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K A L MAN FILTERING IS  a state estimation technique 
used in many application areas such as spacecraft 
navigation, motion planning in robotics, signal 
processing, and wireless sensor networks because 
of its ability to extract useful information from 
noisy data and its small computational and memory 
requirements.12,20,27–29 Recent work has used Kalman 
filtering in controllers for computer systems.5,13,14,23

Although many introductions to Kalman filtering are 
available in the literature,1–4,6–11,17,21,25,29 they are usually 
focused on particular applications such as robot motion 
or state estimation in linear systems, making it difficult to 
see how to apply Kalman filtering to other problems. Other 
presentations derive Kalman filtering as an application 

of Bayesian inference, assuming that 
noise is Gaussian. This leads to the 
common misconception that Kalman 
filtering can be applied only if noise 
is Gaussian.15

Abstractly, Kalman filtering can be 
seen as a particular approach to combin-
ing approximations of an unknown val-
ue to produce a better approximation. 
Suppose we use two devices of different 
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designs to measure the temperature of a 
CPU core. Because devices are usually 
noisy, the measurements are likely to 
differ from the actual temperature of the 
core. As the devices are of different de-
signs, let us assume that noise affects 
the two devices in unrelated ways (this is 
formalized here using the notion of cor-
relation). Therefore, the measurements 
x1 and x2 are likely to be different from 
each other and from the actual core tem-
perature xc. A natural question is the fol-
lowing: is there a way to combine the in-
formation in the noisy measurements x1 
and x2 to obtain a good approximation of 
the actual temperature xc?

One ad hoc solution is to use the for-
mula 0.5*x1+0.5*x2 to take the average 
of the two measurements, giving them 
equal weight. Formulas of this sort are 

called linear estimators because they use 
a weighted sum to fuse values; for our 
temperature problem, their general form 
is β*x1+α*x2. In this presentation, we use 
the term estimate to refer to both a noisy 
measurement and a value computed by 
an estimator, as both are approxima-
tions of unknown values of interest.

Suppose we have additional infor-
mation about the two devices, say the 
second one uses more advanced tem-
perature sensing. Because we would 
have more confidence in the second 
measurement, it seems reasonable 
that we should discard the first one, 
which is equivalent to using the linear 
estimator 0.0*x1 + 1.0*x2. Kalman filter-
ing tells us that in general, this intui-
tively reasonable linear estimator is not 
“optimal;” paradoxically, there is useful 

information even in the measurement 
from the lower quality device, and the 
optimal estimator is one in which the 
weight given to each measurement is 
proportional to the confidence we have 
in the device producing that measure-
ment. Only if we have no confidence 
whatever in the first device should we 
discard its measurement.

The goal of this articlea is to present 
the abstract concepts behind Kalman 
filtering in a way that is accessible to 
most computer scientists while clarify-
ing the key assumptions, and then show 
how the problem of state estimation in 
linear systems can be solved as an 

a An extended version of this article that in-
cludes additional background material and 
proofs is available.30
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the pdf for the possible values of x2. If 
the random variables are only uncor-
related, knowing x1 might give us new 
information about x2 such as restricting 
its possible values but the mean of x2|x1 
will still be µ2. Using expectations, this 
can be written as E[x2|x1] = E[x2], which is 
equivalent to requiring that E[(x1−µ1)(x2−
µ2)], the covariance between the two vari-
ables, be equal to zero. This is obviously 
a weaker condition than independence.

Although the discussion in this sec-
tion has focused on measurements, 
the same formalization can be used for 
estimates produced by an estimator. 
Lemma 1(i) shows how the mean and 
variance of a linear combination of pair-
wise uncorrelated random variables can 
be computed from the means and vari-
ances of the random variables.18 The 
mean and variance can be used to quan-
tify bias and random errors for the esti-
mator as in the case of measurements.

An unbiased estimator is one whose 
mean is equal to the unknown value 
being estimated and it is preferable to a 
biased estimator with the same variance. 
Only unbiased estimators are considered 
in this article. Furthermore, an unbiased 
estimator with a smaller variance is pref-
erable to one with a larger variance as we 
would have more confidence in the esti-
mates it produces. As a step toward gener-
alizing this discussion to estimators that 
produce vector estimates, we refer to the 
variance of an unbiased scalar estimator 
as the mean square error of that estimator 
or MSE for short.

Lemma 1(ii) asserts that if a random 
variable is pairwise uncorrelated with 
a set of random variables, it is uncor-
related with any linear combination of 
those variables.

Lemma 1. Let 
 be a set of pairwise uncorrelated 

random variables. Let  be a 
random variable that is a linear combi-
nation of the xi’s.

(i) The mean and variance of y are:

  (1)

  
(2)

(ii) If random variable xn+1 is pair-wise 
uncorrelated with x1,..,xn, it is 
uncorrelated with y.

application of these general concepts. 
First, the informal ideas discussed here  
are formalized using the notions of distri-
butions and random samples from distri-
butions. Confidence in estimates is 
quantified using the variances and covari-
ances of these distributions.b Two algo-
rithms are described next. The first one 
shows how to fuse estimates (such as core 
temperature measurements) optimally, 
given a reasonable definition of optimal-
ity. The second algorithm addresses a 
problem that arises frequently in practice: 
estimates are vectors (for example, the 
position and velocity of a robot), but only a 
part of the vector can be measured 
directly; in such a situation, how can an 
estimate of the entire vector be obtained 
from an estimate of just a part of that 
vector? The best linear unbiased esti-
mator (BLUE) is used to solve this prob-
lem.16,19,26 It is shown that the Kalman 
filter can be derived in a straightfor-
ward way by using these two algorithms 
to solve the problem of state estimation 
in linear systems. The extended Kalman 
filter and unscented Kalman filter, 
which extended Kalman filtering to non-
linear systems, are described briefly at 
the end of the article.

Formalizing Estimates
Scalar estimates. To model the behav-
ior of devices producing noisy tempera-
ture measurements, we associate each 
device i with a random variable that has 
a probability density function (pdf) pi(x) 
such as the ones shown in Figure 1 (the 
x-axis in this figure represents tempera-
ture). Random variables need not be 
Gaussian.c Obtaining a measurement 
from device i corresponds to drawing a 

b Basic concepts such as probability density func-
tion, mean, expectation, variance and covari-
ance are introduced in the online appendix.

c The role of Gaussians in Kalman filtering is 
discussed later in the article.

random sample from the distribution 
for that device. We write  to 
denote that xi is a random variable with 
pdf pi whose mean and variance are µi 
and , respectively; following conven-
tion, we use xi to represent a random 
sample from this distribution as well.

Means and variances of distribu-
tions model different kinds of inaccura-
cies in measurements. Device i is said to  
have a systematic error or bias in its 
measurements if the mean µi of its dis-
tribution is not equal to the actual tem-
perature xc (in general, to the value being 
estimated, which is known as ground 
truth); otherwise, the instrument is unbi-
ased. Figure 1 shows pdfs for two devices 
that have different amounts of systematic 
error. The   variance  on the other hand 
is a measure of the random error in the 
measurements. The impact of random 
errors can be mitigated by taking many 
measurements with a given device and 
averaging their values, but this approach 
will not reduce systematic error.

In the formulation of Kalman fil-
tering, it is assumed that measuring 
devices do not have systematic errors. 
However, we do not have the luxury of 
taking many measurements of a given 
state, so we must take into account the 
impact of random error on a single 
measurement. Therefore, confidence 
in a device is modeled formally by the 
variance of the distribution associated 
with that device; the smaller the vari-
ance, the higher our confidence in the 
measurements made by the device. In 
Figure 1, the fact we have less confi-
dence in the first device has been illus-
trated by making p1 more spread out 
than p2, giving it a larger variance.

The informal notion that noise should 
affect the two devices in “unrelated 
ways” is formalized by requiring that 
the corresponding random variables be 
uncorrelated. This is a weaker condition 
than requiring them to be independent, 
as explained in our online appendix  
(http://dl.acm.org/citation.cfm?doid= 
3363294&picked=formats). Suppose we 
are given the measurement made by 
one of the devices (say x1) and we have 
to guess what the other measurement 
(x2) might be. If knowing x1 does not give 
us any new information about what x2 
might be, the random variables are inde-
pendent. This is expressed formally by 
the equation p(x2|x1) = p(x2); intuitively, 
knowing the value of x1 does not change 

Figure 1. Using pdfs to model devices with 
systematic and random errors. Ground truth 
is 60°C. Dashed lines are means of pdfs.
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Vector estimates. In some applications, 
estimates are vectors. For example, the 
state of a mobile robot might be rep-
resented by a vector containing its posi-
tion and velocity. Similarly, the vital 
signs of a person might be represented 
by a vector containing his tempera-
ture, pulse rate, and blood pressure. 
Here, we denote a vector by a boldfaced 
lowercase letter, and a matrix by an 
uppercase letter.

The covariance matrix ∑xx of a ran-
dom variable x is the matrix E[(x − µx)
(x − µx)

T], where µx is the mean of x. 
Intuitively, entry (i,j) of this matrix 
is the covariance between the i and 
j components of vector x; in particu-
lar, entry (i,i) is the variance of the 
ith component of x. A random vari-
able x with a pdf p whose mean is 
µx and covariance matrix is ∑xx is 
written as x∼p(µx, ∑xx). The inverse  
of the covariance matrix  is called 
the precision or information matrix.

Uncorrelated random variables. The 
cross-covariance matrix ∑vw of two ran-
dom variables v and w is the matrix  
E[(v−µv)(w−µw)T]. Intuitively, element 
(i, j) of this matrix is the covariance 
between elements v(i) and w( j). If the 
random variables are uncorrelated, all 
entries in this matrix are zero, which 
is equivalent to saying that every com-
ponent of v is uncorrelated with every 
component of w. Lemma 2 generalizes 
Lemma 1.

Lemma 2. Let x1∼p1(µ1, ∑1), …,  
xn∼pn(µn, ∑n) be a set of pairwise uncor-
related random variables of length m. 
Let .

(i) The mean and covariance matrix of 
y are the following:

   (3)

  (4)

(ii) If random variable xn+1 is pairwise 
uncorrelated with x1, .., xn, it is 
uncorrelated with y.

The MSE of an unbiased estimator y 
is E[(y−µy)

T(y−µy)], which is the sum of 
the variances of the components of y; if 
y has length 1, this reduces to variance 
as expected. The MSE is also the sum 
of the diagonal elements of ∑yy (this is 
called the trace of ∑yy).

Fusing Scalar Estimates
We now consider the problem of choos-
ing the optimal values of the param-
eters α and β in the linear estimator 
β*x1 + α*x2 for fusing two estimates x1 
and x2 from uncorrelated scalar-valued 
random variables.

The first reasonable requirement is 
that if the two estimates x1 and x2 are 
equal, fusing them should produce 
the same value. This implies that α+β 
=1. Therefore, the linear estimators of 
interest are of the form

  (5)

If x1 and x2 in Equation 5 are consid-
ered to be unbiased estimators of some 
quantity of interest, then yα is an unbi-
ased estimator for any value of α. How 
should optimality of such an estimator 
be defined? One reasonable definition 
is that the optimal value of α minimizes 
the variance of yα as this will produce the 
highest-confidence fused estimates.

Theorem 1. Let  and 
 be uncorrelated random 

variables. Consider the linear estimator 
yα(x1,x2)=(1−α)*x1+α*x2. The variance of 
the estimator is minimized for .

The proof is straightforward and is 
given in the online appendix. The vari-
ance (MSE) of yα can be determined from 
Lemma 1:

  (6)

Setting the derivative of  with 
respect to α to zero and solving the result-
ing equation yield the required result.

In the literature, the optimal 
value of α is called the Kalman gain K. 
Substituting K into the linear fusion 
model, we get the optimal linear esti-
mator y(x1, x2):

  (7)

As a step toward fusion of n>2 esti-
mates, it is useful to rewrite this as follows:

(8)

Substituting the optimal value of α 
into Equation 6, we get

An unbiased 
estimator is one 
whose mean 
is equal to the 
unknown value 
being estimated  
and it is preferable 
to a biased 
estimator with  
the same variance. 



126    COMMUNICATIONS OF THE ACM    |   NOVEMBER 2019  |   VOL.  62  |   NO.  11

review articles

  (13)

  (14)

Equations 13 and 14 generalize 
Equa tions 10 and 11.

Incremental fusing is optimal. In 
many applications, the estimates x1, x2, 
…, xn become available successively over 
a period of time. Although it is possible to 
store all the estimates and use Equations 
13 and 14 to fuse all the estimates from 
scratch whenever a new estimate 
becomes available, it is possible to save 
both time and storage if one can do this 
fusion incrementally. We show that just 
as a sequence of numbers can be added 
by keeping a running sum and adding 
the numbers to this running sum one at a 
time, a sequence of n>2 estimates can be 
fused by keeping a “running estimate” 
and fusing estimates from the sequence 
one at a time into this running estimate 
without any loss in the quality of the final 
estimate. In short, we want to show that 
yn(x1, .., xn)=y2(y2(..y2(x1, x2)…), xn). A little 
bit of algebra shows that if n>2, 
Equations 13 and 14 for the optimal linear 
estimator and its precision can be 
expressed as shown in Equations 15 and 16.

 

(15)

  (16)

This shows that yn(x1, .., xn) = y2(yn−1 

(x1, .., xn−1), xn). Using this argument 
recursively gives the required result.d

To make the connection to Kalman 
filtering, it is useful to derive the 
same result using a pictorial argu-
ment. Figure 2 shows the process of 
incrementally fusing the n estimates. 
In this picture, time progresses from 
left to right, the precision of each esti-
mate is shown in parentheses next to 
it, and the weights on the edges are 
the weights from Equation 10. The 
contribution of each xi to the final 
value y2(y2(…), xn) is given by the prod-
uct of the weights on the path from xi 
to the final value, and this product is 
obviously equal to the weight of xi in 

d We thank Mani Chandy for showing us this 
 approach to proving the result.

  (9)

The expressions for y and  are 
complicated because they contain the 
reciprocals of variances. If we let ν1 and 
ν2 denote the precisions of the two dis-
tributions, the expressions for y and νy 
can be written more simply as follows:

 (10)

  (11)

These results say the weight we should 
give to an estimate is proportional to the 
confidence we have in that estimate, 
and that we have more confidence in the 
fused estimate than in the individual esti-
mates, which is intuitively reasonable. To 
use these results, we need only the vari-
ances of the distributions. In particular, 
the pdfs pi, which are usually not avail-
able in applications, are not needed, and 
the proof of Theorem 1 does not require 
these pdfs to have the same mean.

Fusing multiple scalar estimates. 
These results can be generalized 
to optimally fuse multiple pairwise 
uncorrelated estimates x1, x2, …, xn. 
Let yn,α(x1, .., xn) denote the linear esti-
mator for fusing the n estimates given 
parameters α1, .., αn, which we denote 
by α (the notation yα(x1, x2) introduced 
previously can be considered to be an 
abbreviation of y2,α(x1, x2) ).

Theorem 2. Let  for (1≤i≤n) 
be a set of pairwise uncorrelated ran-
dom variables. Consider the linear esti-
mator  where 

. The variance of the estimator 
is minimized for

The minimal variance is given by the 
following expression:

  
(12)

As before, these expressions 
are more intuitive if the variance is 
replaced with precision: the contribu-
tion of xi to the value of yn(x1, .., xn) is 
proportional to xi’s confidence.

Kalman filtering 
can be seen as a 
particular approach 
to combining 
approximations of 
an unknown value 
to produce a better 
approximation. 
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Equation 13, showing that incremen-
tal fusion is optimal.

Summary. The results in this section 
can be summarized informally as fol-
lows. When using a linear estimator to fuse 
uncertain scalar estimates, the weight given 
to each estimate should be inversely propor-
tional to the variance of the random vari-
able from which that estimate is obtained. 
Furthermore, when fusing n>2 estimates, 
estimates can be fused incrementally with-
out any loss in the quality of the final result. 
These results are often expressed formally 
in terms of the Kalman gain K, as shown 
in Figure 3; the equations can be applied 
recursively to fuse multiple estimates. 
Note that if ν1ν2, K≈0 and y(x1,x2)≈x1; 
conversely if ν1ν2, K≈1 and y(x1,x2)≈x2.

Fusing Vector Estimates
The results for fusing scalar estimates 
can be extended to vectors by replacing 
variances with covariance matrices.

For vectors, the linear estimator 
is  where 

. Here A stands for the matrix 
parameters (A1, …, An). All the vectors (xi) 
are assumed to be of the same length. 
To simplify notation, we omit the sub-
script n in yn,A in the discussion here 
as it is obvious from the context.

Optimality. The parameters A1, …, 
An in the linear data fusion model are 
chosen to minimize MSE(yA) which is 
E[(yA−µyA)T(yA−µyA)].

Theorem 3 generalizes Theorem 2 to 
the vector case. The proof of this theorem 
is given in the appendix. Comparing 
Theorems 2 and 3, we see that the 
expressions are similar, the main dif-
ference being that the role of variance 
in the scalar case is played by the covari-
ance matrix in the vector case.

Theorem 3. Let xi∼pi(µi, ∑i) for (1≤i≤n) 
be a set of pairwise uncorrelated 

random variables. Consider the linear  
estimator , where 

. The value of MSE( yA) is mini-
mized for

  (23)

Therefore the optimal estimator is

  (24)

The covariance matrix of y can be 
computed by using Lemma 2.

  (25)

In the vector case, precision is the 
inverse of a covariance matrix, denoted 
by N. Equations 26–27 use precision to 
express the optimal estimator and its 
variance and generalize Equations 13–14 
to the vector case.

  (26)

  (27)

As in the scalar case, fusion of n>2 vec-
tor estimates can be done incrementally 
without loss of precision. The proof is 
similar to the scalar case and is omitted.

Figure 2. Dataflow graph for incremental fusion.
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Figure 3. Optimal fusion of scalar estimates.
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Figure 4. Optimal fusion of vector estimates.

Figure 5. BLUE line corresponding to  
Equation (31).
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In our context, however, x and y are 
random variables, so such a precise 
functional relationship will not hold. 
Figure 5 shows an example in which x 
and y are scalar-valued random vari-
ables. The gray ellipse in this figure, 
called a confidence ellipse, is a pro-
jection of the joint distribution of x 
and y onto the (x, y) plane that shows 
where some large proportion of the 
(x, y) values are likely to be. Suppose 
x takes the value x1. Even within the 
confidence ellipse, there are many 
points (x1, y), so we cannot associate 
a single value of y with x1. One possi-
bility is to compute the mean of the 
y values associated with x1 (that is, 

There are several equivalent expres-
sions for the Kalman gain for the fusion 
of two estimates. The following one, 
which is easily derived from Equation 
23, is the vector analog of Equation 17:

  (28)

The covariance matrix of the opti-
mal estimator y(x1, x2) is the following.

  (29)
          (30)

Summary. The results in this sec-
tion can be summarized in terms of the 
Kalman gain K as shown in Figure 4.

Best Linear Unbiased Estimator 
(BLUE)
In some applications, the state of the 
system is represented by a vector but 
only part of the state can be measured 
directly, so it is necessary to estimate 
the hidden portion of the state corre-
sponding to a measured value of the 
visible state. This section describes an 
estimator called the best linear unbiased 
estimator (BLUE)16,19,26 for doing this.

Consider the general problem of 
determining a value for vector y given 
a value for a vector x. If there is a func-
tional relationship between x and y (say 
y=F(x) and F is given), it is easy to com-
pute y given a value for x (say x1).

Figure 6. State estimation using Kalman filtering.

(a) Discrete-time dynamical system.

(b) Dynamical system with uncertainty.

(c) Implementation of the dataflow diagram (b).

(d) Implementation of the dataflow diagram (b) for systems with partial observability.

Predictor

Predictor

Measurement Fusion

Measurement Fusion
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the expectation E[y|x=x1]) and return 
this as the estimate for y if x=x1. This 
requires knowing the joint distribu-
tion of x and y, which may not always 
be available.

In some problems, we can assume 
that there is an unknown linear rela-
tionship between x and y and that 
uncertainty comes from noise. 
Therefore, we can use a technique simi-
lar to the ordinary least squares (OLS) 
method to estimate this linear relation-
ship, and use it to return the best esti-
mate of y for any given value of x. In Figure 
5, we see that although there are many 
points (x1, y), the y values are clustered 
around the line as shown in the figure so 
the value  is a reasonable estimate for the 
value of y corresponding to x1. This line, 
called the best linear unbiased estimator 
(BLUE), is the analog of ordinary least 
squares (OLS) for distributions.

Computing BLUE. Consider the 
estimator . We choose A 
and b so that this is an unbiased esti-
mator with minimal MSE. The “∧” over 
the y is notation that indicates that we 
are computing an estimate for y.

Theorem 4. Let

The estimator  for esti-
mating the value of y for a given value of 
x is an unbiased estimator with minimal 
MSE if

The proof of Theorem 4 is straight 
forward. For an unbiased estimator,  

. This implies that b=µy−A(µx) 
so an unbiased estimator is of the 
form . Note this 
is equivalent to asserting the BLUE 
line must pass through the point (µx, µy). 
Setting the derivative of  with 
respect to A to zero22 and solving for A, 
we find that the best linear unbiased 
estimator is

  (31)

This equation can be understood intui-
tively as follows. If we have no information 
about x and y, the best we can do is the 
estimate (µx, µy), which lies on the BLUE 

line. However, if we know that x has a par-
ticular value x1, we can use the correlation 
between y and x to estimate a better value 
for y from the difference (x1−µx). Note 
that if ∑yx = 0 (that is, x and y are uncor-
related), the best estimate of y is just µy, 
so knowing the value of x does not give 
us any additional information about 
y as one would expect. In Figure 5,  
this corresponds to the case when the 
BLUE line is parallel to the x-axis. At the 
other extreme, suppose that y and x are 
functionally related so y = Cx. In that 
case, it is easy to see that ∑yx = C∑xx, 
so  as expected. In Figure 5,  
this corresponds to the case when the 
confidence ellipse shrinks down to the 
BLUE line.

Equation 31 is a generalization of 
ordinary least squares in the sense that if 
we compute the relevant means and vari-
ances of a set of discrete data (xi, yi) and 
substitute into Equation 31, we get the 
same line that is obtained by using OLS.

Kalman Filters for Linear Systems
We now apply the algorithms for opti-
mal fusion of vector estimates (Figure 4)  
and the BLUE estimator (Theorem 4) to 
the particular problem of state estima-
tion in linear systems, which is the clas-
sical application of Kalman filtering.

Figure 6a shows how the evolution of 
the state of such a system over time can 
be computed if the initial state x0 and 
the model of the system dynamics are 
known precisely. Time advances in dis-
crete steps. The state of the system at 
any time step is a function of the state of 
the system at the previous time step and 
the control inputs applied to the system 

during that interval. This is usually 
expressed by an equation of the form xt 
= ft(xt−1, ut) where ut is the control input. 
The function ft is nonlinear in the gen-
eral case, and can be different for differ-
ent steps. If the system is linear, the 
relation for state evolution over time 
can be written as xt = Ftxt−1 + Btut, where Ft 
and Bt are time-dependent matrices 
that can be determined from the physics 
of the system. Therefore, if the initial 
state x0 is known exactly and the system 
dynamics are modeled perfectly by the Ft 
and Bt matrices, the evolution of the state 
over time can be computed precisely as 
shown in Figure 6a.

In general, however, we may not 
know the initial state exactly, and the 
system dynamics and control inputs 
may not be known precisely. These inac-
curacies may cause the state computed 
by the model to diverge unacceptably 
from the actual state over time. To avoid 
this, we can make measurements of the 
state after each time step. If these mea-
surements were exact, there would of 
course be no need to model the system 
dynamics. However, in general, the mea-
surements themselves are imprecise.

Kalman filtering was invented to 
solve the problem of state estimation in 
such systems. Figure 6b shows the data-
flow of the computation, and we use it 
to introduce standard terminology. An 
estimate of the initial state, denoted by 

, is assumed to be available. At each 
time step t=1, 2, .., the system model is 
used to provide an estimate of the state 
at time t using information from time 
t−1. This step is called prediction and 
the estimate that it provides is called the 

Figure 7. Illustration of Kalman filtering.
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of wt is denoted by Qt, and the 
noise terms in different time 
steps are assumed to be uncorre-
lated to each other (such as, 
E[wiwj]=0 if i≠j) and to x0.

For estimation, we have a random 
variable x0|0 that captures our belief 
about the likelihood of different states 
at time t=0, and two random variables 
xt|t−1 and xt|t at each time step t = 1, 2, … 
that capture our beliefs about the likeli-
hood of different states at time t before 
and after fusion with the measurement, 
respectively. The mean and covariance 
matrix of a random variable xi|j are 
denoted by  and ∑i|j, respectively. We 
assume  (no bias).

Prediction essentially uses xt−1|t−1 as 
a proxy for xt−1 in Equation 32 to deter-
mine xt|t−1 as shown in Equation 33.

a priori estimate and denoted by . 
The a priori estimate is then fused with 
zt, the state estimate obtained from the 
measurement at time t, and the result is 
the a posteriori state estimate at time t, 
denoted by . This a posteriori estimate 
is used by the model to produce the a 
priori estimate for the next time step 
and so on. As described here, the a priori 
and a posteriori estimates are the means 
of certain random variables; the covari-
ance matrices of these random variables 
are shown within parentheses each esti-
mate in Figure 6b, and these are used to 
weight estimates when fusing them.

We first present the state evolution 
model and a priori state estimation. 
Then we discuss how state estimates 
are fused if an estimate of the entire 
state can be obtained by measurement. 
Finally, we discuss how to address this 

problem when only a portion of the 
state can be measured directly.

State evolution model and  prediction. 
The evolution of the state over time is 
described by a series of random vari-
ables x0, x1, x2,…

• The random variable x0 captures 
the likelihood of different initial 
states.

• The random variables at succes-
sive time steps are related by the 
following linear model:

  (32)

	 Here, ut is the control input, which 
is assumed to be deterministic, 
and wt is a zero-mean noise term 
that models all the uncertainty in 
the system. The covariance matrix 

Figure 8. Computation of a posteriori estimate.
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  (33)

For state estimation, we need only the 
mean and covariance matrix of xt|t−1. 
The predictor box in Figure 6 computes 
these values; the covariance matrix 
is obtained from Lemma 2 under the 
assumption that wt is uncorrelated with 
xt−1|t−1, which is justified here.

Fusing complete observations 
of the state. If the entire state can 
be measured at each time step, the 
imprecise measurement at time t is 
modeled as follows:

  (34)

where vt is a zero-mean noise term with 
covariance matrix Rt. The noise terms 
in different time steps are assumed to 
be uncorrelated with each other (such 
as, E[vivj] is zero if i≠j) as well as with 
x0|0 and all wk. A subtle point here is that 
xt in this equation is the actual state of 
the system at time t (that is, a particular 
realization of the random variable xt), 
so variability in zt comes only from vt 
and its covariance matrix Rt.

Therefore, we have two imprecise 
estimates for the state at each time step 
t = 1, 2, …, the a priori estimate from the 
predictor  and the one from the 
measurement (zt). If zt is uncorrelated to 
xt|t−1, we can use Equations 20–22 to 
fuse the estimates as shown in Figure 6c.

The assumptions that (i) xt−1|t−1 is 
uncorrelated with wt, which is used in 
prediction, and (ii) xt|t−1 is uncorrelated 

with zt, which is used in fusion, are eas-
ily proved to be correct by induction on 
t, using Lemma 2(ii). Figure 6b gives the 
intuition: xt|t−1 for example is an affine 
function of the random variables x0|0, w1, 
v1, w2, v2, …, wt, and is therefore uncor-
related with vt (by assumption about vt 
and Lemma 2(ii) ) and hence with zt.

Figure 7 shows the computation picto-
rially using confidence ellipses to illus-
trate uncertainty. The dotted arrows at 
the bottom of the figure show the evolu-
tion of the state, and the solid arrows show 
the computation of the a priori estimates 
and their fusion with measurements.

Fusing partial observations of the 
state. In some problems, only a portion 
of the state can be measured directly. 
The observable portion of the state is 
specified formally using a full row-rank 
matrix Ht called the observation matrix: 
if the state is x, what is observable is Htx. 
For example, if the state vector has two 
components and only the first component 
is observable, Ht can be [1 0]. In general, the 
Ht matrix can specify a linear relationship 
between the state and the observation, 
and it can be time-dependent. The 
imprecise measurement model intro-
duced in Equation 34 becomes:

  (35)

The hidden portion of the state 
can be specified using a matrix Ct, 
which is an orthogonal complement of 
Ht. For example, if Ht = [1 0], one choice 
for Ct is [0 1].

Figure 6d shows the computation 
for this case. The fusion phase can be 
understood intuitively in terms of the 
following steps.

i. The observable part of the a pri-
ori estimate of the state  
is fused with the measurement 
(zt), using Equations 20–22. 
The quantity  is 
called the innovation. The result is 
the a posteriori estimate of the 
observable state .

ii. The BLUE of Theorem 4 is used to 
obtain the a posteriori estimate 
of the hidden state  by adding 
to the a priori estimate of the hid-
den state  a value obtained 
from the product of the covariance 
between Htxt|t–1 and Ctxt|t–1 and the 
difference between  and .

iii.  The a posteriori estimates of the 
observable and hidden portions 
of the state are composed to pro-
duce the a posteriori estimate of 
the entire state .

The actual implementation pro-
duces the final result directly without 
going through these steps as shown in 
Figure 6d, but these incremental steps 
are useful for understanding how all 
this works, and their implementation 
is shown in more detail in Figure 8.

Figure 6d puts all this together. 
In the literature, this dataflow is 
referred to as Kalman filtering. 
Unlike in Equations 18 and 21, the 

Figure 9. Estimates of the object’s state over time.
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The red lines correspond to “ground 
truth” in our example.

The green points in Figure 9b show 
the noisy measurements of velocity 
at different time steps, assuming the 
noise is modeled by a Gaussian with 
variance 8. The blue lines show the 
a posteriori estimates of the velocity 
and position. It can be seen that the a 
posteriori estimates track the ground 
truth quite well even when the ideal 
system model (the gray lines) is inac-
curate and the measurements are 
noisy. The cyan bars in the right figure 
show the variance of the velocity at dif-
ferent time steps. Although the initial 
variance is quite large, application of 
Kalman filtering is able to reduce it 
rapidly in few time steps.

Discussion. We have shown that 
Kalman filtering for state estimation 
in linear systems can be derived from 
two elementary ideas: optimal linear 
estimators for fusing uncorrelated 
estimates and best linear unbiased 
estimators for correlated variables. 
This is a different approach to the 
subject than the standard presenta-
tions in the literature. One standard 
approach is to use Bayesian infer-
ence. The other approach is to assume 
that the a posteriori state estimator 
is a linear combination of the form 

, and then find the values 
of At and Bt that produce an unbiased 
estimator with minimum MSE. We 
believe that the advantage of the pre-
sentation given here is that it exposes 
the concepts and assumptions that 
underlie Kalman filtering.

Most presentations in the literature 
also begin by assuming that the noise 
terms wt in the state evolution equation 
and vt in the measurement are Gaussian. 
Although some presentations1,10 use 
properties of Gaussians to derive the 
results in Figure 3, these results do not 
depend on distributions being 
Gaussians. Gaussians however enter the 
picture in a deeper way if one considers 
nonlinear estimators. It can be shown 
that if the noise terms are not 
Gaussian, there may be nonlinear 
estimators whose MSE is lower than 
that of the linear estimator presented 
in Figure 6d. However, if the noise is 
Gaussian, this linear estimator is as 
good as any unbiased nonlinear esti-
mator (that is, the linear estimator is a 
minimum variance unbiased estimator 

Kalman gain is not a dimensionless 
value here. If Ht = I, the computa-
tions in Figure 6d reduce to those of 
Figure 6c as expected.

Equation 39 shows that the a poste-
riori state estimate is a linear combi-
nation of the a priori state estimate 

 and the measurement (zt). The 
optimality of this linear unbiased 
estimator is shown in the Appendix. It 
was shown earlier that incremental 
fusion of scalar estimates is optimal. 
The dataflow of Figures 6(c,d) com-
putes the a posteriori state estimate at 
time t by incrementally fusing mea-
surements from the previous time 
steps, and this incremental fusion 
can be shown to be optimal using a 
similar argument.

Example: falling body. To demon-
strate the effectiveness of the Kalman 
filter, we consider an example in 
which an object falls from the origin 
at time t=0 with an initial speed of 0 
m/s and an expected constant accel-
eration of 9.8 m/s2 due to gravity. Note 
that acceleration in reality may not be 
constant due to factors such as wind, 
and air friction.

The state vector of the object con-
tains two components, one for the 
distance from the origin s(t) and one 
for the velocity v(t). We assume that 
only the velocity state can be mea-
sured at each time step. If time is dis-
cretized in steps of 0.25 seconds, the 
difference equation for the dynamics 
of the system is easily shown to be 
the following:

where we assume  and 
The gray lines in Figure 9 show 

the evolution of velocity and distance 
with time according to this model. 
Because of uncertainty in modeling 
the system dynamics, the actual evo-
lution of the velocity and position 
will be different in practice. The red 
lines in Figure 9 show one trajectory 
for this evolution, corresponding to 
a Gaussian noise term with covari-
ance  in Equation 32 (because 
this noise term is random, there are 
many trajectories for the evolution, 
and we are just showing one of them). 

We have shown  
that Kalman 
filtering for state 
estimation in linear 
systems can be 
derived from two 
elementary ideas: 
optimal linear 
estimators for 
fusing uncorrelated 
estimates and best 
linear unbiased 
estimators 
for correlated 
variables. 
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(MVUE) ). This result is proved using 
the Cramer-Rao lower bound.24

Extension to Nonlinear Systems
The extended Kalman filter (EKF) and 
unscented Kalman filter (UKF) are heu-
ristic approaches to using Kalman 
filtering for nonlinear systems. The 
state evolution and measurement 
equations for nonlinear systems with 
additive noise can be written as fol-
lows; in these equations, f and h are 
nonlinear functions.

  (42)

  (43)

Intuitively, the EKF constructs 
linear approximations to the nonlin-
ear functions f and h and applies the 
Kalman filter equations, whereas the 
UKF constructs approximations to 
probability distributions and propa-
gates these through the nonlinear 
functions to construct approximations 
to the posterior distributions.

EKF. Examining Figure 6d, we see 
that the a priori state estimate in the pre-
dictor can be computed using the sys-
tem model: . However, 
as the system dynamics and measure-
ment equations are nonlinear, it is not 
clear how to compute the co-variance 
matrices for the a priori estimate and 
the measurement. In the EKF, these 
matrices are computed by linearizing 
Equations 42 and 43 using the Taylor 
series expansions for the nonlinear 
functions f and h. This requires comput-
ing the following Jacobians,e which play 
the role of Ft and Ht in Figure 6d.

The EKF performs well in some 
applications such as navigation systems 
and GPS.28

UKF. When the system dynamics 
and observation models are highly 
nonlinear, the unscented Kalman fil-
ter (UKF)15 can be an improvement 
over the EKF. The UKF is based on the 
unscented transformation, which is a 
method for computing the statistics 
of a random variable x that undergoes 

e The Jacobian matrix is the matrix of all first 
order partial derivatives of a vector-valued 
function.

a nonlinear transformation (y = g(x) ). 
The random variable x is sampled 
using a carefully chosen set of sigma 
points and these sample points are 
propagated through the nonlinear 
function g. The statistics of y are esti-
mated using a weighted sample mean 
and covariance of the posterior sigma 
points. The UKF tends to be more 
robust and accurate than the EKF but 
has higher computation overhead 
due to the sampling process.

Conclusion
In this article, we have shown that 
two concepts—optimal linear estima-
tors for fusing uncorrelated estimates 
and best linear unbiased estimators 
for correlated variables—provide the 
underpinnings for Kalman filtering. 
By combining these ideas, standard 
results on Kalman filtering for linear 
systems can be derived in an intuitive 
and straightforward way that is simpler 
than other presentations of this mate-
rial in the literature. This approach 
makes clear the assumptions that 
underlie the optimality results associ-
ated with Kalman filtering and should 
make it easier to apply Kalman filtering 
to problems in computer systems.
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