
IEEE EMBEDDED SYSTEMS LETTERS, VOL. 3, NO. 4, DECEMBER 2011 117

Task Dependency Analysis for Regression Test
Selection of Embedded Programs

Swarnendu Biswas, Graduate Student Member, IEEE, Rajib Mall, Senior Member, IEEE, and Manoranjan Satpathy

Abstract—Execution dependencies arise among the tasks of an
embedded program due to issues such as task priority, task prece-
dence, and intertask communication. We argue that execution de-
pendencies among tasks need to be suitably considered in various
embedded software engineering activities such as debugging, re-
gression testing, and computation of complexity metrics. In this
letter, we discuss how task execution dependencies among real-time
tasks can be identified from static code analysis. Subsequently, we
briefly describe an application of our analysis to regression test se-
lection.

Index Terms—Embedded systems, intertask communication,
real-time, task execution dependencies.

I. INTRODUCTION

E MBEDDED systems are now extensively being de-
ployed in safety-critical applications such as automotive,

avionics, health-care instrumentation, etc. This calls for
extremely reliable operation of these applications. Unlike tra-
ditional programs, the failures of an embedded program arise
from both functional errors as well as timing bugs. Therefore,
in addition to functional correctness of an embedded applica-
tion, it is also necessary to guarantee its temporal correctness.
Considerable number of studies on issues such as computation
of the worst case execution times (wcet) of tasks and priority
inversions arising on account of resource sharing has been
reported in the literature. Though research results on such
timing analysis of tasks are numerous, no studies on systematic
identification of execution dependencies of tasks have been re-
ported [1]. In this context, it is important to note the difference
between task timing analysis and execution dependency anal-
ysis. While timing analysis deals with prediction of wcet for
tasks, the aim of execution dependency analysis is to identify
all those tasks in an application which can affect the timing
behavior of a given task.

Besides control and data dependencies, additional dependen-
cies arise among tasks due to precedence relations, task prior-
ities, and intertask communications [1], [2]. We call these task
execution dependencies. Upon a code change, task execution de-
pendencies can cause delays to the completion times of the de-
pendent tasks or cause altered task execution sequences. Thus,
it is a major challenge for software developers to ensure that the

Manuscript received June 09, 2011; accepted September 21, 2011. Date of
publication October 24, 2011; date of current version December 21, 2011. This
manuscript was recommended for publication by P. Chou.

S. Biswas and R. Mall are with the Department of Computer Science and
Engineering, Indian Institute of Technology, Kharagpur, 721302, India (e-mail:
swarnendu@cse.iitkgp.ernet.in; rajib@cse.iitkgp.ernet.in).

M. Satpathy is with the GM India Science Lab, Bangalore, India (e-mail:
manoranjan.satpathy@gm.com).

Digital Object Identifier 10.1109/LES.2011.2173293

performance constraints of real-time tasks are still satisfied after
minor modifications are made to an embedded program.

In this letter, we argue that systematic identification of execu-
tion dependencies among tasks can help in many software engi-
neering activities of embedded programs such as regression test
selection (RTS), task prioritization, debugging of timing errors,
computation of complexity metrics, etc. For example in RTS, in
addition to testing for traditional regression errors induced due
to data and control dependencies after a change to an embedded
program, it is imperative to test whether any timing errors have
been induced. As we show later, this can be achieved by using
task execution dependency analysis. Similarly, while debugging
a timing fault, it becomes necessary to first identify all those
tasks that might have contributed to the unexpected timing be-
havior. The information about the number of tasks that are exe-
cution dependent on a particular task can also be used to prior-
itize testing effort.

The rest of this letter is organized as follows: In Section II, we
briefly discuss the different types of execution dependencies that
may exist among the tasks. We then propose a method to identify
task execution dependencies systematically in Section III. Sub-
sequently, we discuss an application of task execution depen-
dency analysis technique in RTS in Section IV. In Section V,
we compare our approach with related work, and finally con-
clude the letter in Section VI.

II. EXECUTION DEPENDENCIES AMONG TASKS

In this section, we first present our assumptions about the
underlying task model and then analyze the different types of
execution dependence relationships that can arise among tasks
in an embedded program.

OSEK/VDX and POSIX RT are two real-time operating
system standards that are popularly being used in the develop-
ment of embedded applications. In this letter, we consider a task
model that incorporates features from both these standards. In
the following, we list various assumptions that we have made
related to the task model:

• the tasks are statically created and are assigned static pri-
ority values;

• the tasks are periodic in nature and are scheduled using a
priority-driven preemptive task scheduler;

• the tasks communicate using either shared memory or
message passing primitives. Furthermore, any access to a
shared variable is permitted through the use of some syn-
chronization primitives such as semaphore, lock, etc. We
consider only the synchronous message passing scheme,
since to achieve predictable results, embedded application
developers usually restrict themselves to using only the
synchronous message passing model.

1943-0663/$26.00 © 2011 IEEE

118 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 3, NO. 4, DECEMBER 2011

Fig. 1. Representation of precedence relations among tasks.

Our task model reflects the assumptions frequently made in
the development of small embedded applications. For example,
an adaptive cruise controller (ACC) module in an automotive
application is usually implemented with about a dozen peri-
odic real-time tasks with statically assigned priorities. The tasks
are scheduled using the rate monotonic scheduling algorithm.
Some of the important concurrently executing tasks in a typical
ACC implementation include controlling the host vehicle speed
(HVSM task), and processing the radar information (RIP task).

Task Execution Dependency Due to Precedences: A prece-
dence relation between two tasks arises when one task is de-
pendent on some actions or results produced by the other task.
Precedence relationship defines a partial order among tasks. In
Fig. 1, the tasks have been represented using circles and the
precedence relations among them are represented using directed
edges. A directed edge from a task to task indicates that

is dependent on . The example in Fig. 1 depicts that and
precede and respectively. However, no precedence or-

dering can be ascribed between the tasks and or the tasks
and . Let pred be the set of all those tasks that need

to be executed before execution of task , and succ be the
set of tasks that can be executed only after the task has com-
pleted execution. According to Fig. 1, succ , and
pred .

Given a set of time-constrained tasks, the completion time
of a task can depend on its precedence ordering with the other
tasks. A task cannot execute unless the set of tasks in pred
have already completed their execution. In this case, any delay
to the completion time of a task can affect the completion time
of the tasks in the set succ . Execution dependencies arising
among tasks due to their precedence ordering are transitive in
nature.

Task Execution Dependency Due to Priorities: Execution de-
pendencies among tasks can implicitly arise due to task prior-
ities because a delay to the completion time of a higher pri-
ority task may delay a lower priority task. Execution dependen-
cies among tasks arising due to priorities are transitive. For a
given task , we denote the set of tasks whose execution times
can potentially be affected by on priority considerations by
prior .

Task Execution Dependency Due to Message Passing: Syn-
chronous message passing gives rise to execution dependen-
cies among the communicating tasks in an embedded program.
When two tasks communicate using a message queue, a delay to
one of the tasks can delay the other. Task execution dependen-
cies arising due to message passing are both symmetric and tran-
sitive in nature under the synchronous message passing model
as both the sender and the receiver tasks can delay each other.
For a task , we denote the set of tasks that can possibly get
delayed by it due to messaging passing by ITC .

Task Execution Dependency Due to the Access of Shared
Resources: Our task model assumes that access to shared
resources is guarded using synchronization primitives such as
semaphores or locks. In this case, a task locking a synchroniza-
tion variable for an unusually long duration may delay other
tasks sharing the same variable. Task execution dependencies
arising due to access to shared resources are transitive and
symmetric. For a task , we denote the set of tasks that are
execution dependent on it due to access to shared resources by
ITC .

Algorithm 1 Pseudocode for identifying execution-dependent
tasks.

1: procedure IDENTIFYTD

Input embedded program

Output: set of tasks that are execution dependent on
each task in

2: succ
3: prior
4: ITC
5: ITC
6: for each task modified in do Compute

7: for every occurrence of a join()/wait() primitive in
do

8: Determine whether any task is dependent on
due to precedence

9: succ Add all to succ
10: end for

Scan and compare priorities of the other tasks with
that of
11: Determine prior

Scan to find out matching pairs of message queues
and synchronization variables
12: Determine ITC and ITC
13: end for
14: end procedure

III. IDENTIFICATION OF TASK EXECUTION DEPENDENCIES

Considering all possible types of task execution dependen-
cies, the set of tasks that are execution dependent on task [de-
noted by] is

TD succ prior

Note that this execution dependency result is not applicable to
simple embedded operating systems using clock-driven sched-
ulers such as cyclic schedulers. In such an environment, task
scheduling takes place solely based on timer interrupts; event-
driven task scheduling, task preemption, synchronization, etc.,
are not supported.

Execution dependencies existing among a set of tasks in an
embedded application can automatically be computed by per-
forming static analysis on the source code. The pseudocode for
identification of all the tasks which are execution dependent on a

BISWAS et al.: TASK DEPENDENCY ANALYSIS FOR REGRESSION TEST SELECTION OF EMBEDDED PROGRAMS 119

Fig. 2. Example of a regression error introduced due to task execution dependency. (a) Original program � ; (b) modified program � .

task is shown in Algorithm 1. Algorithm 1 takes an embedded
program as input, and computes the set of execution dependent
tasks for each task in the program.

Task execution dependency information can be represented
using either a task dependency graph [2], or a matrix. The
dependency information can also be modeled using petri
nets where the execution dependencies are represented using
passing of tokens among places which denote the tasks of an
embedded program. In the following, we present an example
representation using an task execution dependency matrix
which we denote by TEDM. An element TEDM in the matrix
is set to 1 if task is execution dependent on task , otherwise
TEDM is 0. Let the task execution dependency matrix for an
application having four tasks be as follows:

TEDM

This matrix represents that the execution of of tasks and
are dependent on task . Further, task is also execution

dependent on the task .

IV. APPLICATION OF TASK EXECUTION DEPENDENCE

ANALYSIS TO RTS

RTS concerns selection of a subset of valid test cases from an
initial test suite that tests the affected but unmodified parts of a
program. Use of an effective RTS technique can help to substan-
tially reduce the testing costs in environments in which a pro-
gram undergoes frequent modifications. Many RTS techniques
have been reported in the literature for procedural, object-ori-
ented, and component-based programs [3], [4], but RTS tech-
niques have scarcely been reported in the context of embedded
programs.

Procedural RTS techniques usually select regression test
cases based on data and control dependency analysis. There-
fore, these techniques may not be effective for RTS of embedded
programs as they ignore execution dependencies among tasks.
This could be the reason why in industry, regression test cases
for embedded programs are either selected ad-hoc or based
on expert judgment or through some form of manual program
analysis. In the following, we give an example to show that

RTS using existing procedural techniques can be unsafe [4] for
applications with time-constrained taks.

Example 1: Fig. 2(a) shows the pseudocode for an embedded
program which is composed of three tasks , and

. We make the following assumptions: 1) and
are invoked in response to events A and B after every 10 ms and
12 ms, respectively; 2) is of higher priority than ; 3)
there is a deadline by which event B needs to be handled by
after it is invoked; and 4) there are no data or control dependen-
cies among the program statements in and . Note that

is an auxiliary task and is not dependent on the execu-
tion of and . Suppose the event handling logic in is
changed in as shown in Fig. 2(b), and as a result, takes
longer to complete after the modification. Since is of higher
priority, cannot start until is complete, i.e., task is
execution dependent on task . Therefore, would get de-
layed and miss its deadline. Consider a test case which tests
only the event handling logic in task . Existing RTS tech-
niques [3], [4] would not select for regression testing of as
there exists no data or control dependencies between and

, and would hence be unsafe.
The drawback of a traditional RTS technique illustrated by

the above example can be overcome if it is augmented with task
execution dependency information. Whenever the code for one
task is changed, it is necessary to test those tasks whose com-
pletion times can get affected.

In the following, we outline how regression test cases for an
embedded application can be selected based on identification
of task execution dependencies. Let us consider an embedded
program consisting of statically created tasks. Also assume
that out of tasks in are modified to meet certain change
requirements. After the changes are complete, the modified ver-
sion of needs to be regression tested. Let
denote the set of tasks which have been changed. First, the

matrix for is computed by computing for
each task using a static analysis of the source code. The
set of all tasks which have been potentially affected due to task
execution dependencies is given by . The infor-
mation regarding which test cases execute which tasks in can
be captured during the previous testing cycles. The test cases
which execute the tasks in need to be selected
for regression testing . Note that regression test cases selected
based on task execution dependency considerations serve only

120 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 3, NO. 4, DECEMBER 2011

to augment the regression test suite selected using traditional
data and control dependency analysis and do not replace it.

We have implemented a prototype tool [5] to study the ef-
fectiveness of an RTS technique that has been augmented with
our proposed task execution dependency analysis. In our em-
pirical studies, we have considered eight applications from the
automotive domain which were developed in C. These include
applications such as ACC, Power window controller, and Cli-
mate controller. The modified versions were created by sys-
tematically adding, modifying, or deleting one or more lines of
code from the original versions of the eight programs under test
(PUT). We also designed test cases for each PUT to test the func-
tional and temporal correctness of the programs. The functional
test cases were designed using blackbox techniques of category
partitioning and boundary value analysis, and performance test
cases were designed to check whether the timing constraints of
tasks are met.

We have implemented Binkley’s RTS approach [3] aug-
mented with task execution dependency analysis for experi-
mental evaluation of our approach. We have named our tool
ARTS which stands for automated regression test selector. We
selected regression test cases using both Binkley’s approach and
ARTS. We observed that ARTS on the average selected 51.87%
of the total test cases from the initial test suite, while only
44.78% test cases were selected on the average using Binkley’s
approach. Therefore, there was an increase of 15.83% in the
number of test cases that were selected by ARTS over Binkley’s
approach. This increase was expected, since additional test
cases get selected based on task execution dependency analysis.
In fact, the test cases selected by ARTS is a superset of the test
cases selected by Binkley’s technique which selects test cases
based on only data and control dependencies.

We have defined a metric called fault-revealing effectiveness
as a measure of the quality of the selected regression test suites.
The fault-revealing effectiveness metric can be computed by
computing the percentage of test cases selected by an RTS tech-
nique from the set of test cases that fail when the valid test cases
in the initial test suite are run with the modified program. That
is, the fault-revealing effectiveness of the test suite selected by
a safe [4] RTS technique is equal to that of the initial test suite.
To compute the fault-revealing effectiveness of the regression
test suite selected by ARTS, we also ran the complete initial
test suite to compute the number of test cases that failed with
the modified PUTs. We observed that all the test cases of the
initial test suite that failed on the modified versions of the PUTs
were included in the test suite selected by our ARTS technique.
The fault-revealing effectiveness of the test suite selected using
our ARTS approach was 100%, and was 32.08% higher on the
average than that of Binkley’s approach.

We now give an example to highlight the type of test cases
which were omitted by Binkley’s approach. In a typical ACC
implementation, the HVSM task is execution dependent on the
RIP task due to precedence ordering. In the modified version
of the ACC program, the RIP task was modified which sub-
sequently delayed the completion of the HVSM task causing
the HVSM task to timeout. For such a modification, Binkley’s
approach failed to select test cases that tested the performance
constraints of the HVSM task because there were no data and

control dependencies between the RIP and HVSM tasks. The
results of our limited experiments confirm our claim that RTS
based on control and data dependence analysis augmented with
task execution dependency analysis is safe.

V. COMPARISON WITH RELATED WORK

Research results on selecting regression test cases for em-
bedded applications have scarcely been reported in the litera-
ture. Cartaxo et al. [6] have proposed a technique to select func-
tional test cases for embedded applications. Given the initial
test suite, their technique aims to minimize the test suite while
still achieving a desired feature coverage. However, their tech-
nique [6] does not consider regression testing of timing-related
errors. In [7], Netkow and Brylow have proposed a framework
called Xest for automating execution of regression test cases in
a test-driven development environment. Their test setup helps
to automatically execute regression test cases for kernel devel-
opment projects on embedded hardware. However, their work
does not address the problem of RTS, and is therefore, not di-
rectly related to our work.

VI. CONCLUSION

Execution dependencies arise among tasks of an embedded
program on account of task precedence ordering, task priorities,
and intertask communication. We have proposed an approach to
identify task execution dependencies through static code anal-
ysis. We have discussed an application of task execution de-
pendency analysis to RTS. Our empirical studies showed an in-
crease in the number of selected regression test cases by approx-
imately 15.83%. On the other hand, we observed an increase of
32.08% in the number of fault-revealing test cases that were se-
lected for regression testing. We observed that our augmented
RTS technique did not miss out on selecting any fault-revealing
test case for regression testing. The results of our experiments
highlight the necessity of using task execution dependence anal-
ysis for RTS of embedded programs. We plan to use our task ex-
ecution dependency analysis technique to develop an effective
debugger for embedded programs.

REFERENCES

[1] D. Sundmark, A. Pettersson, and H. Thane, “Regression testing of
multi-tasking real-time systems: A problem statement,” ACM SIGBED
Rev., vol. 2, no. 2, pp. 31–34, Apr. 2005.

[2] P. Marwedel, Embedded System Design. Berlin, Germany: Springer-
Verlag, 2007.

[3] D. Binkley, “Semantics guided regression test cost reduction,” IEEE
Trans. Software Eng., vol. 23, no. 8, pp. 498–516, Aug. 1997.

[4] G. Rothermel and M. Harrold, “A safe, efficient regression test selec-
tion technique,” ACM Trans. Software Eng. Methodol., vol. 6, no. 2,
pp. 173–210, Apr. 1997.

[5] S. Biswas, “Model-Based Regression Test Selection and Optimization
for Embedded Programs,” Master’s thesis, Indian Inst. Technol.,
Kharagpur, India, Jun. 2011.

[6] E. Cartaxo, W. Andrade, F. Neto, and P. Machado, “LTS-BT: A tool
to generate and select functional test cases for embedded systems,” in
SAC ’08: Proc. 2008 ACM Symp. Appl. Comput., 2008, pp. 1540–1544.

[7] M. Netkow and D. Brylow, “Xest: An automated framework for regres-
sion testing of embedded software,” in Proc. 2010 Workshop Embed.
Syst. Edu., Oct. 2010, pp. 7:1–7:8, ser. WESE ’10. ACM.

