
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

OCTET: Capturing and Controlling
Cross-Thread Dependences Efficiently ∗

Michael D. Bond† Milind Kulkarni‡ Man Cao† Minjia Zhang† Meisam Fathi Salmi†

Swarnendu Biswas† Aritra Sengupta† Jipeng Huang†

† Ohio State University
‡ Purdue University

mikebond@cse.ohio-state.edu, milind@purdue.edu,
{caoma,zhanminj,fathi,biswass,sengupta,huangjip}@cse.ohio-state.edu

Abstract
Parallel programming is essential for reaping the benefits
of parallel hardware, but it is notoriously difficult to de-
velop and debug reliable, scalable software systems. One
key challenge is that modern languages and systems provide
poor support for ensuring concurrency correctness proper-
ties—atomicity, sequential consistency, and multithreaded
determinism—because all existing approaches are impracti-
cal. Dynamic, software-based approaches slow programs by
up to an order of magnitude because capturing and control-
ling cross-thread dependences (i.e., conflicting accesses to
shared memory) requires synchronization at virtually every
access to potentially shared memory.

This paper introduces a new software-based concurrency
control mechanism called OCTET that soundly captures
cross-thread dependences and can be used to build dynamic
analyses for concurrency correctness. OCTET achieves low
overheads by tracking the locality state of each potentially
shared object. Non-conflicting accesses conform to the lo-
cality state and require no synchronization; only conflicting
accesses require a state change and heavyweight synchro-
nization. This optimistic tradeoff leads to significant effi-
ciency gains in capturing cross-thread dependences: a proto-
type implementation of OCTET in a high-performance Java
virtual machine slows real-world concurrent programs by
only 26% on average. A dependence recorder, suitable for

∗ This material is based upon work supported by the National Science
Foundation under Grants CAREER-1253703 and CSR-1218695.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
OOPSLA ’13, October 29–31, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2374-1/13/10. . . $15.00.
http://dx.doi.org/10.1145/2509136.2509519

record & replay, built on top of OCTET adds an additional
5% overhead on average. These results suggest that OCTET
can provide a foundation for developing low-overhead an-
alyses that check and enforce concurrency correctness.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Compilers, Run-time environ-
ments

Keywords concurrency correctness; dynamic analysis

1. Introduction
Software must become more concurrent to reap the bene-
fits of the ever-increasing parallelism available in modern
hardware. However, writing correct parallel programs on
modern hardware is notoriously difficult. Widely used, high-
performance programming languages provide shared mem-
ory and locks, which are hard to use to develop software that
is both correct and scalable. Programmers must deal with
data races, atomicity violations, deadlock, poor scalability,
weak memory models, and nondeterminism.

To address the challenges of writing parallel programs,
researchers have proposed a wide variety of language and
system support to guarantee correct concurrent execution ei-
ther by enforcing crucial correctness properties or by check-
ing such properties and detecting when they are violated [5,
6, 10, 13–16, 18, 21, 23, 30–32, 34, 35, 37–39, 41, 45, 50,
52, 53]. For the rest of the paper, we refer to all such ap-
proaches as analyses for brevity. Examples include enforc-
ing determinism via record & replay (e.g., DoublePlay [50])
and deterministic execution (e.g., CoreDet [6]); enforcing
atomicity (transactional memory [21]); checking atomicity
(e.g., Velodrome [18]); and checking sequential consistency
and data-race freedom (e.g., DRFx [37]).

While these proposed analyses provide desirable correct-
ness properties that ease the task of parallel programming,
they are all impractical in various ways (Section 2.1). Many
require expensive whole-program analysis or custom hard-
ware support. A promising class of analyses are dynamic

693

and software-only, avoiding both complex compiler analy-
sis and specialized hardware. Unfortunately, such analyses
suffer from very high overhead, slowing down applications
by roughly an order of magnitude.

In this paper, we focus on the key cost that makes dy-
namic, software-only analyses expensive: the challenge of
dealing with cross-thread dependences, the dependences
that arise between threads as they access shared memory.
Virtually all analyses rely, at their root, on soundly captur-
ing cross-thread dependences and using this information to
enforce or check concurrency correctness. However, because
shared-memory programs can introduce cross-thread depen-
dences on any shared-memory access, correctly detecting all
such dependences requires existing software analyses to in-
sert synchronized instrumentation at every access (unless the
access can be proven to be well-synchronized). The synchro-
nization overhead of this instrumentation is proportional to
the number of program accesses to potentially shared data,
and hence slows programs substantially.

This paper presents OCTET, a novel concurrency con-
trol mechanism that soundly captures all cross-thread de-
pendences without heavyweight synchronized instrumenta-
tion. In fact, through an object-based, cache-coherence-like
mechanism, OCTET’s synchronization overheads are merely
proportional to the number of cross-thread dependences in a
program, rather than all accesses.

Contributions
The key insight undergirding OCTET is that most accesses
to memory—even shared memory—exhibit thread locality.
The same thread repeatedly accesses an object, or multiple
threads perform only reads, so the accesses cannot introduce
cross-thread dependences. By efficiently detecting (without
synchronization) whether an access is definitely not involved
in a cross-thread dependence, OCTET is able to avoid ex-
pensive synchronization in most cases, and only incurs high
overhead when a cross-thread dependence occurs.

OCTET achieves these performance gains by implement-
ing a cache-coherence-like system at the granularity of ob-
jects. Each potentially shared object has a “thread local-
ity” state associated with it. This state expresses whether
a thread can access the object without synchronization. A
thread T can have write access (WrExT), exclusive read ac-
cess (RdExT), or shared read access (RdSh); these states
correspond to the M, E, and S states, respectively, in a MESI
cache coherence protocol [44]. OCTET’s instrumentation
checks, before each object access, whether the access is
compatible with the object’s state. As in hardware cache
coherence, if a thread tries to access an object that is already
in a compatible state, no other work is necessary. There
is no possibility of a cross-thread dependence, and OCTET
needs no synchronization. Instead, synchronization is only
necessary when a thread tries to access an object in an in-
compatible state. In such situations, OCTET uses various
protocols to safely perform the state change before allowing

the thread’s access to proceed. Section 3 describes the de-
sign of OCTET in more detail, including elaborating on these
state change protocols. Section 3.7 proves the soundness of
the scheme (i.e., all cross-thread dependences are captured)
and its liveness (i.e., OCTET does not deadlock).

We have implemented OCTET in a high-performance
JVM; Section 4 describes the details. Section 5 evaluates the
performance and behavior of our OCTET implementation
on 13 large, multithreaded Java benchmark applications. We
present statistics that confirm our hypotheses about the typ-
ical behavior of multithreaded programs, justifying the de-
sign principles of OCTET, and we demonstrate that our im-
plementation of OCTET has overheads of 26% on average—
significantly better than the overheads of prior mechanisms,
and potentially low enough for production systems.

Because a variety of analyses rely on taking action upon
the detection of cross-thread dependences, OCTET can serve
as a foundation for designing new, efficient analyses. Sec-
tion 6 discusses opportunities and challenges for implement-
ing efficient analyses on top of OCTET. Section 7 presents an
API for building analyses on top of OCTET, and we describe
and evaluate how a low-overhead dependence recorder uses
this API, suggesting OCTET can be a practical platform for
new analyses.

2. Background and Motivation
Language and system support for concurrency correctness
offers significant reliability, scalability, and productivity
benefits. Researchers have proposed many approaches that
leverage static analysis and language support (e.g., [9, 10,
39]) and custom hardware (e.g., [23, 35, 38]). Unfortunately,
these techniques are impractical for contemporary systems:
sufficiently precise static analyses do not scale to large ap-
plications; language-based approaches do not suffice for ex-
isting code bases; and hardware support does not exist in
current architectures.

As a result of these drawbacks, there has been substantial
interest in dynamic, sound,1 software-only approaches guar-
anteeing concurrency correctness. Section 2.1 explains why
software-based analyses suffer from impractically high over-
head. Section 2.2 illuminates the key issue: the high over-
head of capturing or controlling cross-thread dependences.

2.1 Dynamic Support for Concurrency Correctness
This section motivates and describes key analyses and sys-
tems, which we call simply analyses, that guarantee concur-
rency correctness properties by either enforcing or checking
these properties at run time. For each analysis, we describe
the drawbacks of prior work and then identify the key per-
formance challenge(s).

Multithreaded record & replay. Record & replay of mul-
tithreaded programs provides debugging and systems ben-

1 Following prior work, a dynamic analysis or system is sound if it guaran-
tees no false negatives for the current execution.

694

efits. Offline replay allows reproducing production failures
at a later time. Online replay allows running multiple in-
stances of the same process simultaneously with the same
interleavings, enabling systems benefits such as replication-
based fault tolerance. Recording execution on multiproces-
sors is hard due to the frequency of potentially racy shared
memory accesses, which require synchronized instrumenta-
tion to capture soundly [30]. Chimera rules out non-racy ac-
cesses using whole-program static analysis, which reports
many false positives [31]. To achieve low overhead, Chimera
relies on profiling runs to identify mostly non-overlapping
accesses and expand synchronization regions.

Many multithreaded record & replay approaches sidestep
the problem of capturing cross-thread dependences explic-
itly, but introduce limitations. Several support only online
or offline replay but not both (e.g., [32, 45]). DoublePlay
requires twice as many cores as the original program to pro-
vide low overhead, and it relies on data races mostly not
causing nondeterminism, to avoid frequent rollbacks [50].

The key performance challenge for recording multi-
threaded execution is tracking cross-thread dependences.

Deterministic execution. An alternative to record & replay
is executing multithreaded programs deterministically [6,
14, 34, 41]. As with record & replay, prior approaches avoid
capturing cross-thread dependences explicitly in software
because of the high cost. Existing approaches all have seri-
ous limitations: they either do not handle racy programs [41],
add high overhead [6], require custom hardware [14], or pro-
vide per-thread address spaces and merge changes at syn-
chronization points, which may not scale well to programs
with fine-grained synchronization [34].

The performance challenge for multithreaded determinis-
tic execution is controlling the ways in which threads inter-
leave, i.e., controlling cross-thread dependences.

Guaranteeing sequential consistency and/or data race
freedom. An execution is sequentially consistent (SC) if
threads’ operations appear to be totally ordered and respect
program order [29]. An execution is data-race-free (DRF)
if all conflicting accesses are ordered by the happens-before
relationship [28], i.e., ordered by synchronization. Language
memory models typically guarantee SC for DRF execu-
tions [1, 2, 36].

Sound and precise checking of SC or DRF is expen-
sive (even with recent innovations in happens-before race
detection [16]). An attractive alternative to checking SC
or DRF is the following relaxed constraints: DRF execu-
tions must report no violation, and SC-violating executions
must report a violation, but SC executions with races may
or may not report a violation [19]. Recent work applies
this insight by checking for conflicts between overlapping,
synchronization-free regions [35, 37], but it relies on custom
hardware to detect conflicting accesses efficiently.

The main performance challenge of detecting data races
soundly is tracking cross-thread dependences. Precision is

also important: the detector must maintain “when” variables
were last accessed in order to avoid false positives.

Checking atomicity. An operation is atomic if it appears to
happen all at once or not at all. Dynamic analysis can check
that existing lock-based programs conform to an atomic-
ity specification [18, 53]. Velodrome soundly and precisely
checks conflict serializability (CS), a sufficient condition for
atomicity, by constructing a region dependence graph that
requires capturing cross-thread dependences [18]. It cannot
check for atomicity violations in production because it slows
programs by about an order of magnitude.

Similarly to detecting races, the performance challenges
of detecting atomicity violations are tracking cross-thread
dependences soundly and providing precision.

Enforcing atomicity. Transactional memory (TM) sys-
tems enforce programmer-specified atomicity annotations
by speculatively executing atomic regions as transactions,
which are rolled back if a region conflict occurs [21].
Custom-hardware-based approaches offer low overhead [20],
but any real hardware support will likely be limited [5],2

making efficient software TM (STM) an important long-
term goal. Existing STMs suffer from two major, related
problems—poor performance and weak semantics. Exist-
ing STM systems slow transactions significantly in order to
detect conflicting accesses soundly. Furthermore, these sys-
tems typically provide only weak atomicity semantics be-
cause strong atomicity (detecting conflicts between transac-
tions and non-transactional instructions) slows all program
code substantially in order to detect conflicts between trans-
actional and non-transactional code.

Achieving efficient, strongly atomic STM is challeng-
ing because of the cost of detecting and resolving cross-
thread dependences throughout program execution. STMs
also need some precision about when variables were last ac-
cessed (e.g., read/write sets [38]) in order to determine if a
conflicting variable was accessed in an ongoing transaction.

In addition to these specific analyses, researchers have
recently stressed the general importance of dynamic ap-
proaches for providing programmability and reliability guar-
antees and simplifying overly-complex semantics [1, 12].

2.2 Capturing and Controlling Cross-Thread
Dependences

Despite its benefits, efficient software support for check-
ing and enforcing concurrency correctness properties has re-
mained elusive: existing software-based analyses slow pro-
grams significantly, often by up to an order of magnitude.
What makes this diverse collection of analyses and systems
so slow? As seen in the previous section, a recurring theme
emerges: to capture concurrent behavior accurately, these

2 http://software.intel.com/en-us/blogs/2012/02/07/
transactional-synchronization-in-haswell/

695

// T1:
... = obj1.f ;

// T2:
obj2. f = ...;

Figure 1. Potential cross-thread dependence.

do {
lastState = obj. state ; // load per−object metadata

} while (lastState == LOCKED ||
!CAS(&obj.state, lastState , LOCKED));

if (lastState != WrExT) {
handlePotentialDependence (...) ;
}
obj . f = ...; // program write
memfence;
obj . state = WrExT; // unlock and update metadata

Figure 2. A write barrier that captures cross-thread dependences.
Before the write, the per-object metadata obj.state should be
WrExT (T is the current thread), or else there is a potential cross-
thread dependence. LOCKED indicates the metadata is locked.

analyses must capture cross-thread dependences, two ac-
cesses executed by different threads that have any kind of
data dependence: a true (write–read), anti (read–write), or
output (write–write) dependence. Figure 1 shows a potential
cross-thread dependence. Since this dependence arises only
when obj1 and obj2 reference the same object, and when the
threads interleave in a particular manner, it is hard to accu-
rately predict this dependence statically.

Capturing cross-thread dependences typically involves
adding barriers3 that access and update shared metadata at
each program read and write. Because program accesses
may not be well synchronized (i.e., may have a data race),
the barriers must use synchronization to avoid data races on
the metadata accesses. Figure 2 shows how a barrier enforces
atomic metadata accesses. It uses per-object metadata, an-
notated as obj.state, to track the last thread to access the
metadata. The value of obj.state might be WrExT (write ex-
clusive for thread T) where T is the last thread that wrote
the object referenced by obj, or RdSh (read shared) if any
thread last read the object. Tracking these per-object states
is a natural way to capture cross-thread dependences; we
use the notations obj.state, WrExT, and RdSh to closely
match the notations used by our new approach (Section 3).
If another thread accesses obj, it handles the the potential
cross-thread dependence in an analysis-specific way and up-
dates the state. The barrier locks the per-object metadata
using an atomic compare-and-swap (CAS) instruction,4 cre-
ating a small critical section while handling the potential
dependence and performing the program memory access.

Our evaluation shows that adding such a barrier to all
potentially shared memory accesses slows programs by 6.2X

3 A read (or write) barrier is instrumentation that executes before every read
(write) [54].
4 The atomic instruction CAS(addr, oldVal, newVal) attempts to update
addr from oldVal to newVal, returning true on success. (We use the
common term CAS, but our “CAS” acts like a test-and-set operation.)

on average even without performing any analysis-specific
operations, i.e., handlePotentialDependence() as a no-op
(Section 5.4). These overheads are unsurprising because
atomic instructions and memory fences serialize in-flight
instructions, and atomic instructions invalidate cache lines.

The next section introduces OCTET, a system that cap-
tures cross-thread dependences efficiently. Section 6 de-
scribes how OCTET can be used to build new analyses that
check and enforce concurrency correctness, and Section 7
sketches how OCTET can be used to build a low-overhead
system for recording concurrent execution.

3. Capturing and Controlling Cross-Thread
Dependences Efficiently

This section describes our approach for efficiently and ac-
curately detecting or enforcing cross-thread dependences on
shared objects:5 data dependences involving accesses to the
same variable by different threads. In prior work, captur-
ing or controlling cross-thread dependences in software has
proven expensive (Section 2).

We have designed a dynamic analysis framework called
OCTET 6 to track cross-thread dependences at low overhead.
OCTET’s approach is based on a key insight: the vast major-
ity of accesses, even to shared objects, are not involved in
a cross-thread dependence. If OCTET can detect efficiently
whether an access cannot create a cross-thread dependence,
it can perform synchronization only when conflicting ac-
cesses occur, and dramatically lower the overhead of detect-
ing cross-thread dependences.

To achieve this goal, OCTET associates a thread-locality
state with each potentially shared object. This state describes
which accesses will definitely not cause cross-thread depen-
dences. These accesses proceed without synchronization or
changing the object’s state (the fast path), while accesses
that imply a potential cross-thread dependence trigger a co-
ordination protocol involving synchronization to change the
object’s state so that the access is permitted (the slow path).
OCTET’s synchronization costs are thus proportional to the
number of conflicting accesses in a program, rather than all
accesses or even shared accesses.

OCTET’s state transitions provide two key features:

1. Each state transition results in the creation of a happens-
before edge,7 as shown in the following section. All
cross-thread dependences are guaranteed to be ordered
(transitively) by these happens-before edges (as proved
in Section 3.7).

5 This paper uses the term “object” to refer to any unit of shared memory.
6 Optimistic cross-thread explicit tracking. OCTET “optimistically” as-
sumes most accesses do not conflict and supports them at low overhead,
at the cost of more expensive coordination when accesses conflict.
7 Happens-before is a partial order on program and synchronization or-
der [28]. Creating a happens-before edge means ensuring a happens-before
ordering from the source to the sink of the edge.

696

Fast/slow Transition Old New Synchronization Cross-thread
path type state Access state needed dependence?

Fast Same state
WrExT R or W by T Same

None NoRdExT R by T Same
RdShc R by T if T.rdShCount ≥ c Same

Slow

Upgrading
RdExT W by T WrExT CAS

No
RdExT1 R by T2 RdShgRdShCount Potentially yes

Fence RdShc R by T if T.rdShCount < c (T.rdShCount = c) Memory fence Potentially yes

Conflicting

WrExT1 W by T2 WrExInt
T2 →WrExT2

Potentially yes
WrExT1 R by T2 RdExInt

T2 → RdExT2 Roundtrip
RdExT1 W by T2 WrExInt

T2 →WrExT2 coordination
RdShc W by T WrExInt

T →WrExT

Table 1. OCTET state transitions fall into four categories that require different levels of synchronization.

2. Both fast-path state checks and slow-path state transitions
execute atomically with their subsequent access. Client
analyses can hook into the fast and/or slow paths without
requiring extra synchronization, allowing them to per-
form actions such as updating analysis state or perturbing
program execution.

The remainder of this section describes OCTET’s operations.

3.1 OCTET States
A thread-locality state for an object tracked by OCTET cap-
tures access permissions for that object: it specifies which
accesses can be made to that object without changing the
state. We say that such accesses are compatible with the
state. Accesses compatible with the state definitely do not
create any new cross-thread dependences. The possible OC-
TET states for an object are:
WrExT: Write exclusive for thread T. T may read or write

the object without changing the state. Newly allocated
objects start in the WrExT state, where T is the allocating
thread.

RdExT: Read exclusive for thread T. T may read (but not
write) the object without changing the state.

RdShc: Read shared. Any thread T may read the object
without changing the state, subject to an up-to-date
thread-local counter: T.rdShCount ≥ c (Section 3.4).

Note the similarity of the thread-locality states to coherence
states in the standard MESI cache-coherence protocol [44].
Modified corresponds to WrExT, Exclusive corresponds to
RdExT, and Shared corresponds to RdShc. Invalid corre-
sponds to how threads other than T see WrExT or RdExT

objects.
While the RdSh and RdEx states are not strictly neces-

sary, their purpose is similar to E and S in the MESI protocol.
Without the RdEx state, we have found that scalability de-
grades significantly, due to more RdSh→WrEx transitions.

We introduce additional intermediate states that help to
implement the state transition protocol (Section 3.3):
WrExInt

T : Intermediate state for transition to WrExT.
RdExInt

T : Intermediate state for transition to RdExT.

3.2 High-Level Overview of State Transitions
OCTET inserts a write barrier before every write of a poten-
tially shared object:

if (obj . state != WrExT) {
/∗ Slow path: change obj. state & call slow-path hooks ∗/
}
/∗ Call fast-path hooks ∗/
obj . f = ...; // program write

and a read barrier before every read:

if (obj . state != WrExT && obj.state != RdExT &&

!(obj . state == RdShc && T.rdShCount >= c)) {
/∗ Slow path: change obj. state & call slow-path hooks ∗/
}
/∗ Call fast-path hooks ∗/
... = obj.f ; // program read

When a thread attempts to access an object, OCTET checks
the state of that object. If the state is compatible with the
access, the thread takes the fast path and proceeds without
synchronization; the overhead is merely the cost of the state
check. Otherwise, the thread takes the slow path, which
initiates a coordination protocol to change the object’s state.

A key concern is what happens if another thread changes
an object’s state between a successful fast-path check and
the access it guards. As Section 3.3 explains in detail, OC-
TET’s protocols ensure that the other thread “coordinates”
with the thread taking the fast path before changing the state,
preserving atomicity of the check and access. A state change
without coordination might miss a cross-thread dependence.
(Imagine a cache coherence protocol that allowed a core
to upgrade a cache line from Shared to Modified without
waiting for other cores to invalidate the line in their caches!)

Table 1 overviews OCTET’s behavior when a thread at-
tempts to perform an access to an object in various states. As
described above, when an object is already in a state that per-
mits an access, no state change is necessary, while in other
situations, an object’s state must be changed.

State changes imply a potential cross-thread dependence,
so OCTET must perform some type of coordination to ensure
that the object’s state is changed safely and a happens-before

697

edge is created to capture that potential dependence. OC-
TET uses different kinds of coordination to perform state
changes, depending on the type of transition needed:

• Some transitions directly indicate the two or more threads
involved in a potential dependence, as the transitions
themselves imply a flow (write–read), anti (read–write),
or output (write–write) dependence. These conflicting
transitions require coordinating with other threads to es-
tablish the necessary happens-before relationships (Sec-
tion 3.3).
• Other transitions do not directly indicate the threads in-

volved in the dependence. For example, transitioning
from RdExT1 to RdSh due to a read by T2 implies a
potential dependence with the previous writer to an ob-
ject. Upgrading transitions capture this dependence tran-
sitively by establishing a happens-before relationship be-
tween T1 and T2 (Section 3.4).
• Finally, when a thread reads an object in RdSh state,

it must establish happens-before with the last thread to
write that object, which might be any thread in the sys-
tem. Fence transitions establish this happens-before tran-
sitively by ensuring that each read of a RdSh object hap-
pens after the object’s transition to RdSh (Section 3.4).

Note that while a particular state change may not directly im-
ply a cross-thread dependence, the combined set of happens-
before edges created by OCTET ensures that every cross-
thread dependence is ordered by these happens-before rela-
tionships. Section 3.7 proves OCTET’s soundness, and Sec-
tions 6 and 7 describe how analyses can build on OCTET’s
happens-before edges, by defining hooks called from the
slow path, in order to capture all cross-thread dependences
soundly.

3.3 Handling Conflicting Transitions
When an OCTET barrier detects a conflict, the state of the
object must be changed so that the conflicting thread may ac-
cess it. However, the object state cannot simply be changed
at will. If thread T2 changes the state of an object while an-
other thread, T1, that has access to the object is between its
state check and its access, then T1 and T2 may perform racy
conflicting accesses without being detected—even if T2 uses
synchronization.

At a high level, a thread—called the requesting thread—
that wants to perform a conflicting state change requests
access by sending a message to the thread—called the re-
sponding thread—that currently has access. The responding
thread responds to the requesting thread when the respond-
ing thread is at a safe point, a point in the program that is
definitely not between an OCTET barrier check and its cor-
responding access. (If the responding thread is blocked at a
safe point, the response happens implicitly when the request-
ing thread observes this fact atomically.) Upon receiving the
response, the requesting thread can change the object’s state

and proceed with its access. This roundtrip coordination be-
tween threads results in a happens-before relationship being
established between the responding thread’s last access to
the object and the requesting thread’s access to the object,
capturing the possible cross-thread dependence.

To handle RdSh→WrEx transitions, which involve mul-
tiple responding threads, the requesting thread performs the
coordination protocol with each responding thread.

Safe points. OCTET distinguishes between two types of
safe points: non-blocking and blocking. Non-blocking safe
points occur during normal program execution (e.g., at loop
back edges); at these safe points, the responding thread
checks for and responds to any requests explicitly. Block-
ing safe points occur when the responding thread is blocked
(e.g., while waiting to acquire a lock, or during file I/O).
In this scenario, the responding thread cannot execute code,
so it instead implicitly responds to any requests by setting a
per-thread flag that requesting threads can synchronize with.

Safe point placement affects both correctness and per-
formance. To provide atomicity of OCTET instrumentation
and program accesses, safe points cannot be between a state
check (or state transition) and its corresponding access. To
avoid deadlock, any point where a thread might block needs
a safe point, and code must not be able to execute an un-
bounded number of steps without executing a safe point. In-
creasing this bound but keeping it finite would hurt perfor-
mance but not correctness. It suffices to place non-blocking
safe points at loop back edges and method entries, and treat
all potentially blocking operations as blocking safe points.
Language VMs typically already place non-blocking safe
points at the same points (e.g., for timely GC), and threads
enter a special blocking state at potentially blocking opera-
tions (e.g., to allow GC while blocked).

Request queues. Conceptually, every thread maintains a
request queue, which serves as a shared structure for coordi-
nating interactions between threads. The request queue for a
(responding) thread respT allows other (requesting) threads
to signal that they desire access to objects that respT cur-
rently has access to (i.e., objects in WrExrespT, RdExrespT, or
RdSh states). The queue is also used by respT to indicate to
any requesting threads that respT is at a blocking safe point,
implicitly relinquishing ownership of any requested objects.

The request queue interface provides several methods.
The first four are called by the responding thread respT:
requestsSeen() Returns true if there are any pending re-

quests for objects owned by respT.
handleRequests() Handles and responds to pending re-

quests. Performs memory fence behavior.
handleRequestsAndBlock() Handles requests as above,

and atomically8 places the request queue into a “blocked”
state indicating that respT is at a blocking safe point.

resumeRequests() Atomically unblocks the queue.

8 An atomic operation includes memory fence behavior.

698

At non-blocking
safe points:

1 if (requestsSeen())
2 handleRequests();

At blocking safe points:

3 handleRequestsAndBlock();
4 /∗ blocking actions ∗/
5 resumeRequests();

(a) Responding thread (thread respT)

To move obj from WrExrespT or RdExrespT to WrExreqT:

6 currState = obj. state ; // WrExrespT or RdExrespT expected

7 while (currState == any intermediate state ||
8 !CAS(&obj.state, currState , WrExInt

reqT)) {
9 // obj . state ← WrExInt

reqT failed

10 // non-blocking safe point :
11 if (requestsSeen()) { handleRequests(); }
12 currState = obj. state ; // re-read state
13 }
14 handleRequestsAndBlock(); // start blocking safe point
15 response = request(getOwner(currState));
16 while (! response) {
17 response = status(getOwner(currState));
18 }
19 resumeRequests(); // end blocking safe point
20 obj . state = WrExreqT;

21 /∗ proceed with access ∗/

(b) Requesting thread (thread reqT)

Figure 3. Protocol for conflicting state changes.

❷

❸

❹

❺

❶

❻

❼
fence

request

response

hb2

hb1

respT reqT

fence

CAS

❸

❷

❺

❶

❻

CAS

hb2

hb1

respT reqT

CAS

❹

CAS

(a) Explicit protocol: (1) respT ac-
cesses obj; (2) reqT puts obj in
WrExInt

reqT (line 8); (3) reqT issues
request to respT with CAS (line 15);
(4) respT receives request (line 1).
(5) respT issues a fence, estab-
lishing hb1, and responds (line 2);
(6) reqT sees response and un-
blocks, which includes fence behav-
ior (lines 16–19), establishing hb2;
(7) reqT places obj in WrExreqT and
performs write (lines 20–21).

(b) Implicit protocol: (1) respT ac-
cesses obj; (2) respT blocks with
CAS (line 3); (3) reqT places obj

in WrExInt
reqT (line 8) and blocks

(line 14); (4) reqT issues a request
to respT with a CAS and observes
that it is blocked, establishing hb2
(line 15); (5) respT unblocks with
CAS, establishing hb1 (line 5); (6)
reqT places obj in WrExreqT and
performs write (lines 20–21).

Figure 4. Operation of (a) explicit and (b) implicit coordination
protocols for conflicting transitions. Line numbers refer to Figure 3.

The next two methods are called by the requesting thread
reqT and act on the queue of the responding thread respT:
request(respT) Makes a request to respT with a CAS.

Returns true if reqT’s queue is in the blocked state.
status(respT) Returns true if reqT’s request has been seen

and handled by respT.
Appendix C describes a concrete implementation of these
methods.

Figure 3 shows the protocol for handling conflicting ac-
cesses.9 Figure 4 shows how both the explicit and implicit
protocols establish happens-before relationships between
threads. To see how the request queue is used to coordi-
nate access to shared objects, consider the case where respT
has access to object obj in WrExrespT or RdExrespT state, and
reqT wants to write to the object (reads work similarly).

Requesting thread. reqT first atomically places obj into
the desired final state with an intermediate flag set (line 8 in
Figure 3(b)). This intermediate flag indicates to all threads
that this object is in the midst of a state transition, prevent-
ing other attempts to access the object or change its state
until the coordination process completes. We refer to any
state with the intermediate flag set as an “intermediate state.”
The use of intermediate states prevents races in the state
transition protocol (obviating the need for numerous tran-
sient states, as exist in cache coherence protocols). Note that
reqT’s CAS may fail, if a third thread simultaneously at-
tempts to access obj. Before reqT retries its CAS (lines 7–13
in Figure 3(b)), it responds to any pending requests on its re-
quest queue, to avoid deadlock (line 11 in Figure 3(b)). After
placing obj into an intermediate state, reqT adds a request to
respT’s request queue by invoking request(respT) (line 15
in Figure 3(b)).

Responding thread. To respond to a request, respT uses
either the explicit or implicit response protocol. When re-
spT is at a non-blocking safe point, it can safely relinquish
control of objects using the explicit protocol. respT checks
if there are any pending requests on its request queue and
calls handleRequests to deal with them (lines 1–2 in Fig-
ure 3(a)). Because handleRequests performs a fence, the ex-
plicit response protocol establishes two happens-before re-
lationships (Figure 4(a)): (1) between reqT’s initial request
for access to obj and any subsequent attempt by respT to ac-
cess obj (respT will then find obj in WrExInt

reqT state) and (2)
between respT’s response to reqT and reqT’s access to obj.

The implicit response protocol is used when respT is at a
blocking safe point. Intuitively, if reqT knows that respT is
at a blocking safe point, it can assume a response implicitly.
Before blocking, respT sets its request queue as “blocking,”
letting reqT see that respT is at a blocking safe point (line 3

9 Note that our pseudocode mixes Java code with memory fences (mem-
fence) and atomic operations (CAS). The JVM compiler must treat these
operations like other synchronization operations (e.g., lock acquire and
release) by not moving loads and stores past these operations.

699

rd o
(RdExT2)

rd o
(RdShc)

rd p
(RdShc+1)

rd p
(fence)

rd o
(fence)

 rd o
(none)

tim
e

Upgrading or fence Ordered by gRdShCounter

T1 T2 T3 T6T4 T5

wr o
(WrExT1)

safe
point

Conflicting

Figure 5. Example execution illustrating upgrading and fence
transitions. After T1 writes o, o is in the WrExT1 state. Then T2
reads o, triggering a conflicting transition to RdExT2. Next, T3
reads o, triggering an upgrading transition to RdShc. T4 then reads
o, triggering a fence transition, assuming it has not already read an
object with state RdShc+1. T5 reads o, but the read does not trig-
ger a fence transition because T5 already read an object p that T6
transitioned to RdShc+1.

in Figure 3(a)). This protocol establishes a happens-before
relationship from reqT to respT as in the explicit protocol.
Further, it establishes a relationship between respT’s enter-
ing the blocked state and reqT’s access to obj (Figure 4(b)).

3.4 Handling Upgrading and Fence Transitions
Accesses may be non-conflicting but still require a state
change. These upgrading and fence transitions do not need
the coordination protocol, but they do require synchro-
nization in order to avoid state-change races and establish
happens-before ordering.

Upgrading from RdEx. A write by T1 to a RdExT1 object
triggers an upgrading transition to WrExT1, which requires
an atomic instruction in order to avoid races with other
threads changing the object’s state. This transition does not
need to establish any happens-before edges, since any cross-
thread dependences will be implied by the happens-before
edges added by other transitions.

A read by T3 to a RdExT2 object, as in Figure 5, triggers
an upgrading transition to RdSh state. Note that the coordi-
nation protocol is not needed here because it is okay for T2
to continue reading the object after its state changes.

In order to support fence transitions (described next), OC-
TET globally orders all transitions to RdSh states. To do so, it
increments a global counter gRdShCount atomically at each
transition to RdSh and uses the incremented value as c in the
new state RdShc.

Fence transitions. When a thread reads an object o in
RdShc state, there is a potential dependence with the last
thread to write to o. The value of c in o’s state establishes

that any write must have happened before gRdShCount was
incremented to c. Each thread T has a counter T.rdShCount
that indicates the last time the thread synchronized with gRd-
ShCount. If T.rdShCount≥ c, then the thread synchronized
recently enough that the read must be after the write. Other-
wise, the slow path issues a fence and updates T.rdShCount,
establishing the necessary happens-before.

To see how this protocol works, consider the actions
of threads T4–T6 in Figure 5. T4 reads o in the RdShc

state. To capture the write–read dependence, T4 checks if
T4.rdShCount ≥ c. If not, T4 triggers a fence transition
to ensure that it reads o after o was placed in RdShc state.
This transition issues a load fence to ensure a happens-before
relationship with o’s transition to RdShc by T3, and updates
T4.rdShCount← c.

T5’s read of o does not trigger a fence transition be-
cause T5 already read p in the RdShc+1 state and c+1 >
c. The write–read dependence is captured transitively by the
happens-before edge on gRdShCount from T3 to T6 and the
fence-transition-based happens-before edge from T6 to T5.

3.5 Correctness Assumptions
OCTET introduces additional synchronization into programs
when cross-thread dependences arise. Hence, it is critical
that this new synchronization does not introduce the pos-
sibility of deadlock or livelock into a program that would
otherwise be free of such pathologies. In other words, there
must never be a scenario where all threads are stuck at OC-
TET barriers and are unable to continue; at least one thread
must be able to complete its access. OCTET’s protocols make
the following two assumptions:

1. The thread scheduler is fair; no thread can be desched-
uled indefinitely. This assumption holds true on most sys-
tems.

2. Attempts to add requests to a thread’s request queue will
eventually succeed. This assumption is true in practice
for most concurrent queue implementations, given the
first assumption.

Note that no other assumptions are needed (e.g., we need
not assume that CASing objects into the intermediate state
succeed). Under these conditions, we can show:

Theorem 1. OCTET’s protocol is deadlock and livelock free.

Proof. The proof of Theorem 1 is in Appendix A.1.

Another assumption is that shared counters such as gRdSh-
Count and request counters (Appendix C) will not overflow.
An implementation could reset counters periodically; toler-
ate overflow with a wraparound-aware design; or use 64-bit
counters, making overflow unlikely.

700

3.6 Scalability Limitations
Our current design and implementation of OCTET have sev-
eral limitations related to scalability. We discuss them here
and suggest potential opportunities for future work.

OCTET magnifies the cost of program conflicts since they
require a roundtrip coordination protocol. OCTET can add
high overhead to programs with many conflicting transi-
tions. Future work could extend the OCTET protocol with
new “pessimistic” states for highly conflicted objects, which
would require synchronization on every access but never re-
quire roundtrip coordination.

Some programs partition large arrays into disjoint chunks
that threads access independently. The current OCTET de-
sign and implementation assign each array a single state,
which would lead to many false conflicts in such programs.
A future implementation could divide arrays into chunks of
k elements each and assign each chunk its own OCTET state.

The global RdSh counter (gRdShCount) may be a scala-
bility bottleneck since only one RdEx→RdSh transition can
update it at once. A potential solution is to deterministically
map each object to a counter in a modestly sized array of
RdSh counters (many objects map to each counter), allow-
ing multiple RdEx→RdSh transitions to proceed in parallel.

RdSh→WrEx transitions require roundtrip coordination
with all threads. Future work can explore strategies includ-
ing the following. (1) The RdSh counter could help iden-
tify threads that have definitely not read a given RdShc ob-
ject (if T.rdShCount < c). This optimization would be more
precise with the multiple RdSh counters described above.
(2) A new “multi-read exclusive” state could track multiple,
known reader threads, limiting RdSh→WrEx transitions.

3.7 Soundness of OCTET

OCTET is sound: it correctly creates happens-before rela-
tionships between all cross-thread dependences, and allows
actions to be taken whenever such cross-thread dependences
are detected. This behavior is the foundation of the various
analyses that might be built on top of OCTET (Section 6).

Theorem 2. OCTET creates a happens-before relationship
to establish the order of every cross-thread dependence.

Proof. The proof of Theorem 2 is in Appendix A.2.
At a high level, the proof proceeds by showing that for

every possible cross-thread dependence, the various OCTET
coordination and synchronization protocols ensure that there
is a happens-before edge between the source and the sink of
that dependence. Crucially, many cross-thread dependences
are not directly implied by a single OCTET state transition
but must instead be established transitively. For example, if
T1 writes an object, then T2, T3, and T4 read that object
in succession, there is a cross-thread read-after-write depen-
dence between T1 and T4 even though T4 finds the object
in RdSh state. The happens-before edge is established by a
combination of conflicting, upgrading, and fence transitions.

By synchronizing on all cross-thread dependences, OC-
TET provides sequential consistency with respect to the com-
piled program, even on weak hardware memory models.

4. Implementation
We have implemented a prototype of OCTET in Jikes RVM
3.1.3, a high-performance Java virtual machine [3] that per-
forms competitively with commercial JVMs.10 OCTET is
publicly available on the Jikes RVM Research Archive.11

OCTET’s instrumentation. Jikes RVM uses two dynamic
compilers to transform bytecode into native code. The base-
line compiler compiles each method the first time the method
executes, translating bytecode directly to native code. The
optimizing compiler recompiles hot (frequently executed)
methods at increasing levels of optimization. We modify
both compilers to add barriers at every read and write to an
object field, array element, or static field. The compilers do
not add barriers at accesses to final (immutable) fields, nor to
a few known immutable classes such as String and Integer.
The modified compilers add barriers to application methods
and Java library methods (e.g., java.*).

A significant fraction of OCTET’s overhead comes from
barriers in the libraries, which must be instrumented in order
to capture cross-thread dependences that occur within them.
Since Jikes RVM is written in Java, both the application and
VM call the libraries. We have modified Jikes RVM to com-
pile two versions of each library method: one called from
the application context and one called from the VM context.
The compilers add OCTET barriers only to the version called
from the application context.

OCTET’s metadata. To track OCTET states, the imple-
mentation adds one metadata word per (scalar or array) ob-
ject by adding a word to the header. For static fields, it in-
serts an extra word per field into the global table of stat-
ics. Words are 32 bits because our implementation targets
the IA-32 platform. The implementation represents WrExT,
RdExT, WrExInt

T , and RdExInt
T as the address of a thread ob-

ject T and uses the lowest two bits (available since objects
are word aligned) to distinguish the four states. The most
common state, WrExT, is represented as T. The implemen-
tation represents RdShc as simply c, using a range that does
not overlap with thread addresses: [0xc0000000, 0xffffffff].

Jikes RVM already reserves a register that always points
to the current thread object (T), so checking whether a state
is WrExT or RdExT is fast. To check whether an object’s
state is RdShc and T.rdShCount is up-to-date with c, the
barrier compares the state with c. The implementation actu-
ally decrements the gRdShCount and T.rdShCount values
so that a single comparison can check that T.rdShCount is
up-to-date with respect to c (without needing to check that

10 http://dacapo.anu.edu.au/regression/perf/
11 http://www.jikesrvm.org/Research+Archive

701

the state is also RdSh). The implementation thus adds the
following check before writes:

if (o. state != T) { /∗ slow path ∗/ }

And it adds the following check before reads:
if ((o. state & ∼0x1) != T &&

o. state <unsigned T.rdShCount) { /∗ slow path ∗/ }

The implementation initializes the OCTET state of newly
allocated objects and newly initialized static fields to the
WrExT state, where T is the allocating/resolving thread.
(The implementation could, but does not currently, handle
another thread seeing an uninitialized state—guaranteed to
be zero [36]—by waiting for the state to get initialized.)

Static optimizations. To some extent, OCTET obviates the
need for static analyses that identify accesses that cannot
conflict, because it adds little overhead at non-conflicting
accesses. However, adding even lightweight barriers at every
access adds nontrivial overhead, which we can reduce by
identifying accesses that do not require barriers.

Some barriers are “redundant” because a prior barrier
for the same object guarantees that the object will have
an OCTET state that does not need to change. We have
implemented an intraprocedural static analysis that identifies
and removes redundant barriers at compile time. Appendix B
describes and evaluates this analysis in more detail.

Alternative implementations. Although we implement
OCTET inside of a JVM, alternative implementations are
possible. Implementing OCTET in a dynamic bytecode in-
strumentation tool (e.g., RoadRunner [17]) would make it
portable to any JVM, but it could be hard to make certain
low-level features efficient, such as per-object metadata and
atomic operations. One could implement OCTET for native
languages such as C/C++ by modifying a compiler. A na-
tive implementation would need to (1) add safe points to the
code and (2) handle per-variable metadata differently, e.g.,
by mapping each chunk of k bytes to an OCTET metadata
word via shadow memory [40].

5. Evaluation
This section argues that OCTET is a suitable platform for
capturing cross-thread dependences by showing that its op-
timistic tradeoff is worthwhile for real programs. We evalu-
ate this tradeoff by measuring OCTET’s run-time characteris-
tics and performance, and comparing with two alternatives: a
purely pessimistic approach and a prior optimistic approach.

5.1 Methodology
Benchmarks. The experiments execute our modified Jikes
RVM on the parallel DaCapo Benchmarks [8] versions
2006-10-MR2 and 9.12-bach (2009) including a fixed lu-
search [55], and fixed-workload versions of SPECjbb2000
and SPECjbb2005 called pjbb2000 and pjbb2005.12 Table 2

12 http://users.cecs.anu.edu.au/~steveb/research/

research-infrastructure/pjbb2005

Total threads Max live threads
eclipse6 17–18 11–12
hsqldb6 402 60–102
lusearch6 65 65
xalan6 9 9
avrora9 27 27
jython9 3 2–3
luindex9 2 2
lusearch9 # cores # cores
pmd9 5 5
sunflow9 # cores×2 # cores
xalan9 # cores # cores
pjbb2000 37 9
pjbb2005 9 9

Table 2. The total number of threads executed by each program
and the maximum number that are running at any time. Some
values are ranges due to run-to-run nondeterminism.

shows the number of application threads that each program
executes: total threads executed (Column 1) and maximum
threads running at any time (Column 2). DaCapo bench-
mark names from the 2006 and 2009 versions have suffixes
of 6 and 9, respectively. Some benchmarks by default spawn
threads based on the number of available cores.

A potential threat to validity is if the benchmarks, which
are derived from real programs, are not representative of
real-world parallel programs. Recent work suggests that
some DaCapo benchmarks perform limited communica-
tion [24], which may or may not make them representative
of real-world program behavior.

Platform. Experiments execute on an AMD Opteron 6272
system with 4 16-core processors running Linux 2.6.32. Un-
less stated otherwise, experiments run on 32 cores (using the
taskset command) due to an anomalous result with 64 cores.

Measuring performance. To account for run-to-run vari-
ability due to dynamic optimization guided by timer-based
sampling, we execute 25 trials for each performance result
and take the median (to reduce the impact of performance
outliers due to system noise). We also show the mean, as the
center of 95% confidence intervals.

We build a high-performance configuration of Jikes RVM
(FastAdaptiveGenImmix) that optimizes the VM ahead of
time and adaptively optimizes the application at run time;
it uses the default high-performance garbage collector and
chooses heap sizes adaptively. Execution times naturally
include dynamic compilation costs.

5.2 State Transitions
Table 3 shows the number of OCTET transitions executed,
including accesses that do not change the state (i.e., fast path
only). The three groups of columns show increasing lev-
els of synchronization that correspond to the transitions in
Table 1. Alloc counts the number of objects allocated (and
static fields initialized); for each such event, the allocating
thread T initializes an OCTET metadata word to WrExT.

702

Alloc or same state Upgrading or fence Conflicting
Alloc WrEx RdEx RdSh RdEx→WrEx RdEx→RdSh RdSh→RdSh WrEx→WrEx WrEx→RdEx RdEx→WrEx RdSh→WrEx

eclipse6
1.2×1010 (99.9983%) 7.0×104 (.00056%) 1.4×105 (.0012%)

2.6% 86% 2.0% 9.4% .000078% .00048% .0000038% .000043% .00089% .000035% .00019%

hsqldb6
6.5×108 (99.78%) 5.5×105 (.083%) 8.9×105 (.14%)

6.5% 88% .45% 4.7% .056% .020% .0082% .045% .078% .00069% .013%

lusearch6
2.5×109 (99.99971%) 2.8×103 (.00011%) 4.5×103 (.00018%)

3.1% 91.0% 4.9% 1.0% .000071% .0000040% .000037% .0000085% .00017% 0% .0000027%

xalan6
1.1×1010 (99.77%) 9.9×106 (.091%) 1.5×107 (.14%)

2.2% 86% .13% 11% .091% .000016% .000030% .049% .091% .0000000037% .0000013%

avrora9
6.1×109 (99.80%) 6.2×106 (.10%) 6.1×106 (.099%)

1.2% 89% 8.3% 1.4% .018% .014% .069% .046% .037% .0037% .013%

jython9
5.4×109 (99.9999970%) 5.8×101 (.0000011%) 1.0×102 (.0000019%)

6.2% 91.3% .0022% 2.4% .00000020% .00000084% .000000037% 0% .0000019% 0% 0%

luindex9
3.5×108 (99.99983%) 2.1×102 (.000062%) 3.8×102 (.00011%)

3.9% 96.0% .078% .012% .000052% .0000093% .00000029% .00000058% .00011% .00000029% .0000012%

lusearch9
2.4×109 (99.99977%) 2.6×103 (.00011%) 2.9×103 (.00012%)

3.1% 95.8% .00046% 1.1% .000025% .000023% .000058% .0000033% .00011% .0000014% .0000082%

pmd9
6.3×108 (99.988%) 3.6×104 (.0057%) 4.2×104 (.0067%)

11% 86% .062% 3.2% .0040% .00083% .00093% .00025% .0063% .0000018% .00017%

sunflow9
1.7×1010 (99.99986%) 1.8×104 (.00010%) 6.9×103 (.000040%)

1.3% 40% .0060% 59% .0000010% .000029% .000073% .0000067% .000031% 0% .0000017%

xalan9
1.0×1010 (99.70%) 1.2×107 (.12%) 1.9×107 (.18%)

2.8% 90% .18% 7.1% .12% .000062% .00026% .065% .12% .000000011% .000017%

pjbb2000
1.8×109 (99.90%) 9.1×105 (.050%) 9.5×105 (.052%)

5.1% 78% 1.6% 16% .044% .0055% .000085% .00030% .051% .0000027% .000082%

pjbb2005
6.9×109 (98.8%) 3.5×107 (.51%) 5.0×107 (.72%)

4.2% 89% 1.9% 3.3% .21% .087% .21% .21% .37% .061% .085%

Table 3. OCTET state transitions, including fast-path-only barriers that do not change the state. Conflicting transitions involve a temporary
transition to an intermediate state (WrExInt

T or RdExInt
T). For each program, the first row is the sum of the column group, and the second row

breaks down each transition type as a percentage of all transitions. We round each count to two significant digits, and each percentage x as
much as possible such that x and 100%−x each have at least two significant digits.

The table shows that the vast majority of accesses do not
require synchronization. Lightweight fast-path instrumenta-
tion handles these transitions. Upgrading and fence transi-
tions occur roughly as often as Conflicting transitions; the
conflicting transitions are of greater concern because they
are more expensive. Conflicting transitions range from fewer
than 0.001% of all transitions for a few benchmarks, to
0.10–0.72% for a few benchmarks (xalan6, avrora9, xalan9,
pjbb2005). The relative infrequency of conflicting transi-
tions provides justification for OCTET’s optimistic design.

5.3 Performance
Figure 6 presents the run-time overhead OCTET adds to
program execution. Each bar represents overall execution
time, normalized to unmodified Jikes RVM (Base).

The configuration Octet w/o coordination adds OCTET
states and barriers, but does not perform the coordina-
tion protocol, essentially measuring only OCTET’s fast-path
overhead. (This configuration still performs state transitions;
otherwise fast-path checks repeatedly fail, slowing execu-
tion.) OCTET’s fast path adds 13% overhead on average.

Octet performs the coorindation protocol and adds 13%
overhead on average over Octet w/o coordination. Overall
OCTET overhead is 26% on average. Unsurprisingly, the co-
ordination protocol adds more overhead to programs with
higher fractions of conflicting transitions (hsqldb6, xalan6,

avrora9, xalan9, and pjbb2005). The program pjbb2005
adds the most overhead and has the highest fraction of con-
flicting transitions. Interestingly, pjbb2005 has especially
low overhead for approaches that are less optimistic (more
pessimistic), even though these approaches perform poorly
overall (Sections 5.4 and 5.5), showing the potential for an
adaptive approach that converts roundtrip coordination op-
erations to atomic or fence operations (Section 3.6). De-
spite hsqldb6’s high fraction of conflicting transitions, its
overhead is lower than other high-conflict programs because
more of its conflicting transitions use the implicit protocol.

Scalability. As mentioned earlier, these experiments run
on only 32 cores. We find that OCTET’s overhead is lower
running on 64 cores (20% on average), primarily because of
cases like xalan9, on which Octet consistently outperforms
Base. Investigating this anomalous result, we have found
that simply modifying Jikes RVM (without OCTET) to in-
sert a barrier before every access that does useless work (5–
40 empty loop iterations) causes xalan9 to run faster on 64
cores (with the best performance for 20 loop iterations). This
result suggests that the OCTET configurations improve per-
formance simply by slowing down reads and writes, rather
than anything specifically related to OCTET. We suspect that
the Opteron 6272 machine we use is experiencing oversat-
uration on the interconnect that links together its 8 NUMA
nodes (with 8 cores each). Although we have not been able

703

eclipse6

hsqldb6

lusearch6

xalan6

avrora9

jython9

luindex9

lusearch9

pmd9
sunflow9

xalan9

pjbb2000

pjbb2005

geomean

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
r
m

a
li

z
e
d

 e
x
e
c
u

ti
o
n

 t
im

e

Base

Octet w/o coordination

Octet

2.1

Figure 6. OCTET run-time performance. The ranges are 95% confidence intervals centered at the mean.

0 16 32 48 64
0

50

100

150

200

E
x

e
c
.

ti
m

e
 (

s
) Octet

Base

(a) avrora9

0 16 32 48 64
0

5

10

(b) pmd9

0 16 32 48 64
0

50

100

(c) xalan9

0 16 32 48 64
0

50
100
150
200

(d) pjbb2005

Figure 7. Scalability of Jikes RVM with and without OCTET on 1–64 cores (the x-axis) for four representative programs.

to fully understand this issue, our investigations demonstrate
that the effect is not specific to OCTET but rather an effect
of Jikes RVM running xalan9 on this architecture.

Figure 7 shows how the execution times of unmodified
Jikes RVM (Base) and OCTET vary with different num-
bers of cores. Each point is the median of 10 trials, with
95% confidence intervals (mostly too short to see) centered
around the mean. Although OCTET adds fairly low overhead
to avrora9 for 8–64 cores, it slows the program by up to
2X on 2–4 cores for the following reason. When avrora9—
which always runs 27 threads (Table 2)—runs on few cores,
the OS thread scheduler maps several threads to the same
core. A descheduled thread may or may not be blocked at a
safe point; if not, the thread cannot respond to coordination
protocol requests until it is scheduled. This issue could be
mitigated by implementing better cooperation between the
JVM and the OS thread scheduler, e.g., descheduling threads
only at safe points. (In contrast, hsqldb6 has more threads
than cores, but its threads block frequently, so descheduled
threads are often blocked at a safe point.)

Figure 7(b) shows that OCTET adds fairly consistent over-
head to pmd9 for 1–64 cores. With or without OCTET, Jikes
RVM running pmd9 on this architecture stops scaling around
8 cores (Table 2 shows pmd9 executes only 5 threads). For
16–64 cores, run time increases; we find most of this effect
is due to increasing GC time. We suspect that the parallel
GC does not scale well on the NUMA architecture. The nine

programs not shown in these plots show scalability similar to
pmd9: OCTET adds fairly consistent overhead regardless of
the number of cores, while each program scales differently
depending on its thread count and inherent parallelism. Sev-
eral of these programs scale better than pmd9: lusearch6,
xalan6, lusearch9, and sunflow9.

Figure 7(c) shows that xalan9 scales up to 16–32 cores,
and OCTET adds fairly consistent overhead. For 64 cores, we
observe the anomaly described above in which OCTET actu-
ally outperforms unmodified Jikes RVM. Figure 7(d) shows
that OCTET slows pjbb2005 by about 2X for 4–64 cores (due
to conflicting transitions, as described previously). For 8–64
cores, execution time increases with the number of cores,
which we believe is caused by pjbb2005’s 9 threads (Table 2)
being dispersed across more cores, increasing the effects of
remote cache misses and NUMA communication.

5.4 Comparison to Pessimistic State Model
We have implemented and evaluated the “pessimistic” state
model used for Figure 2 using the same implementation
framework and experimental setup as for OCTET. Every
memory access requires instrumentation that performs an
atomic operation such as CAS. For simplicity of implemen-
tation, our barriers execute the program’s write outside of
the atomic region, an optimization that is acceptable for an-
alyses that capture only unordered conflicting accesses. We
find that adding the barrier to all potentially shared memory

704

accesses slows programs by 4.5–6.2X: the geomean is 4.5X
excluding sunflow9 or 6.2X including sunflow9, which the
pessimistic barriers slow by 345X (±4X). OCTET not only
outperforms the pessimistic model on average, but is faster
on all benchmarks except pjbb2005, which pessimistic barri-
ers slow down by only 1.3X. Pessimistic barriers slow every
other program by at least 2X.

We find that accesses to sunflow9’s RdSh objects have
little same-thread locality, i.e., threads interleave reads to
each RdSh object, so performing a write to each read-shared
access leads to numerous remote cache misses. In con-
trast, pessimistic barriers perform well for pjbb2005 because
nearly all of its RdSh accesses have same-thread locality, so
performing a write at each read-shared access does not add
many remote cache misses.

5.5 Comparison to Alternative State Transition Model
For comparison purposes, we have implemented a state tran-
sition model from prior work. Von Praun and Gross describe
an approach for detecting races based on tracking thread
ownership of objects [51]. Their ownership system dynam-
ically identifies shared objects, allowing the race detector
to restrict its attention to those objects. Like OCTET, their
approach uses unsynchronized checks, with requests and
polling for state changes. Their ownership model allows ob-
jects in an exclusive state to avoid synchronization, but ob-
jects in a shared–modified or shared–read state require syn-
chronization on every access, and objects that enter shared
states cannot return to an exclusive state. In contrast, OCTET
supports transitioning back to exclusive states, and accesses
require synchronization only on state changes.

We have implemented von Praun and Gross’s state tran-
sition model with as many similarities to the OCTET im-
plementation as possible. We adapt their model, which is
designed for detecting races with the lockset algorithm, to
address the problem of tracking dependences. Our adapted
model, which avoids lockset operations and some state tran-
sitions, should be no more expensive than the original model.
An object starts in an exclusive state for its allocating thread;
an access by a second thread triggers a conflicting transi-
tion to an exclusive state for the second thread; any subse-
quent cross-thread access triggers a conflicting transition to
a shared–read or shared–modified state in which all accesses
require an atomic operation such as a CAS. Shared–read and
shared–modified objects cannot transition back to exclusive
states. The model thus avoids conflicting transitions but can
require a CAS for repeated accesses to shared objects.

Table 4 summarizes the transitions incurred by this
model. Most accesses are to objects in the exclusive states,
for which same-state accesses do not require synchroniza-
tion (No sync.). Few accesses trigger a conflicting transi-
tion (Roundtrip coord.), since the same object cannot trigger
more than two conflicting transitions. However, a substan-
tial fraction of accesses are to objects in shared states (CAS);
each of these accesses requires an atomic operation.

No sync. Roundtrip coord. CAS
(excl. state) (confl. trans.) (shared state)

eclipse6 90.6% 0.00089% 9.4%
hsqldb6 94.3% 0.022% 5.6%
lusearch6 99.2% 0.00017% 0.98%
xalan6 87% 0.00033% 13%
avrora9 98.4% 0.0055% 1.6%
jython9 97.6% 0.0000021% 2.4%
luindex9 99.99982% 0.000098% 0.000062%
lusearch9 99.0% 0.000095% 1.0%
pmd9 97.0% 0.0023% 3.0%
sunflow9 42% 0.000056% 58%
xalan9 90.9% 0.00049% 9.1%
pjbb2000 86% 0.017% 14%
pjbb2005 90.6% 0.013% 9.3%

Table 4. State transitions for our implementation of von Praun and
Gross’s model. Rounding follows Table 3.

We find that this model slows programs by 2.2–3.1X (ge-
omean is 2.2X excluding sunflow9 or 3.1X including it).
For sunflow9, the slowdown is 221X (±9X) since it per-
forms many accesses for which the instrumentation requires
a CAS. Results for pessimistic barriers also show that these
accesses are especially expensive for sunflow9 due to adding
synchronized writes to mostly read-shared accesses. The
other slowdowns vary significantly across programs: 17X
for xalan9, 8.1X for xalan6, 1.3X for pjbb2005 (similar to
the result for pessimistic barriers), and 1.3–2.2X for the rest.
These results suggest that, when capturing cross-thread de-
pendences, OCTET’s design, which provides greater flexibil-
ity for handling shared access patterns, provides a significant
advantage over von Praun and Gross’s model.

6. Developing New Analyses
This section describes how OCTET can be used as a building
block for new analyses. As described in preceding sections,
OCTET guards all potentially shared accesses with barriers
that coordinate access to objects. In addition, OCTET pro-
vides hooks, which the next section describes in more de-
tail, that allow analyses to perform analysis-specific behav-
ior when the barriers perform various actions. These features
allow OCTET to provide two key capabilities that analyses
can leverage:

• Lightweight locks. Some analyses, such as software trans-
actional memory (STM) for enforcing atomicity [20],
essentially need locks on all shared objects. OCTET’s
thread locality states allow OCTET barriers to function
effectively as lightweight, biased, read/write locks on ev-
ery shared object. By implementing hooks into OCTET’s
state transitions, analyses can perturb the execution, e.g.,
by resolving conflicts in an STM or by controlling inter-
leavings to provide deterministic execution.
• Tracking dependences and detecting conflicts. Many an-

alyses rely on detecting when a cross-thread dependence
exists or when two accesses conflict, and taking some
action in response. Analyses can implement “slow-path

705

Lightweight Track Precise
locks dependences accesses

Record deps. 3

Deterministic exec. 3

Check DRF/SC 3 3

Check atomicity 3 3

Enforce atomicity 3 3 3∗

Table 5. The analyses from Section 2.1 have different require-
ments. *When enforcing atomicity, last-access information such as
read/write sets need not be fully precise.

hooks” (hooks that execute when OCTET performs a state
transition) to identify all cross-thread dependences. The
next section describes how a dependence recorder can
build on OCTET to capture all cross-thread dependences.

Table 5 presents the five analyses from Section 2.1. The
Lightweight locks and Track dependences columns show
which analyses require these features. In general, “checking”
and “recording” analyses need to track dependences, while
“enforcing” analyses need lightweight locks. STM imple-
mentations probably need both—for conflict detection and
resolution, respectively.

Our preliminary experience building on top of OCTET
to enforce and check atomicity informs our understanding
of these features, and suggests that Section 7’s hooks are
generally useful [7, 49, 56].

Developing precise analyses
Some analyses—in particular, “checking” analyses—require
precision in order to avoid reporting false positives. While
hooking into OCTET’s transitions allows tracking depen-
dences soundly, these dependences are not precise. The rest
of this section identifies sources of precision that analyses re-
quire. A common theme is that providing precision is largely
a thread-local activity, so analyses may be able to provide
precision with reasonable overhead.

Prior accesses. Many checking analyses need to know not
only that a cross-thread dependence exists, but also when the
source of the dependence occurred. For example, when T2
reads o, an atomicity checker needs to know not only that T1
last wrote o but also “when” T1 wrote o (e.g., T1’s atomic
block or non-atomic access that wrote o) to identify the exact
dependence and ultimately decide whether an atomicity vio-
lation exists. Analyses can provide this precision by storing
thread-local read and write sets [38]. For example, atom-
icity checking would maintain read and write sets for each
executed region.

Inferring precise dependences from imprecise transitions.
To be sound, an analysis must assume the existence of cross-
thread dependences implied by OCTET’s happens-before
edges. However, many of these dependences may not exist.
A transition from RdSh to WrExT implies a potential depen-
dence from all other threads to T, but this dependence may

not exist for every thread. In Figure 5, to capture the write–
read dependence from T1 to T5, an analysis must capture
all of the happens-before edges that imply this dependence.
However, other implied dependences do not actually exist,
e.g., no dependence exists from T1’s write of o to the reads
of p by T5 and T6.

Field granularity. Furthermore, all happens-before edges
imply potentially imprecise dependences because of gran-
ularity mismatch: OCTET tracks state at object granular-
ity for performance reasons, but precise analyses typically
need field (and array element) granularity. While an analysis
could modify OCTET to track dependences at field granu-
larity to increase precision, the other forms of imprecision
would still require mechanisms such as read/write sets to
provide full precision.

The Precise accesses column of Table 5 identifies analyses
that require precision. Detecting data races, SC violations,
or atomicity violations requires perfect precision to avoid
reporting false positives. Although enforcing atomicity with
STM does not require full precision, since false positives
affect performance but not correctness, this analysis would
benefit from some precision about prior accesses, to avoid
aborting transactions on every OCTET conflicting transition.

A precise analysis may be able to harness OCTET’s im-
precise happens-before edges as a sound, efficient “first-
pass filter.” Transitions that indicate a potential dependence
would require a second, precise pass using precise thread-
local accesses. If an analysis could avoid invoking the sec-
ond pass frequently, it could achieve high performance by
avoiding most synchronization in the common case.

7. Dependence Recorder
This section describes how we implement an analysis that
records all of OCTET’s happens-before edges, which soundly
imply all cross-thread dependences. We describe “hooks”
that OCTET provides for building new analyses and show
how the dependence recorder implements these hooks.

Framework for soundly capturing dependences. In gen-
eral, every analysis has some notion of what we call “dy-
namic access location” (DAL). A DAL could be defined as
a dynamically executed region or transaction, in the case of
an atomicity checker or STM. In the case of a dependence
recorder, a DAL is a static program location plus per-thread
dynamic counter, allowing an analysis to record when depen-
dences occurred with enough granularity to support replay.
The dependence recorder needs to capture both the source
and sink DAL of each happens-before edge that OCTET es-
tablishes. The sink DAL is always the current memory ac-
cess triggering an OCTET state transition; figuring out the
source DAL is more challenging.

OCTET provides a hook for each state transition in Ta-
ble 1 that analyses can implement in order to perform custom
behavior when happens-before edges are established:

706

• handleConflictingTransitionAsRespondingThread(obj,
oldState, accessType): During the explicit protocol, it
is the responding thread that invokes this hook since the
requesting thread is safely paused while the responding
thread is active. The source DAL for the happens-before
relationship is whichever DAL the responding thread is
currently at. In Figure 4(a), the source DAL is point #4.
• handleConflictingTransitionAsRequestingThread(obj,

oldState, accessType): Called during the implicit coordi-
nation protocol. The requesting thread must do any work
to handle the conflicting transition, as the responding
thread is blocked. The dependence recorder uses the safe
point at which the responding thread is blocked as the
source DAL of the happens-before edge. In Figure 4(b),
the source DAL is point #2.
• handleUpgradingTransitionToRdSh(obj, oldState, ac-

cessType):13 When transitioning obj from RdExT1 to
RdShc, T2 establishes a happens-before relationship with
T1. Because the DAL of T1’s read may be hard to cap-
ture efficiently, the recorder captures the DAL from T1’s
most recent transition of any object to RdExT1, transi-
tively capturing the necessary happens-before. The up-
grading transition also establishes a happens-before edge
from the last DAL to transition an object to RdSh (i.e.,
to RdShc−1). The recorder captures this DAL by having
every upgrading transition to RdSh assign its DAL to
a global variable, gLastRdSh, the most recent DAL to
transition to RdSh.
• handleFenceTransition(obj, state, accessType): The de-

pendence recorder uses the DAL recorded in gLastRdSh
to capture the needed happens-before relationship.
• extendFastPath(obj, state, accessType): Tracking de-

pendences does not require performing actions at the fast
path, but other analyses can use this hook, e.g., to update
local read/write sets.

Implementation and evaluation. We implement the de-
pendence recorder on top of OCTET by implementing the
hooks as described above. As each thread executes, it records
happens-before edges in a per-thread log file. In addition to
adding OCTET’s instrumentation, the compilers add instru-
mentation at method entries and exits and loop back edges
to update a per-thread dynamic counter (to help compute
DAL), and each safe point records the current static pro-
gram location, in case the safe point calls into the VM and
responds to a coordination protocol request.

Figure 8 shows the overhead that the recorder adds on
32 cores. OCTET’s overhead is the same as shown in Fig-
ure 6. We find it adds 5% on average over OCTET for an
overall overhead of 31% (all percentages relative to baseline

13 Upgrading transitions from RdExT to WrExT capture a potential intra-
thread dependence, so the dependence recorder, and most other analyses,
do not need to hook onto it.

eclipse6

hsqldb6

lusearch6

xalan6

avrora9

jython9

luindex9

lusearch9

pmd9
sunflow9

xalan9

pjbb2000

pjbb2005

geomean

0

20

40

60

80

100

120

E
x
e
c
.
ti

m
e
 o

v
e
r
h

e
a
d

 (
%

)

Dependence recorder

Octet

Figure 8. Run-time overhead that the dependence recorder adds
on top of OCTET and overall.

execution). By running subconfigurations of the recorder
(not shown), we find that about half of the recorder’s over-
head over OCTET comes from the instrumentation added to
track program location, and about half comes from actually
recording OCTET’s happens-before edges.

Unsurprisingly, the recorder adds significant overhead to
pjbb2005, which has the highest fraction of accesses trigger-
ing an OCTET state change. The recorder adds the most over-
head (over OCTET) to hsqldb6, which performs a nontrivial
number of RdSh→WrEx transitions (Table 3)—which in-
volve as many as 100 responding threads (Table 2). OCTET
performs these transitions inexpensively since most coordi-
nation uses the implicit protocol (Section 5.3), but recording
a RdSh→WrEx transition incurs the cost of writing to each
responding thread’s log.

These results suggest that we can use OCTET to build
a low-overhead dependence-recording analysis, potentially
enabling online multithreaded record & replay.

8. Related Work
This section compares OCTET’s concurrency control mech-
anism with prior work. While prior work employs optimistic
synchronization for tracking ownership of shared memory,
OCTET’s design and purpose differ from prior approaches.

Biased locking. Prior work proposes biased locking as an
optimistic mechanism for performing lock acquires without
atomic operations [11, 25, 43, 46]. Each lock is “biased” to-
ward a particular thread that may acquire the lock without
synchronization; other threads must communicate with the
biasing thread before acquiring the lock. In contrast, OCTET
applies an optimistic approach to all program accesses, not
just locks, and it introduces WrEx, RdEx, and RdSh states in
order to support different sharing patterns efficiently. Hind-
man and Grossman present an approach similar to biased
locking for tracking reads and writes in STM [22]. As with
biased locking, their approach does not efficiently handle
read-shared access patterns.

Cache coherence. OCTET’s states correspond to cache co-
herence protocol states; its conflicting state transitions corre-
spond to remote invalidations (Section 3.1). Thus, program

707

behavior that leads to expensive OCTET behavior may al-
ready have poor performance due to remote cache misses.

Cache coherence has been implemented in software in
distributed shared memory (DSM) systems to reduce coher-
ence traffic [4, 26, 27, 33, 47, 48]. Shasta and Blizzard-S
both tag shared memory blocks with coherence states that
are checked by barriers at each access [47, 48]. A coherence
miss triggers a software coherence request; processors peri-
odically poll for such requests.

While each unit of shared memory can have different
states in different caches, each unit of shared memory has
one OCTET state at a time. While cache coherence provides
data consistency, OCTET provides concurrency control for
analyses that need to capture cross-thread dependences.

Identifying shared memory accesses. Static approaches
can identify definitely non-shared objects or non-racy ac-
cesses [13, 15, 52]. These approaches could complement
OCTET by eliminating unnecessary barriers. Chimera lowers
the cost of tracking cross-thread dependences by using static
race detection, but it relies on profiling for efficiency [31].

Aikido avoids instrumenting accesses to non-shared mem-
ory by using OS paging and binary writing to limit instru-
mentation to reads and writes that might access shared mem-
ory [42]. As the remaining shared accesses still incur signif-
icant overhead, Aikido is complementary to OCTET.

Von Praun and Gross track thread ownership dynamically
in order to detect races [51]. Section 5.5 compared our im-
plementation of their state model with OCTET.

9. Summary
OCTET is a novel concurrency control mechanism that cap-
tures cross-thread dependences, without requiring synchro-
nization at non-conflicting accesses. We have designed a
state-based protocol, proven soundness and liveness guaran-
tees, and described a framework for designing efficient an-
alyses and systems on top of OCTET. An evaluation of our
prototype implementation shows that real programs bene-
fit from OCTET’s optimistic tradeoff, and OCTET achieves
overheads substantially lower than prior approaches.

A. OCTET Correctness Proofs
A.1 Proof of Theorem 1
Recall that we assume both fair thread scheduling and that
all operations on queues will succeed. We begin by showing
the following:

Lemma 1. A thread will always eventually respond to OC-
TET requests from other threads.

Proof. A thread has two means of responding to OCTET re-
quests. A thread can explicitly respond to requests at safe
points, and it will implicitly respond to requests as de-
scribed in Section 3.3 if it is blocked. Hence, as long as non-
blocked threads eventually block or reach a safe point, all re-

quests will be responded to. Fair scheduling means that non-
blocked threads make forward progress. Hence, it suffices to
ensure that safe points are placed so that a thread cannot ex-
ecute indefinitely without encountering one. As discussed in
Section 3.3, safe points occur at least at loop back edges and
method entries, and within all loops of the OCTET protocol
outlined in Figure 3, ensuring that a non-blocked thread will
eventually block or reach a safe point.

The preceding Lemma readily yields the following:

Lemma 2. A thread that changes the OCTET state of an
object o will eventually be able to access o.

Proof. If thread T changes o’s state to any other state that
does not require roundtrip coordination (i.e., T performs a
RdEx → RdSh or RdExT → WrExT transition), then the
access can proceed immediately. If T places an object in an
intermediate state, then T cannot proceed until it receives
responses from the necessary threads (a single thread in the
case of a transition from WrEx or RdEx, or all threads in
the case of a transition from RdSh). Lemma 1 says that
all necessary responses will eventually arrive, and hence
T can remove the intermediate flag and proceed with its
access.

We can now prove the following:

Theorem 1. OCTET’s protocol is deadlock and livelock free.

Proof. We note that showing deadlock and livelock freedom
requires that at least one thread make progress when encoun-
tering an OCTET barrier. We can thus show that a thread at
an OCTET barrier will either (a) successfully pass the bar-
rier and complete its access; or (b) retry the barrier because
a second thread has completed or will complete its access.

We thus consider a thread T attempting to access an ob-
ject o, and consider each possibility under which the thread
may attempt its access. These cases are labeled using tuples
of the form (S, a), where S is the state o is in when T ar-
rives at the OCTET barrier, and a denotes whether T wants
to perform a read (r), a write (w), or either (r/w).

(WrExT, r/w), (RdExT, r): These are the simple cases.
The OCTET barrier takes the fast path and T immedi-
ately proceeds to its access.

(Any intermediate state, r/w): If T finds o in an interme-
diate state, the OCTET protocol causes T to loop. How-
ever, in this situation, a second thread, T’, has put o into
an intermediate state, and, by Lemma 2, will eventually
complete its access.

(WrExT′ , r/w), (RdExT′ , w), (RdShc, w): In each of these
cases, the conflicting transition protocol causes T to at-
tempt to CAS o to the appropriate intermediate state.
If the CAS fails, then some other thread T’ put o into
a different state, and, by Lemma 2, will make forward

708

progress. If the CAS succeeds, then T makes forward
progress, instead.

(RdShc, r): If necessary, T can update T.rdShCount with-
out blocking. T then proceeds to its access.

(RdExT′ , r): T attempts to atomically increment gRdSh-
Count. If the increment succeeds, T then attempts to CAS
o’s state to RdShc. If the CAS succeeds, T proceeds with
its access, and if it fails, then some other thread T’ per-
formed a state change and is making forward progress by
Lemma 2. If the atomic increment fails, then some thread
T’ is attempting the same transition, but in the “success-
ful increment” case, and thus some thread is making for-
ward progress.

(RdExT, w): T attempts to upgrade o’s state with a CAS.
If the CAS succeeds, T proceeds with its access. If it
fails, then some other thread changed o’s state, and by
Lemma 2 will complete its access.

Hence, in all cases, either T will eventually be able to pro-
ceed past the OCTET barrier and perform its access, or some
other thread will successfully complete its access, and no
deadlock or livelock is possible.

A.2 Proof of Theorem 2
We next show that OCTET creates happens-before relation-
ships between all cross-thread dependences. Note that OC-
TET does not concern itself with non-cross-thread depen-
dences as they are enforced by the compiler and hardware.
We note that any cross-thread dependence only involves a
single object. Dependences that involve two objects (e.g.,
loading a value from a field of one object and storing it into
the field of a second) must happen within a single thread. We
also assume that OCTET’s instrumentation correctly ensures
that an object is in a valid state before a thread performs its
access (e.g., for T to write obj, obj must be in state WrExT).

Notation. We denote a read by thread T as rT, and a write
by T as wT. A dependence between two accesses is denoted
with→. Hence, flow (true) dependences are written w → r,
anti-dependences, r → w, and output dependences, w → w.
A cross-thread dependence is a dependence whose source
access is on one thread and whose dependent access is on
another. We will denote the object over which a dependence
is carried as obj.

We will also use special notation for certain actions per-
formed by threads when interacting with OCTET. S ↓T means
that thread T put an object into OCTET state S. recvT means
T received a request on its request queue; respT means T re-
sponded; blockT means T has blocked its request queue; and
unblockT means T unblocked its request queue.

Theorem 2. OCTET creates a happens-before relationship
to establish the order of every cross-thread dependence.

Proof. We need only concern ourselves with cross-thread
dependences that are not transitively implied by other depen-

dences (cross-thread or otherwise). We thus break the proof
into several cases:

wT1 → wT2: OCTET’s barriers enforce that when T1 writes
obj, obj must be in WrExT1 state. When T2 attempts to
perform its write, it will still find obj in WrExT1 (because
the dependence is not transitively implied, no other con-
flicting access to obj could have happened in the interim).
T2 will put obj into WrExInt

T2 and make a request to T1.

In the case of the explicit response protocol, when T1 re-
ceives the request, it establishes WrExInt

T2 ↓T2→hb respT1

(transitively implied by edge hb1 in Figure 4(a)) and en-
sures that T1 will now see obj in state WrExInt

T2 (prevent-
ing future reads and writes by T1 to obj). When T2 sees
the update of T1’s response, it issues a fence, moves obj
to state WrExT2, and proceeds with its write, establish-
ing recvT1 →hb wT2 (transitively implied by edge hb2 in
Figure 4(a)) and hence wT1 →hb wT2.

In the implicit response protocol, T2 moves obj to
WrExT2 only after observing that T1 is blocked. We thus
have WrExInt

T2↓T2→hb unblockT1 (transitively implied by
edge hb1 in Figure 4(b)), ensuring that subsequent ac-
cesses by T1 happen after obj is moved to WrExInt

T2, and
blockT1 →hb wT2 (transitively implied by edge hb2 in
Figure 4(b)). Since wT1 →hb blockT1, wT1 →hb wT2

holds transitively.
rT1 → wT2: This dependence has two cases to handle.

Case 1: T2 finds the object in an exclusive state (either
RdExT1 or WrExT1). rT1 →hb wT2 is established by the
same roundtrip mechanism as in the prior scenario.
Case 2: T2 finds the object in RdSh state. In this case,
the protocol for dealing with RdSh objects requires that
T2 perform roundtrip coordination with all threads, es-
tablishing rT1 →hb wT2.

wT1 → rT2: For thread T1 to write to obj, the object must be
in WrExT1 state. There are then three scenarios by which
this dependence could occur.
Case 1: T2 is the first thread to read obj after the write
by T1, so it will find obj in WrExT1 state. This triggers
roundtrip coordination and establishes wT1 →hb rT2.
Case 2: T2 is the second thread to read obj after the
write by T1. This means that there was some thread T3
that left the object in state RdExT3. By the previous case,
we know wT1 →hb RdExT3 ↓T3, with a fence between
respT1 (or blockT1 in the case of the implicit protocol) and
RdExT3 ↓T3. Hence, when T2 uses a CAS to move the
object to state RdSh, it establishes respT1 →hb RdSh ↓T2

(or blockT1 →hb RdSh ↓T2 in the case of the implicit
protocol), enforcing wT1 →hb rT2 transitively.
Case 3: T2 finds obj in RdShc state upon reading it. Note
that by the previous case, there must be some thread
T3 that placed obj in RdShc (establishing wT1 →hb

RdShc ↓T3). To access obj in RdShc state, T2 checks
T2.rdShCount ≥ c and, if the check fails, updates

709

T2.rdShCount with a fence to ensure that T2 last saw
the value of gRdShCount no earlier than when T3 put
obj in RdShc. Hence, we have RdShc↓T3→hb rT2, estab-
lishing wT1 →hb rT2 transitively.

Thus, OCTET establishes a happens-before relationship be-
tween the accesses of every cross-thread dependence.

B. Eliminating Redundant Barriers
Not all OCTET barriers are necessary. A particular barrier
may be “redundant” because a prior barrier for the same ob-
ject guarantees that the object will have an OCTET state that
does not need to change. The key insight in eliminating re-
dundant barriers is that a thread can only “lose” access to an
object when it reaches a safe point. Thus, an access does not
need a barrier if it is always preceded by an access that guar-
antees it will have the right state, without any intervening
operations that might allow the state to change. The follow-
ing sections describe a redundant barrier analysis (RBA)
and evaluate its effects on OCTET performance.

A barrier at an access A to object o is redundant if the
following two conditions are satisfied along every control-
flow path to the access:

• The path contains a prior access P to o that is at least as
“strong” as A. Writes are stronger than reads, but reads
are weaker than writes, so A’s barrier is not redundant if
A is a write and P is a read.
• The path does not execute a safe point between A and

any last prior access P that is at least as strong as A.

We have designed a sound, flow-sensitive, intraprocedu-
ral data-flow analysis that propagates facts about accesses
to all objects and statics, and merges facts conservatively
at control-flow merges. The analysis is conservative about
aliasing of object references, assuming they do not alias ex-
cept when they definitely do. A potential safe point kills all
facts, except for facts about newly allocated objects that have
definitely not escaped.

Handling slow paths. Responding threads respond to re-
quests explicitly or implicitly at safe points, allowing other
threads to perform conflicting state changes on any object.
Potential safe points include every object access because a
thread may “lose” access to any object except the accessed
object if it takes a slow path, which is a safe point. Thus, at
an access to o, the safe form of our analysis kills data-flow
facts for all objects except o.

We have also explored an unsafe variant of our analy-
sis that does not kill data-flow facts at object accesses. This
variant is interesting because some analyses built on OC-
TET could use it. Speculatively executed regions (e.g., using
transactional memory [20]) can use the unsafe variant be-
cause “losing” any object triggers rollback.

No RBA Safe RBA (default) Unsafe RBA
eclipse6 8.6×109 6.2×109 5.4×109

hsqldb6 3.7×108 3.3×108 3.2×108

lusearch6 1.6×109 1.2×109 1.1×109

xalan6 6.8×109 5.4×109 5.0×109

avrora9 4.0×109 3.1×109 2.5×109

jython9 3.5×109 2.7×109 2.5×109

luindex9 2.2×108 1.7×108 1.6×108

lusearch9 1.6×109 1.2×109 1.1×109

pmd9 4.0×108 3.1×108 2.8×108

sunflow9 1.2×1010 8.7×109 5.3×109

xalan9 6.3×109 5.1×109 4.7×109

pjbb2000 1.1×109 9.2×108 8.4×108

pjbb2005 4.7×109 3.5×109 3.3×109

Table 6. Dynamic barriers executed under three RBA configura-
tions: no analysis, safe analysis, and unsafe analysis.

Example. The following example code illustrates how bar-
riers can be redundant:
o. f = ...

/∗ ... no loads or stores ; no safe points ; no defs of o ... ∗/

// barrier not required
... = o.f ;

// read barrier on p may execute slow path
... = p.g;

// barrier required by safe variant (not by unsafe variant)
... = o.f ;

The first read barrier for o is unnecessary because o’s state
will definitely be WrExT. The second read barrier for o is
necessary for the safe variant because the barrier for p may
execute the slow path, which is a safe point.

Performance impact. All of the OCTET results presented
in Section 5 eliminate redundant barriers based on the safe
variant of RBA. This section evaluates the benefit of the
analysis by comparing to configurations without RBA and
with the unsafe variant of RBA.

Table 6 shows the number of dynamic barriers executed
without and with RBA. No RBA is barriers inserted without
RBA; Safe RBA (default) and Unsafe RBA are the barriers
inserted after using RBA’s safe and unsafe variants. We see
that the safe variant of RBA is effective in reducing the
number of OCTET barriers executed, and the unsafe variant
usually eliminates a modest amount of additional barriers.

Evaluating performance with and without RBA, we find
that safe RBA (the default) improves performance by 1% on
average (relative to baseline execution time) compared with
no RBA. Unsafe RBA improves performance on average by
1% over safe RBA. Unsafe RBA improves the performance
of sunflow9 by 7% on average over safe RBA; sunflow9 is
also the program for which unsafe RBA removes the largest
fraction of barriers over safe RBA (Table 6).

While we focus here on objects that were previously ac-
cessed, other analyses could potentially identify objects that
definitely cannot be shared and thus do not need barriers. Ul-
timately, these optimizations may be beneficial, but, as with

710

RBA, we expect them to have a muted effect on overall over-
head, as non-shared objects will always take fast paths at
OCTET barriers, and OCTET’s fast-path overheads are low.

C. Implementing the Coordination Protocol
We have implemented the abstract protocol from Section 3.3
as follows. For its request queue, each thread maintains a
linked list of requesting threads represented with a single
word called req. This word combines three values using
bitfields so that a single CAS can update them atomically:

counter: The number of requests made to this thread.

head: The head of a linked list of requesting threads.

isBlocked: Whether this thread is at a blocking safe point.

The linked list is connected via next pointers in the request-
ing threads. Because a requesting thread may be on multiple
queues (if it is requesting access to a RdSh object), it has
an array of next pointers: one for each responding thread.
Each thread also maintains a counter resp that is the number
of requests to which it has responded. A responding thread
responds to requests by increasing its resp counter; in this
way, it can respond to multiple requests simultaneously.

Figure 9 shows the concrete implementation of the ab-
stract request queue using the req word and resp counter.
Each request increments req.counter; it adds the request-
ing thread to the linked list if using the explicit protocol.
Responding threads process each requesting thread in the
linked list in an analysis-specific way (represented with
the call to processList)—in reverse order if FIFO behav-
ior is desired—and they respond by updating resp, which
requesting threads observe.14 The linked list allows respond-
ing threads to know which requesting thread(s) are making
requests, which allows the responding thread to perform
conflict detection based on a requesting thread’s access, for
example. On the other hand, analyses that only need to es-
tablish a happens-before relationship can elide all of the
linked list behavior and use only the counters; in this case,
the CAS loop in handleRequestsHelper must be replaced
with a memory fence.

Acknowledgments
We thank Luis Ceze, Brian Demsky, Dan Grossman, Kathryn
McKinley, Madan Musuvathi, and Michael Scott for valu-
able discussions and feedback; and the anonymous reviewers
for helpful and detailed comments and suggestions.

References
[1] S. V. Adve and H.-J. Boehm. Memory Models: A Case for Rethinking

Parallel Languages and Hardware. CACM, 53:90–101, 2010.
[2] S. V. Adve and M. D. Hill. Weak Ordering—A New Definition. In

ISCA, pages 2–14, 1990.

14 If an analysis processes the requesting threads, the responding thread may
need to issue a fence before updating resp, to ensure proper ordering.

requestsSeen() { return this . req .counter > this . resp ; }
handleRequests() {

handleRequestsHelper(false) ;
}
handleRequestsAndBlock() {

handleRequestsHelper(true) ;
}
handleRequestsHelper(isBlocked) {
do {

newReq = oldReq = this.req;
newReq.isBlocked = isBlocked;
newReq.head = null;
} while (!CAS(&this.req, oldReq, newReq));
processList (oldReq.head);
this . resp = oldReq.counter;

}
resumeRequests() {
do {

newReq = oldReq = this.req;
newReq.isBlocked = false;
} while (!CAS(&this.req, oldReq, newReq));
}

(a) Methods called by responding thread respT, i.e., this is respT.

request(respT) {
do {

newReq = oldReq = respT.req;
if (!oldReq.isBlocked) {
this .next[respT] = oldReq.head;
newReq.head = this;
}
newReq.counter = oldReq.counter + 1;
if (CAS(&respT.req, oldReq, newReq))
return oldReq.isBlocked ;

} while (true) ;
}
status(respT) { return respT. responses >= newReq.counter; }

(b) Methods called by requesting thread reqT, i.e., this is reqT.
Note that status() uses the value of newReq from request().

Figure 9. Concrete implementation of request queues.

[3] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi,
P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKinley,
M. Mergen, J. E. B. Moss, T. Ngo, and V. Sarkar. The Jikes Research
Virtual Machine Project: Building an Open-Source Research Commu-
nity. IBM Systems Journal, 44:399–417, 2005.

[4] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Orca: A Language
For Parallel Programming of Distributed Systems. IEEE TSE, 18:190–
205, 1992.

[5] L. Baugh, N. Neelakantam, and C. Zilles. Using Hardware Mem-
ory Protection to Build a High-Performance, Strongly-Atomic Hybrid
Transactional Memory. In ISCA, pages 115–126, 2008.

[6] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. Core-
Det: A Compiler and Runtime System for Deterministic Multithreaded
Execution. In ASPLOS, pages 53–64, 2010.

[7] S. Biswas, J. Huang, A. Sengupta, and M. D. Bond. DoubleChecker:
Efficient Sound and Precise Atomicity Checking. Unpublished, 2013.

[8] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo Benchmarks: Java Benchmarking Development and An-
alysis. In OOPSLA, pages 169–190, 2006.

711

[9] R. L. Bocchino, Jr., V. S. Adve, S. V. Adve, and M. Snir. Parallel
Programming Must Be Deterministic by Default. In HotPar, pages
4–9, 2009.

[10] C. Boyapati, R. Lee, and M. Rinard. Ownership Types for Safe
Programming: Preventing Data Races and Deadlocks. In OOPSLA,
pages 211–230, 2002.

[11] M. Burrows. How to Implement Unnecessary Mutexes. In Com-
puter Systems Theory, Technology, and Applications, pages 51–57.
Springer–Verlag, 2004.

[12] L. Ceze, J. Devietti, B. Lucia, and S. Qadeer. A Case for System
Support for Concurrency Exceptions. In HotPar, 2009.

[13] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Srid-
haran. Efficient and Precise Datarace Detection for Multithreaded
Object-Oriented Programs. In PLDI, pages 258–269, 2002.

[14] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Deterministic
Shared Memory Multiprocessing. In ASPLOS, pages 85–96, 2009.

[15] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A Race and
Transaction-Aware Java Runtime. In PLDI, pages 245–255, 2007.

[16] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise Dy-
namic Race Detection. In PLDI, pages 121–133, 2009.

[17] C. Flanagan and S. N. Freund. The RoadRunner Dynamic Analysis
Framework for Concurrent Programs. In ACM Workshop on Program
Analysis for Software Tools and Engineering, pages 1–8, 2010.

[18] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A Sound and
Complete Dynamic Atomicity Checker for Multithreaded Programs.
In PLDI, pages 293–303, 2008.

[19] K. Gharachorloo and P. B. Gibbons. Detecting Violations of Sequen-
tial Consistency. In SPAA, pages 316–326, 1991.

[20] T. Harris, J. Larus, and R. Rajwar. Transactional Memory. Morgan
and Claypool Publishers, 2nd edition, 2010.

[21] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural
Support for Lock-Free Data Structures. In ISCA, pages 289–300,
1993.

[22] B. Hindman and D. Grossman. Atomicity via Source-to-Source Trans-
lation. In MSPC, pages 82–91, 2006.

[23] D. R. Hower, P. Montesinos, L. Ceze, M. D. Hill, and J. Torrellas.
Two Hardware-Based Approaches for Deterministic Multiprocessor
Replay. CACM, 52:93–100, 2009.

[24] T. Kalibera, M. Mole, R. Jones, and J. Vitek. A Black-box Approach to
Understanding Concurrency in DaCapo. In OOPSLA, pages 335–354,
2012.

[25] K. Kawachiya, A. Koseki, and T. Onodera. Lock Reservation: Java
Locks Can Mostly Do Without Atomic Operations. In OOPSLA, pages
130–141, 2002.

[26] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. Tread-
Marks: Distributed Shared Memory on Standard Workstations and Op-
erating Systems. In USENIX, pages 115–132, 1994.

[27] L. I. Kontothanassis and M. L. Scott. Software Cache Coherence for
Large Scale Multiprocessors. In HPCA, pages 286–295, 1995.

[28] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. CACM, 21(7):558–565, 1978.

[29] L. Lamport. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Computer, 28:690–691, 1979.

[30] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging Parallel Pro-
grams with Instant Replay. IEEE TOC, 36:471–482, 1987.

[31] D. Lee, P. M. Chen, J. Flinn, and S. Narayanasamy. Chimera: Hybrid
Program Analysis for Determinism. In PLDI, pages 463–474, 2012.

[32] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen,
and J. Flinn. Respec: Efficient Online Multiprocessor Replay via
Speculation and External Determinism. In ASPLOS, pages 77–90,
2010.

[33] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta,
J. Hennessy, M. Horowitz, and M. S. Lam. The Stanford Dash
Multiprocessor. IEEE Computer, 25:63–79, 1992.

[34] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: Efficient Determin-
istic Multithreading. In SOSP, pages 327–336, 2011.

[35] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm. Conflict
Exceptions: Simplifying Concurrent Language Semantics with Precise
Hardware Exceptions for Data-Races. In ISCA, pages 210–221, 2010.

[36] J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In
POPL, pages 378–391, 2005.

[37] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and
S. Narayanasamy. DRFx: A Simple and Efficient Memory Model for
Concurrent Programming Languages. In PLDI, pages 351–362, 2010.

[38] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood.
LogTM: Log-based Transactional Memory. In HPCA, pages 254–265,
2006.

[39] M. Naik and A. Aiken. Conditional Must Not Aliasing for Static Race
Detection. In POPL, pages 327–338, 2007.

[40] N. Nethercote and J. Seward. How to Shadow Every Byte of Memory
Used by a Program. In ACM/USENIX International Conference on
Virtual Execution Environments, pages 65–74, 2007.

[41] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient De-
terministic Multithreading in Software. In ASPLOS, pages 97–108,
2009.

[42] M. Olszewski, Q. Zhao, D. Koh, J. Ansel, and S. Amarasinghe.
Aikido: Accelerating Shared Data Dynamic Analyses. In ASPLOS,
pages 173–184, 2012.

[43] T. Onodera, K. Kawachiya, and A. Koseki. Lock Reservation for Java
Reconsidered. In ECOOP, pages 559–583, 2004.

[44] M. S. Papamarcos and J. H. Patel. A Low-Overhead Coherence
Solution for Multiprocessors with Private Cache Memories. In ISCA,
pages 348–354, 1984.

[45] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and
S. Lu. PRES: Probabilistic Replay with Execution Sketching on
Multiprocessors. In SOSP, pages 177–192, 2009.

[46] K. Russell and D. Detlefs. Eliminating Synchronization-Related
Atomic Operations with Biased Locking and Bulk Rebiasing. In OOP-
SLA, pages 263–272, 2006.

[47] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta: A
Low Overhead, Software-Only Approach for Supporting Fine-Grain
Shared Memory. In ASPLOS, pages 174–185, 1996.

[48] I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R. Larus,
and D. A. Wood. Fine-Grain Access Control for Distributed Shared
Memory. In ASPLOS, pages 297–306, 1994.

[49] A. Sengupta, S. Biswas, M. D. Bond, and M. Kulkarni. EnforSCer:
Hybrid Static–Dynamic Analysis for End-to-End Sequential Consis-
tency in Software. Technical Report OSU-CISRC-11/12-TR18, Com-
puter Science & Engineering, Ohio State University, 2012.

[50] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn,
and S. Narayanasamy. DoublePlay: Parallelizing Sequential Logging
and Replay. In ASPLOS, pages 15–26, 2011.

[51] C. von Praun and T. R. Gross. Object Race Detection. In OOPSLA,
pages 70–82, 2001.

[52] C. von Praun and T. R. Gross. Static Conflict Analysis for Multi-
Threaded Object-Oriented Programs. In PLDI, pages 115–128, 2003.

[53] L. Wang and S. D. Stoller. Runtime Analysis of Atomicity for Multi-
threaded Programs. IEEE TSE, 32:93–110, 2006.

[54] X. Yang, S. M. Blackburn, D. Frampton, and A. L. Hosking. Barriers
Reconsidered, Friendlier Still! In ISMM, pages 37–48, 2012.

[55] X. Yang, S. M. Blackburn, D. Frampton, J. B. Sartor, and K. S. McKin-
ley. Why Nothing Matters: The Impact of Zeroing. In OOPSLA, pages
307–324, 2011.

[56] M. Zhang, J. Huang, and M. D. Bond. LarkTM: Efficient, Strongly
Atomic Software Transactional Memory. Technical Report OSU-
CISRC-11/12-TR17, Computer Science & Engineering, Ohio State
University, 2012.

712

