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An MILP Encoding for Efficient Verification of
Quantized Deep Neural Networks

Samvid Mistry , Indranil Saha , Member, IEEE, and Swarnendu Biswas

Abstract—Quantized deep neural networks (DNNs) have the
potential to find wide applications in safety-critical cyber–
physical systems implemented on processors supporting only inte-
ger arithmetic. The significant challenge therein is to ensure the
correctness of the operation of the network with its approximated
computation. To address this verification challenge formally, we
present a methodology to encode the verification problem into a
mixed-integer linear programming (MILP) problem. Our encod-
ing is based on the bit-precise semantics of quantized neural
networks, which ensures the soundness of our method. We imple-
ment our verification methodology using the Gurobi MILP solver
and evaluate it on several widely used DNN benchmarks. We
compare our method with state-of-the-art bit-vector encodings,
which are outperformed by our MILP-based verification method-
ology by an order of magnitude in most cases. These experimental
results establish our MILP-based verification technique as a pow-
erful tool for developing formally verified safety-critical systems
with quantized DNNs as a component.

Index Terms—Fixed-point arithmetic, formal verification,
mixed-integer linear programming (MILP), quantized neural
networks.

I. INTRODUCTION

SOPHISTICATED cyber–physical systems involve com-
plex sensing and control that can be achieved by employ-

ing deep neural networks (DNNs). For example, in an
autonomous vehicle, DNNs are used for perception, which
enables the vehicle to apply appropriate control to make
progress toward the goal by following traffic rules and avoid-
ing collisions [1], [2], [3], [4]. For a UAV, a DNN controller
can help in reducing the energy consumption due to control
computations and thus can enhance the flight time [5]. It is
widely believed that the DNNs have the potential to revolu-
tionize the state-of-the-art of cyber–physical systems and IoT
in the near future.
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A major challenge in deploying a DNN for safety-critical
systems is its opaque operation, which makes it challenging
to provide guarantees about their behavior. Recent work on
formal verification of DNNs [6], [7], [8], [9] tries to address
this reliability issue by employing mathematical reasoning and
tools to establish that the DNN satisfies some formally cap-
tured specifications. An example of such a specification for a
classification network is that the result produced by a network
should not change due to small perturbations in its input. The
result of this verification process is either a formal guarantee
that the network satisfies the property for all possible inputs or
a concrete counterexample demonstrating that it violates the
property.

Our focus in this article is the formal verification of systems
employing fixed-point neural networks [10], [11]. Fixed-point
neural networks have the potential to find wide applications
in safety-critical systems implemented on low-cost processors
supporting only integer arithmetic as well as powerful acceler-
ators such as GPUs and FPGAs. Systems that use fixed-point
arithmetic are faster, consume less power and memory, and
are less expensive as the computation can happen on low-cost
integer-only processors. As noted in prior work [10], quan-
tization is the standard practice for the deployment of neural
networks on real-time embedded devices. Though the networks
implemented using fixed-point arithmetic are known to intro-
duce little degradation to a network’s accuracy [12], they are
not immune to malicious misclassifications caused by adver-
sarial attacks, and verification of real-valued neural networks
is inadequate for establishing their correctness [10].

Recently, the verification problem for DNNs implemented
as fixed-point networks has been addressed by reducing
the problem to a satisfiability modulo theory (SMT)-solving
problem involving the theory of quantifier-free bit-vector arith-
metic [10], [11]. However, the poor scalability of the method
motivates us to explore alternative verification approaches.
We introduce a method for verification of quantized neural
networks that reduces the problem to a decision problem in
the form of a mixed-integer linear program (MILP) [13]. MILP
solvers cannot be used directly to verify quantized neural
networks because they do not support shifting and round-
ing operations, which are the most basic primitives needed to
perform arithmetic operations with fixed-point numbers. Our
method captures the bit-precise semantics of quantized neural
networks accurately by encoding the fixed-point primitives as
operations in an MILP program.

Based on our MILP encoding, we develop a verification
tool that uses Gurobi [14] as the back-end MILP solver.
We evaluate our verification tool on several benchmarks,
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including different variants of networks solving the classifi-
cation problem on the MNIST dataset and three other popular
benchmarks. We also compare the performance of our tool
with the state-of-art SMT approaches involving the theory of
bit-vectors [10], [11], [15]. Experimental results show that
our methodology can solve significantly more verification
problem instances for most of the benchmarks than the SMT
approaches. Furthermore, our tool takes an order of magnitude
less computation time than its competitors for the instances
that both the methods can solve. These experimental results
establish our MILP-based verification technique as a power-
ful tool for developing formally verified safety-critical systems
with quantized DNNs as a component.

Contributions: This article makes the following contribu-
tions.

1) We present a sound and scalable verification technique
for DNNs implemented using fixed-point arithmetic. Our
verification methodology is based on a novel encoding of
fixed-point arithmetic to mixed-integer linear programs.

2) We implement our verification methodology in an auto-
mated tool using the Gurobi MILP solver. The tool
can automatically solve a wide range of verification
problems for systems involving fixed-point networks.

3) We apply our tool to several benchmark DNN applica-
tions to demonstrate the efficacy. We also compare our
method with two recent techniques [11], [15] address-
ing the same problem, showing significant performance
improvement.

II. RELATED WORK

The major focus on applying formal methods to DNNs has
been to verify the network against the robustness property.
Initially, the robustness issue was concerned with small per-
turbations of data to deal with measurement errors and other
factors leading to noisy input data [16]. As more and more
networks started being deployed in safety-critical applications,
it quickly became a security issue. Recent advances in formal
verification methodologies, such as SMTs [17] and MILP [13],
have made it possible to use general-purpose solvers to be
applied to the problem of verification of neural networks.
However, these solvers were too slow to verify any practical
network [18], [19], [20]. Thus, additional DNN-level reasoning
was required to make any verification procedure scale. Toward
that end, DNN verification tools, such as DeepPoly [21] and
ReluVal [6], use interval arithmetic with an iterative refinement
of bounds. Reluplex [22] and its successor Marabou [8] have
augmented the SMT theory of reals to add support for ReLU
and other piece-wise linear activation functions to provide
better reasoning through nonlinear constraints. NNV [9] can
perform verification of cyber–physical systems having DNNs
as major components through reachability analysis.

Recently, there has been significant effort in verifying
quantized neural networks. A binarized deep neural network
(BNN) [23] is a network that uses binary weights to decrease
the latency and memory required by the network. Several
authors have addressed the verification problem for BNNs
through a reduction to an SAT solving problem [24], [25],
[26] or OBDD manipulation [27]. Recently, [28] has extended

Marabou to make it possible to reason about networks with
both binary and nonbinary weights. To the best of our knowl-
edge, the first method for verification of quantized neural
networks implemented using fixed-point arithmetic was intro-
duced by [10]. It was followed by [15] giving formal semantics
for fixed-point arithmetic for SMT solvers by providing reduc-
tion to the theory of bitvectors and reals. Recently, [11] has
provided optimizations for improving the results with SMT
solvers, building on the work by [10]. However, verification
of several properties of important benchmarks remains out of
reach for these methods due to poor scalability.

III. BACKGROUND

In this section, we briefly review fixed-point arithmetic and
quantized DNNs.

A. Fixed-Point Arithmetic

In fixed-point arithmetic, all numbers are represented in 2’s
complement form over B bit words, where F bits are reserved
for the fractional part. To denote a fixed-point type, we use the
Q-point notation from [29]. A Q-point notation is denoted as
Q[QI].[QF], where QI and QF denote the number of integer
and fractional bits allocated to a value. Adding the number of
integer bits QI with the number of fractional bits QF yields the
total number of bits used to represent a number, denoted by B.
For signed fixed-point numbers, the sign bit is also included
in the integer part of the number. Hence, the largest value of
QF can be B − 1.

Due to limited precision, not all floating-point values can be
represented exactly using fixed-point arithmetic. We may need
to perform a rounding operation while converting a floating-
point number to a fixed-point number.

Definition 1 (Rounding Down or Rounding Toward −∞):
Let η′ be a floating-point number with a nonzero fractional
part. We can represent η′ as η′ = η′

i+η′
f , where η′

i is an integer
and η′

f is a floating-point number such that 0 < η′
f < 1. We

refer to η′
i as the “rounded down” version of η′ and denote it

as int(η′).
In order to convert a floating-point number to a fixed-point

number, we use the following [29], where int is a function
that rounds the number toward −∞:

fixedpoint = int
(
floatingpoint · 2F)

. (1)

For example, we can convert 6.125 from floating-
point to fixed-point type Q4.2 using (1), such that
int(6.125 · 22) = int(24.5) = 24.

The integer representations of two fixed-point numbers can
be directly added together, as long as the radix point is aligned
for both numbers. Otherwise, one of the numbers must be
converted to be compatible with the other type. For example,
a Q1.7 and a Q2.6 number cannot be added directly. In this
case, we can either shift Q1.7 right to get a Q2.6 number or
shift Q2.6 left to get a Q1.7 number. Shifting a number left
will introduce imprecision in the integer part of the variable,
which can result in a much larger error between the floating-
point and the fixed-point numbers. Thus, it is preferable to
shift a number right and lose precision from the fractional
part of a number.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on October 28,2022 at 03:25:23 UTC from IEEE Xplore.  Restrictions apply. 



MISTRY et al.: MILP ENCODING FOR EFFICIENT VERIFICATION OF QUANTIZED DNNs 4447

Multiplication between two fixed-point numbers can be
accomplished by directly multiplying the underlying integers.
Unlike addition, the radix point need not be aligned before
multiplication. Multiplying two numbers of type Q[a].[b] and
Q[p].[q] results in a number of type Q[a+p].[b+q]. For exam-
ple, Q1.7 · Q2.6 = Q3.13. After multiplication, the bit-width
required to hold the result gets doubled. To bring the result
back into the original bit-width, we can shift the number right
until the result lies in the range. We have to shift the Q3.13
number right by 8 places to get a Q3.5 number, which can
be stored in the original bit-width and can be used in further
computations.

A fixed-point number can be converted back to floating-
point using the following equation:

floatingpoint = fixedpoint/2F. (2)

We can convert the fixed-point value 24 with type Q4.2
to the floating-point value 6.0 using (2). Note that converting
a floating-point number (e.g., 6.125) to a fixed-point number
(i.e., 24) and reconverting the fixed-point number to a floating-
point number (i.e., 6.0) may lead to a loss of precision.

B. Deep Neural Networks

A neural network is a collection of neurons connected by
edges. The neurons are organized in layers such that one neu-
ron belongs to exactly one layer, and layers are connected with
other layers using edges. All edges have a weight associated
with them, and all nodes have an optional value associated
with them, called bias. A DNN consists of an input layer,
multiple hidden layers, and an output layer. More formally, for
a DNN f , the number of layers is denoted by n, and the size of
a layer i is denoted by si. Out of these n layers, the first layer
is the input layer and the nth layer is the output layer. All the
layers in between are called hidden layers. The output of the
jth node of the ith layer is denoted by ai,j. Consequently, the
output of layer i can be packed into a vector [ai,1, . . . , ai,si ]

T,
which is denoted by Ai.

Running inference on a DNN f consists of calculating the
value of An from the given value of A1. Each layer i has a
weight matrix Wi of size si−1 × si and a bias vector Bi of size
si associated with it, where 2 ≤ i ≤ n. In order to calculate
An, values from A1 are propagated through the network. This
propagation is carried out in terms of a dot product between
the values of layer Ai−1 and weight matrix Wi, and then Bi is
added to the resulting value, creating the preactivation values
for all nodes in the layer i. A nonlinear activation function,
such as ReLU [30] or sigmoid [31], is applied element-wise
on the resulting vector to get the value of Ai. Thus

Ai = fni(Wi · Ai−1 + Bi) (3)

where fni is the activation function for layer i. Overall, a DNN
implements a function f : Rs1 → R

sn . The result of the DNN
is given by the values for the nodes in the output layer.

C. Quantized Neural Network

Quantization converts neural networks with real numbers,
that require floating-point hardware to work, into networks

over integers, whose semantics follow fixed-point arith-
metic [12]. Quantization allows computation to be carried
out by integer-only architectures, widening the applicability
of DNNs. Furthermore, quantization allows DNN computa-
tions to use small words, e.g., 8 and 16 bits, that help reduce
the training time, inference latency, and storage overhead.

We will now present how the computation in each layer of a
quantized network is carried out using fixed-point arithmetic.
First, we consider the case where the outputs of any layer and
the weights have the same fixed-point type. The following
equation, modified from (3), represents the inner workings of
a quantized neural network having the same fixed-point type
for each computation in the network:

Ai = fni

(
int

(
2−F

(
Wi · Ai−1 + Bi

)))
. (4)

Variables with bar and without bar represent fixed-point and
floating-point variables, respectively. For a weight matrix Wi,
the quantized weight is Wi = rnd(2FWi), where rnd(·)
stands for some rounding scheme to an integer and is applied
element-wise on vectors and matrices. In (4), the output of
Wi · Ai−1 has 2F bits in the fractional part. Consequently, we
scale Bi by 22F . For a bias vector Bi, the quantized bias is
Bi = rnd(22FBi). After the dot product and the sum, the
resulting value would have 2F number of bits in the fractional
part. To get the result with F bits in the fractional part, we
multiply by 2−F (i.e., right shift). In (4), int(·) is a special-
ized version of function rnd(·) that rounds toward −∞ and
fni is the fixed-point version of fni.

Now, we consider the case where the outputs of the neurons
in a layer have different fixed-point datatypes. Equation (4)
has to be modified if we want to support different number of
bits for all nodes. We use the following procedure to calcu-
late the value of Ai when we have different types associated
with each neuron’s output. We first convert all nodes to the
same fixed-point type. We achieve this by converting the fixed-
point numbers to floating-point and then converting them to
the required target fixed-point type. Let T and L be matrices
containing fractional bits and integer bits for each node of the
network. Ti−1 = [t1, t2, . . . , tsi−1 ]T is a vector containing the
number of fractional bits, and Li−1 = [l1, l2, . . . , lsi−1 ]T is a
vector containing the number of integer bits for each node in
layer i − 1. Let mi = min(Ti−1) denote the minimum value
in the vector Ti−1. With this data, the following equations can
align all values from the previous layer, and each resulting
value will have m number of fractional bits:

Ai−1
′ =

[
Ai−1,1

′
, Ai−1,2

′
, . . . , Ai−1,si−1

′]T
(5)

Ai−1 = int
(

2mi Ai−1
′)

(6)

where Ai−1,α
′ = 2−tα Ai−1,α , 1 ≤ α ≤ si−1, and Ai−1 is a

vector of fixed-point numbers with mi bits in the fractional
part. Equation (5) converts all fixed-point values to equiva-
lent floating-point values by multiplying each value with 2−tα ,
where tα is the number of fractional bits in α. Equation (6)
converts the floating-point values to fixed-point values with mi
bits in the fractional part. Similarly, all weights in Wi can now
be quantized using mi bits in the fractional part, and all biases
in Bi can be quantized using 2 mi bits in the fractional part. For
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(a) (b)

Fig. 1. Example of floating-point to fixed-point network conversion. (a) Toy
floating-point neural network. (b) Fixed-point version of (a).

the resulting node, we need Ti,j bits in the fractional part, and
we already have 2 mi bits. Let Hi = [2−h1, 2−h2 , . . . , 2−hsi ]T

be a vector where hj = 2 mi − Ti,j. Finally, the post-activation
value for all nodes can be computed as follows:

Ai = fni

(
int

(
Hi ·

(
Wi · Ai−1 + Bi

)))
. (7)

Equation (7) is a modification of (4) which can work with
networks where each node in the network can have a different
type. First, we multiply the fixed-point weights Wi with the
incoming values from the previous layer Ai−1, followed by
the addition of bias Bi. We then multiply Hi, which converts
all the incoming values to the types specified in the upcoming
layer. Then, we round down the results by applying the int
rounding function. Finally, we apply an activation function.
The output of this expression will serve as the input of the
next layer, i.e., Ai.

Example 1: Fig. 1(a) shows a toy neural network with
floating-point values. Fig. 1(b) shows the converted network
with fixed-point types and values, where each input node in the
network has a different type. From Fig. 1(b), we can observe
that x1 has type Q3.5. Since T1 is the vector containing frac-
tional parts of the inputs, its first element is the fractional
part of x1, i.e., 5. Similarly, L1 is the vector containing inte-
ger parts of the inputs. Its first element is the integer part
of x1, i.e., 3. With values from all inputs, we can see that
T1 = [5, 4, 3, 2]T and L1 = [3, 4, 5, 6]T. The weights in the
floating-point network are W2 = [0.25, 0.25,−0.25, 0.25]T .
The fractional part of the fixed-point representations of the
weights is decided as the minimum fractional part in any type
in the previous layer, i.e., min(T1) = 2. The fractional part is
then subtracted from the total number of bits to get the integer
part, which in this case is 6. With type Q6.2, we can convert
W2 to W2 = [1, 1,−1, 1]T.

Let A1 = [x1, x2, x3, x4]T = [3.473, 6.675, 11.81, 24.71]T

and B2 = [−1.36] [chosen arbitrarily as shown in Fig. 1(a)].
Based on the fixed-point datatypes of the nodes in the input
layer, A1 = [x1, x2, x3, x4]T = [111, 106, 94, 98]T. From the
fixed-point data types of the input nodes, we can see that m1 =
min(T1) = 2. Consequently, H2 = [2−(2 m1−T2,1)] = [2−1].
From (5), we can calculate

A1
′ =

[
2−T1,1 A1,1, 2−T1,2 A1,2, 2−T1,3 A1,3, 2−T1,4 A1,4

]T

= [3.46875, 6.625, 11.75, 24.5]T

A1 = int
(

22 · [3.46875, 6.625, 11.75, 24.5]T
)

= [13, 26, 47, 98]T.

The type of all values in A1 is Q6.2. Since all values in W2 also
have type Q6.2, the type of the resulting vector will be Q12.4
after multiplication. To be able to add bias to the resulting
vector, we need all values of the bias vector to be of type
Q12.4. Consequently, B2 = int(24 · B2) = [−21]

W2 · A1 + B2 = [13 · 1 + 26 · 1 + 47 · −1 + 98 · 1] + [−21]

= [69].

With that result, we can now scale the Q12.4 value to the
resulting type Q5.3. To match the fractional part, we need to
shift the result to the right by 1 bit. Using 8 bits, we can only
represent integers in the range [−256, 255]. So we need to
clip the result between those bounds if it overflows, i.e., any
value less than −256 will be replaced with −256, and any
value greater than 255 will be replaced with 255

int
(

H2 ·
(

W2 · A1 + B2

))
= int

([
2−1

]
· [69]

)

= int(34.5) = 34.

Since 34 ∈ [−256, 255], we do not need to clip the result.
Finally, we will apply ReLU as our activation function fni

A2 = fni

(
int

(
H2 ·

(
W2 · A1 + B2

)))
= max(0, 34) = 34.

IV. PROBLEM DEFINITION

A DNN verification query checks a property against a DNN.
The property can be any set of arbitrary constraints involving
the nodes and the edges of the neural networks. Typically, a
property constrains the input range and implies that the out-
put nodes or some combination of output nodes will be in
some range. The verification problem involves guaranteeing
that none of the valid inputs in the range violates the output
property.

Let f be the quantized version of neural network f . Let
fxp(v, τ , ι) be a function which converts v to fixed-point vector
v such that vi has τ i number of fractional bits and ιi number
of integer bits. Let fp(v, τ ) be a function that converts a fixed-
point vector v back to floating-point. Given a bounded input
domain D and a property P, we want to prove that

∀x ∈ D. (x = fxp(x, T1, L1)) ∧
(
y = f (x)

) ∧ (y = fp(y, Tn)) =⇒ P(y) (8)

where P is a predicate that takes the output of a network as
input and checks for the satisfaction of some arbitrary con-
straints. In other words, it consists of checking an input/output
relationship. Equation (8) checks the property P over the real-
valued output y since the properties are generally defined by
domain experts for the original domain, and the domains gen-
erally use floating-point values for computation. For example,
consider a closed-loop control system where the controller
implemented using fixed-point arithmetic gets floating-point
inputs from the sensors and has to produce floating-point out-
put for the actuators. Given the fixed-point datatype of the
output, from the quantized output ȳ, the floating-point output
y can be determined uniquely. The above problem formulation
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Fig. 2. Example neural network where a property holds with floating-point
values but not with fixed-point values.

also works with minor changes if the inputs and outputs of the
quantized network and the property are given in fixed-point
arithmetic. This formulation of the verification problem is
very abstract and generalizes over various verification queries,
such as queries involving perturbation of inputs and queries
comparing values of different output nodes.

Example 2: We give a concrete example to discuss the ver-
ification problem. Consider the neural network in Fig. 2. The
values inside the nodes in the floating-point network f indicate
biases, and the values on the edges indicate weights. All val-
ues are floating-point numbers. The numbers below the input
node labels indicate the range of valid values for that node. D
is considered as [2.09375, 3] × [0.5, 1].

The property we want to prove is P(y) = y1 ≥ 2.09375.
The network f satisfies the property for any input from the
chosen ranges for x1 and x2. Interestingly, when we convert
the network to fixed-point with type Q4.4, the same property
gets violated. For the chosen range of inputs, the smallest
value that such a fixed-point network can get for y1 is 2.0625.
This shows that even if a property holds on the floating-point
network, it may not hold on a fixed-point network [10].

V. MILP ENCODING

In this section, we present how we solve the verification
problem introduced in Section IV through a reduction to an
MILP problem. Our goal is to encode the verification con-
dition in (8) as a mixed-integer linear program such that the
verification result can be concluded from its solution.

The difficulty with the formulation in (8) is that it cannot
be directly encoded into an MILP solver, as an MILP solver
cannot solve a validity problem. The validity problem can be
reduced to a satisfiability problem by taking a negation of the
input formula, which can be solved using an MILP solver. If
the negated formula is unsatisfiable, then the input formula
is valid (verification is successful). On the other hand, if the
negated formula is satisfiable, then the input formula is not
valid (verification fails), which is evident by the counterexample
generated from the solution produced by the solver.

To convert the validity problem to a satisfiability problem,
we take the negation of the formula in (8), which leads to the
following verification condition1:

∀x ∈ D. (x = fxp(x, T1, L1)) ∧ (9a)
(
y = f (x)

) ∧ (9b)

(y = fp(y, Tn)) ∧ (9c)

¬P(y). (9d)

1¬(a ⇒ b) ⇔ ¬(¬a ∨ b) ⇔ a ∧ ¬b

This verification condition can be directly encoded into an
MILP solver since negation and conjunction are natively
supported by the MILP solvers.

In the rest of this section, we will show how we encode
this verification condition into a mixed-integer linear program.
Note that though the MILP solvers are routinely used for solv-
ing optimization problems, we use the MILP solvers to check
the feasibility of the equations and not for optimization.

Running inference on the fixed-point network f involves
passing input values to A1 and calculating the values at An by
repeatedly applying (7) between layers. Wi and Bi along with
A1 can be obtained by quantizing respective floating-point val-
ues before running the MILP solver, and the quantized values
can be directly used in the MILP encoding. Values of T and L
are known in advance (e.g., using range analysis), so all values
of H can be computed. However, (7) involves multiplication
by Hi followed by the int(·) operation, which is equivalent
to shifting right F places where 2−F is any element from Hi.
In the following, we discuss challenges in designing the MILP
encoding and their solutions.

A. Encoding Shift Operation

MILP solvers do not provide primitives to shift numbers.
We must divide by 2F to simulate shifting. The problem with
division is that MILP solvers carry out all arithmetic opera-
tions in floating-point, and we may be left with some fractional
part after division since fixed-point operations are to be car-
ried out using integers only. MILP solvers also do not provide
any primitives to take away this fractional part. The following
theorem introduces a set of constraints to encode rounding in
a program. They are designed to make sure that there is only
one integer that the solver can choose as the result of division,
and that is the rounded-down version of the result of division.

Theorem 1: Let η be a floating-point variable and ζ and
η be fixed-point variables such that ζ = int(η) and
η = η · 2−F , i.e., ζ is the result of shifting and rounding η.
Let offset ∈ R be a constant chosen satisfying the following
constraint: (1 − 2−F) ≤ offset < 1. Then, the constraints

η − offset ≤ ζ (10)

ζ ≤ η (11)

shift η by F places and provide sound rounding toward −∞.
Proof: To prove the theorem, we consider two different pos-

sibilities for the value of η: 1) η is an integer and 2) η is
a noninteger number with some positive fractional part. We
show that in both cases, (10) and (11) ensure that ζ is assigned
a unique value correctly.

Case 1): In case η is an integer, the value of ζ should be η.
As offset < 1, (10) gives us ζ > η − 1. On the other
hand, (11) ensures that ζ ≤ η. Thus, the two equations in the
theorem ensure that the only possible value for ζ is η when
η is an integer.

Case 2) : In case η is a noninteger number with some frac-
tional part, we can write η = ηi + ηf , where ηi is an integer
and 0 < ηf < 1. In this case, the value of ζ should be ηi.

Since fixed-point numbers are distributed evenly on the
number line, we can calculate the largest value ηf can take
by subtracting the smallest nonzero positive value it can take
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from 1. The smallest nonzero positive value ηf can take is
2−F . Consequently, the largest value for ηf is 1 − 2−F . As
the value of offset is chosen to be greater than or equal to
(1 − 2−F), η − offset ≤ ηi and (10) ensures that ηi is one
of the feasible values for ζ . Moreover, as offset < 1, we
get from (10) that ηi − 1 < η −offset ≤ ζ . Thus, the value
of ζ cannot be equal to or lower than ηi − 1. As (11) requires
the value of ζ to be less than or equal to η, the maximum
possible value for ζ is ηi (as ζ is an integer). Thus, the only
value ζ can assume in this case is ηi.

The next example shows an application of the above
theorem.

Example 3: Let η = 55 be an integer representing a fixed-
point number with type Q4.4. We would like to shift η 2
places to the right. That essentially means we want to do
ζ = int(η′) where η′ = η · 2−2 = 13.75. According to
Theorem 1, we want to choose offset such that 1 − 2−2 ≤
offset < 1 → 0.75 ≤ offset < 1. Let offset = 0.75.
The equations from Theorem 1 will now become

η′ − offset ≤ ζ → 13.75 − 0.75 ≤ ζ (12)

ζ ≤ η′ → ζ ≤ 13.75. (13)

Since subtracting 0.75 brings 13 into the allowed range of
values, any value greater than 0.75 and less than 1 will also
bring 13 into the allowed range of values and produce the
correct set of equations. The example shows that the only
feasible value for ζ that satisfies both equations is 13, which
is int(η′). We can also see that if we chose offset < 0.75,
then no value would be able to satisfy the equations, and the
problem would become infeasible.

B. Encoding the Verification Condition in MILP

Here, we present the MILP constraints for encoding the
verification problem captured in (9). An SAT result for (9)
indicates that a counter-example violating the property is
found. An UNSAT indicates successful verification. In the
encoding, we write [|n|], n ∈ N, to denote the set {1, 2, . . . , n}.

1) Input Nodes: We start with presenting the MILP con-
straints corresponding to the first conjunct in the verification
condition given in (9a). For all input nodes, we have some
constraints bounding the value that the node can take. Let UB
and LB be vectors containing upper bounds and lower bounds
for floating-point inputs, respectively. We can have fixed-point
vectors UB = fxp(UB, T1, L1) and LB = fxp(LB, T1, L1)

containing upper and lower bounds for fixed-point inputs,
respectively. There are typically only two types of constraints
present when bounding the input, and the encoding for both
of them is shown as follows:

∀r ∈ [|T1|]. A1,r ≤ UBr, A1,r ≥ LBr. (14)

2) Hidden Nodes: Now, we present the MILP constraints
corresponding to the second conjunct in the verification con-
dition given in (9b). These constraints capture the internal
processing of the quantized neural network through the hidden
layers. For any node in a hidden layer, the following set of
constraints can be used to encode its operation. Let us assume
the node for which we are encoding the constraints is the jth
node of the ith layer. If all the incoming edges into a node do

not have the same type, then we first align the radix points.
We introduce a vector F with floating-point type and encode
the following constraints into the solver:

∀r ∈ [|Ti−1|
]
. Fr = Ai−1,r/2Ti−1,r . (15)

Equation (15) converts all fixed-point values coming from the
previous layer back into the floating-point values. Now these
values can be converted back to fixed-point with desired num-
ber of fractional bits, i.e., having mi bits in the fractional part
where mi = min(Ti−1). Following the quantization procedure
and Theorem 1, we can use the following constraints to quan-
tize F back to fixed-point. We introduce a vector Xi,j to hold
the quantized values

∀r ∈ [|Ti−1|
]
. Fr · 2mi − offset ≤ Xi,j

r (16)

∀r ∈ [|Ti−1|
]
. Xi,j

r ≤ Fr · 2mi . (17)

If all the incoming edges in a node have the same type, then
we can directly assign the incoming values to Xi,j

∀r ∈ [|Ti−1|
]
. Xi,j

r = Ai−1,r. (18)

With the aligned inputs with us, we simply need to perform
a dot product with the weights and add the bias to get the
preactivation value for this node. We introduce a variable pr
to hold the value of the result of this computation

pri,j = Wi,j · Xi,j + Bi,j. (19)

The value in pri,j currently has 2 m number of bits in the
fractional part. As noted in Section III, we need to shift by Hi,j
bits. We introduce a variable γ to hold the preactivation value
of this neuron. We can shift by Hi,j bits using the following
constraints:

pri,j · Hi,j − offset ≤ γi,j (20)

γi,j ≤ pri,j · Hi,j. (21)

An issue with (20) and (21) is that the output value can be
larger than the fixed-point type can hold. There are mainly two
ways to handle this overflow. One way is to let the hardware
take its natural path and wrap around the value. Since the
theory of bitvectors in SMT natively supports wrap-around
as a mode of rounding, this type of rounding can be han-
dled in SMT solvers easily, while MILP solvers offer no such
primitive, and hence it would be difficult to accurately imple-
ment the semantics of wrap-around in MILP encoding. The
other would be to saturate the value to the maximum or min-
imum that the fixed-point type can hold. We use saturation as
the mechanism to handle overflow. Let lb = −2Li,j+Ti,j−1 and
ub = 2Li,j+Ti,j−1 − 1 be the lowest and highest value repre-
sentable by this node. We introduce a variable qi,j to hold the
result of this computation

qi,j = min
(
ub, max

(
lb, γi,j

))
. (22)

Finally, we can apply any piecewise-linear activation function
on q. We use ReLU as the activation function. We introduce
a variable zi,j to hold the value of post-activation

zi,j = max
(
0, qi,j

)
. (23)
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Fig. 3. Fixed-point encoding of Fig. 2 with intermediate steps.

Since linear programming cannot reason about functions
that are not linear or piecewise-linear, our methodology sup-
ports only a limited set of activation functions. Nonlinear
activation functions, such as sigmoid and hyperbolic tangent,
are beyond the scope of this article.

3) Output Nodes: We now present the MILP constraints
corresponding to the third conjunct in the verification condi-
tion given in (9c). In the final layer, we return the value of
the output node without applying any activation function, i.e.,
z = q. Once we have collected all the outputs in a vector y,
we convert the vector back to floating-point

y = fp(y, Tn). (24)

We can encode ¬P(y) [the last component in the verification
condition in (9d)] into the solver to find a counter-example for
the property. The presented method encodes the semantics of
fixed-point arithmetic exactly and completely.

Example 4: To illustrate the encoding procedure with a
concrete example, we are going to encode the network in
Fig. 2. All nodes in the fixed-point network will have type
Q4.4. Fig. 3 shows the intermediate variables and the con-
straints used to generate them visually. The constraints for
input nodes will be as follows:

A1,1 = x1 ≤ 48, A1,1 = x1 ≥ 33 (25)

A1,2 = x2 ≤ 16, A1,2 = x2 ≥ 8. (26)

Since all nodes in the network have the same type, we need
not align the incoming values for the intermediate layer. We
are directly going to assign the values to intermediate vector
X for each node

∀j ∈ [|T2|].∀r ∈ [|T1|].X2,j
r = A1,r. (27)

Once we have the values in the intermediate vector, we can
encode the dot product with the weights and addition of the
bias

pr2,1 = [16,−16]T · X2,1 + 0 (28)

pr2,2 = [−16, 16]T · X2,2 + 0. (29)

The result of the dot product will be of type Q8.8. The
resulting type we want is Q4.4. We need to shift the result
four times to the right to get the desired number of fractional
bits. Therefore, Hi = [2−4, 2−4]. Let offset = 1 − 2−2∗8 =
0.999984741211. The procedure to choose a sound value
for offset is explained in Section V-C. The shifting and
rounding can be encoded using the following constraints:

pr2,1 · 2−4 − offset ≤ γ2,1 (30)

γ2,1 ≤ pr2,1 · 2−4 (31)

pr2,2 · 2−4 − offset ≤ γ2,2 (32)

γ2,2 ≤ pr2,2 · 2−4. (33)

We need to saturate the result so that it fits in the resulting
type Q4.4. The largest value a Q4.4 type fixed-point number
can hold is 255, and the smallest is −256

q2,1 = min
(
255, max

(−256, γ2,1
))

(34)

q2,2 = min
(
255, max

(−256, γ2,2
))

. (35)

We now need to apply the ReLU activation function to the
result

z2,1 = max
(
0, q2,1

)
(36)

z2,2 = max
(
0, q2,2

)
. (37)

The constraints to encode the output layer are identical,
except that we do not encode the activation function. We
instead encode the negation of the property that we want to
prove. In this case, the output of the final layer before the acti-
vation function will be denoted by q3,1. As per (2), we can
convert the result to floating point by multiplying 2−4. The
floating-point result will be denoted by y

y = q3,1 · 2−4. (38)

Finally, we encode the negation of the property as follows:

y < 2.09375. (39)

C. Choosing Offset for Network

In a program with multiple types, the value of offset
must be chosen carefully to make sure that all different types
get rounded in a sound manner. The solution is to choose an
offset which works for the largest divisor in the network,
and it will work for all instances of rounding. The constraint
system defined in this section has two instances of rounding,
namely, in (16), (17), (20), and (21).

Equation (16) and (17) involves division by 2Ti−1,r which
can take the largest value of 2B−1 where B is the total
number of bits. Equation (20) and (21) involves division by
Hij = 2−(2 m−Ti−1,j) which can take the largest value of
2−(2B−2). Hence, choosing offset such that (1−2−(2B−2)) ≤
offset < 1 will work for all instances of rounding. Avoiding
all the complexity, we recommend choosing the value of
offset = 1 − 2−2B. Since 1 − 2−(2B−2) < 1 − 2−2B < 1,
the equations will be sound with offset = 1 − 2−2B. Given
that we are going to work with small values of B, we are
unlikely to run into precision issues while storing 1 − 2−2B in
a floating-point variable.
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TABLE I
PRELIMINARY COMPARISON OF SOLVERS ON THE Collision Avoidance BENCHMARK

D. Implementation of Max in MILP Solvers

There are mainly two ways to implement z = max(x, lb) in
MILP solvers, where x is a variable and lb is a constant. The
implementation of min is also analogous.

1) Big-M Constraints: Let blb and bx be two binary vari-
ables. Taking M to be a very large positive constant, we can
use the following assertions to encode the max operation:

blb + bx = 1 (40a)

z ≥ lb (40b)

x − z − M · blb ≤ 0 (40c)

x − z + M · blb ≥ 0 (40d)

z − M · bx ≤ lb (40e)

x − M · bx ≤ lb. (40f)

The set of constraints works in the following way to make
sure the maximum is assigned to z. Equation (40a) makes sure
that exactly one of blb and bx is 1. M is supposed to be a
constant so large that it can be treated as ∞. When blb =
1 and bx = 0, (40c) and (40d) will be trivially satisfied as
−∞ ≤ 0 and ∞ ≥ 0. Equation (40b) and (40e) and (40f) will
make sure that z = lb and x ≤ lb. When blb = 0 and bx =
1, (40e) and (40f) will be trivially satisfied as −∞ ≤ lb.
Equation (40c) and (40d) will make sure that x = z and (40b)
will make sure that z ≥ lb so transitively x ≥ lb.

2) Indicator Constraints: Solvers, such as Gurobi [14] and
CPLEX [32], offer an alternative to Big-M constraints in the
form of indicator constraints. With indicator constraints, we
can store the result of a constraint in a binary variable. This
binary variable can be further used to conditionally apply a
constraint. Let b be a binary variable. We can encode the max
function using the following set of constraints:

x > lb = b (41a)

b = 0 → z = lb (41b)

b = 1 → z = x. (41c)

The set of constraints works in the following way to make sure
that the maximum is assigned to z. Equation (41a) assigns 0
to b if x ≤ lb else assigns 1 to b. Based on the value of b,
either (41b) or (41c) is applied as a constraint and the other
is ignored. If b = 0, it implies that x ≤ lb and z = lb should
be applied. If b = 1, it implies that x > lb and z = x should
be applied.

VI. EVALUATION

In the following, we compare the efficiency and robustness
of our approach with closely related prior work [11], [15].

A. Experimental Setup

1) Implementation: We implement our verifica-
tion methodology in Python, which is available at
https://github.com/iitkcpslab/QNNV. Our implementation
takes neural network models in the NNet [33] format. To
decide on the target solver, we ran a preliminary comparison
between solvers using the Collision Avoidance benchmark
(described below) to decide on the solver to use with our
experiments. The results are reported in Table I. Gurobi per-
formed the best among all the solvers we tried. It should be
noted that ≈ 1033 s are spent in preprocessing and generating
the MILP constraints from the neural network. So in most
cases, the solving takes only a fraction of a second with
Gurobi. Thus, it was a natural choice for us to implement our
tool using Gurobi as the backend solver. Our implementation
uses Gurobi v9.0.3 [14] to encode the constraints provided
in Section V-B. Table II shows the Gurobi parameters we
configure and their influence on the solver. In the remainder
of this article, we refer to our work as the MILP encoding.

Prior work by Baranowski et al. [15] provided a set of
primitives for describing fixed-point computation by extend-
ing PySMT [34]. These primitives can be rewritten to use an
existing theory supported by current SMT solvers [35], [36],
[37]. It can be reduced to either the theory of bitvectors or the
theory of reals. We use the reduction to the theory of bitvec-
tors since it performed better in their evaluation, and we refer
to this encoding as the BV-SMT encoding. We use Boolector
as the underlying SMT solver with PySMT, which is the same
solver used by [15]. We do not test the reduction to the theory
of reals since Boolector does not support the theory of reals.
Furthermore, prior work [15] shows that the reduction to the
theory of bitvectors performed better than the theory of reals.

2) Benchmarks: For the first benchmark, we use the
MNIST dataset [38] containing images of handwritten dig-
its which need to be classified. A classifier maps an n-
dimensional input to one out of μ target classes. If the outputs
of a classification network are o1, . . . , oμ, then the prediction
of the network is given by class(o1, . . . , oμ) = arg maxi oi.
We trained three different networks for verification using the
TensorFlow framework [39]. The first network has an archi-
tecture of 784 × 16 × 16 × 10, referred to as MNIST-S (i.e.,
a small network). The second network has ten hidden layers,
each having ten nodes, referred to as MNIST-D (i.e., a short
and deep network). The third network has an architecture of
784 × 256 × 256 × 10, referred to as MNIST-T (i.e., a tall but
shallow network). Along with our own trained benchmarks, we
use a 784×256×256×10 network from the mnistfc benchmark
from VNN-COMP [40], referred to as MNIST-FC.
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TABLE II
IMPACT OF GUROBI PARAMETERS ON THE SOLVING ALGORITHM

We use the first 100 images from the test set of the MNIST
dataset from the Keras [41] library to check for the robust-
ness property. Prior work [10] defines robustness as follows:
A sample s is robust when, for all perturbations within distance
ε, the sample gets classified in the same class as s, denoted
by c. ε > 0 is some notion of distance. If we denote x as a
perturbation of s within ε distance and class ◦ f be the result
of classification, then we can define the following property for
the verification of robustness for s:

|s − x|∞ ≤ ε =⇒ c = class ◦ f (x). (42)

We use three other popular benchmarks in our evaluation.
Collision Avoidance [7] contains attributes about two vehicles,
and the network predicts whether the two vehicles will collide.
The network contains 40 linear nodes in the first layer, fol-
lowed by a MaxPool layer where each node has four incoming
edges, followed by a layer with 19 ReLU nodes, and a final
layer with two ReLU nodes. There are 500 properties defined
on the network based on safety margins around the tuples in
the dataset.

In TwinStream [42], a network has two streams of data
coming into the final layer. Both streams have the same archi-
tecture, weights, and inputs. The final layer computes the
difference between the two streams and adds a positive bias;
the output of the network is always equal to the bias added in
the final layer. The benchmark contains 81 randomly generated
networks. The networks vary in depth, the number of hidden
nodes, the number of inputs, and the value of the margin. The
only property to check on all the 81 networks is that the output
at the final layer is positive, which is true by construction.

The ACAS Xu benchmark [43] contains 45 DNNs to con-
trol an aircraft. Each network has six hidden layers of 50
nodes each. We use four properties that are applicable on all
networks. The properties describe scenarios about the position
and speed of both the aircraft and what advisories must not
be given in those cases. The properties are described in detail
in [22].

All the networks used in our evaluation have 4 bits allo-
cated to the integer part and 4 bits allocated to the fractional
part, i.e., Q4.4 except for MNIST-FC. MNIST-FC uses ε

value of 0.05, which cannot be represented by a Q4.4 type.
Consequently, it uses a Q3.5 type. To convert and encode
floating-point networks into fixed-point, we have followed the
semantics described in Section III. Table III contains the num-
ber of variables in the MILP encoding in our implementation.
TwinStream benchmarks contain networks of various sizes.
The number of variables reported in the table corresponds to
the largest network in the TwinStream benchmark.

TABLE III
NUMBER OF VARIABLES IN EACH BENCHMARK

(a) (b)

Fig. 4. Comparison of the MILP implementations and BV-SMT on the
MNIST networks. Red lines indicate timeout. (a) MILP (single) performance.
(b) MILP multithreaded performance.

Platform: The experiments were run on a system with
an Intel Core i7-4770 processor, having four physical cores
(8 logical with hyperthreading), running at 3.40 GHz and with
16 GB of memory. The single-threaded experiments were run
simultaneously in groups of eight, as was done in [10]. For
multithreaded experiments, we used eight threads.

B. Results

The evaluation results for comparison between MILP and
BV-SMT encoding are summarized in Table IV. The detailed
results are described as follows.

1) MNIST Dataset: The results for the four MNIST
networks are shown in Fig. 4. The timeout for the MNIST-S
is set to 60 s, while it is 3600 s for the networks MNIST-
D, MNIST-T, and MNIST-FC. Fig. 4(a) and Table IV show
that our approach is able to verify 290 out of 315 prob-
lems using single-threaded MILP and verify all 315 problems
within the timeout limit with multithreaded MILP. The SMT
solver timed out on all instances of the problem in the case of
MNIST-S, MNIST-D, and MNIST-T. In case of MNIST-FC,
BV-SMT consistently ran out of memory. In our experi-
ments, it seems that the memory consumption in BV-SMT
is highly sensitive to the number of bits in the fractional
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TABLE IV
PERFORMANCE COMPARISON OF MILP AND BV-SMT ON ALL THE BENCHMARKS. TO = TIMEOUT

(a) (b)

Fig. 5. (a) Scalability and (b) robustness of the MILP encoding.

part. Our technique using MILP uses a relatively consis-
tent amount of memory since the bit-width that the MILP
solver works with does not change with changes in fixed-
point types. These benchmarks show that our tool is well
equipped to handle short and deep networks (e.g., MNIST-
D) as well as tall and shallow networks (e.g., MNIST-T and
MNIST-FC). Fig. 4(b) compares the performance of single-
threaded and multithreaded MILP on the four networks. The
red lines in Fig. 4(b) indicate timeout values. The performance
improvement on average for the MNIST-S network is mod-
est (∼36%) because the run time with a single thread is
low. The speedup is more significant for the two larger
networks: 4.5× for MNIST-D and 2.7× for MNIST-T on
average.

Scalability of MILP Encoding:
After Q2.2, all instances of BV-SMT time out

because the run time of BV-SMT encoding increases
quasi-exponentially [10]. The MILP encoding scales well, as
the run time stays relatively stable with the increase in the
number of bits. The reason is that the MILP solver does not
work with the numbers of different bit widths. MILP solvers
model variables with a double-precision floating-point type.
The bit width for the variables stays the same for all problems
while changing the fixed-point type for the network results
in a change of bounds only. Fig. 5(b) shows the detailed
information about the instances verified by MILP encoding.
Given the scalability of the MILP encoding, it can be used to
search the space of fixed-point types and find robust types,
which also minimize the number of bits required to achieve
that level of robustness.

2) Collision Avoidance, TwinStream, and ACAS Xu:
Fig. 6(a) and (b) compares the performance of the MILP
tool with BV-SMT on the benchmarks Collision Avoidance

and TwinStream. The figure includes results for both single-
threaded and multithreaded implementation of our proposed
MILP approach. For Collision Avoidance, the single-threaded
MILP implementation verified the properties 10× faster on
average than BV-SMT. With multiple threads, the speedup
increases to 15× on average. In the case of TwinStream,
single-threaded MILP verified the properties 2.26× faster than
BV-SMT, and parallel MILP verified the properties 2.5×
faster than BV-SMT, on average. For TwinStream, BV-SMT
timed out on 17 instances, while the single-threaded and the
multithreaded MILP solver run timed out on 15 instances
each.

Fig. 6(c) shows the verification performance of ACAS
Xu properties with the MILP solver configurations and BV-
SMT. Single-threaded MILP verified the properties 2.5×
faster, and the multithreaded MILP verified the properties
13× faster, on average, excluding instances that timed out.
However, the MILP solver timed out on more instances than
BV-SMT. Single-threaded implementation timed out on 40
instances while multithreaded MILP timed out on 20 instances,
compared to BV-SMT, which timed out for five instances.
We hypothesize that the MILP solver with a single thread
got stuck in the wrong part of the search space and was
unable to identify feasible solutions and hence timed out.
We ran multiple different instances of the MILP solver using
ConcurrentMIP with slightly different configurations to
explore different areas of the search tree. Consequently, the
multithreaded MILP was a significant improvement (∼5.25×
faster) on the single-threaded runs. The number of timeouts
also decreased from 40 to 20 with multiple threads, validat-
ing our hypothesis. We are investigating other reasons for the
performance difference.

3) Comparison With [11]: In a recent work [11], the
authors present an improved bitvector encoding for SMT,
which we refer to as BV2-SMT in this article. In order to
compare with BV2-SMT, we run the MILP implementation
on the networks used by [11], where the network trained
on the MNIST dataset is referred to as MNIST-C, and the
network trained on the Fashion-MNIST dataset is referred to
as FASHION-C. We run the benchmark with type Q4.2 for all
the nodes using a single thread for a fair comparison, same
as [11]. We verified the same set of properties. More specifi-
cally, we used the first 400 MNIST and fashion MNIST images
where ε = 1 for first 100, ε = 2 for next 100, ε = 3 for the
next 100, and ε = 4 for the last 100. Here, ε represents the
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(a) (b) (c)

Fig. 6. Comparison of MILP with the theory of bitvectors in SMT on the (a) Collision Avoidance, (b) TwinStream, and (c) ACAS Xu benchmarks. Red
lines indicate timeout.

TABLE V
COMPARISON WITH [11]. TO = 180 S

maximum deviation allowed for any node in the input, i.e.,
L∞ norm.

A comparison of MILP encoding with BV2-SMT is pro-
vided in Table V. MILP encoding performs 15× faster in
case of MNIST benchmarks and 8.5× faster in case of fash-
ion MNIST benchmark, on average. The difference between
mean and medians in the case of MILP encoding is negligible,
showing that MILP encoding consistently performs better than
BV2-SMT and not just on average. Moreover, MILP encoding
verified all 800 instances, while BV2-SMT timed out on 288
instances. Please note that our experimental setup is slightly
different, but is comparable to [11].

VII. CONCLUSION

To the best of our knowledge, this work is the first to
present a methodology to encode the quantized DNN veri-
fication problem into an MILP problem. We present a sound
round-down procedure for MILPs and prove its correctness.
We also present a set of constraints for encoding a fixed-point
network as an MILP problem. We compare our results with
closely related prior work and show that our MILP encoding
is faster by an order of magnitude in most cases.

Though our MILP encoding provides significant
performance improvement compared to prior work, its
performance in solving some problems may be less than
satisfactory, as evident by the number of timeouts experienced
for the ACAS Xu benchmark. This is because the DNN
verification problem is NP-complete, and there may be
instances where the heuristics employed by the MILP solver
are not effective in finding a solution quickly. In future work,
we would like to investigate the reason for the timeouts
encountered for ACAS Xu. Furthermore, we would like to
incorporate more network-level reasoning into the MILP
encoding. For example, one can perform a range analysis

before verification to disable those ReLUs that will not take
values on both sides of 0. Such preprocessing is expected to
speed up the verification process, as decreasing the amount of
nonlinearity is known to help verification tools significantly.
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