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ABSTRACT
Kalman filtering is a classic state estimation technique used

in application areas such as signal processing and autonomous

control of vehicles. It is now being used to solve problems

in computer systems such as controlling the voltage and

frequency of processors.

Although there are many presentations of Kalman filtering

in the literature, they usually deal with particular systems

like autonomous robots or linear systems with Gaussian

noise, which makes it difficult to understand the general

principles behind Kalman filtering. In this paper, we first

present the abstract ideas behind Kalman filtering at a level

accessible to anyone with a basic knowledge of probability

theory and calculus, and then show how these concepts can

be applied to the particular problem of state estimation in

linear systems. This separation of concepts from applications

should make it easier to understand Kalman filtering and to

apply it to other problems in computer systems.

KEYWORDS
Kalman filtering, data fusion, uncertainty, noise, state esti-

mation, covariance, BLUE, linear systems

1 INTRODUCTION
Kalman filtering is a state estimation technique invented

in 1960 by Rudolf E. Kálmán [16]. Because of its ability to

extract useful information from noisy data and its small com-

putational and memory requirements, it is used in many

application areas including spacecraft navigation, motion

planning in robotics, signal processing, and wireless sen-

sor networks [12, 21, 28–30]. Recent work has used Kalman

filtering in controllers for computer systems [5, 13, 14, 24].

Althoughmany introductions to Kalman filtering are avail-

able in the literature [1–4, 6–11, 18, 22, 26, 30], they are usu-

ally focused on particular applications like robot motion or

state estimation in linear systems. This can make it difficult

to see how to apply Kalman filtering to other problems. Other

presentations derive Kalman filtering as an application of

Bayesian inference assuming that noise is Gaussian. This

leads to the common misconception that Kalman filtering

can be applied only if noise is Gaussian [15]. The goal of

this paper is to present the abstract concepts behind Kalman

filtering in a way that is accessible to most computer scien-

tists while clarifying the key assumptions, and then show

how the problem of state estimation in linear systems can

be solved as an application of these general concepts.

Abstractly, Kalman filtering can be seen as a particular

approach to combining approximations of an unknown value

to produce a better approximation. Suppose we use two de-

vices of different designs to measure the temperature of a

CPU core. Because devices are usually noisy, the measure-

ments are likely to differ from the actual temperature of the

core. Since the devices are of different designs, let us assume

that noise affects the two devices in unrelated ways (this

is formalized using the notion of correlation in Section 2).

Therefore, the measurements x1 and x2 are likely to be dif-

ferent from each other and from the actual core temperature

xc . A natural question is the following: is there a way to

combine the information in the noisy measurements x1 and
x2 to obtain a good approximation of the actual temperature

xc?
One ad hoc solution is to use the formula 0.5∗x1+0.5∗x2

to take the average of the two measurements, giving them

equal weight. Formulas of this sort are called linear estimators
because they use a weighted sum to fuse values; for our

temperature problem, their general form is β∗x1+α∗x2. In
this paper, we use the term estimate to refer to both a noisy

measurement and to a value computed by an estimator, since

both are approximations of unknown values of interest.

Suppose we have additional information about the two

devices; say the second one uses more advanced tempera-

ture sensing. Since we would have more confidence in the

second measurement, it seems reasonable that we should

discard the first one, which is equivalent to using the linear

estimator 0.0∗x1 + 1.0∗x2. Kalman filtering tells us that in

general, this intuitively reasonable linear estimator is not

“optimal”; paradoxically, there is useful information even in

the measurement from the lower-quality device, and the op-

timal estimator is one in which the weight given to each

measurement is proportional to the confidence we have in

the device producing that measurement. Only if we have no
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confidence whatever in the first device should we discard its

measurement.

Section 2 describes how these intuitive ideas can be quan-

tified. Estimates are modeled as random samples from distri-
butions, and confidence in estimates is quantified in terms

of the variances and covariances of these distributions.1 Sec-
tions 3-5 develop the two key ideas behind Kalman filtering.

(1) How should estimates be fused optimally?

Section 3 shows how to fuse scalar estimates such

as temperatures optimally. It is also shown that the

problem of fusing more than two estimates can be re-

duced to the problem of fusing two estimates at a time

without any loss in the quality of the final estimate.

Section 4 extends these results to estimates that are vec-
tors, such as state vectors representing the estimated

position and velocity of a robot.

(2) In some applications, estimates are vectors but only

a part of the vector can be measured directly. For ex-

ample, the state of a spacecraft may be represented

by its position and velocity, but only its position may

be observable. In such situations, how do we obtain a

complete estimate from a partial estimate?

Section 5 shows how the Best Linear Unbiased Esti-
mator (BLUE) can be used for this. Intuitively, it is

assumed that there is a linear relationship between the

observable and hidden parts of the state vector, and

this relationship is used to compute an estimate for

the hidden part of the state, given an estimate for the

observable part.

Section 6 uses these ideas to solve the state estimation

problems for linear systems, which is the usual context for

presenting Kalman filters. Section 7 briefly discusses exten-

sions of Kalman filtering for nonlinear systems.

2 FORMALIZATION OF ESTIMATES
This section makes precise the notions of estimates and con-
fidence in estimates.

2.1 Scalar estimates
To model the behavior of devices producing noisy measure-

ments, we associate each device i with a random variable
that has a probability density function (pdf) pi (x) such as the

ones shown in Figure 1 (the x-axis in this figure represents

temperature). Random variables need not be Gaussian.
2
Ob-

taining a measurement from device i corresponds to drawing
a random sample from the distribution for that device. We

write xi∼pi (µi ,σ 2

i ) to denote that xi is a random variable

1
Basic concepts including probability density function, mean, expectation,

variance and covariance are introduced in Appendix A.

2
The role of Gaussians in Kalman filtering is discussed in Section 6.5.

x
58

◦
C 60

◦
C 63

◦
C

p1(x)

p2(x)

p
(x
)

Figure 1: Using pdfs to model devices with systematic
and randomerrors. Ground truth is 60 ◦

C. Dashed lines
are means of pdfs.

with pdf pi whose mean and variance are µi and σ
2

i respec-

tively; following convention, we use xi to represent a random
sample from this distribution as well.

Means and variances of distributions model different kinds

of inaccuracies in measurements. Device i is said to have a

systematic error or bias in its measurements if the mean µi
of its distribution is not equal to the actual temperature xc
(in general, to the value being estimated, which is known as

ground truth); otherwise, the instrument is unbiased. Figure 1
shows pdfs for two devices that have different amounts of

systematic error. The variance σ 2

i on the other hand is a mea-

sure of the random error in the measurements. The impact

of random errors can be mitigated by taking many measure-

ments with a given device and averaging their values, but

this approach will not help to reduce systematic error.

In the usual formulation of Kalman filtering, it is assumed

that measuring devices do not have systematic errors. How-

ever, we do not have the luxury of taking many measure-

ments of a given state, so we must take into account the

impact of random error on a single measurement. Therefore,

confidence in a device is modeled formally by the variance

of the distribution associated with that device; the smaller

the variance, the higher our confidence in the measurements

made by the device. In Figure 1, the fact that we have less

confidence in the first device has been illustrated by making

p1 more spread out than p2, giving it a larger variance.

The informal notion that noise should affect the two de-

vices in “unrelated ways” is formalized by requiring that

the corresponding random variables be uncorrelated. This is
a weaker condition than requiring them to be independent,
as explained in the Appendix A. Suppose we are given the

measurement made by one of the devices (say x1) and we

have to guess what the other measurement (x2) might be.

If knowing x1 does not give us any new information about

what x2 might be, the random variables are independent.

This is expressed formally by the equation p(x2 |x1) = p(x2);
intuitively, knowing the value of x1 does not change the

pdf for the possible values of x2. If the random variables are

2



only uncorrelated, knowing x1 might give us new informa-

tion about x2 such as restricting its possible values but the

mean of x2 |x1 will still be µ2. Using expectations, this can be

written as E[x2 |x1] = E[x2], which is equivalent to requiring

that E[(x1−µ1)(x2−µ2)], the covariance between the two vari-
ables, be equal to zero. This is obviously a weaker condition

than independence.

Although the discussion in this section has focused on

measurements, the same formalization can be used for esti-

mates produced by an estimator. Lemma 2.1(i) shows how

the mean and variance of a linear combination of pairwise

uncorrelated random variables can be computed from the

means and variances of the random variables [19]. The mean

and variance can be used to quantify bias and random errors

for the estimator as in the case of measurements.

An unbiased estimator is one whose mean is equal to the

unknown value being estimated and it is preferable to a bi-

ased estimator with the same variance. Only unbiased estima-

tors are considered in this paper. Furthermore, an unbiased

estimator with a smaller variance is preferable to one with a

larger variance since we would have more confidence in the

estimates it produces. As a step towards generalizing this

discussion to estimators that produce vector estimates, we

refer to the variance of an unbiased scalar estimator as the

Mean Square Error of that estimator or MSE for short.

Lemma 2.1(ii) asserts that if a random variable is pairwise

uncorrelated with a set of random variables, it is uncorrelated

with any linear combination of those variables.

Lemma 2.1. Let x1∼p1(µ1,σ 2

1
), ...,xn∼pn(µn ,σ 2

n) be a set of
pairwise uncorrelated random variables. Let y =

∑n
i=1 αixi be

a random variable that is a linear combination of the xi ’s.

(i) The mean and variance of y are:

µy =
n∑
i=1

αiµi (1)

σ 2

y =

n∑
i=1

α2

i σ
2

i (2)

(ii) If a random variable xn+1 is pairwise uncorrelated with
x1, ..,xn , it is uncorrelated with y.

2.2 Vector estimates
In some applications, estimates are vectors. For example, the

state of a mobile robot might be represented by a vector

containing its position and velocity. Similarly, the vital signs

of a person might be represented by a vector containing his

temperature, pulse rate and blood pressure. In this paper, we

denote a vector by a boldfaced lowercase letter, and a matrix

by an uppercase letter.

The covariance matrix Σxx of a random variable x is the

matrix E[(x − µµµx)(x − µµµx)T], where µµµx is the mean of x. In-
tuitively, entry (i,j) of this matrix is the covariance between

the i and j components of vector x; in particular, entry (i,i)
is the variance of the ith component of x. A random variable

x with a pdf p whose mean is µxµxµx and covariance matrix is

Σxx is written as x∼p(µxµxµx , Σxx). The inverse of the covariance
matrix (Σ−1

xx) is called the precision or information matrix.

Uncorrelated random variables: The cross-covariance ma-

trix Σvw of two random variables v and w is the matrix

E[(v−µµµv)(w−µµµw )T]. Intuitively, element (i,j) of this matrix

is the covariance between elements v(i) andw(j). If the ran-
dom variables are uncorrelated, all entries in this matrix are

zero, which is equivalent to saying that every component of

v is uncorrelated with every component of w. Lemma 2.2

generalizes Lemma 2.1.

Lemma 2.2. Let x1∼p1(µµµ1, Σ1), ...,xn∼pn(µµµn , Σn) be a set
of pairwise uncorrelated random variables of length m. Let
y =

∑n
i=1Aixi .

(i) The mean and covariance matrix of y are the following:

µµµy =
n∑
i=1

Aiµµµi (3)

Σyy =

n∑
i=1

AiΣiA
T

i (4)

(ii) If a random variable xn+1 is pairwise uncorrelated with
x1, ..,xn , it is uncorrelated with y.

TheMSE of an unbiased estimator y is E[(y−µµµy)T(y−µµµy)],
which is the sum of the variances of the components of y;
if y has length 1, this reduces to variance as expected. The

MSE is also the sum of the diagonal elements of Σyy (this is

called the trace of Σyy).

3 FUSING SCALAR ESTIMATES
Section 3.1 discusses the problem of fusing two scalar esti-

mates. Section 3.2 generalizes this to the problem of fusing

n>2 scalar estimates. Section 3.3 shows that fusing n>2 esti-
mates can be done iteratively by fusing two estimates at a

time without any loss of quality in the final estimate.

3.1 Fusing two scalar estimates
We now consider the problem of choosing the optimal values

of the parameters α and β in the linear estimator β∗x1 + α∗x2
for fusing estimates x1 and x2 from uncorrelated random

variables.

The first reasonable requirement is that if the two esti-

mates x1 and x2 are equal, fusing them should produce the

same value. This implies that α+β=1. Therefore the linear

3



estimators of interest are of the form

yα (x1,x2)=(1−α)∗x1 + α∗x2 (5)

If x1 and x2 in Equation 5 are considered to be unbiased

estimators of some quantity of interest, then yα is an unbi-

ased estimator for any value of α . How should optimality

of such an estimator be defined? One reasonable definition

is that the optimal value of α minimizes the variance of yα
since this will produce the highest-confidence fused esti-

mates as discussed in Section 2. The variance (MSE) of yα
can be determined from Lemma 2.1:

σ 2

y (α) = (1 − α)2∗σ 2

1
+ α2∗σ 2

2
(6)

Theorem 3.1. Let x1∼p1(µ1,σ 2

1
) and x2∼p2(µ2,σ 2

2
) be un-

correlated random variables. Consider the linear estimator
yα (x1,x2) = (1−α)∗x1 + α∗x2. The variance of the estimator

is minimized for α = σ 2

1

σ 2

1
+σ 2

2

.

This result can be proved by setting the derivative of σ 2

y (α)
with respect to α to zero and solving equation for α .

Proof.

d

dα
σ 2

y (α) = −2(1 − α) ∗ σ 2

1
+ 2α ∗ σ 2

2

= 2α ∗ (σ 2

1
+ σ 2

2
) − 2 ∗ σ 2

1
= 0

α =
σ 2

1

σ 2

1
+ σ 2

2

(7)

The second order derivative of σ 2

y (α), (σ 2

1
+σ 2

2
), is positive,

showing that σ 2

y (α) reaches a minimum at this point. □

In the literature, the optimal value ofα is called theKalman
gain K . Substituting K into the linear fusion model, we get

the optimal linear estimator y(x1,x2):

y(x1,x2) =
σ 2

2

σ 2

1
+ σ 2

2

∗x1 +
σ 2

1

σ 2

1
+ σ 2

2

∗x2 (8)

As a step towards fusion of n>2 estimates, it is useful to

rewrite this as follows:

y(x1,x2) =
1

σ 2

1

1

σ 2

1

+ 1

σ 2

2

∗x1 +
1

σ 2

2

1

σ 2

1

+ 1

σ 2

2

∗x2 (9)

Substituting the optimal value of α into Equation 6, we

get

σ 2

y =
1

1

σ 2

1

+ 1

σ 2

2

(10)

The expressions fory and σ 2

y are complicated because they

contain the reciprocals of variances. If we let ν1 and ν2 denote

the precisions of the two distributions, the expressions for y
and νy can be written more simply as follows:

y(x1,x2) =
ν1

ν1 + ν2
∗x1 +

ν2
ν1 + ν2

∗x2 (11)

νy = ν1 + ν2 (12)

These results say that the weight we should give to an

estimate is proportional to the confidence we have in that

estimate, and that we have more confidence in the fused es-

timate than in the individual estimates, which is intuitively

reasonable. To use these results, we need only the variances

of the distributions. In particular, the pdfs pi , which are usu-

ally not available in applications, are not needed, and the

proof of Theorem 3.1 does not require these pdf’s to have

the same mean.

3.2 Fusing multiple scalar estimates
The approach in Section 3.1 can be generalized to optimally

fuse multiple pairwise uncorrelated estimates x1,x2, ...,xn .
Let yn,α (x1, ..,xn) denote the linear estimator for fusing the

n estimates given parameters α1, ..,αn , which we denote by

α . The notation yα (x1,x2) introduced in the previous section

can be considered to be an abbreviation of y2,α (x1,x2).

Theorem 3.2. Let xi∼pi (µi ,σ 2

i ) for (1≤i≤n) be a set of
pairwise uncorrelated random variables. Consider the linear
estimator yn,α (x1, ..,xn) =

∑n
i=1 αixi where

∑n
i=1 αi = 1. The

variance of the estimator is minimized for

αi =

1

σ 2

i∑n
j=1

1

σ 2

j

Proof. From Lemma 2.1, σ 2

y (α) =
∑n

i=1 αi
2σ i

2
. To find the

values of αi that minimize the variance σ 2

y under the con-

straint that the αi ’s sum to 1, we use the method of Lagrange

multipliers. Define

f (α1, ...,αn) =
n∑
i=1

αi
2σ i

2 + λ(
n∑
i=1

αi − 1)

where λ is the Lagrange multiplier. Taking the partial deriva-

tives of f with respect to eachαi and setting these derivatives
to zero, we find α1σ

2

1
= α2σ

2

2
= ... = αnσ

2

n = −λ/2. From this,

and the fact that sum of the αi ’s is 1, the result follows. □

The minimal variance is given by the following expression:

σ 2

yn =
1

n∑
j=1

1

σ 2

j

(13)

As in Section 3.1, these expressions are more intuitive if

the variance is replaced with precision: the contribution of xi
4



to the value ofyn(x1, ..,xn) is proportional to xi ’s confidence.

yn(x1, ..,xn) =
n∑
i=1

νi
ν1+...+νn

∗ xi (14)

νyn =
n∑
i=1

νi (15)

Equations 14 and 15 generalize Equations 11 and 12.

3.3 Incremental fusing is optimal
In many applications, the estimates x1,x2, ...,xn become

available successively over a period of time. While it is possi-

ble to store all the estimates and use Equations 14 and 15 to

fuse all the estimates from scratch whenever a new estimate

becomes available, it is possible to save both time and storage

if one can do this fusion incrementally. We show that just as

a sequence of numbers can be added by keeping a running

sum and adding the numbers to this running sum one at a

time, a sequence of n>2 estimates can be fused by keeping a

“running estimate” and fusing estimates from the sequence

one at a time into this running estimate without any loss in

the quality of the final estimate. In short, we want to show

that yn(x1,x2, ...,xn) = y2(y2(y2(x1,x2),x3)...,xn).
A little bit of algebra shows that if n>2, Equations 14 and

15 for the optimal linear estimator and its precision can be

expressed as shown in Equations 16 and 17.

yn(x1, ..,xn) =
νyn−1

νyn−1+νn
yn−1(x1, ...,xn−1) +

νn
νyn−1+νn

xn

(16)

νyn = νyn−1 + νn (17)

This shows that yn(x1, ..,xn) = y2(yn−1(x1, ..,xn−1),xn).
Using this argument recursively gives the required result.

3

To make the connection to Kalman filtering, it is useful

to derive the same result using a pictorial argument. Fig-

ure 2 shows the process of incrementally fusing the n es-

timates. In this picture, time progresses from left to right,

the precision of each estimate is shown in parentheses next

to it, and the weights on the edges are the weights from

Equation 11. The contribution of each xi to the final value

y2(y2(y2(x1,x2),x3)...,xn) is given by the product of theweights
on the path from xi to the final value and this product is ob-

viously equal to the weight of xi in Equation 14, showing

that incremental fusion is optimal.

3.4 Summary
The results in this section can be summarized informally

as follows. When using a linear estimator to fuse uncertain
scalar estimates, the weight given to each estimate should be

3
We thank Mani Chandy for showing us this approach to proving the result.
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Figure 2: Dataflow graph for incremental fusion.

inversely proportional to the variance of the random variable
from which that estimate is obtained. Furthermore, when fus-
ing n>2 estimates, estimates can be fused incrementally with-
out any loss in the quality of the final result. These results are
often expressed formally in terms of the Kalman gain K , as
shown below; the equations can be applied recursively to fuse

multiple estimates. Note that if ν1≫ν2, K≈0 and y(x1,x2)≈x1;
conversely if ν1≪ν2, K≈1 and y(x1,x2)≈x2.

x1∼p1(µ1,σ 2

1
), x2∼p2(µ2,σ 2

2
)

K =
σ 2

1

σ 2

1
+ σ 2

2

=
ν2

ν1 + ν2
(18)

y(x1,x2) = x1 + K(x2 − x1) (19)

σ 2

y = (1 − K)σ 2

1
or νy = ν1 + ν2 (20)

4 FUSING VECTOR ESTIMATES
The results in Section 3 for fusing scalar estimates can be

extended to vectors by replacing variances with covariance
matrices.

4.1 Fusing multiple vector estimates
For vectors, the linear estimator is

yn,A(x1,x2, ..,xn) =
n∑
i=1

Aixi where

n∑
i=1

Ai = I (21)

Here A stands for the matrix parameters (A1, ...,An). All the
vectors xi are assumed to be of the same length. To simplify

notation, we omit the subscript n in yn,A in the discussion

below since it is obvious from the context.

Optimality: The parameters A1, ...,An in the linear data

fusion model are chosen to minimize MSE(yA) which is

E[(yA−µµµyA )T(yA−µµµyA )], as explained in Section 2.

Theorem 4.1 generalizes Theorem 3.2 to the vector case.

The proof of this theorem uses matrix derivatives [23] (see

Appendix B) and is given in Appendix C since it is not needed

for understanding the rest of this paper. Comparing Theo-

rems 4.1 and 3.2, we see that the expressions are similar, the

main difference being that the role of variance in the scalar

case is played by the covariance matrix in the vector case.

5



Theorem 4.1. Let xi∼pi (µiµiµi , Σi ) for (1≤i≤n) be a set of
pairwise uncorrelated random variables. Consider the linear
estimator yA(x1, ..,xn)=

∑n
i=1Aixi , where

∑n
i=1Ai = I . The

value ofMSE(yA) is minimized for

Ai = (
n∑
j=1

Σ−1
j )−1Σ−1

i (22)

Therefore the optimal estimator is

y(x1, ...,xn) = (
n∑
j=1

Σ−1
j )−1

n∑
i=1

Σ−1
i xi (23)

The covariance matrix of y can be computed by using

Lemma 2.2.

Σyy = (
n∑
j=1

Σ−1
j )−1 (24)

In the vector case, precision is the inverse of a covariance

matrix, denoted by N . Equations 25–26 use precision to ex-

press the optimal estimator and its variance and generalize

Equations 14–15 to the vector case.

y(x1, ...,xn) = N −1
y

n∑
i=1

Nixi (25)

Ny =

n∑
j=1

Nj (26)

As in the scalar case, fusion of n>2 vector estimates can

be done incrementally without loss of precision. The proof

is similar to the scalar case, and is omitted.

There are several equivalent expressions for the Kalman

gain for the fusion of two estimates. The following one,

which is easily derived from Equation 22, is the vector analog

of Equation 18:

K = Σ1(Σ1 + Σ2)−1 (27)

The covariance matrix of the optimal estimator y(x1,x2)
is the following.

Σyy = Σ1(Σ1 + Σ2)−1Σ2 (28)

= KΣ2 = Σ1 − KΣ1 (29)

4.2 Summary
The results in this section can be summarized in terms of the

Kalman gain K as follows.

x1∼p1(µµµ1, Σ1), x2∼p2(µµµ2, Σ2)

K = Σ1(Σ1 + Σ2)−1 = (N1 + N2)−1N2 (30)

y(x1,x2) = x1 + K(x2 − x1) (31)

Σyy = (I − K)Σ1 or Ny = N1 + N2 (32)

5 BEST LINEAR UNBIASED ESTIMATOR
(BLUE)

In some applications, the state of the system is represented

by a vector but only part of the state can bemeasured directly,

so it is necessary to estimate the hidden portion of the state

corresponding to a measured value of the visible state. This

section describes an estimator called the Best Linear Unbiased
Estimator (BLUE) [17, 20, 27] for doing this.

x

y

x1

ŷ1

(
µx
µy

)
(ŷ − µy) = ΣyxΣ

−1
xx(x − µx)

Figure 3: BLUE line corresponding to Equation 33.

Consider the general problem of determining a value for

vector y given a value for a vector x. If there is a functional
relationship between x and y (say y=F (x) and F is given),

it is easy to compute y given a value for x (say x1).

In our context however, x and y are random variables, so

such a precise functional relationship will not hold. Figure 3

shows an example in which x andy are scalar-valued random

variables. The gray ellipse in this figure, called a confidence
ellipse, is a projection of the joint distribution of x andy onto

the (x ,y) plane, that shows where some large proportion of

the (x ,y) values are likely to be. Suppose x takes the value

x1. Even within the confidence ellipse, there are many points

(x1,y), so we cannot associate a single value ofy with x1. One
possibility is to compute the mean of the y values associated

with x1 (that is, the expectation E[y |x=x1]), and return this

as the estimate for y if x=x1. This requires knowing the joint
distribution of x and y, which may not always be available.

In some problems, we can assume that there is an un-

known linear relationship between x and y and that uncer-

tainty comes from noise. Therefore, we can use a technique

similar to the ordinary least squares (OLS) method to esti-

mate this linear relationship, and use it to return the best

estimate ofy for any given value of x . In Figure 3, we see that
although there are many points (x1,y), the y values are clus-

tered around the line shown in the figure so the value ŷ1 is a
reasonable estimate for the value of y corresponding to x1.
This line, called the best linear unbiased estimator (BLUE), is
the analog of ordinary least squares (OLS) for distributions.
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Computing BLUE. Consider the estimator ŷA,b(x)=Ax+b.
We chooseA and b so that this is an unbiased estimator with

minimal MSE. The “̂ ” over the y is notation that indicates

that we are computing an estimate for y.

Theorem 5.1. Let
(
x
y

)
∼p(

(
µµµx
µµµy

)
,

(
Σxx Σxy
Σyx Σyy

)
). The estima-

tor ŷA,b(x)=Ax+b for estimating the value of y for a given
value of x is an unbiased estimator with minimal MSE if

b = µµµy−A(µµµx)
A = ΣyxΣ

−1
xx

The proof of Theorem 5.1 is straightforward. For an unbi-

ased estimator, E[ŷ]=E[y]. This implies that b=µµµy−A(µµµx) so
an unbiased estimator is of the form ŷA(x) = µµµy+A(x−µµµx).
Note that this is equivalent to asserting that the BLUE line

must pass through the point (µµµx, µµµy). Setting the derivative
of MSEA(ŷA) with respect to A to zero[23] and solving for

A, we find that the best linear unbiased estimator is

ŷ = µµµy + ΣyxΣ
−1
xx(x − µµµx) (33)

This equation can be understood intuitively as follows. If

we have no information about x and y, the best we can do is

the estimate (µµµx, µµµy), which lies on the BLUE line. However,

if we know that x has a particular value x1, we can use the

correlation between y and x to estimate a better value for

y from the difference (x1−µµµx). Note that if Σyx = 0 (that is,

x and y are uncorrelated), the best estimate of y is just µµµy,
so knowing the value of x does not give us any additional

information about y as one would expect. In Figure 3, this

corresponds to the case when the BLUE line is parallel to

the x-axis. At the other extreme, suppose that y and x are

functionally related so y = Cx. In that case, it is easy to see

that Σyx = CΣxx, so ŷ = Cx as expected. In Figure 3, this

corresponds to the case when the confidence ellipse shrinks

down to the BLUE line.

Equation 33 is a generalization of ordinary least squares

in the sense that if we compute the relevant means and

variances of a set of discrete data (xi ,yi ) and substitute into

Equation 33, we get the same line that is obtained by using

OLS.

6 KALMAN FILTERS FOR LINEAR
SYSTEMS

In this section, we apply the algorithms developed in Sec-

tions 3-5 to the particular problem of state estimation in

linear systems, which is the classical application of Kalman

filtering.

Figure 4a shows how the evolution of the state of such

a system over time can be computed if the initial state x0

and the model of the system dynamics are known precisely.

Time advances in discrete steps. The state of the system

at any time step is a function of the state of the system at

the previous time step and the control inputs applied to the

system during that interval. This is usually expressed by

an equation of the form xt = ft (xt−1,ut ) where ut is the

control input. The function ft is nonlinear in the general

case, and can be different for different steps. If the system

is linear, the relation for state evolution over time can be

written as xt = Ftxt−1 + Btut , where Ft and Bt are time-

dependent matrices that can be determined from the physics

of the system. Therefore, if the initial state x0 is known

exactly and the system dynamics are modeled perfectly by

the Ft and Bt matrices, the evolution of the state over time

can be computed precisely as shown in Figure 4a.

In general however, we may not know the initial state ex-

actly, and the system dynamics and control inputs may not

be known precisely. These inaccuracies may cause the state

computed by the model to diverge unacceptably from the

actual state over time. To avoid this, we can make measure-

ments of the state after each time step. If these measurements

were exact, there would of course be no need to model the

system dynamics. However, in general, the measurements

themselves are imprecise.

Kalman filtering was invented to solve the problem of state

estimation in such systems. Figure 4b shows the dataflow

of the computation, and we use it to introduce standard

terminology. An estimate of the initial state, denoted by x̂
0 |0,

is assumed to be available. At each time step t=1, 2, .., the
system model is used to provide an estimate of the state at

time t using information from time t−1. This step is called

prediction and the estimate that it provides is called the a
priori estimate and denoted by x̂t |t−1. The a priori estimate

is then fused with zt , the state estimate obtained from the

measurement at time t , and the result is the a posteriori state
estimate at time t , denoted by x̂t |t . This a posteriori estimate

is used by the model to produce the a priori estimate for

the next time step and so on. As described below, the a
priori and a posteriori estimates are the means of certain

random variables; the covariance matrices of these random

variables are shown within parentheses above each estimate

in Figure 4b, and these are used to weight estimates when

fusing them.

Section 6.1 presents the state evolution model and a priori
state estimation. Section 6.2 discusses how state estimates

are fused if an estimate of the entire state can be obtained

by measurement; Section 6.3 addresses this problem when

only a portion of the state can be measured directly.

6.1 State evolution model and prediction
The evolution of the state over time is described by a series

of random variables x0, x1, x2,...

7



x0 x1 x2f 1 f 2 ..... xt−1 xtf t

(a) Discrete-time dynamical system.

+ +x̂
0 |0

(Σ
0 |0)

f1
x̂
1 |0

(Σ
1 |0)

x̂
1 |1

(Σ
1 |1)

z1
(R1)

x1

f2
x̂
2 |1

(Σ
2 |1)

z2
(R2)

x2

x̂
2 |2

(Σ
2 |2)

..... +x̂t−1 |t−1
(Σt−1 |t−1)

ft
x̂t |t−1
(Σt |t−1)

x̂t |t
(Σt |t )

zt
(Rt )

xt

(b) Dynamical system with uncertainty.

(Σ
0 |0)

x̂
0 |0 x̂t |t−1 = Ft x̂t−1 |t−1 + Btut

Σt |t−1 = FtΣt−1 |t−1F
T

t + Qt

(Σt |t−1)
x̂t |t−1

Kt = Σt |t−1(Σt |t−1 + Rt )
−1

x̂t |t = x̂t |t−1 + Kt (zt - x̂t |t−1)
Σt |t = (I - Kt )Σt |t−1

zt
(Rt )

xt

(Σt |t )
x̂t |t

Predictor Measurement Fusion+

(c) Implementation of the dataflow diagram (b).

(Σ
0 |0)

x̂
0 |0 x̂t |t−1 = Ft x̂t−1 |t−1 + Btut

Σt |t−1 = FtΣt−1 |t−1F
T

t + Qt

(Σt |t−1)
x̂t |t−1

Kt = Σt |t−1Ht
T
(HtΣt |t−1Ht

T
+ Rt )

−1

x̂t |t = x̂t |t−1 + Kt (zt - Ht x̂t |t−1)
Σt |t = (I - KtHt )Σt |t−1

zt
(Rt )

Htxt

(Σt |t )
x̂t |t

Predictor Measurement Fusion+

(d) Implementation of the dataflow diagram (b) for systems with partial observability.

Figure 4: State estimation using Kalman filtering.

• The random variable x0 captures the likelihood of dif-

ferent initial states.

• The random variables at successive time steps are re-

lated by the following linear model:

xt = Ftxt−1 + Btut +wt (34)

Here, ut is the control input, which is assumed to

be deterministic, and wt is a zero-mean noise term

that models all the uncertainty in the system. The

covariance matrix of wt is denoted by Qt , and the

noise terms in different time steps are assumed to be

uncorrelated to each other (that is, E[wiwj ]=0 if i,j)
and to x0.

For estimation, we have a random variable x
0 |0 that cap-

tures our belief about the likelihood of different states at

time t=0, and two random variables xt |t−1 and xt |t at each

time step t = 1, 2, ... that capture our beliefs about the likeli-
hood of different states at time t before and after fusion with

the measurement respectively. The mean and covariance ma-

trix of a random variable xi |j are denoted by x̂i |j and Σi |j
respectively. We assume E[x̂

0 |0]=E[x0] (no bias).

Prediction essentially uses xt−1 |t−1 as a proxy for xt−1 in
Equation 34 to determine xt |t−1 as shown in Equation 35.

xt |t−1 = Ftxt−1 |t−1 + Btut +wt (35)

For state estimation, we need only the mean and covari-

ance matrix of xt |t−1. The Predictor box in Figure 4 com-

putes these values; the covariance matrix is obtained from

Lemma 2.2 under the assumption that wt is uncorrelated

with xt−1 |t−1, which is justified in Section 6.2.
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x̂ t+1|t+1

xt+1|t+1

⨁

xt+1

zt+1

x̂ t+1|t

x̂ t|t
⨁

zt

xt

x̂ t|t−1

xt|t−1

xt+1|t

xt|t

Figure 5: Pictorial representation of Kalman filtering.

6.2 Fusing complete observations of the
state

If the entire state can be measured at each time step, the

imprecise measurement at time t is modeled as follows:

zt = xt + vt (36)

where vt is a zero-mean noise term with covariance matrix

Rt . The noise terms in different time steps are assumed to be

uncorrelated with each other (that is, E[vivj ] is zero if i,j)
as well as with x

0 |0 and all wk . A subtle point here is that

xt in this equation is the actual state of the system at time t
(that is, a particular realization of the random variable xt ),
so variability in zt comes only from vt and its covariance

matrix Rt .
Therefore, we have two imprecise estimates for the state

at each time step t = 1, 2, ..., the a priori estimate from the

predictor (x̂t |t−1) and the one from the measurement (zt ). If
zt is uncorrelated to xt |t−1, we can use Equations 30-32 to

fuse the estimates as shown in Figure 4c.

The assumptions that (i) xt−1 |t−1 is uncorrelated withwt ,

which is used in prediction, and (ii) xt |t−1 is uncorrelated
with zt , which is used in fusion, are easily proved to be

correct by induction on t , using Lemma 2.2(ii). Figure 4b

gives the intuition: xt |t−1 for example is an affine function

of the random variables x
0 |0,w1,v1,w2,v2, ...,wt , and is

therefore uncorrelated with vt (by assumption about vt and
Lemma 2.2(ii)) and hence with zt .
Figure 5 shows the computation pictorially using confi-

dence ellipses to illustrate uncertainty. The dotted arrows

at the bottom of the figure show the evolution of the state,

and the solid arrows show the computation of the a priori
estimates and their fusion with measurements.

6.3 Fusing partial observations of the state
In some problems, only a portion of the state can be mea-

sured directly. The observable portion of the state is specified

formally using a full row-rank matrix Ht called the observa-
tion matrix: if the state is x, what is observable is Htx. For

example, if the state vector has two components and only

the first component is observable,Ht can be [ 1 0 ]. In general,

the Ht matrix can specify a linear relationship between the

state and the observation, and it can be time-dependent. The

imprecise measurement model introduced in Equation 36

becomes:

zt = Htxt + vt (37)

The hidden portion of the state can be specified using a

matrix Ct , which is an orthogonal complement of Ht . For

example, if Ht = [ 1 0 ], one choice for Ct is [ 0 1 ].
Figure 4d shows the computation for this case. The fusion

phase can be understood intuitively in terms of the following

steps.

(i) The observable part of the a priori estimate of the state

Ht x̂t |t−1 is fused with the measurement zt , using the

techniques developed in Sections 3-4. The quantity zt − Ht x̂t |t−1
is called the innovation. The result is the a posteriori es-
timate of the observable state Ht x̂t |t .

(ii) The BLUE in Section 5 is used to obtain the a pos-
teriori estimate of the hidden state Ct x̂t |t by adding

to the a priori estimate of the hidden state Ct x̂t |t−1 a
value obtained from the product of the covariance be-

tweenHtxt |t−1 andCtxt |t−1 and the difference between
Ht x̂t |t−1 and Ht x̂t |t .

(iii) The a posteriori estimates of the observable and hidden

portions of the state are composed to produce the a
posteriori estimate of the entire state x̂t |t .

The actual implementation produces the final result di-

rectly without going through these steps as shown in Fig-

ure 4d, but these incremental steps are useful for understand-

ing how all this works, and they are implemented as follows.

(i) The a priori estimate of the observable part of the state

isHt x̂t |t−1 and the covariance isHtΣt |t−1H
T

t . The a pos-
teriori estimate is obtained directly from Equation 31:

Ht x̂t |t = Ht x̂t |t−1
+ HtΣt |t−1H

T

t (HtΣt |t−1H
T

t + Rt )−1(zt − Ht x̂t |t−1)

Let Kt=Σt |t−1H
T

t (HtΣt |t−1H
T

t + Rt )−1. The a posteriori
estimate of the observable state can be written in terms

of Kt as follows:

Ht x̂t |t = Ht x̂t |t−1 + HtKt (zt − Ht x̂t |t−1) (38)

(ii) The a priori estimate of the hidden state is Ct x̂t |t−1.
The covariance between the hidden portion Ctxt |t−1
and the observable portion Htxt |t−1 isCtΣt |t−1H

T

t . The

difference between the a priori estimate and a posteriori
estimate of Htx is HtKt (zt−H x̂t |t−1). Therefore the a
posteriori estimate of the hidden portion of the state is
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obtained directly from Equation 33:

Ct x̂t |t = Ct x̂t |t−1
+ (CtΣt |t−1H

T

t )(HtΣt |t−1H
T

t )−1HtKt (zt − Ht x̂t |t−1)
= Ct x̂t |t−1 +CtKt (zt − Ht x̂t |t−1) (39)

(iii) Putting the a posteriori estimates (38) and (39) together,(
Ht
Ct

)
x̂t |t =

(
Ht
Ct

)
x̂t |t−1 +

(
Ht
Ct

)
Kt (zt − Ht x̂t |t−1)

Since

(
Ht
Ct

)
is invertible, it can be canceled from the left

and right hand sides, giving the equation

x̂t |t = x̂t |t−1 + Kt (zt − Ht x̂t |t−1) (40)

To compute Σt |t , Equation 40 can be rewritten as

x̂t |t = (I − KtHt )x̂t |t−1 + Ktzt . Since xt |t−1 and zt are un-

correlated, it follows from Lemma 2.2 that

Σt |t = (I − KtHt )Σt |t−1(I − KtHt )T + KtRtK
T

t

Substituting the value of Kt and simplifying, we get

Σt |t = (I − KtHt )Σt |t−1 (41)

Figure 4d puts all this together. In the literature, this

dataflow is referred to as Kalman filtering. Unlike in Sec-

tions 3 and 4, the Kalman gain is not a dimensionless value

here. IfHt = I , the computations in Figure 4d reduce to those

of Figure 4c as expected.

Equation 40 shows that the a posteriori state estimate is a

linear combination of the a priori state estimate (x̂t |t−1) and
the measurement (zt ). The optimality of this linear unbiased

estimator is shown in the Appendix D. In Section 3.3, it was

shown that incremental fusion of scalar estimates is optimal.

The dataflow of Figures 4(c,d) computes the a posteriori state
estimate at time t by incrementally fusing measurements

from the previous time steps, and this incremental fusion

can be shown to be optimal using a similar argument.

6.4 Example: falling body
To demonstrate the effectiveness of the Kalman filter, we

consider an example in which an object falls from the origin

at time t=0 with an initial speed of 0 m/s and an expected

constant acceleration of 9.8 m/s
2
due to gravity. Note that

acceleration in reality may not be constant due to factors

such as wind, air friction, and so on.

The state vector of the object contains two components,

one for the distance from the origin s(t) and one for the

velocity v(t). We assume that only the velocity state can be

measured at each time step. If time is discretized in steps of

0.25 seconds, the difference equation for the dynamics of the

system is easily shown to be the following:(
vn
sn

)
=

(
1 0

0.25 1

) (
vn−1
sn−1

)
+

(
0 0.25
0 0.5 × 0.252

) (
0

9.8

)
(42)

where we assume

(
v0
s0

)
=

(
0

0

)
and Σ0 =

(
80 0

0 10

)
.

The gray lines in Figure 6 show the evolution of velocity

and distance with time according to this model. Because of

uncertainty in modeling the system dynamics, the actual

evolution of the velocity and position will be different in

practice. The red lines in Figure 6 show one trajectory for

this evolution, corresponding to a Gaussian noise term with

covariance

(
2 2.5
2.5 4

)
in Equation 34 (because this noise

term is random, there are many trajectories for the evolu-

tion, and we are just showing one of them). The red lines

correspond to “ground truth” in our example.

The green points in Figure 6b show the noisy measure-

ments of velocity at different time steps, assuming the noise

is modeled by a Gaussian with variance 8. The blue lines

show the a posteriori estimates of the velocity and position.

It can be seen that the a posteriori estimates track the ground

truth quite well even when the ideal system model (the gray

lines) is inaccurate and the measurements are noisy. The

cyan bars in the right figure show the variance of the veloc-

ity at different time steps. Although the initial variance is

quite large, application of Kalman filtering is able to reduce

it rapidly in few time steps.

6.5 Discussion
This section shows that Kalman filtering for state estimation

in linear systems can be derived from two elementary ideas:

optimal linear estimators for fusing uncorrelated estimates

and best linear unbiased estimators for correlated variables.

This is a different approach to the subject than the standard

presentations in the literature. One standard approach is to

use Bayesian inference. The other approach is to assume that

the a posteriori state estimator is a linear combination of the

form At x̂t |t−1+Btzt , and then find the values of At and Bt
that produce an unbiased estimator with minimumMSE. We

believe that the advantage of the presentation given here is

that it exposes the concepts and assumptions that underlie

Kalman filtering.

Most presentations in the literature also begin by assuming

that the noise termswt in the state evolution equation and vt
in the measurement are Gaussian. Some presentations [1, 10]

use properties of Gaussians to derive the results in Sections 3

although as we have seen, these results do not depend on

distributions being Gaussians. Gaussians however enter the

picture in a deeper way if one considers nonlinear estimators.

It can be shown that if the noise terms are not Gaussian, there

may be nonlinear estimators whose MSE is lower than that
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Figure 6: Estimates of the object’s state over time.

of the linear estimator presented in Figure 4d. However if

the noise is Gaussian, this linear estimator is as good as any

unbiased nonlinear estimator (that is, the linear estimator is a

minimum variance unbiased estimator (MVUE)). This result

is proved using the Cramer-Rao lower bound [25].

7 EXTENSION TO NONLINEAR SYSTEMS
The Extended Kalman Filter (EKF) andUnscented Kalman Fil-
ter (UKF) are heuristic approaches to using Kalman filtering

for nonlinear systems. The state evolution and measurement

equations for nonlinear systems with additive noise can be

written as follows; in these equations, f and h are nonlinear

functions.

xt = f (xt−1,ut ) +wt (43)

zt = h(xt ) + vt (44)

Intuitively, the EKF constructs linear approximations to

the nonlinear functions f and h and applies the Kalman

filter equations, while the UKF constructs approximations

to probability distributions and propagates these through

the nonlinear functions to construct approximations to the

posterior distributions.

EKF. Examining Figure 4d, we see that the a priori state
estimate in the predictor can be computed using the system

model: x̂t |t−1 = f (x̂t−1 |t−1,ut ). However, since the system
dynamics and measurement equations are nonlinear, it is not

clear how to compute the covariance matrices for the a priori
estimate and the measurement. In the EKF, these matrices

are computed by linearizing Equations 43 and 44 using the

Taylor series expansions for the nonlinear functions f and

h. This requires computing the following Jacobians4, which
play the role of Ft and Ht in Figure 4d.

Ft =
∂ f

∂x

����x̂t−1|t−1,ut

Ht =
∂h

∂x

����x̂t |t−1

The EKF performs well in some applications such as navi-

gation systems and GPS [29].

UKF. When the system dynamics and observation models

are highly nonlinear, the Unscented Kalman Filter (UKF) [15]

can be an improvement over the EKF. The UKF is based on

the unscented transformation, which is a method for comput-

ing the statistics of a random variable x that undergoes a

nonlinear transformation (y = д(x)). The random variable x
is sampled using a carefully chosen set of sigma points and
these sample points are propagated through the nonlinear

function д. The statistics of y are estimated using a weighted

sample mean and covariance of the posterior sigma points.

The UKF tends to be more robust and accurate than the EKF

but has higher computation overhead due to the sampling

process.

8 CONCLUSION
In this paper, we have shown that two concepts - optimal

linear estimators for fusing uncorrelated estimates and best

linear unbiased estimators for correlated variables - provide

the underpinnings for Kalman filtering. By combining these

ideas, standard results on Kalman filtering for linear systems

can be derived in an intuitive and straightforward way that

is simpler than other presentations of this material in the

4
The Jacobian matrix is the matrix of all first order partial derivatives of a

vector-valued function.
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literature. This approach makes clear the assumptions that

underlie the optimality results associated with Kalman filter-

ing, and should make it easier to apply Kalman filtering to

problems in computer systems.
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Appendices
A BASIC PROBABILITY THEORY AND

STATISTICS TERMINOLOGY
Probability density function. For a continuous randomvari-

able x , a probability density function (pdf) is a function p(x)
whose value provides a relative likelihood that the value of

the random variable will equal x . The integral of the pdf

within a range of values is the probability that the random

variable will take a value within that range.

If д(x) is a function of x with pdf p(x), the expected value
or expectation of д(x) is E[д(x)], defined as the following

integral:

E[д(x)] =
∫ ∞

−∞
д(x)p(x)dx

By definition, the mean µx of a random variable x is E[x].
The variance of a random variable x measures the variability

of the distribution. For the set of possible values ofx , variance
(denoted by σ 2

x ) is defined by σ
2

x = E[(x −µx )2]. The variance
of a continuous random variable x can be written as the

following integral:

σ 2

x =

∫ ∞

−∞
(x − µ)2p(x)dx

If x is discrete and all outcomes are equally likely, then

σ 2

x =
Σ(xi−µx )2

n . The standard deviation σx is the square root

of the variance.

Covariance. The covariance of two random variables is a

measure of their joint variability. The covariance between

random variables x1 : p1∼(µ1,σ 2

1
) and x2 : p2∼(µ2,σ 2

2
) is the

expectation E[(x1−µ1)∗(x2−µ2)]. Two random variables are

uncorrelated or not correlated if their covariance is zero. This

is not the same concept as independence of random variables.

Two random variables are independent if knowing the

value of one of the variables does not give us any information

about the possible values of the other one. This is written

formally as p(x1 |x2) = p(x1); intuitively, knowing the value
of x2 does not change the probability thatp1 takes a particular
value.

Independent random variables are uncorrelated but ran-

dom variables can be uncorrelated even if they are not in-

dependent. It can be shown that if x1 and x2 are not corre-
lated, E[x1 |x2]=E[x1]; intuitively, knowing the value of x2
may change the probability that x1 takes a particular value,
but the mean of the resulting distribution remains the same

as the mean of x1. A special case of this that is easy to un-

derstand are examples in which knowing x2 restricts the
possible values of x1 without changing the mean. Consider a

random variable u : U that is uniformly distributed over the

unit circle, and consider random variables x1 : [−1, 1] and

x2 : [−1, 1] that are the projections of u on the x and y axes

respectively. Given a value for x2, there are only two possible
values for x1, so x1 and x2 are not independent. However, the
mean of these values is 0, which is the mean of x1, so x1 and
x2 are not correlated.

B MATRIX DERIVATIVES
If f (X ) is a scalar function of a matrix X , the matrix deriva-

tive
∂f (X )
∂X is defined as the matrix

©«
∂f (X )
∂X (1,1) ...

∂f (X )
∂X (1,n)

... ... ...
∂f (X )
∂X (n,1) ...

∂f (X )
∂X (n,n)

ª®®¬
Lemma B.1. Let X be am × n matrix, a be am × 1 vector,

b be a n × 1 vector.

∂aTXb
∂X

= abT (45)

∂(aTXTXb)
∂X

= X (abT + baT ) (46)

∂(trace(XBXT ))
∂X

= XBT + XB (47)

See Petersen and Pedersen for a proof [23].

C PROOF OF THEOREM 4.1
Theorem 4.1, which is reproduced below for convenience,

can be proved using matrix derivatives.

Theorem. Let pairwise uncorrelated estimates xi (1≤i≤n)
drawn from distributionspi (x)=(µµµi , Σi ) be fused using the lin-
ear model yA(x1, ..,xn) =

∑n
i=1Aixi , where

∑n
i=1Ai = I . The

MSE(yA) is minimized for

Ai = (
n∑
j=1

Σ−1
j )−1Σ−1

i .

Proof. To use the Lagrange multiplier approach, we can

convert the constraint

∑n
i=1Ai = I into a set of m2

scalar

equations (for example, the first equation would beA1(1, 1)+
A2(1, 1) + .. +An(1, 1) = 1), and then introducem2

Lagrange

multipliers, which can denoted by λ(1, 1), ...λ(m,m).
This obscures the matrix structure of the problem so it is

better to implement this idea implicitly. Let Λ be anm×m
matrix in which each entry is one of the scalar Lagrange

multipliers we would have introduced in the approach de-

scribed above. Analogous to the inner product of vectors, we

can define the inner product of two matrices as <A,B> =
trace(ATB) (it is easy to see that<A,B> is∑m

i=1
∑m

j=1A(i, j)B(i, j)).
13



Using this notation, we can formulate the optimization prob-

lem using Lagrange multipliers as follows:

f (A1, ...,An) = E
{ n∑
i=1

(xi − µµµi )TAi
TAi (xi − µµµi )

}
+
〈
Λ,

( n∑
i=1

Ai − I
)〉

Taking the matrix derivative of f with respect to each Ai
and setting each derivative to zero to find the optimal values

ofAi gives us the equationE
{
2Ai (xi − µµµi )(xi − µµµi )T + Λ

}
= 0.

This equation can be written as 2AiΣi + Λ = 0, which im-

plies

A1Σ1 = A2Σ2 = ... = AnΣn = −Λ

2

Using the constraint that the sum of all Ai equals to the

identity matrix I gives us the desired expression for Ai :

Ai = (
n∑
j=1

Σ−1
j )−1Σ−1

i

□

D PROOF OF THE OPTIMALITY OF
EQUATION 40

We show that (x̂t |t = x̂t |t−1 + Kt (zt − Ht x̂t |t−1)) (Equation 40)
is an optimal unbiased linear estimator for fusing the a priori
state estimate with the measurement at each step. The proof

has two steps: we show that this estimator is unbiased, and

then show it is optimal.

Unbiased condition: We prove a more general result that

characterizes unbiased linear estimators for this problem,

assuming that the prediction stage (Figure 4(d)) is unchanged.

The general form of the linear estimator for computing the

a posteriori state estimate is

ŷt |t = At ∗ ŷt |t−1 + Bt ∗ zt (48)

It is unbiased if E[ŷt |t ]=E[xt ], and we show that this is true

if At=(I−Bt ) ∗ Ht .

The proof is by induction on t . By assumption,E[ŷ
0 |0] = E[x0].

Assume inductively that E[ŷt−1 |t−1]=E[xt−1].
(a) We first prove that the predictor is unbiased.

ŷt |t−1 = Ft∗ŷt−1 |t−1 + Bt∗ut (Predictor in Figure 4)

E[ŷt |t−1] = Ft ∗ E[ŷt−1 |t−1] + Bt∗ut

= Ft ∗ E[xt−1] + Bt∗ut (By inductive assumption)

= E[Ft ∗ xt−1 + Bt∗ut ]
= E[Ft ∗ xt−1 + Bt∗ut +wt ] (wt is zero mean)

= E[xt ] (From state evolution equation 34)

(b) We prove that the estimator in Equation 48 is unbiased if

At=(I−Bt ) ∗ Ht .

E[ŷt |t ] = E[At ∗ ŷt |t−1 + Bt ∗ zt ] (From Equation 48)

= At ∗ E[ŷt |t−1] + Bt ∗ E[zt ]
= At ∗ E[xt ] + Bt ∗ E[Htxt + vt ] (Equation 37 for zt )
= At ∗ E[xt ] + Bt ∗ Ht ∗ E[xt ] (Because vt is zero mean)

= (At + Bt ∗ Ht ) ∗ E[xt ]

The estimator is unbiased if (At + Bt ∗ Ht ) = I , which is

equivalent to requiring that At = (I − Bt ∗ Ht ). Therefore
the general unbiased linear estimator is of the form

ŷt |t = (I − Bt ∗ Ht ) ∗ ŷt |t−1 + Bt ∗ zt
= ŷt |t−1 + Bt ∗ (zt − Ht ∗ ŷt |t−1) (49)

Since Equation 40 is of this form, it is an unbiased linear

estimator.

Optimality: We now show that using Bt = Kt at each step

is optimal, assuming that this is done at all time steps before t .
Since zt andyt |t−1 are uncorrelated, we can use Lemma 2.2 to

compute the covariance matrix of ŷt |t , denoted by Ξt |t . This

givesΞt |t = (I − BtHt )Σt |t−1(I − BtHt )T + BtRtBT

t . TheMSE
is the trace of this matrix, and we need to find Bt that mini-

mizes this trace. Using matrix derivatives (Equation 47), we

see that

∂(trace(Ξt |t ))
∂Bt

= −2(I − BtHt )Σt |t−1HT
t + 2 ∗ BtRt

Setting this zero and solving for Bt gives
Bt = Σt |t−1H

T
t [HtΣt |t−1H

T
t + Rt ]−1. This is exactly Kt , prov-

ing that Equation 40 is an optimal unbiased linear estimator.

Comment: This proof of optimality provides another way

of deriving Equation 40. We believe the constructive ap-

proach described in Section 6 provides more insight into how

and why Kalman filtering works. The ideas in that construc-

tion can be used to provide a different proof of optimality.
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