 3) and architecture design (Section 4) can
extend any system that provides fail-stop behavior for con-
flicting regions, including DRFx, Valor, CE, and ARC. Our
prototype implementations of Peacenik extend CE and ARC
(Section 4).

2.2 Failures Impact Performance

Fail-stop consistency semantics provide a solid theoretical
foundation for memory consistency [3]. But what are the
practical implications of fail-stop consistency? What hap-
pens when a program encounters a consistency exception?



Best-effort HTM

Failure avoidance-mechanisms
Unbounded HTM under fail-stop consistency

A conflict is a(n) ...

Conflict detection ...

Pause execution at conflicts?
Regions may become ineligible for restart? Yes
Action when regions become ineligible for restart Abort

Misspeculation
May be imprecise
No, typically

Misspeculation Error

May be imprecise Must be precise
Yes, for bounded time Yes, indefinitely

No Yes

N/A Continue execution

Table 1. Comparison between the requirements of HTM and failure-avoidance mechanisms.

Although a program could potentially catch and handle a
consistency exception using language or library support, we
envision two major problems with that approach:

o Like memory errors and null pointer exceptions, con-
sistency exceptions are unexpected. Writing handlers
for every potentially shared access would be a huge
programming burden.

o Existing systems that provide fail-stop semantics attain
efficiency by detecting some or all conflicts after both
conflicting accesses have already executed [9, 10, 44,
60], making precise exceptions infeasible.!

Instead, we envision systems handling a consistency excep-
tion as a termination signal, by rebooting (i.e., terminating
and restarting) the program.

Fail-stop behavior essentially trades one problem for an-
other, avoiding the subtle failure modes of data races, but
causing systems to stop executing and repeat some or all
of their work upon encountering a data race. Consequently,
consistency exceptions represent a threat to performance:
a program that generates consistency exceptions will take
longer to produce results or handle requests, wasting time
and other resources. In this work, we seek to limit such costs,
while still providing well-defined behavior for all program
executions.

2.3 Avoiding Failure under Fail-Stop Semantics

Failure-avoidance mechanisms arguably should be imple-
mented in hardware. Supporting failure avoidance architec-
turally permits the failure avoidance mechanism access to
microarchitectural state such as the access metadata asso-
ciated with private and shared cache lines used by existing
fail-stop systems [10, 41, 44, 60].

Some prior work avoids failures with software support.
Avalon extends software-based SFRSx support to avoid con-

sistency exceptions by pausing threads that detect conflicts [71].

SOFRITAS enforces conflict serializability using two-phase
locking, effectively pausing conflicting threads [18]. Both

LA precise exception is generated immediately before a conflicting access
executes. Note that the conditions for a precise exception (detecting a
conflict before one of the conflicting accesses has executed) are stricter than
the conditions for an eagerly detected conflict (as defined in Section 2.1).

approaches rely on software only and do not introduce ar-
chitecture support for pausing or resuming cores, nor can
they support restarting regions.

Comparison with HTM. Architecture support for failure
avoidance under fail-stop consistency is related to hardware
transactional memory (HTM) [6, 11, 12, 28, 29, 31, 66, 69].
While our Peacenik design borrows and adapts some mech-
anisms from HTM, Peacenik differs from both best-effort
and unbounded HTM as a consequence of targeting the
fail-stop consistency context. Table 1 compares Peacenik’s
requirements with those of best-effort and unbounded HTM.
HTM conflict detection is generally imprecise because a con-
flict is only a misspeculation, while failure avoidance must
be precise since conflicts are errors. Some HTMs support
pausing and detecting pausing cycles (e.g., DATM [51] and
Wait-n-GoTM [32]); HTM must not impede progress due to
conflicts, while Peacenik can pause execution at a conflict
indefinitely since conflicts are errors. Likewise, HTM must
support restarting a region on a conflict—best-effort HTM
aborts a region that becomes ineligible for restart due to
escaped dirty values written by the region, while unbounded
HTM ensures regions are restartable—but Peacenik allows
regions to continue execution even if they become ineligible
for restart.

Both best-effort and unbounded HTM have limitations as
potential failure-avoidance mechanisms. Best-effort HTM
provides no progress guarantee and in practice cannot com-
plete long transactions or transactions with irrevocable op-
erations. Unbounded HTM adds significant complexity and
cost compared with this paper’s Peacenik mechanisms.

Other related work. Some prior work applies HTM or HTM-
like mechanisms to enforce serializability of SFRs, incurring
the complexity of unbounded HTM [5, 28, 47, 55, 56].
Wait-n-GoTM and BulkSMT use pausing to avoid con-
flicts [32, 50]. Like Peacenik, BulkSMT supports pausing in a
non-speculative setting, but provides a consistency guaran-
tee only with respect to the compiled program (serializability
of bounded chunks), not an end-to-end guarantee [50]. SC-
safe detects dependency cycles due to SC violations or false
sharing, in order to enforce SC and log violations of SC [20].
In contrast, Peacenik detects deadlocks that it has introduced
by pausing at detected region conflicts. ConAir and BugTM
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(a) Peacenik avoids a consistency exception at
an eagerly detected conflict by pausing Core 2.
Core 2’s region.

(b) Peacenik avoids a consistency exception
at a lazily detected conflict by restarting

(c) Peacenik detects a pausing deadlock caused by two
eagerly detected conflicts, and avoids a consistency ex-
ception by restarting Core 2’s region.

Figure 1. Three examples showing how Peacenik’s mechanisms avoid consistency exceptions. For (a) and (c), we assume the
conflicts are detected eagerly, while (b) assumes the conflicts are detected lazily. In all examples, shared variables x and y are
initially 0. Boxes demarcate synchronization-free regions (SFRs); dashed boxes indicate restarted regions. Gray text indicates
instructions delayed due to pausing. Gray dashed arrows indicate eager conflicts.

re-execute code regions to recover from concurrency bug
failures such as atomicity violations [17, 72].

How should failure-avoidance mechanisms be used? In
testing, it is counterproductive to hide errors, so develop-
ers should disable failure-avoidance mechanisms. However,
complete testing is infeasible. Even after fixing known data
races (e.g., races detected during testing), large concurrent
programs are likely to have unknown data races that mani-
fest rarely and unexpectedly on production systems. Produc-
tion systems should enable failure-avoidance mechanisms
to avoid or reduce real costs from fail-stop errors. To aid
debugging, a failure-avoidance mechanism such as Peacenik
can log conflicts avoided in production and report them to
developers.

3 Peacenik Design Overview

This section overviews the design of Peacenik, a set of ar-
chitecture mechanisms for avoiding consistency exceptions.
Section 4 describes Peacenik at an architectural level and
studies two prototype implementations of Peacenik by ex-
tending existing fail-stop systems.

Pausing at region conflicts. Existing fail-stop systems gen-
erate a consistency exception when they detect or infer a
region conflict between executing cores,? which occurs when
one core’s memory access conflicts with a memory access
made in another core’s concurrent region [9, 10, 41, 44, 60].
Figure 1(a) shows an example of a region conflict. In the
example, the system eagerly detects a write-read conflict at
Core 2’s read of x with Core 1’s write to x. A system that

ZFor now we assume each core executes a single pinned thread. We relax
this limitation and discuss Peacenik’s corresponding handling in Section 4.6.

ensures region serializability must not allow Core 2 to con-
tinue execution, at least until Core 1’s region completes; if
Core 2 were to read y immediately after reading x (and see
0), the execution would become unserializable.

Peacenik avoids the region conflict by pausing Core 2’s
execution until Core 1’s ongoing region completes, when
Core 2’s access can then proceed without any conflict. Peace-
nik pauses Core 2 at the conflicting access until Core 1 fin-
ishes its ongoing region, serializing Core 2’s region after
Core 1’s.

Pausing is not a panacea for avoiding consistency excep-
tions, for two reasons. First, Peacenik cannot usefully pause
a core at a conflict detected lazily because it is too late for
pausing to ensure region serializability (Section 2.1). In Fig-
ure 1(b), the system detects a conflict on x lazily at the end
of Core 2’s region: the core has read an out-of-date value for
x, and it is too late to pause to avoid violating serializability.

Second, pausing can lead to a pausing deadlock when mul-
tiple cores are involved in a cycle of wait-for dependencies.
Figure 1(c) shows that two eagerly detected read—write con-
flicts lead to a pausing deadlock when both cores try to avoid
the conflicts by pausing. Peacenik detects a pausing deadlock
by detecting a cycle of wait-for dependencies, and selects
one core involved in the deadlock to generate a consistency
exception (or to restart its region if eligible, as discussed
next).

Restarting regions. Peacenik further avoids consistency
exceptions by restarting eligible regions that would otherwise
generate a consistency exception (due to a lazily detected
conflict or a pausing deadlock). By restarting a region R,
Peacenik tries to serialize R after any other core’s region with
which R conflicted. Region restart is best effort; a region is
eligible to restart if no data written by the region has become



visible to reads by other cores (e.g., through a cache eviction
or remote coherence request).

Figures 1(b) and 1(c) show how restarting a region avoids
a consistency exception due to a lazily detected conflict and
a pausing deadlock, respectively. In both examples, Peace-
nik avoids the consistency exception by restarting Core 2’s
ongoing region (the dashed box) and invalidating privately
cached data, serializing it after Core 1’s completed region.
Both examples assume that the regions are eligible for restart.

Regions can repeatedly restart (e.g., by repeatedly con-
flicting with each other), leading to livelock. As a simple
extension to the above design, Peacenik could avoid live-
lock by using exponential backoff and by restarting only the
youngest eligible region.

Enhancing best-effort region restart. To improve the odds
that a region will be eligible to restart, Peacenik modifies the
replacement policy of cores’ private caches. The modified
policy avoids evicting lines written by the current region and
instead favors evicting other lines in the same associativity
set.

Fallback. In the case of a pausing deadlock or lazy conflict
in which no region is eligible to restart, Peacenik falls back
to a consistency exception.

4 Peacenik Architecture Design

This section introduces a Peacenik architecture design that
generally applies to any baseline architecture that provides
fail-stop consistency. We describe how to apply the Peacenik
architecture design to two existing fail-stop architectures,
ARC and CE [10, 41]. The resulting designs are called ARC+
Peacenik and CE+Peacenik. This section assumes cores with
two-level private caches, i.e., L1 and L2. We describe quan-
titatively how Peacenik adds minimal complexity on top of
an underlying system that provides fail-stop consistency.

4.1 Background: ARC and CE Details

Both ARC and CE are architecture designs that provide SFRSx
(Section 2.1) by detecting conflicts between concurrently
executing regions [10, 41]. ARC detects conflicts both eagerly
and lazily, while CE detects all conflicts eagerly.

ARC. In ARC, cores execute synchronization-free regions
(SFRs) mostly independently. At a high level, when a region
completes, ARC uses a region commit protocol to ensure that
the region’s memory accesses did not conflict with accesses
in a region executed by another concurrently executing core,
and that the region read consistent memory state. The proto-
col consists of three steps: (1) pre-commit, which writes back
access metadata about privately cached dirty lines to the LLC,
detecting eager conflicts in the process; (2) read validation,
which compares privately cached read-from lines with the
LLC’s versions, detecting lazy conflicts for inconsistent lines
and eager write-read conflicts; and (3) post-commit, which

Wait-for core
0]
Pausing "
controller IM[ E é
LLC AIM T o]
_______________________________________ Restart-forbidden
bit
Core 1 Coren El Pause bit
E n E n ARC's access
L2 L2 metadata + Peacenik's
deferred-write bit

Figure 2. ARC+Peacenik architecture components. Addi-
tions to ARC are shaded; Peacenik also adds a per-line
deferred-write bit to the L2 access metadata. Components are
not shown to scale, e.g., the pausing controller’s actual area
requirements are negligible: logic for maintaining the wait
list, which consists of n wait-for core IDs.

writes back privately cached dirty lines to the LLC and clears
access metadata for the core. When a core evicts a private
cache line read and/or written by its ongoing region, ARC
immediately performs read validation and/or pre-commit for
the evicted line only.

For all detected conflicts, ARC delivers a consistency ex-
ception to the involved core, which handles the exception
as a termination signal. Before performing an externally
visible operation such as a system call, ARC (and other fail-
stop systems that detect conflicts lazily) must provide timely
exceptions. In particular, ARC preemptively performs read
validation to check for conflicts before an externally visible
operation.

Architecturally, ARC has three main components, illus-
trated by Figure 2 (excluding the shaded components, which
Peacenik adds): (1) per-line metadata in each core’s private
L1 and L2 caches, (2) an access information memory (AIM),
and (3) distributed consistency controllers (CCs). The meta-
data added to private cache lines consists of two bits per
byte that record whether the core has read and written each
byte in the line. The AIM is a banked cache (banking not
shown in Figure 2) of each core’s access metadata for each
line resident in the LLC. A core’s core-side and AIM-side CCs
manage the movement of data and metadata between the
core, LLC, and AIM.

CE. CE introduces per-byte local and remote access bits to
each privately cached line to keep track of bytes accessed
by the ongoing region of the local core and remote cores,
respectively. It piggybacks on MESI coherence messages to
communicate access information indicated by the access
bits between cores, and checks for region conflicts before
performing any access by comparing the local access and
remote access bits. For any conflict detected, CE generates



a consistency exception to terminate the execution. A core
sends its local access bits in an end-of-region message to
other cores at each region boundary, and a core receiving an
end-of-region message clears corresponding remote bits in
its own private caches and sends back an acknowledgment
message. CE also handles evictions from private caches to
the LLC by storing local access bits of evicted lines in a
per-process structure called the global table.

A CE architecture diagram (not shown) would differ from
Figure 2 by removing the AIM and CCs, adding a directory
and core-to-core communication, and using different access
metadata than ARC.

Peacenik’s architectural extensions can be added to a variety
of architectures, including multi-socket NUMA systems, and
various cache coherence protocols. The Peacenik prototype
implementations that extend ARC and CE are a single-socket
design with a single shared cache (LLC).

4.2 Architecture Support for Pausing

To supporting pausing, Peacenik introduces (1) a pausing
controller that maintains logic to determine when a core
should pause and (2) a per-core pause bit that indicates that a
core is paused. When the baseline fail-stop architecture (e.g.,
ARC or CE) detects a conflict eagerly, instead of triggering
a consistency exception, it signals the pausing controller.
The baseline architecture must identify two cores to the
pausing controller: a paused core that is about to pause and a
wait-for core that the paused core is waiting on. The pausing
controller records the wait-for relationship between the two
cores in a structure called the wait list. The wait list can be
implemented as a simple lookup table with one entry per
core, because each paused core waits directly on at most one
other core at a time.

The pausing controller also sets the paused core’s pause bit,
by activating a dedicated control signal to the core. When a
core’s pause bit is set, the core stops executing instructions. A
pipelined core stalls its pipeline, and flushes its speculatively
executed instructions from the pipeline. A paused core’s
cache controller continues responding to cache line requests
from other cores and the LLC.

When a wait-for core completes its ongoing region, it
signals the pausing controller to clear the paused core’s pause
bit and entry from the wait list. Once the pausing controller
resets a core’s pause bit, the core resumes execution.?

The pausing controller detects a pausing deadlock, which
is a dependency cycle between a set of paused cores, by
performing deadlock detection [46].

3Each core could have a bit indicating whether it is a wait-for core. To
avoid a race between setting the wait-for bit and the relevant region ending,
the design could identify regions uniquely (e.g., with per-core counters).
Alternatively, instead of using per-core wait-for bits, the pausing controller
could periodically wake up each paused core, which would recheck the
conflict and the wait-for relationship.

To implement support for pausing in ARC and CE, it is
straightforward to add a centralized pausing controller to
them, as shown in Figure 2 for ARC. The pausing controller
could instead be distributed; however, it is an unlikely bot-
tleneck since it is signaled rarely: when a conflict is detected
or a wait-for core ends a region. Arbitration at the pausing
controller is simple because of the rarity of these events. At
small core counts, a bus connecting all cores to the paus-
ing controller may be sufficient. At larger core counts, an
ordered buffer at the pausing controller that NACKs signals
on overflow is sufficient. After such a NACK, a core could
try again, or eventually give up on pausing and terminate
with an exception.

Pausing in ARC+Peacenik. When a core’s AIM-side CC
detects a conflict eagerly, it signals the pausing controller
to set the paused core’s pause bit. When the wait-for core
completes post-commit for its ongoing region, it signals the
pausing controller, which clears the paused core’s pause bit,
allowing the core to resume.

In ARC, there are two situations in which a core may detect
a conflict eagerly and consequently pause: during region
commit and on an eviction from a core’s L2 cache. During
region commit, a core’s CC may detect an eager conflict
when performing pre-commit or read validation, in which
case the core’s CC pauses the core; it restarts the commit
protocol when the core resumes. Read validation may detect
a lazy conflict, which is unavoidable by pausing, triggering
a region restart if eligible. Likewise, a core’s CC may detect
a conflict when performing pre-commit or read validation
on a single line evicted from the private L2; it handles the
conflict similarly to the commit protocol’s handling, except
there is no need to restart the protocol.

Pausing in CE+Peacenik. When a core’s private cache de-
tects a conflict before accessing a cache line, it signals the
pausing controller to pause the core. The pausing controller
then checks the line’s local bits in each of the other cores’
private caches (or the global table if the line was evicted by
a core) and identifies a core as the wait-for core if the core
has conflicting local bits set with the pause core. When the
wait-for core ends its ongoing region, clearing its local access
bits and receiving all acknowledgments from other cores (a
paused core still acknowledges another core’s end-of-region
message), the wait-for core signals the pausing controller
to clear the paused core’s pause bit, allowing the core to
resume.

4.3 Architecture Support for Region Restart

When the baseline fail-stop architecture detects a conflict
lazily or when two or more cores enter into a pausing dead-
lock, Peacenik tries to avoid a consistency exception by
restarting the execution of a relevant core’s ongoing region
that is eligible to restart. A core’s region is eligible to restart
if, during the region’s execution, the core has not written



back any line updated by the region from its private cache(s)
to the LLC or any private cache of another core. A core be-
comes ineligible to restart when it writes back such a line,
making it visible to other cores in the system.

Peacenik introduces a per-core restart-forbidden bit that in-
dicates whether a core’s region is eligible to restart (Figure 2).
Whenever a core writes back a private line that was updated
by the current region to the LLC or any private cache of
another core, the core sets its restart-forbidden bit. I/O op-
erations, other system calls, and interrupts, which make a
region irrevocable because their effects may be visible to the
external world, also trigger setting the restart-forbidden bit.

When a core begins a region, it clears its restart-forbidden
bit and saves a shadow copy of its current execution context,
which is the same architecture state that the core normally
saves on a context switch (i.e., register state, but not cache
or memory contents). The core uses this shadow copy to
initiate the re-execution of a region by restoring its execution
context.

To handle a lazily detected conflict, Peacenik restarts a
region involved in the conflict if it is eligible for restart (i.e.,
its restart-forbidden bit is cleared). To handle a pausing dead-
lock, the pausing controller selects an arbitrary core that
has its restart-forbidden bit cleared, and signals the core to
restart its region.

A core takes several steps to restart an eligible, ongoing
region. To preserve atomicity, Peacenik needs to revert the
updates performed by the restarting region. The core rolls
back the region’s writes by invalidating the private cache
lines updated by the region, relying on a lower-level cache
(or memory) to contain values corresponding to the region’s
start. Next the core restores its execution context (i.e., regis-
ter file) from the shadow copy saved at region start, and starts
executing again from the first instruction of the restarting
region. The baseline fail-stop system may need to perform ad-
ditional system-specific actions to handle the region restart,
such as clearing access metadata used for conflict detection.
Finally, the core prompts the pausing controller to reset the
pause bits for any cores that are waiting for the restarting
core.

Peacenik relies on the baseline fail-stop system having a
mechanism for differentiating lines written by the restarting
region from other dirty lines (i.e., lines written by the core’s
previous regions). Furthermore, the system must ensure that
a dirty line is backed up in the cache hierarchy before being
written by a new region; otherwise values that correspond
to the region’s start will be lost, thwarting region restart.

Peacenik cannot tolerate a lazy conflict or pausing dead-
lock if no involved core is eligible to restart. In such a case,
Peacenik generates a consistency exception that terminates
the program’s execution. A feature of Peacenik is that it does
not modify the baseline fail-stop architecture’s consistency
exception delivery mechanism. We assume the underlying

architecture raises a dedicated per-core signal via a non-
maskable interrupt to the executing core that, by default, is
handled by operating system code that terminates program
execution.

Regionrestart in ARC+Peacenik. In ARC+Peacenik, when
a region restarts, the core clears its access information in the
AIM, and clears access information for each read or written
line in its private caches and then invalidates those lines.
The core invalidates lines not only written by the restarting
region, but also lines read by the region, in order to fetch
up-to-date copies of them during re-execution of the region.
ARC already differentiates lines written by the restarting
region from previously written lines. And it can generally
invalidate a region’s written lines without losing writes by
previous regions—except in the presence of ARC’s deferred
write-back optimization, which defers writing back a region’s
written-to lines until another core accesses them [10]. Briefly,
ARC+Peacenik ensures that such lines from a previous re-
gion are not overwritten by writes in the current region, by
backing up the lines’ values in the L2 when the lines are
deferred during post-commit. ARC+Peacenik introduces a
per-line deferred-write bit in the L2 to indicate such lines
(Figure 2). If the L1 evicts a line for which the same line in
the L2 has its deferred-write bit set, the L2 writes back its
dirty values to the LLC and clears the deferred-write bit.

Region restart in CE+Peacenik. In CE+Peacenik, a core
performs end-of-region actions as usual before restarting
its region: clearing local access bits, sending end-of-region
messages to other cores, and waiting for acknowledgments.
To support region restart, CE+Peacenik must differentiate
lines written by the current region from previously written
lines, and preserve values of data from region start time.
Briefly, CE+Peacenik extends CE so that when a dirty line is
written to for the first time by a region (i.e., no access bits
have been set), the line is first written back to the next lowest
level of the cache/memory hierarchy. Then invalidating a
region’s written-to lines restores the region start state.

4.4 Reducing Dirty Evictions to Shared Cache

To avoid dirty evictions to a shared cache, which render a
core’s region ineligible for restart, Peacenik modifies the
last-level private cache (e.g., the L2 in Figure 2) replacement
policy to prefer clean lines over dirty ones as eviction candi-
dates. Peacenik adds this constraint to a baseline pseudo-LRU
replacement policy, modeled after the one used in the Intel
Core i7 memory hierarchy [30]. Baseline pseudo-LRU uses
one most recently used (MRU) bit per line that the core sets
each time it accesses the line, indicating that the line was
recently accessed. When the MRU bits of all lines in a cache
set become set, pseudo-LRU clears all of the set’s MRU bits,
except for the most recently set bit. Pseudo-LRU implements
eviction by selecting an arbitrary line that has its MRU bit
cleared.



To reduce the frequency of evictions of dirty lines, Peace-
nik modifies the replacement policy’s behavior when clear-
ing MRU bits: instead of clearing all MRU bits (except for
the most recently set one), Peacenik sets each line’s MRU
bit equal to the value of the line’s dirty bit. To select a line
for eviction, Peacenik’s modified pseudo-LRU evicts a line
with its MRU bit cleared, which will be a clean line if any
line is clean. If all of a set’s MRU bits are set, then all of
the lines in the set are dirty. If all of the lines in the set are
dirty, Peacenik’s replacement policy behaves like a normal
pseudo-LRU policy, and chooses an arbitrary line to evict.
The core sets its restart-forbidden bit if it evicts a dirty line
in this case.

Due to inclusion, when a core evicts a line from L2, the
corresponding line in L1 must be recalled and evicted. To
avoid evicting a line that is clean in L2 but dirty in L1—
which would make the region ineligible to restart—a core
sets the dirty bit for a line in both L1 and L2 when the L1 line
first becomes dirty in a region, making Peacenik’s modified
pseudo-LRU less likely to evict it.

Prior research on high-performance cache replacement
policies shows that the effects of replacement decisions are
significant only for the shared LLC, and modifying the re-
placement policy of the L2 cache is unlikely to have a signif-
icant impact on performance [33, 68].

ARC+Peacenik and CE+Peacenik use the modified L2 evic-
tion policy exactly as described above.

4.5 Hardware Complexity

The hardware components added by Peacenik on top of the
underlying systems that provide fail-stop consistency have
low complexity and do not contribute significantly to area
or static power. Per-core pause and restart-forbidden bits
contribute negligibly to complexity. Peacenik adds a per-line
deferred-write bit to the L2 cache, which amounts to only
0.1% of the L2 cache. The wait list in the pausing controller
contains one entry per core, and each entry identifies a wait-
for core. With ¢ cores, the overhead of the wait list is ¢ X
logy(c) bits, which is just 20 bytes of storage for 32 cores.
The logic to check for pausing is not on the critical path of
cache data or tag accesses and will not impact cycle time.
This checking logic relies on simple table lookups and single-
bit comparators (for checking pause and restart-forbidden
bits) and does not contribute significantly to complexity.
Peacenik’s additions on top of existing support for fail-stop
consistency increase complexity only negligibly and are not
likely to significantly impact power, area, or performance.

4.6 Thread Migration and Context Switches

The discussion so far has assumed that each core executes a
single, pinned thread. Here, we discuss how Peacenik sup-
ports thread switching and migration.

Peacenik assumes that the underlying fail-stop system
(e.g., ARC or CE) already supports migrating and switching

threads. Peacenik additionally must virtualize per-thread
pausing and restart state. Each thread must include a pause
bit and a wait-for entry in its execution context that is saved
with the rest of the context through switches and migration,
and used to set a core’s pause bit and waiting-for status when
the thread is scheduled or migrated to the core. A paused
core can switch threads; it is likely advantageous to switch
to a non-paused thread.

Although each thread could add a restart-forbidden bit
to its execution context, it seems difficult to support restart
for a migrated or switched thread. A straightforward option
is to simply set a core’s restart-forbidden bit whenever it
switches to a different thread.

It is straightforward to extend Peacenik to support simul-
taneous multithreading (SMT), by adding pause and restart-
forbidden bits and a wait-for entry in the wait list for each
logical core, and applying Peacenik’s mechanisms to logical
cores.

Pausing interacts with I/O and interrupts similarly to how
pausing responds to thread context switches. We argue that a
system that provides fail-stop semantics should avoid detect-
ing conflicts when executing privileged code such as system
calls.

5 Evaluation

This section evaluates Peacenik’s ability to avoid consistency
exceptions and the resulting impact on performance.

5.1 Evaluation Methodology

We implemented the two Peacenik prototypes, ARC+Peacenik
and CE+Peacenik, by extending simulators for ARC and
CE [10, 41] that we implemented for the ARC paper [10].4
We have made our ARC+Peacenik and CE+Peacenik imple-
mentations publicly available.®

The simulators consume a trace of instructions generated
by a Pin-based front end [42] and model a simple, in-order
core architecture with 8—32 cores.® Table 2 shows the main
parameters used for the modeling. We report execution time
as the maximum cycles of any core. The ARC and ARC+
Peacenik simulators model a non-inclusive LLC, while the
CE and CE+Peacenik simulators model an inclusive LLC
to support an inclusive directory cache embedded in the
LLC [62].

Workloads. Our experiments run the PARSEC 3.0 bench-
marks [7] with simsmall inputs, except we use simmedium
for swaptions because its simsmall workload does not sup-
port >16 threads. We exclude facesim and raytrace, which
fail to finish executing with the simulators, and freqmine,

*https://github.com/PLaSSticity/ce-arc-simulator-ipdps19
Shttps://github.com/PLaSSticity/peacenik-simulators-asplos20

® While trace-based simulation and in-order core modeling would hide weak
memory model effects, they should not significantly affect the prevalence
of conflicts between synchronization-free regions.
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8-, 16-, or 32-core chip at 1.6 GHz.

Processor . .

Each non-memory-access instruction takes 1 cycle.
L1 cache 8-way. 32 I.(B per-core Private cache,

64 B line size, 1-cycle hit latency
L2 cache 8-way 256 KB per-core private cache,

64 B line size, 10-cycle hit latency

15-cycle one-way cost
(CE and CE+Peacenik only)

Remote core
cache access

LLC 64 B line size, 35-cycle hit latency
8 cores: 16-way 16 MB shared cache
16 cores:  16-way 32 MB shared cache
32 cores: 32-way 64 MB shared cache
AIM cache 4-way metadata cache with 32K lines and 8 banks
(ARC and ARC+Peacenik only)
8 cores: 100 B line size (~3.2 MB), 4-cycle hit latency
16 cores: 172 B line size (~5.4 MB), 6-cycle hit latency
32 cores: 308 B line size (~9.7 MB), 10-cycle hit latency
Memory 120-cycle latency
Bandwidth NoC: 100 GB/s, 16-byte flits; Memory: 48 GB/s

Table 2. Architectural parameters used for simulation.

which uses OpenMP instead of pthreads. The simulators
only compute cycles for each PARSEC program’s “region of
interest” (ROI), which includes the whole parallel phase of
each program.

The experiments also execute two real server programs:
Apache HTTP Server 2.4.23 (httpd) and MySQL Server 5.7.16
(mysqld) [1, 2]. We configure both programs to create a
single child process with n worker threads, where n is the
number of cores in the simulated architecture. We launch n
client processes that repeatedly and concurrently perform
simple requests using a methodology documented by prior
work [70].” In our experiments, client processes executing
natively send 128K HTTP requests (httpd) or 256 SQL queries
(mysqld) to the server, distributed evenly over the client
processes.

We compiled the PARSEC benchmarks without optimiza-
tions (i.e., gcc -O0) and mysqld with -O1, for two reasons.
First, our Pintool front end identifies synchronization op-
erations according to specific pthreads function names. At
higher optimization levels, these names can be optimized
away, leading to missing synchronization boundaries and
thus false conflicts. Second, with higher optimization levels
our Pintool is unable to consistently get the source locations
involved in conflicts, which we need to report, analyze, and
understand the conflicts reported in Section 5.5. We per-
formed a separate evaluation and found no significant differ-
ence between the unoptimized and optimized experiments in

"We reuse methodology from https://github.com/jieyu/concurrency-bugs,
but use more recent versions of httpd and mysqld, which still have data
races that manifest as region conflicts.

terms of the relative performance differences between con-
figurations. We compiled httpd at its default optimization
level (-O2) because the default optimizations did not lead
to missing synchronization functions or inconsistent source
locations in our experiments.

Handling synchronization. All simulators identify calls
to pthreads functions (and mysqld’s PolicyMutex.enter() and
PolicyMutex.exit()) as lock operations. At a lock operation,
ARC and ARC+Peacenik execute a distributed queue-based
locking protocol [10, 63] and end the current synchronization-
free region (SFR) by performing the region commit protocol,
while CE and CE+Peacenik end the current SFR by perform-
ing end-of-region actions.

ARC treats non-pthreads atomic instructions (e.g., inlined
assembly or C++ atomic accesses [14]) as synchronization
but not region boundaries. To implement that behavior, the
ARC and ARC+Peacenik simulators treat non-pthreads atom-
ic instructions (i.e., instructions with the x86 LOCK prefix
and fence instructions; the evaluated programs do not use
C++ atomic variables; atomic instructions in the experiments
originate from inlined assembly in the source code) as lock
operations but not region boundaries. CE and CE+Peacenik
treat non-pthreads atomic instructions as regular memory
accesses but do not detect conflicts on the instructions. As
a result, the simulators do not detect conflicts on atomic
instructions, but they may detect false conflicts on accesses
to other variables happens-before-ordered by the atomic
instructions. The simulators detected such false conflicts
in several low-level library functions: malloc, start_thread,
dlinfo, and seekoff. We modified the simulators to ignore
these conflicts. A deployed system using ARC and CE should
identify such atomic-instruction-ordered accesses in library
functions as atomic.

Modeling of pausing, region restarts, consistency excep-
tions, and reboots. The simulated cost of Peacenik pausing
a core C is the cycles executed by the wait-for core C,, while
C is paused, transitively including any cycles that core C,,
spent in a paused state while waiting for other cores. To
achieve realistic thread interleavings with pausing, the sim-
ulator backend “pauses” the application thread by signaling
back to the Pintool front end, which stops executing the
thread until signaled to continue by the simulator backend.

The simulators model the cost of region restart by re-
executing the region’s instructions in the simulator, but not
in the actual application. To support re-execution, the simu-
lator buffers each core’s region’s instructions until commit.
Our evaluation faithfully counts the performance cost no
matter how many times a region restarts.

For PARSEC, we assume that ARC, CE, and Peacenik han-
dle a consistency exception by rebooting the application,
i.e., restarting it from the beginning. The simulators model
the cost of rebooting by adding the total cycles incurred so
far (not including prior reboots) to the overall computed
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Action taken on detected...

Config eager conflict lazy conflict*

pausing deadlock L2 replacement policy

ARC or CE | Consistency exception Consistency exception N/A
Consistency exception Consistency exception | Default pseudo-LRU

PNp Pause core
PNpr Pause core Restart region”
PN Pause core Restart region”

Default pseudo-LRU

Default pseudo-LRU
Modified pseudo-LRU

Restart regiomT
Restart regionT

Table 3. Behaviors of each simulated configuration, characterized by actions taken on eagerly and lazily detected conflicts and
on pausing deadlocks, and whether using the modified pseudo-LRU replacement policy in the L2 cache. * CE and CE+Peacenik
do not detect any conflicts lazily. T If a region is ineligible to restart, Peacenik generates a consistency exception.

costs. If a server program (httpd or mysqld) encounters a
consistency exception while processing a request, we as-
sume the server can safely retry just the exceptional core’s
current request. The simulators model retried requests by
adding the request’s cycles so far (not including prior re-
tries) to the core’s total costs. If a server program generates
a consistency exception while not processing a request, the
simulators model a reboot by adding only the cycles needed
to start the server, not to repeat any requests, to the overall
computed costs.

5.2 Peacenik’s Run-Time Impact

This section evaluates Peacenik’s ability to avoid consistency
exceptions and thus reduce execution costs compared with
ARC and CE. To break down the benefit of Peacenik’s mech-
anisms, we use the following configurations, which extend
the baseline system (ARC or CE):

e PNp is a partial Peacenik configuration that pauses at
eager conflicts, but does not restart regions.

e PNpr extends PNp to restart eligible regions that en-
counter a lazy conflict (if applicable) or pausing dead-
lock.

e PN is the full, default Peacenik configuration. It ex-
tends PNpr by modifying pseudo-LRU to avoid dirty
L2 evictions.

The PN configuration faithfully performs Peacenik’s modi-
fied pseudo-LRU algorithm and thus incurs any performance
effects resulting from potentially suboptimal eviction de-
cisions. Other Peacenik and non-Peacenik configurations
faithfully perform unmodified pseudo-LRU.

Table 3 summarizes the behavior of each configuration.

Table 4 and Figure 3 present the main results of the eval-
uation. They show results for the four programs for which
ARC and CE detect conflicts for 32 cores: canneal, stream-
cluster, httpd, and mysqld. For each program, all ARC and
ARC+Peacenik configurations process the same execution
trace generated by the Pintool front end; similarly, CE and
CE+Peacenik configurations process the same trace. We run
ARC and CE experiments separately because ARC and CE
use different conflict detection mechanisms, and hence their
pausing behavior differs and leads to different traces.

In Table 4, the Ordinary regions (cycles) column is each
program’s total executed SFRs and executed cycles, exclud-
ing extra regions and cycles executed due to pausing and
restarting. The Regions w/... columns count regions with at
least one eagerly detected conflict (EC), lazily detected con-
flict (LC), and pausing deadlock (PDL), respectively. Peace-
nik’s pausing inherently avoids eagerly detected conflicts,
so EC actually represents conflicts avoided by pausing for all
Peacenik configurations. The Region restarts column counts
eligible regions restarted by Peacenik. The Retried requests
(avg. cycles) column counts retried requests and reports av-
erage cycle cost of each retried request (applicable to server
programs only). App reboots (avg. cycles) counts application
reboots and shows average cycle cost of each reboot.

Figure 3 shows run time for the same configurations and
programs as Table 4. The graphs break down run time into
multiple components. All configurations incur costs due to
ordinary execution and handling exceptions. Each program’s
bars are normalized to the ordinary execution cost of the
baseline (ARC or CE alone). Peacenik includes costs for paus-
ing and restarting regions, although costs are small in the
experiments and not visible in most cases.

PARSEC programs. The simulators report hundreds of con-
flicts in canneal and streamcluster. ARC and CE generate
consistency exceptions at these conflicts and incur high slow-
downs (76-240 X for canneal and 240-670 X for streamclus-
ter) from substantial re-execution of the program from the
start. For example, as Table 4 shows, ARC’s consistency ex-
ceptions in canneal incur 20 million cycles per reboot in
an execution of only 47 million cycles. ARC and CE detect
different numbers of conflicts (and in general, CE detects
more conflicts than ARC) because (1) CE detects all con-
flicts eagerly and (2) ARC and CE detect conflicts at different
points (which explains why ARC detects a different number
of conflicts than CE for canneal, despite detecting no lazy
conflicts).

In contrast, Peacenik avoids much or even all of the cost of
consistency exceptions. For canneal, ARC+Peacenik pauses
at all 189 eagerly detected conflicts (more than the 173 con-
flicts reported by ARC because pausing leads to different tim-
ing and thus different region conflicts), instead introducing



(a) ARC and ARC+Peacenik configurations

(b) CE and CE+Peacenik configurations

a Ordinary| Regions w/ | Region Retried App a Ordinary| Regions w/ | Region Retried App
é“ Config| regions |EC LC PDL| restarts | requests reboots 2‘ Config| regions | EC PDL | restarts | requests reboots
(cycles) (avg. cycles) (avg. cycles) (cycles) (avg. cycles) (avg. cycles)
— ARC 173 0 - - - 173 (20M) - CE 516 - - - 516 (20M)
2  PNp 1,280 [189 0 2 - - 2 (3.4M) ¢ PNp 1,216 | 493 17 - - 17 (39M)
§ PNpr 47M) [189 0 2 0 - 2 (3.4M) § PNpr (44M) | 493 17 0 - 17 (39M)
PN 0 0 0 0 - 0 PN 492 17 0 - 17 (39M)
. ARC 0 566 - - - 566 (160M) ., CE 1672 - - 1,672 (140M)
ES PNp 368,550 | 0 566 0 - - 566 (160M) ES PNp 368,563 | 790 0 - - 0
§% PNpr | (380M) | 0 566 0 565 - 1 (20M) £3 PNpr | (360M) | 790 0 0 - 0
” PN 0 566 0 | 566 - 0 “° PN 79 0 0 - 0
ARC 3 3 N - 2 (200K) 4 (26M) CE 8 - - 0 8 (26M)
—é’_ PNp 1,177,315 | 5 4 2 - 2 (210K) 4 (26M) = PNp 1,172,175 8 0 - 0 0
E PNpr | (330M) |7 4 3 7 0 0 E PNpr | (4o0M) | 8 0 0 0 0
PN 7 4 3 7 0 0 PN 8 0 0 0 0
- ARC 2 1 - - 9 (840K) 4 (790M) < CE 19 _ _ 0 19 (750M)
_z PNp 905356 | 2 12 0 - 9 (840K) 3 (790M) < PNp 967,908 10 0 _ 0 0
g PNpr | (1,100M) | 0 11 0 11 0 0 g PNpr | (1100M) | 10 0 0 0 0
PN 0 11 0 11 0 0 PN 10 0 0 0 0

Table 4. Run-time characteristics of programs for which ARC and CE detect conflicts, on 32 cores. A blank entry (-) indicates
an inapplicable case for the configuration or program. The table reports cycles in thousands (K) or millions (M), rounded to
two significant figures. EC: eager conflicts, LC: lazy conflicts, PDL: pausing deadlocks
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Figure 3. Execution time for the baseline systems ARC and
CE, and the Peacenik configurations based on them, on 32
cores, normalized to each baseline system’s ordinary execu-
tion cost. Overflow numbers are rounded to two significant

figures.

just 2 pausing deadlocks due to cyclic pausing dependencies—
both of which occur early in execution, leading to low reboot
costs. The pausing deadlocks occur in regions that are ineli-
gible to restart, and PNpr does not provide more benefit than
PNp. PN benefits canneal indirectly by avoiding evictions of
written-to lines that lead to canneal’s write—write conflict
(Section 5.5). As a result, the conflicting regions complete
without conflict. CE+Peacenik pauses at all 493 conflicts (less
than the 516 conflicts reported by CE for the same reason
as explained above for ARC+Peacenik) but introduces 17
pausing deadlocks. All of the pausing deadlocks occur in
regions that are ineligible to restart, and region restart in
PNpr and PN cannot avoid them. Modified pseudo-LRU does
not provide as much benefit as in ARC+Peacenik since the
regions are ineligible for restart due to remote cache requests
of their written-to lines rather than evictions. But PN’s modi-
fied pseudo-LRU enables detecting 1 fewer conflict than other
CE+Peacenik configurations because the pausing controller
identifies the wait-for core for a paused core by checking in
order the conflicting line’s local bits in each core’s private
caches and the global table if the line was evicted by its core
(Section 4.2). When multiple cores concurrently write to the
same location and cause a conflict, different wait-for cores
may be identified under different replacement policies de-
pending on where the conflicting line resides (private caches
or the LLC), leading to different timing and thus different
region conflicts. CE+Peacenik incurs a slowdown of 17 X,
much less than CE’s 240 X.

For streamcluster, all consistency exceptions generated
by ARC are for lazily detected conflicts that pausing cannot
avoid and thus PNp does not reduce costs. PNpr avoids all but
one consistency exception because all regions except one are



eligible to restart, which substantially improves run time. By
modifying pseudo-LRU, PN enables one region to restart that
would otherwise be ineligible to restart, avoiding consistency
exceptions entirely. CE+Peacenik detects all conflicts eagerly
and thus pausing avoids all consistency exceptions, without
incurring any pausing deadlocks.

Server programs. For httpd, ARC generates 6 consistency
exceptions: 2 occur when processing a request, allowing
retrying the request; the other 4 occur outside of request
processing, requiring a server reboot. Reboots incur a rela-
tively low cost: booting takes only 5% of httpd’s ordinary
cycles. PNp detects 9 conflicts, again a few more than ARC
due to pausing’s impact on region timing. PNp does not re-
duce consistency exceptions for httpd because PNp has extra
conflicts and pausing causes 2 pausing deadlocks. For the
PNpr and PN configurations, all regions with lazily detected
conflicts or pausing deadlocks are eligible for restart, and
ARC+Peacenik avoids all consistency exceptions. CE detects
8 eager conflicts; pausing avoids all conflicts without any
pausing deadlocks.

For mysqld, ARC generates consistency exceptions due to
13 regions with conflicts, 9 of which occur in requests. Boot-
ing mysqld is costly (790M cycles), and ARC incurs a 3-4 X
slowdown to reboot 4 times. Pausing alone (i.e., PNp) avoids
2 consistency exceptions from eagerly detected conflicts, but
pausing-related timing differences lead to extra lazy conflicts,
resulting in modest net reductions in run time. Peacenik con-
figurations that support restarting regions (PNpr and PN)
detect no conflicts eagerly, as a result of execution differ-
ences caused by restarting regions and modifying ARC’s
deferred write-back optimization (Section 4.3). The support
for restarting regions helps avoid all consistency exceptions
by restarting eligible regions with lazily detected conflicts,
whether using modified pseudo-LRU or not. CE generates 19
consistency exceptions, all of which occur outside of request
processing and lead to server reboots. Pausing leads to no
pausing deadlocks and thus avoids all consistency exceptions
with minimal cost.

In summary, the results in this section show that when ap-
plied to a system that provides fail-stop semantics by de-
tecting conflicts both eagerly and lazily, all of Peacenik’s
components—pausing, region restart, and modified pseudo-
LRU—are collectively important for avoiding consistency ex-
ceptions, together eliminating nearly all of the performance
impact of fail-stop semantics for data races. Region restart
and modified pseudo-LRU are particularly important for a
system like ARC that detects conflicts lazily, while an eager-
conflicts-only system like CE gets by with pausing alone.
The results thus show the effectiveness and generality of
Peacenik applied to systems that provide fail-stop behavior
for data races.

5.3 Scalability

Figure 4 evaluates Peacenik on 8-, 16-, and 32-core systems.
The results include a weak memory model (WMM) configu-
ration, which models a typical multiprocessor architecture
that ignores data race errors, to compare with the current
state of practice. We implemented the WMM configuration
by disabling CE’s components in the CE simulator. WMM
does not detect conflicts or generate consistency exceptions.
As in Section 5.2, the ARC (Figure 4(a)) and CE (Figure 4(b))
results are each from a separate set of runs.

We note that for vips with 8 and 16 cores, CE detects
conflicts that are not detected with 32 cores because of dif-
ferent timing and data contention patterns. Conversely, with
8 cores CE misses all conflicts detected in mysqld with 16
and 32 cores.

Overall, the data show that across core counts, Peacenik
not only avoids nearly all consistency exceptions in our
experiments, eliminating performance degradation, but it
negligibly impacts conflict-free programs relative to the un-
derlying fail-stop system (ARC or CE).

5.4 Idealized Checkpointing as a Rebooting
Alternative

The evaluation so far has assumed that ARC and CE han-
dle a consistency exception by rebooting the program—a
high price to pay. Instead, programs executing under fail-
stop memory consistency could periodically record a process
checkpoint, in order to return the execution’s state to the
most recent checkpoint if a core encounters a failure.

Here we evaluate a highly idealized checkpointing imple-
mentation that incurs no cost for taking checkpoints. The
actual cost of creating and maintaining process checkpoints
would increase costs, making Peacenik by contrast look even
more favorable. We emphasize that checkpointing is distinct
from Peacenik’s support for best-effort region restart: check-
pointing must record a process’s memory contents, whereas
region restart only requires recording a shadow copy of the
execution context at region start (Section 4.3).

Figure 5 shows the run time of unmodified ARC and ARC+
Peacenik (for simplicity this experiment excludes CE and CE+
Peacenik), compared to ARC configurations that perform
idealized checkpointing (labeled ARC-cp(1....,1000} and ARC-
noreboot), running on 32 cores.

For canneal and streamcluster, the system checkpoints at
global synchronization barriers that demarcate the programs’
outer-loop iterations. For each ARC-cpk configuration, the
system checkpoints every k iterations (e.g., ARC-cp10 check-
points every 10 iterations). At a consistency exception, the
simulator adds run time assuming re-execution from the last
checkpoint, instead of a full reboot. These ARC-cpk con-
figurations improve run time compared with ARC: 6-27 X
for canneal and 3-170 X for streamcluster. However, even
checkpointing at every barrier (i.e., ARC-cp1) slows both
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Figure 4. Execution time for ARC/CE, full Peacenik (PN), and a weak memory model (WMM) for 8, 16, and 32 cores, normalized
to the ordinary execution cost of ARC/CE with 8 cores, using the same methodology as for Figure 3. ARC-32, CE-32, and PN-32

are the same as Figure 3’s ARC, CE, and PN.
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Figure 5. Execution time for ARC configurations with differ-
ent process checkpointing rates, compared with PN without
checkpointing, for 32 cores. Results are normalized to the
ordinary execution cost of ARC.

programs by several times. In contrast, Peacenik eliminates
all costs due to re-execution, by avoiding consistency excep-
tions altogether.

For httpd and mysqld, the ARC-noreboot configuration
takes a checkpoint immediately after booting, to avoid the
cost of rebooting. By avoiding rebooting through checkpoint-
ing, ARC-noreboot avoids virtually all of the cost of ARC’s

consistency exceptions, although a realistic checkpointing
scheme would incur costs from checkpointing.

Overall, checkpointing reduces the impact of consistency
exceptions, but even idealized checkpointing cannot out-
perform Peacenik in our evaluation. Peacenik and process
checkpointing are complementary and could be deployed
together.

5.5 Analysis of Detected Conflicts

This section analyzes the conflicts detected in the experi-
ments (by ARC only, for simplicity), which we have con-
firmed as true data races using existing race detection tools.
These conflicts are directly representative of data races that
exist in mature legacy code, despite being erroneous under
the C/C++ memory model [3, 14], and will lead to consis-
tency exceptions when deployed on an SFRSx system.

We extended the ARC simulator to report the source loca-
tions of each conflict, including files and line numbers, by
tracking the instruction that last accessed each byte in each
cache line. Table 5 shows conflicting sites reported by ARC
with 32 cores. Table 5 reports more dynamic conflicts than
Table 4 because ARC may report multiple conflicting sites
for a conflicting region.

We confirmed that the conflicts correspond to true data
races using ThreadSanitizer (TSan) [57] and our own Pintool
implementation of collision analysis, which pauses threads



Variable name Conflicting sites Dyn | /?
canneal | p AtomicPtr.h:296=296 202 | TS
stream- | Point.* streamcluster.cpp:727-729, etc. | 475 | CA
cluster | gl_cost_of_opening_x | streamcluster.cpp:1120=1147 326 | TS

cache_element util_time.c:76=135 25 | CA
httpd request_time_cache mod_log_config.c:740=766 15 | CA

requests_this_child worker.c:994=994 4| [59]

curr (ak.a. node) If_hash.c:99=267, etc. 44 | TS*

PFS_single_stat.* pfs_stat.h:102=102, etc. 6| TS

lock syncOrw.ic:394=394, etc. 5 | TSt
mysqld | buf_pool bufobuf.cc:4089=4089 2| TS

ut_rnd_ulint_counter | utOrnd.ic:92=92 2| TS
pfs pfs.cc:2405=actor.cc:313, etc. 2| —
digest_stat pfs.cc:5525=5525 1|CA

Table 5. Conflicts detected by ARC in the evaluated
programs, on 32 cores. Variable name shows the source
name of each variable involved in a conflict; Point.* and
PFS_single_stat” indicate structs with multiple conflict-
ing fields. Conflicting sites shows the static source file(s)
and line number(s) in one conflict; the table abbreviates
pfs_setup_actor.cc as actor.cc. Dyn is dynamic occurrences
of conflicts for each variable. The last column shows if the
conflict was confirmed by TSan (TS), collision analysis (CA),
or prior work [59], or is unconfirmed (-). The text explains
TS* and TS'.

to make accesses conflict 8, 22, 54]. We note that the con-
flict in canneal involves writes to a variable that is usually
accessed atomically, but is accessed with a regular memory
write at line 296 of AtomicPtr.h. Confirming that mysqld’s
if_hash.c conflict (TS*) is a true data race required some man-
ual inspection, due to TSan and ARC’s different handling of
a conflict between atomic and non-atomic accesses. TSan
and collision analysis have confirmed some but not all of the
source locations reported as conflicting for the lock variable
in mysqld (TS). We have not yet confirmed pfs.cc = actor.cc
as a true data race (-).

6 Conclusion

Peacenik provides best-effort avoidance of failures on top
of systems that provide fail-stop memory consistency. A
simulation-based evaluation shows that Peacenik eliminates
nearly all of the costs of fail-stop consistency while providing
strong behavior guarantees for all programs. Peacenik shows
how production systems can get the benefits of fail-stop
consistency while minimizing the costs of failures.
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A Artifact Appendix
A.1 Abstract

This artifact provides a VirtualBox image that includes source
code and x86-64 binaries of our simulators and evaluated
PARSEC 3.0 benchmarks and real server programs.

We also provide scripts to build and run the simulators
with the benchmarks and server programs and to generate
the performance graphs in the paper.

A.2 Artifact check-list (meta-information)

e Algorithm: Simulated Peacenik architecture mecha-
nisms based on the ARC and CE architectures.

e Program: The ARC and ARC+Peacenik, CE and CE+
Peacenik, and WMM simulators; a Pin-based front end;
a framework to drive experiments; and 10 PARSEC
benchmarks and two server programs.

e Data set: Test and simsmall workloads for the PAR-
SEC benchmarks and custom workloads for the server
programs as described in Section 5.1.

¢ Run-time environment: VirtualBox 5.2.34 or above.

e Hardware: Memory > 16 GB and cores > 4 for test
workloads; memory > 104 GB and cores > 16 to repro-
duce results in the paper.

e Output: Execution cycles graphs and reports of de-
tected region conflicts.

e How much time is needed to complete experi-
ments (approximately)?: Several weeks if all exper-
iments are run sequentially. Using multiple VMs to run
the experiments in parallel is highly recommended.

e Publicly available?: Yes.

e Archived?: https://doi.org/10.5281/zenodo.3603351

A.3 Description
A.3.1 How delivered:

VirtualBox image is publicly available on Zenodo: https://
doi.org/10.5281/zenodo.3603351.

A.3.2 Hardware dependencies:

In order to reproduce the data for the graphs in the paper,
the hardware should be able to host one or more VMs, each
with > 16 cores and 104 GB memory.

A.3.3 Software dependencies:

VirtualBox 5.2.34 or above on Ubuntu 18.04 or RHEL 7 is
recommended.

A.4 Installation

The VirtualBox image can be imported into VMs with either
the VirtualBox GUI or from the command line. Make sure
your VirtualBox kernel module is correctly loaded using the
following command for Ubuntu:

$ systemctl status virtualbox
or the following command for RHEL:

$ systemctl status vboxdrv

For importing using GUI, refer to the official manual at
https://www.virtualbox.org/manual/ch01.html#ovf. Make sure
to allocate sufficient memory and CPUs as listed in Sec-
tion A.3.2. Both the username and password are "asplos20"
when needed after successfully importing the image.

In order to import the image from the command line to
create a VM with sufficient hardware resources (e.g., 32 cores
and 128 GB memory) to reproduce the results in the paper,
use the following commands.

$ VBoxManage import asplos20-ae-img.ova --vsys 0 --cpus
32 --memory 131072 --vmname asplos20-ae-vm

$ VBoxManage startvm asplos20-ae-vm --type headless

$ ssh asplos20@localhost -p 2200

Port 2200 of the host has been forwarded to port 22 of
the VM/guest to enable ssh access. If the host’s port 2200
has been assigned to another process (in which case the
above command will fail), you may want to change the port
forwarding. For example, to change to port 2222 instead, use
the following commands.

(If VM is off) $ VBoxManage modifyvm "asplos20-ae-
vm" --natpf1 "guestssh,tcp,,2222,,22"
(If VM is on) $ VBoxManage controlvm "asplos20-ae-
vm" natpf1 "guestssh,tcp,,2222,,22"
Type the password "asplos20" when prompted.

A.5 Experiment workflow

In the VM, use the scripts to run simulation as follows.

$ cd /home/asplos20/scripts

Use the test.sh script to run simulation on test workload
as follows.

$ ./test.sh output_dir

Go to /home/asplos20/exp-products/output_dir for the
resulting data tables and graphs.

Use the exp-figX.sh scripts to run simulation to generate
data for Figure X in the paper. For example, to reproduce
Figure 3(a),

$ nohup ./exp-fig3a.sh output_dir > fig3a.out &

A.6 Evaluation and expected result

After running the experiments, expect the following.
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https://www.virtualbox.org/manual/ch01.html#ovf

1) Graphs similar to those in the paper. All graphs are
generated in /home/asplos20/exp-products in the VM.

2) Reports of detected conflicts as reported in Table 5, if
ARC configurations are used. Reports are output directly to
stdout.

A.7 Experiment customization

Users can change the scripts to customize experiments.

A.8 Notes

See /home/asplos20/scripts/README in the VM for more
information about using the scripts, viewing results, and
customizing experiments.

Check out source code of our experiment framework and
simulators at the following locations in the VM ($HOME=
/home/asplos20).

e Experiment framework: $HOME/viser-exp

e Pin-based front end:
$HOME/intel-pintool/source/tools/ViserST

e ARC and ARC+Peacenik simulators:
$HOME/visersim-backend

e CE, CE+Peacenik, and WMM simulators:
$HOME/mesisim-backend

A.9 Methodology

Submission, reviewing, and badging methodology:

e http://cTuning.org/ae/submission-20190109.html
e http://cTuning.org/ae/reviewing-20190109.html
e https://www.acm.org/publications/policies/artifact-review-

badging
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https://www.acm.org/publications/policies/artifact-review-badging
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