
Efficient Data Race Detection of Async-Finish Programs
Using Vector Clocks

Shivam Kumar
shivamkm07@gmail.com

Indian Institute of Technology Kanpur
India

Anupam Agrawal
anupamag@cse.iitk.ac.in

Indian Institute of Technology Kanpur
India

Swarnendu Biswas
swarnendu@cse.iitk.ac.in

Indian Institute of Technology Kanpur
India

Abstract
Existing data race detectors for task-based programs incur
significant run time and space overheads. The overheads arise
because of frequent lookups in fine-grained tree data struc-
tures to check whether two accesses can happen in parallel.

This work shows how to efficiently apply vector clocks for
dynamic race detection of async-finish programs with locks.
Our proposed technique, FastRacer, builds on the FastTrack
algorithm with per-task and per-variable optimizations to
reduce the size of vector clocks. FastRacer exploits the struc-
tured parallelism of async-finish programs to use a coarse-
grained encoding of the dynamic task inheritance relations to
limit the metadata in the presence of many concurrent read-
ers. Our evaluation shows that FastRacer improves time and
space overheads over FastTrack and is competitive with the
state-of-the-art race detectors for async-finish programs.

CCS Concepts: • Software and its engineering→ Software
testing and debugging; Runtime environments; Multipro-
cessing / multiprogramming / multitasking.

Keywords: Concurrency bugs, data races, happens-before,
dynamic program analysis, task parallelism, async-finish

ACM Reference Format:
Shivam Kumar, Anupam Agrawal, and Swarnendu Biswas. 2022.
Efficient Data Race Detection of Async-Finish Programs Using
Vector Clocks . In The 13th International Workshop on Programming
Models and Applications for Multicores and Manycores (PMAM’22),
April 2–6, 2022, Seoul, Republic of Korea. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3528425.3529101

1 Introduction
The task-based programming abstraction helps write efficient
and portable parallel code without having to think of low-level

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PMAM’22, April 2–6, 2022, Seoul, Republic of Korea
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9339-3/22/04. . . $15.00
https://doi.org/10.1145/3528425.3529101

threads. Tasks execute in parallel as hardware-agnostic logical
units of work, and programmers only specify the dependen-
cies among the tasks. An accompanying runtime schedules
tasks to threads and provides performance features like work-
stealing. Cilk [5, 13], X10 [8], Habanero-Java [7], and Java
Fork-Join [17] are popular task-based frameworks.

Task-based programs are susceptible to concurrency errors
such as atomicity violations and data races [11, 30, 31]. A data
race occurs when two accesses, with at least one write, from
different tasks are incorrectly synchronized. Data races in
shared-memory programs often indicate the presence of other
concurrency errors, and can affect an execution by crashing
or corrupting data. Data races are hard to detect and fix since
they may occur nondeterministically under specific thread
interleavings, program inputs, and execution environments.
Data races have led to several real-world disasters [18, 27, 29];
such high-profile failures are a testament that data races are
present even in well-tested code.

The problem. There exists prior work to detect data races
in task-based programs [1, 9, 11, 22, 30, 31, 37, 39]. Most
analysis utilize the series-parallel structure of execution of
task-based programs to check whether accesses can poten-
tially execute in parallel (called series-parallel maintenance) [1,
11, 31, 37, 39]. Prior techniques are either serial (e.g., [9, 11,
30]) or are difficult to parallelize (e.g., [1]), detect races only
in a given schedule (e.g., [12]), continue to incur high run-
time overheads (e.g., [22, 31, 39]), require tight coupling with
the runtime scheduler for good performance (e.g., [37]), or
do not support lock-based synchronization (e.g., [1, 31, 37]).

Our approach. We focus on efficient detection of per-input
apparent data races in task-based programs with async-finish
semantics.1 For a given application and an input, per-input
races include races observed in the current schedule as well
as other schedules with possibly permuted memory opera-
tions, ignoring schedule-sensitive branches [39]. While prior
work has ignored how to optimize vector clocks for efficient
race detection of task-based programs, we argue that anal-
yses based on vector clocks are generic, inherently parallel,
and have better data locality than tree-based data structures

1Apparent data races occur because of the usage of parallel task constructs
and ignore the per-schedule dynamic interleavings [25]. Feasible data races
consider the nondeterministic timing variations during execution.

https://doi.org/10.1145/3528425.3529101
https://doi.org/10.1145/3528425.3529101

PMAM’22, April 2–6, 2022, Seoul, Republic of Korea Kumar et al.

for series-parallel (SP) maintenance. However, a naïve ap-
plication of vector-clock-based analysis to tasks results in
prohibitive memory and run-time overhead [31, 39].

This paper presents FastRacer, a vector-clock-based race
detector for async-finish programs. FastRacer avoids the re-
dundancy in per-task vector clocks by using auxiliary data
structures to maintain space- and time-efficient lossless clock
representations correctly. FastRacer exploits the structured
parallelism in async-finish programs to optimize the space
requirement of per-variable metadata in the presence of many
concurrent readers. Prior work has shown that a careful selec-
tion of only two “concurrent read” accesses is sufficient for
detecting read-write data races for async-finish programs [31,
39]. FastRacer uses coarse-grained encoding of dynamic task
inheritance relationships to identify the two accesses (for both
reads and writes) necessary for race detection, and uses vector
clocks to check whether two accesses can race.

We evaluate the performance and correctness of FastRacer
on C++ applications that use Intel TBB for task parallelism
and compare with prior work [12, 37, 39]. Our evaluation
shows that the run time and memory overhead of FastRacer
is substantially lower compared to prior race detectors.

Contributions. This paper makes the following contribu-
tions:

• To the best of our knowledge, this work is the first to
show the viability of using vector clocks for efficient
dynamic analysis of task-based programs;
• a race detector called FastRacer that detects per-input

apparent races in async-finish programs with locks,
• publicly available implementations of FastRacer and

related techniques, and an evaluation that shows Fast-
Racer significantly outperforms prior work.

2 Background and Motivation
This section reviews data race detection of multithreaded
programs using vector clocks. We also discuss closely related
prior work on race detection of async-finish programs.

2.1 Race Detection with Vector Clocks
Many race detectors for multithreaded programs use vector
clocks to track happens-before (HB) relations in an execu-
tion [6, 12, 35]. Each thread maintains a scalar clock that is
incremented at synchronization release operations (e.g., lock
release, monitor wait, thread fork and join, and volatile write).
Each thread T also maintains a vector clock C of size n, where
there are n threads in the application. The clock entry CT(U)
records the clock of thread U when thread T last synchro-
nized with U. A dynamic analysis updates per-variable vector
clock metadata whenever a thread accesses a shared data or a
lock variable. Vector clock operations require O

(
n
)

time and
storage to monitor an execution with n threads.

Algorithm 1 FastTrack analysis at synchronization operations

1: procedure SPAWN ▷ Thread T spawns U
2: U.vc← T.vc ∪ {T.epoch}
3: T.epoch← T.epoch + 1 ▷ Increment T’s scalar clock
4: U.epoch← U.epoch + 1
5: procedure JOIN ▷ Thread T joins with U
6: for all <t,c> in U.vc do
7: T.vc[t]← max(U.vc[t], T.vc[t])
8: procedure ACQUIRE ▷ T acquires lock L
9: for all <t,c> in L.vc do

10: T.vc[t]← max(L.vc[t], T.vc[t])
11: procedure RELEASE ▷ T releases lock L
12: L.vc← T.vc
13: T.epoch← T.epoch + 1
14: function CHECKHB(c@u,T) ▷ Check HB between

epoch
15: return c@u ⪯ T.vc

FastTrack. The FastTrack algorithm tracks a single last
writer and, in many cases, a single last reader [12]. The total
order on writes in a data-race-free program allows FastTrack
to store only the last write information. FastTrack stores the
write metadata as an epoch c@T, which is a tuple consisting
of the writer thread identifier T and the value of T’s clock
(say c) at the time of the write. The read metadata alternates
between epoch and vector clock forms. An epoch representa-
tion suffices when there is a single reader or the current read
happens after all previous reads. When there are concurrent
readers, the read metadata is a vector clock (denoted by vc).
Algorithm 1 shows the pseudocode for the dynamic analysis
performed by FastTrack at synchronization operations. Be-
fore each access to a shared variable x by a thread T, FastTrack
checks whether the current access by T happens after the previ-
ous write and all previous reads to x (CheckHB, Algorithm 1).
A data race is reported if the current access by T is concurrent
with the last accesses. The shared data and lock variable meta-
data are updated upon a thread access. FastTrack is popularly
used as the basis for dynamically sound and precise2 data
race detection of multithreaded programs [6, 35].

2.2 Race Detection for Async-Finish Programs
Frameworks like X10 [8] and Habanero Java [7] support
structured task parallelism with async-finish semantics. The
statement “async {t}” creates a new child task t that can
run in series or in parallel with its parent task. The state-
ment “finish {t}” causes the current task to wait for all the
recursively-created tasks within the block t. The async-finish
model is terminally-strict, which means each join edge goes
from the last instruction of a task to any of its ancestors in the
inheritance tree [30]. In the following, we discuss dynamic
data race detection techniques for async-finish programs.

SPD3. SPD3 [31] uses a dynamic program structure tree
(DPST) to capture the semantics of an async-finish program.
2Sound means no false negatives, and precise means no false positives.

Efficient Data Race Detection of Async-Finish Programs Using Vector Clocks PMAM’22, April 2–6, 2022, Seoul, Republic of Korea

var1 = 0

var2 = 1
spawn T2

spawn T3

var2 = 0

unlock(L1)

var1 = 2

lock(L1)

sync

Task T1

Task T2

S11

S21
var2 = 0

Task T3

S31

S41

S51

spawn T4

spawn T5

unlock(L1)

var1 = 5

lock(L1)

unlock(L1)

var1 = 4

lock(L1)

Task T5

Task T4

(a) An async-finish program with tasks T1–T5, shared variables var1
and var2, and a lock variable L1.

finish T11

step S11 finish T12

async T2

async T3

step S31

step S21

async T5async T4

finish T13

finish T14

step S41 step S51

(b) The DPST for the program in Figure 1a.

Figure 1. An async-finish program and its DPST.

A DPST consists of step, finish, and async nodes. A step node
represents the maximal sequence of instructions without any
task management. An async node represents the spawning of a
child task by a parent task. The descendants of an async node
execute asynchronously with the remainder of the parent task.
A finish node is created when a parent task spawns a child
task and waits for the child, and its descendants, to complete.
A finish node is thus the parent of all async, finish, and step
nodes executed by its children or their descendants. Figure 1
shows an async-finish program and the corresponding DPST.
All executions of a data-race-free async-finish program with
the same input result in the same DPST [31].

The operational semantics of async-finish programs imply
a left-to-right computation order of sibling nodes belonging
to a common parent task. Thus, a DPST node’s children are
also ordered left-to-right to reflect the computation order
in their parent. On a variable access, SPD3 searches for
the lowest common ancestor (LCA) of the current access
(i.e., a step node) and the last access stored in the variable’s
metadata. SPD3 reports a race if the left child of the LCA,
which is an ancestor of the step node representing the last
access, is an async node that indicates concurrent execution of
the last access and the current task. The DPST allows SPD3 to

maintain one metadata location for writes and two locations
for reads in shadow memory.

PTRacer. PTRacer extends SPD3 by detecting apparent
races in async-finish programs with locks [39]. PTRacer main-
tains two metadata locations each for reads and writes to a
shared variable. The metadata per variable is proportional
to the number of different locksets (i.e., set of locks held by
the tasks at any time) with which the variable is accessed,
which is reasonable in practice because variables are usually
accessed with similar locking patterns.

PTRacer selects two “last read” (“last write”) accesses from
multiple parallel accesses with the same lockset to maintain
constant metadata, such that any future write which can race
with any one of the parallel reads (writes) will race with
either one of the two chosen “last readers” (“last writers”).
PTRacer makes these choices by selecting step nodes with the
highest LCA among all parallel step nodes. PTRacer detects
all races for a given input even in the presence of lock-based
synchronization. Consider the shared variable var1 which is
updated by the parallel tasks T2, T4, and T5 in Figure 1a. The
step nodes corresponding to these accesses are S21, S41, and
S51, respectively. Since, S21 and S51 have the highest LCA
in the corresponding DPST, PTRacer will store these two
accesses and discard the access information for S41.

The race analysis in PTRacer is similar to SPD3. PTRacer
will report a race on var2 for the example in Figure 1 because
the left child of the LCA of step nodes S21 and S31 is an async
node. SPD3 will report false races on the variable var1.

PTRacer uses the DPST to maintain a constant amount of
per-variable metadata independent of the number of tasks exe-
cuting the program. Furthermore, PTRacer performs frequent
lookups in the DPST to check whether two accesses can hap-
pen in parallel. However, the DPST can be deep for programs
with a recursive pattern of task creation and large because
of many step nodes. These lead to high run time and mem-
ory overheads (Section 5.2). PTRacer uses an array-based
representation of the DPST and caches LCA lookups to im-
prove the performance of LCA. However, the DPST and the
LCA computation continue to be a significant bottleneck for
several benchmarks. Thus, there is a need for more efficient
techniques to help detect data races in async-finish programs.

3 FastRacer: Efficient Dynamic Data Race
Detection for Async-Finish Programs

The thesis of this work is that vector clocks can provide
better data locality for series-parallel (SP) maintenance in
task-based programs compared to tree-based data structures
used in prior work (e.g., [31, 37, 39]). We present FastRacer,
a novel algorithm that integrates the benefits of vector-clock-
based analysis and exploits structured parallelism of async-
finish programs to limit the amount of per-variable metadata.

Task-based programs create more, often orders of magni-
tude, parallel tasks than threads in multithreaded programs.

PMAM’22, April 2–6, 2022, Seoul, Republic of Korea Kumar et al.

Race detectors like FastTrack use per-thread and per-variable
vector clocks to capture the clock values of all the threads in
the system. While this representation works fine for multi-
threaded programs where the number of concurrent threads
is comparatively small (∼#cores), it is impractical for task-
based programs and leads our FastTrack implementation to
run out of memory on several benchmarks (Section 5.2). Stor-
ing only non-zero entries in a vector clock does not help since
several concurrent tasks potentially access shared read-only
variables. Furthermore, maintaining vector clocks propor-
tional to the number of threads can detect only feasible data
races and misses races among concurrent tasks [14]. In the
following, we discuss novel ideas to solve these challenges.

Algorithm 2 FastRacer analysis at synchronization operations

1: procedure SPAWN ▷ Task T spawns task U
2: if size(T.rw_vc) > THRESHOLD then
3: T.ro_vc← REF({T.ro_vc ∪ T.rw_vc}); T.rw_vc← /0;
4: else
5: U.ro_vc← T.ro_vc; U.rw_vc← T.rw_vc;
6: U.rw_vc← U.rw_vc ∪ {T.epoch}
7: U.joined← T.joined; U.lockset← T.lockset;
8: U.IVC← T.IVC ∪ {getClock(U.epoch)}
9: T.epoch← T.epoch + 1; U.epoch← U.epoch + 1;

10: procedure JOIN ▷ Task T joins with U
11: T.joined← T.joined ∪ {getTaskId(U.epoch)}
12: function CHECKHB(c@u,T)
13: ▷ Check HB between epoch c@u and T’s access
14: return c@u ⪯ T.rw_vc or c@u ⪯ T.ro_vc or u ∈

T.joined

3.1 Adapting Vector Clocks for Task Parallelism
We analyzed the performance of FastTrack and found that
operations on task vector clocks incur high time and space
overhead. For example, the task join operation is a bottleneck
because it requires comparing and merging all the clock val-
ues in the child and the parent tasks’ vector clocks. Naïvely
merging the vector clocks is not required since most vector
clock entries remain unchanged during the lifetime of a task.

Tracking read-only clock entries. The first insight in Fast-
Racer is that most vector clock entries for a task remain un-
changed during the lifetime of the task, and the clock values
continue to be the same as in the parent task. Thus, maintain-
ing per-task copies of the clock entries is mostly redundant.

In FastRacer, a task vector clock is partitioned into a read-
only (denoted by ro_vc) and a read-write portion (denoted
by rw_vc). Child tasks in FastRacer maintain a reference to
the ro_vc of their parents instead of maintaining redundant
copies. During a spawn operation (Algorithm 2), FastRacer
first checks if the size of rw_vc is greater than a threshold.
If yes, then FastRacer merges ro_vc and rw_vc of the parent
task into a new ro_vc for the child task and rw_vc of child
task is kept empty. Otherwise, the child ro_vc points to the
parent ro_vc and the parent’s rw_vc is copied to the child’s

Task T1

Task T2 Task T3

Task T4 Task T5

IVC=[]

IVC=[1] IVC=[2]

IVC=[2,2]
IVC=[2,1]

T3's clock value

T3's IVC

Figure 2. The inheritance tree for program in Figure 1a.

rw_vc. Avoiding needless copies and redundant operations on
the read-only portions of vector clocks helps reduce space
overheads and improve performance. In the common case,
most vector clock entries of a task remain unchanged, i.e., the
size of rw_vc is small. Complete vector clock copies happen
only when the size of rw_vc is greater than THRESHOLD.

Optimizing vector clock join. An access to a shared vari-
able by a parent task after joining with a child task always
happens after the child’s accesses, since the accesses are syn-
chronized by the join operation. The second insight is that
FastRacer does not need to store the clock values of the child
tasks after the join operation. Instead, tracking the set of all
child tasks that have joined with the parent task suffice. Each
task in FastRacer maintains the set of child tasks that have al-
ready joined with it in a joined data structure. No vector clock
join occurs when a task T joins with task U, instead, the child
task is added to the joined of the parent task (Algorithm 2).
When a parent task spawns a new child task, the parent joined
is copied to the child joined. The size of task vector clocks
reduces significantly due to the joined optimization.

Vector clock caching. The vector clocks for a few tasks
can be large even after the optimizations. FastRacer uses ex-
plicit attributes to cache recently used vector clock values
to avoid the cost of looking up the map data structure repre-
senting vector clocks. FastRacer indexes into the vector clock
map when the thread id is not among the most recently used.

3.2 Specializing for Async-Finish Programs
It can be expensive to maintain all concurrent readers of
a shared variable in task-based programs. FastRacer uses
coarse-grained tracking of task inheritance relationships to
select relevant accesses from parallel readers/writers,3 which
allows maintaining constant per-variable metadata per-lockset
(i.e., the set of locks held by the task).

Maintaining constant per-variable metadata. FastRacer
models the parent-child relationship among different tasks
with a task inheritance tree. The nodes represent tasks, and
edges represent the creation of child tasks by the parent. Fig-
ure 2 shows the inheritance tree for the program shown in

3When tasks use locks, two writes can happen in parallel but do not constitute
a race if they are protected by the same lock.

Efficient Data Race Detection of Async-Finish Programs Using Vector Clocks PMAM’22, April 2–6, 2022, Seoul, Republic of Korea

Figure 1a (ignore the IVC labels for now). FastRacer uses the
inheritance tree to efficiently select two accesses out of multi-
ple concurrent accesses with the same lockset, such that any
racy future access that races with any one of the concurrent
accesses must be racy with either one of the two chosen last
accesses. For parallel tasks accessing a variable with the same
lockset, FastRacer stores the access history of the two tasks
with the highest LCA in the inheritance tree. Consider the
three accesses to var1 from tasks T2, T4, and T5 in Figure 1a.
In the inheritance tree shown in Figure 2, task nodes T2 and
T4 (or T5) have the highest LCA, and so FastRacer stores the
access histories from T2 and T4 and discards T5. Any later
access to var1, which is not parallel with both T2 and T4, will
not be parallel with T5. So, discarding T5’s access information
is correct.4 The metadata stored per shared variable in Fast-
Racer is proportional to the number of the different locksets
with which the variable has been accessed.

The primary difference between a DPST and FastRacer’s
inheritance tree is in the granularity of the nodes. While a
DPST decomposes a task into several unsynchronized regions
represented by step nodes, an inheritance tree has just one
node per task. The coarser modeling makes the inheritance
tree much smaller and shallower than the DPST. Unlike a
DPST, there is no left-to-right ordering in an inheritance tree.
While PTRacer uses DPST to check the concurrency between
two accesses and select accesses with the highest LCA, Fast-
Racer only does the latter with the inheritance tree. FastRacer
uses vector clocks for data race detection to compensate for
the coarser modeling and loss of ordering between the nodes.

Inheritance vector clock. Instead of building an inheri-
tance tree, FastRacer encodes the inheritance relations in a
per-task array of clock values called Inheritance Vector Clock
(IVC) for better performance. An IVC is an immutable vec-
tor clock that contains the clock values of all the reachable
parents of a task T at the time of the creation of T. An IVC
identifies the unique path in the inheritance tree from the root
task to T, since a task spawn increments the scalar clock of
the caller task. Whenever a parent task creates a child task,
FastRacer copies the parent’s IVC to the child and appends
the parent’s clock value at the end of child IVC. In Figure 2,
the IVC of the parent task T3 is copied to the child task T4
and the current clock of T3 (assumed to be one) is appended.

Both IVC labeling and the Offset-Span (OS) labeling [22]
schemes compute a unique label from the label of the immedi-
ate predecessor, and guarantee that the length of a task’s label
will always be proportional to the depth of the task in the
inheritance tree. However, there are two differences. First, the
IVC of a task, once created, is immutable. Unlike OS labeling,
any further task join operations do not modify the IVC. Sec-
ond, the Span part of OS labeling can only be assigned after

4In async-finish semantics, a task must join with its ancestor, either immediate
or recursive. In case a parent task calls join, all children tasks within this join
scope, either immediate or recursive, join with it.

the task graph is complete, i.e., OS labels cannot be computed
while building the task graph. Intuitively, IVC labels are more
similar to the Offset part, with the constraint that they do not
get updated at join operations. Whereas prior work uses OS la-
bels for race detection [14, 22], FastRacer uses IVC labels to
identify two accesses out of multiple parallel accesses having
the highest LCA in the inheritance tree.

Computing tasks with the highest LCA. To compute the
highest LCA among three parallel tasks, FastRacer iterates
over the IVCs of all the tasks simultaneously and stops at the
first point of difference. After that, FastRacer chooses the task
with a different clock value and any one of the other two. If
all the three clock values are different, any two out of three
tasks can be chosen. If FastRacer reaches the end of an IVC
for any task T, it indicates that T must be the parent of the
other two in the inheritance tree, and so, FastRacer chooses
the parent task T and any one from the other two. The tasks
so chosen will have the highest LCA in the inheritance tree.
The computation overhead depends on the sizes of the IVC,
which is equal to the height of the inheritance tree. Since an
inheritance tree is much shallower compared to a DPST, the
computation is relatively efficient.

In Figure 1a, the accesses to var1 from three parallel tasks,
T2, T4, and T5, are with the same lockset {L1}. The IVCs of the
corresponding task nodes, shown in Figure 2, are IVCT 2=[1],
IVCT 4 = [2,1], and IVCT 5 = [2,2]. To select two out of the
three accesses, FastRacer iterates over the three IVCs simulta-
neously. The first point of difference is at the first entry itself:
IVCT 2[0]=1, IVCT 4[0]=IVCT 5[0]=2. So, FastRacer selects a
task with a different clock value, i.e., T2 and any one of other
two, say T4 (or T5). For the example in Figure 2, tasks T2 and
T4 (or T5) indeed have the highest LCA in the inheritance tree.

3.3 Detecting Data Races
FastRacer extends the FastTrack algorithm (Section 2.1) to
detect races and update metadata.

Metadata. Figure 3 compares the metadata maintained in
FastTrack and FastRacer. Given a task T, FastTrack uses a
vector clock for storing the epoch values of all other tasks
(line 10, Figure 3a). The attributes ro_vc, rw_vc, and joined in
PerTaskMetadata in Figure 3b correspond to the optimizations
introduced in Section 3.2. While FastTrack uses vector clocks
to track lock operations, FastRacer uses the lockset mech-
anism [33]. Every task in FastRacer maintains and updates
lockset at lock acquire and release operations.

The per-variable state in FastRacer is an array of lock
metadata. Each lock metadata stores the access history of
the variable with the distinct set of locks held before the
access. Every per-lock metadata contains four access history
entries, two each for reads and writes, which contain the
epoch value and a reference to the IVC of the task at the time
of access. Storing references to the IVCs suffice since they
remain unchanged during the lifetime of a task.

PMAM’22, April 2–6, 2022, Seoul, Republic of Korea Kumar et al.

(a) Metadata maintained in FastTrack.

1 class PerVariableMetadata {
2 epoch wr_md , rd_md; // Write and Read epoch
3 map <taskid , clock > rd_vc; // Read vector clock
4 }
5 class PerLockMetadata {
6 map <taskid , clock > vc;
7 }
8 class PerTaskMetadata {
9 epoch epoch;

10 map <taskid , clock > vc;
11 }

(b) Metadata maintained in FastRacer.

1 class PerVariableMetadata {
2 PerLockMetadata lock [];
3 }
4 class PerLockMetadata {
5 set <lockID > lockset;
6 epoch rd1 , rd2; // Reader 1 and 2 metadata
7 IVC* rd1_ivc , rd2_ivc; // IVC of Reader 1 and 2
8 epoch wr1 , wr2; // Writer 1 and 2 metadata
9 IVC* wr1_ivc ,wr2_ivc; // IVC of Writer 1 and 2

10 }
11 class PerTaskMetadata {
12 epoch epoch;
13 map <taskid , clock > ro_vc; // Rd-only vector clock
14 map <taskid , clock > rw_vc; // Rd-wr vector clock
15 set <taskid > joined; // All joined child tasks
16 set <lockId > lockset; // Locks held by the task
17 int IVC [];
18 }

Figure 3. Comparison of metadata state maintained in Fast-
Track and FastRacer.

Race checks. When a shared variable is accessed, Fast-
Racer iterates over all the lock metadata corresponding to
distinct locksets with which the shared memory variable has
been accessed. An empty intersection of the lockset of the cur-
rent access and the lock metadata implies potentially parallel
accesses. If the two locksets are disjoint, FastRacer checks if
the epoch values stored in the access history happens before
the current access using vector clocks (CHECKHB, Algorithm 2).
If there is no such relationship, it implies that the prior ac-
cess is concurrent with the current access. Finally, FastRacer
reports a data race if one of the two accesses is a write.

Before accessing a variable x, FastTrack compares the cur-
rent task’s vector clock with the epoch(s) stored in x’s access
history to determine if the current access happens after the
past accesses (CHECKHB, Algorithm 1). FastRacer, apart from
the vector clock entry check, also checks if the tasks present
in x’s access history belong to joined of the current task. If
all the tasks are present in joined, FastRacer infers that the

current access happens after prior accesses. Since the vec-
tor clock is spread across ro_vc, rw_vc, and joined, CHECKHB
(Algorithm 2) checks the HB relation against all of them.

Metadata updates. FastRacer updates the read metadata
corresponding to the current lockset if a read does not race
with prior writes. FastRacer checks if any of the read epochs
in the lock metadata corresponding to the current lockset
happens before the current task’s access. If yes, then Fast-
Racer updates that access entry with the current task’s epoch
and IVC. Otherwise, there are three parallel reads, and Fast-
Racer needs to select two with the highest LCA. FastRacer
iterates over the IVC of all three access entries and stops
either at the first point of difference or if one of the IVCs end.
FastRacer stores the access history of the task corresponding
to the selected IVC and any one of the other two. Using any
one of the other two works since, in both the cases, the two
chosen tasks will have the highest LCA in the inheritance tree
(Section 3.2). Figure 4 shows an example of how FastRacer
updates the read metadata. Assume tasks T2, T3, and T4 all
read a shared variable x and task T5 writes x. After the reads
from T2 and T3, the two readers stored for the variable x are
T2 and T3, because both these tasks can run in parallel. Since
task T4 is spawned by T1 after T1 synchronizes with T2, so the
read by T4 happens after the read of T2. The read metadata
entry of T2 is replaced by T4. Next, when T5 writes x, Fast-
Racer checks the access with all previous reads and reports
a read-write race between the accesses from T4 and T5. The
steps performed by FastRacer on a write access are similar.

Synchronization operations. During a spawn operation
(Algorithm 2), FastRacer checks if the size of rw_vc is greater
than a threshold. If yes, FastRacer merges ro_vc and rw_vc of
the parent task into a new ro_vc for the child task and rw_vc of
the child is kept empty. Otherwise, the child ro_vc references
the parent ro_vc, and the child rw_vc is copied from parent
rw_vc. Thereafter, FastRacer copies the parent’s joined and
lockset to the child’s joined and lockset, respectively. In case
of a join operation, the joined of the parent task is updated to
contain the id of the child task.

A task’s vector clock is not updated in case of lock acquire
and release operations. Instead, FastRacer uses PTRacer’s
mechanism to deal with lock operations. Each task maintains
a lockset. When a task T acquires a lock L, the lockset of T is up-
dated to contain lock L. In case of a lock release, L is removed
from the lockset. When T accesses a shared variable x, the
lockset is copied to the variable metadata. During a race check,
FastRacer checks for the intersection of the locksets from the
metadata history to infer a data race. In practice, variables are
accessed with the same set of locks, and hence maintaining
access metadata for different sets of unique locks is reason-
able. Furthermore, metadata update operations depend on the
size of the IVC, but we find that the maximum depth of the
inheritance tree is small (≤ 30 for our benchmarks).

Efficient Data Race Detection of Async-Finish Programs Using Vector Clocks PMAM’22, April 2–6, 2022, Seoul, Republic of Korea

finish {
 async { // T1
 finish {
 async { // T2
 async { // T3
 }
 async { // T4
 async { // T5

}

T1

T2 T3 T4 T5

Figure 4. An async-finish program with five tasks T1–T5 and
the corresponding inheritance tree.

3.4 Characterizing FastRacer
While FastTrack’s race coverage is limited to the observed
schedule, FastRacer can detect per-input apparent races like
PTRacer. FastRacer can detect races in other schedules due
to the following differences with FastTrack. First, the races
reported by FastTrack can vary across schedules since many
tasks can map to a single thread, and the exact sequence of
tasks mapped may vary across schedules. FastRacer stores
vector clocks per task, and is not impacted by the mapping of
tasks to threads. Second, FastTrack tracks the HB relations
to establish order among synchronization operations, which
is sensitive to the order of lock operations and varies across
schedules. FastRacer uses the lockset technique to track syn-
chronization operations and stores two reads and two writes
per lockset in per-variable metadata. The metadata structure
enables FastRacer to detect races irrespective of the order
of lock operations, so the number of races reported is the
same across schedules. The companion report discusses the
correctness of FastRacer [16].

4 Implementation
Our implementation extends the PTRacer artifact.5 A static
compiler pass using LLVM 3.7 instruments load and store
instructions in C++ programs, and inserts function calls to
execute the appropriate race detection analysis. The imple-
mentation uses Intel TBB for task parallelism. The public
implementation of PTRacer reports wrong race results for the
benchmarks fluidanimate, kmeans, streamcluster, and sort (see
Section 5.1). We found an implementation error was corrupt-
ing the DPST built by PTRacer, and there was a race while
updating a global array used for LCA hashing. After fixing
these issues, the race reports were the same across all the
tools. Our modifications have minimal (≤1%) impact on the
performance of PTRacer, and we use our fixed version for the
evaluation. Our prototype implementation of FastRacer ex-
tend the same static compiler pass to ensure all the prototypes
do the same work. We have also reimplemented FastTrack.
Our implementations are publicly available.6

5https://github.com/rutgers-apl/PTRacer
6https://github.com/prospar/fastracer-pmam-2022

Race detection for fork-join programs. Utterback et al.
propose a parallel and asymptotically optimal algorithm called
WSP-Order for race detection of fork-join programs [37]. The
algorithm uses two order maintenance (OM) data structures
to maintain two total orders of all strands in the computation.
A strand is a sequence of instructions that contain no paral-
lel primitives and executes sequentially. A strand x logically
precedes strand y if and only if x precedes y in both orderings.
These orderings are sufficient to determine SP relationships.
The two OM data structures support constant-time operations
like insert and query, and most concurrent updates do not need
synchronization. However, large parts of the OM data struc-
ture are updated during relabel operations and hence require
synchronization. Since relabel operations are serialized, the
algorithm modifies a work-stealing task scheduler to priori-
tize the operations. Furthermore, workers blocked on an insert
or a query operation help with the relabel instead of being
idle. Note that the WSP-Order algorithm does not support
lock-based synchronization and requires tight coupling with
a work-stealing scheduler for good performance [37].

The public implementation of WSP-Order is called C-
RACER.7 We reimplement C-RACER with Intel TBB in
LLVM for a fair comparison. An important contribution in
the C-RACER work is the parallelization of the relabel oper-
ations. We have not implemented task scheduler support for
parallel relabel operations, relabels in our implementation are
serial. The total time taken in the serial relabel operations is
small in our experiments. The run time of the benchmarks we
report for C-RACER does not account for the time taken for
the relabel operations, which is a lower bound (Section 5.2).

5 Evaluation
This section compares FastRacer with the closest prior work,
FastTrack [12], PTRacer [39], and C-RACER [37].

5.1 Experimental Setup
Benchmarks. We reuse twelve TBB-based applications

used by PTRacer for our evaluation. These include four appli-
cations, blackscholes, fluidanimate, streamcluster, and swaptions,
from the PARSEC benchmark suite [2], five geometry and
graphics applications, convexHull, delRefine, delTriang, near-
estNeigh, and rayCast, from the PBBS suite [36], and three
applications, karatsuba, kmeans, and sort, from the Structured
Parallel Programming book [21]. We left out the PARSEC
application, bodytrack, because of a compilation error, and ig-
nore the C-RACER benchmarks because they use Cilk-5 [37].

The benchmarks follow spawn-sync semantics where a child
task joins with its immediate parent (async-finish semantics
are more general) and do not use locks, so we were able to
run C-RACER successfully for all the benchmarks.

7https://github.com/wustl-pctg/cracer

https://github.com/rutgers-apl/PTRacer
https://github.com/prospar/fastracer-pmam-2022
https://github.com/wustl-pctg/cracer

PMAM’22, April 2–6, 2022, Seoul, Republic of Korea Kumar et al.

UM FT CR PT FR
blackscholes 0.62 9.64 10.38 54.78 48.03
fluidanimate 0.51 69.93 0.58 9.17 2.04
streamcluster 0.84 - 1.17 22.76 6.91
swaptions 0.19 - 0.98 17.34 3.87

convexHull 1.69 - 2.97 19.94 12.71
delRefine 3.71 - 6.25 125.37 125.39
delTriang 3.63 - 8.19 113.69 106.77
nearestneigh 2.19 - 5.60 106.86 125.26
rayCast 1.28 - 4.08 18.37 14.35

karatsuba 0.02 0.86 0.18 9.34 2.81
kmeans 0.11 - 2.52 15.82 5.99
sort 0.15 18.96 0.20 9.87 2.40

Table 1. Comparison of the memory overhead (in GBs).

Evaluation platform. The experiments execute on an Intel
Xeon Gold 5218 system with one 16-core processor with hy-
perthreading disabled, 128 GB DDR4 primary memory, run-
ning Ubuntu Linux 20.04.3 LTS with kernel version 5.11.0.

5.2 Performance Results
Figure 5 reports the performance of C-RACER, PTRacer, and
FastRacer for all the benchmarks (arranged alphabetically).
Every bar averages ten trials and is normalized to the baseline,
which runs the unmodified benchmarks without instrumenta-
tion. Smaller bars mean better run times. By default, the TBB
scheduler creates c threads and multiplexes the tasks to the
c threads, where c is the number of cores in the system. The
results in Figure 5 are with 16 threads.

Our reimplementation of C-RACER incurs an overhead of
10.66X over the unmodified applications. The average per-
formance slowdown incurred by PTRacer is 7.70X, while
it is 6.41X for FastRacer. FastRacer shows substantial im-
provement for multiple benchmarks like convexHull, delTriang,
fluidanimate, kmeans, and rayCast. The better performance of
FastRacer is due to improved locality from vector clocks com-
pared to cache-unfriendly tree traversals in C-RACER and
PTRacer. On average, FastRacer outperforms both C-RACER
and PTRacer by 1.66X and 1.20X, respectively.

FastTrack successfully executed with four benchmarks that
required less memory, blackscholes, fluidanimate, karatsuba,
and sort, and got killed on the other benchmarks. The over-
head of FastTrack for the four benchmarks is 50.26X, and
FastRacer outperforms FastTrack by 4.62X. This result shows
that the optimizations proposed in FastRacer are effective in
reducing both run time and space overheads.

Memory overhead. Table 1 compares the peak memory
requirement of each benchmark with the four techniques, as
reported by the Massif tool in Valgrind [24]. Column 2, UM,
shows the memory requirement of the unmodified application,
while FT, CR, PT, and FR stand for FastTrack, C-RACER,
PTRacer, and FastRacer, respectively. The results show that

using IVCs for encoding task inheritance in FastRacer com-
pared to the fine-grained DPST structure in PTRacer provides
significant memory savings in maintaining per-task metadata,
especially for fluidanimate, karatsuba, kmeans, sort, and swap-
tions. C-RACER usually requires the least memory since it
maintains order maintenance structures, but has high perfor-
mance overhead compared to FastRacer.

Scalability. Figure 6 shows the scalability plots of a few
benchmarks as we vary the number of threads (in powers of
two) used by the TBB scheduler. The Unmodified config-
uration shows that most applications scale well, excepting
blackscholes, convexHull, and karatsuba. FastRacer scales better
than PTRacer for delTriang, kmeans, and swaptions, for the
range of thread counts we have evaluated. The scaling behav-
ior of C-RACER, PTRacer, and FastRacer are very similar for
the remaining benchmarks, which we omit for lack of space.

Platform sensitivity. We evaluate the sensitivity of the op-
timizations by re-running experiments on an Intel Xeon Silver
4114 system with two ten core processors with hyperthreading
turned off, 128 GB primary memory, running Ubuntu Linux
18.04.6. We do not show the plots for lack of space. C-
RACER, PTRacer, and FastRacer incur overheads of 11.60X,
9.44X, and 6.85X, respectively. FastRacer outperforms both
C-RACER and PTRacer by 1.69X and 1.38X, respectively.

FastRacer outperforms prior work on the same set of bench-
marks as used in PTRacer. Given the generic nature of the
optimizations, we expect a similar qualitative trend for bench-
marks where threads join with arbitrary ancestors (e.g., async-
finish semantics). More importantly, FastRacer disproves the
assumption made in all prior work that vector-clock-based
analysis is not suited for task-based programs.

5.3 Data Races and Run-time Statistics
Table 2 summarizes the run-time statistics. The data is the
average from 10 trials with a statistic-collecting configuration.
Columns 2–4 in the table show the average number of tasks
spawned by the benchmarks and the number of read and
write accesses. Columns 5–7 show the number of data races
reported by the different tools. To stress-test the correctness
of our implementations, we introduced data races in a few
benchmarks that already did not have known races. The suffix
“-r” denotes benchmarks that have been modified to introduce
races for evaluation. All the tools are expected to report the
same number of races for a given application with a fixed
input. C-RACER (CR), PTRacer (PT), and FastRacer (FR)
report the same violations for all the benchmarks.

6 Related Work
Race detection for task-based programs. Mellor-Crummey

exploited the structural property of fork-join programs to
show that tracking two readers and a single writer per mem-
ory location is sufficient for sound data race detection [22].

Efficient Data Race Detection of Async-Finish Programs Using Vector Clocks PMAM’22, April 2–6, 2022, Seoul, Republic of Korea

blacksch
oles

convexHull

delRefine
delTria

ng

fluidanimate

karatsuba
kmeans

nearestneigh
rayCast sort

stre
amcluster

swaptions
geomean

0

2

4

6

8

10

No
rm

al
ize

d
ex

ec
ut

io
n

tim
e

4.
73

5.
87

4.
97

19
.1

2
20

.7
5

9.
17

2.
30

2.
86

2.
72

1.
51

2.
04

1.
52

36
.2

1
26

.4
9

20
.4

8

63
.3

5
42

.1
9

46
.5

5

19
.5

5
11

.0
3

6.
53

4.
88

3.
55

3.
54

31
.9

7
26

.9
7

22
.2

8

2.
52

2.
57

2.
82

2.
29

2.
41

2.
00

16
8.

58
8.

41
9.

18

10
.6

6
7.

70
6.

41

CRACER
PTRACER
FASTRACER

Figure 5. Performance comparison of the different techniques normalized to the unmodified execution time of the benchmarks.

1 2 4 8 16
Threads

104

Be
nc

hm
ar

k
tim

e
(m

s)

Unmodified
CRACER
PTRACER
FASTRACER

(a) convexHull

1 2 4 8 16
Threads

105

5 × 104

6 × 104

7 × 104

8 × 104

9 × 104

Be
nc

hm
ar

k
tim

e
(m

s)

Unmodified
CRACER
PTRACER
FASTRACER

(b) delTriang

1 2 4 8 16
Threads

104

105

Be
nc

hm
ar

k
tim

e
(m

s)

Unmodified
CRACER
PTRACER
FASTRACER

(c) kmeans

1 2 4 8 16
Threads

103

104

105

Be
nc

hm
ar

k
tim

e
(m

s)

Unmodified
CRACER
PTRACER
FASTRACER

(d) swaptions

Figure 6. Scalability results of a few benchmarks on the Intel Gold platform described in Section 5.1.

Tasks ACC (×106) Data Races
(×103) RDs WRs CR PT FR

blackscholes 0.20 90 50 21 21 21
fluidanimate-r 1.60 26 0.7 40 40 40
streamcluster-r 180 363 13 80 80 80
swaptions 960 77 77 0 0 0

convexHull 8.50 30 0 0 0 0
delRefine 1000 15 0 0 0 0
delTriang 790 30 20 0 0 0
nearestNeigh 2800 51 8 0 0 0
rayCast 1900 160 0 0 0 0

karatsuba 1.98 3.4 0.8 0 0 0
kmeans-r 35 570 10 75 75 75
sort 0.70 11 0.06 1024 1024 1024

Table 2. Run-time statistics across different benchmarks.

Since then, there has been much work to design race detec-
tion algorithms to utilize the serial-parallel (SP) structure of
programs with constant space overhead for metadata [9, 11].
ESP-bags is an extension to SP-bags that supports the fin-
ish construct in async-finish programs [30]. However, these
approaches constrain the program to execute serially in depth-
first order, which does not scale. TARDIS does not keep track
of the SP relationships among program strands [19]. Instead,

TARDIS maintains log-based access sets and lazily detects
races by checking for overlapping intersections of access sets
of logically parallel sub-computations at join points.

Race detection for multithreaded programs. Static anal-
ysis can potentially detect all feasible data races across all
possible executions (i.e., no false negatives), but usually do
not scale to large programs and suffer from false positives,
which developers loathe [4, 23]. Dynamic analyses have the
potential to be sound and precise for the observed executions.
Many dynamic data race detection analyses track the happens-
before relation to infer data races [6, 35]. Lockset analysis
reports data races when a locking discipline is violated, but
can report false races [26, 33]. Hybrid techniques integrate
both HB and lockset analysis [26], but continue to suffer
from the disadvantages of both techniques. Other techniques
sacrifice soundness for performance by sampling memory
accesses [3, 6, 20] or require hardware support to speed up
the race detection analysis [28, 38].

Improve race detection coverage. Many techniques per-
turb the execution in an attempt to break spurious HB rela-
tions [10, 34]. Predictive techniques aim to detect data races
that can occur in other correct reorderings of memory ac-
cesses by observing one dynamic execution [15, 32].

PMAM’22, April 2–6, 2022, Seoul, Republic of Korea Kumar et al.

7 Conclusion
Prior work has overlooked the possibility of using vector
clocks for race detection of task-based programs. FastRacer
introduces novel optimizations that reduce the metadata re-
dundancy of task vector clocks. FastRacer also exploits the
structured execution of async-finish programs to limit the per-
variable metadata overhead by using a coarse-but-efficient
encoding of task inheritances. FastRacer shows substantial
performance improvements over FastTrack, and outperforms
state-of-art approaches C-RACER and PTRacer. Our pro-
posed vector clock optimizations allow for efficient dynamic
data race detection for task-based async-finish programs.

Acknowledgments
We thank Michael D. Bond for feedback on the text, the
PTRacer authors for help with their implementation, and
Vivek Kumar for discussions and advice. This material is
based upon work supported by IITK Initiation Grant and
SERB under Grant SRG/2019/000384.

References
[1] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Charles E.

Leiserson. 2004. On-the-Fly Maintenance of Series-Parallel Relation-
ships in Fork-Join Multithreaded Programs. In SPAA. 133–144.

[2] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
2008. The PARSEC Benchmark Suite: Characterization and Architec-
tural Implications. In PACT. 72–81.

[3] Swarnendu Biswas, Man Cao, Minjia Zhang, Michael D. Bond, and
Benjamin P. Wood. 2017. Lightweight Data Race Detection for Pro-
duction Runs. In CC. 11–21.

[4] Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey.
2018. RacerD: Compositional Static Race Detection. PACMPL 2,
OOPSLA, Article 144 (Oct. 2018).

[5] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. 1995. Cilk: An
Efficient Multithreaded Runtime System. In PPoPP. 207–216.

[6] Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley. 2010.
PACER: Proportional Detection of Data Races. In PLDI. 255–268.

[7] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. 2011.
Habanero-Java: the New Adventures of Old X10. In PPPJ. 51–61.

[8] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-
awa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek
Sarkar. 2005. X10: An Object-Oriented Approach to Non-Uniform
Cluster Computing. In OOPSLA. 519–538.

[9] Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith H.
Randall, and Andrew F. Stark. 1998. Detecting Data Races in Cilk
Programs That Use Locks. In SPAA. 298–309.

[10] Mahdi Eslamimehr and Jens Palsberg. 2014. Race Directed Scheduling
of Concurrent Programs. In PPoPP. 301–314.

[11] Mingdong Feng and Charles E. Leiserson. 1997. Efficient Detection of
Determinacy Races in Cilk Programs. In SPAA. 1–11.

[12] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient
and Precise Dynamic Race Detection. In PLDI. 121–133.

[13] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The
Implementation of the Cilk-5 Multithreaded Language. In PLDI. 212–
223.

[14] Yizi Gu and John Mellor-Crummey. 2018. Dynamic Data Race Detec-
tion for OpenMP Programs. In SC. Article 61, 12 pages.

[15] Dileep Kini, Umang Mathur, and Mahesh Viswanathan. 2017. Dynamic
Race Prediction in Linear Time. In PLDI. 157–170.

[16] Shivam Kumar, Anupam Agrawal, and Swarnendu Biswas. 2021. Ef-
ficient Data Race Detection of Async-Finish Programs Using Vector
Clocks. CoRR abs/2112.04352 (2021).

[17] Doug Lea. 2000. A Java Fork/Join Framework. In ACM Conference on
Java Grande. New York, NY, USA, 36–43.

[18] N. G. Leveson and C. S. Turner. 1993. An Investigation of the Therac-
25 Accidents. IEEE Computer 26, 7 (July 1993), 18–41.

[19] Li Lu, Weixing Ji, and Michael L. Scott. 2014. Dynamic Enforcement
of Determinism in a Parallel Scripting Language. In PLDI. 519–529.

[20] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. 2009.
LiteRace: Effective Sampling for Lightweight Data-Race Detection. In
PLDI. 134–143.

[21] Michael McCool, James Reinders, and Arch Robison. 2012. Structured
Parallel Programming: Patterns for Efficient Computation (first ed.).
Morgan Kaufmann Publishers Inc.

[22] John Mellor-Crummey. 1991. On-the-Fly Detection of Data Races for
Programs with Nested Fork-Join Parallelism. In SC. 24–33.

[23] Mayur Naik and Alex Aiken. 2007. Conditional Must Not Aliasing for
Static Race Detection. In POPL. 327–338.

[24] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation. In PLDI. 89–100.

[25] Robert H. B. Netzer and Barton P. Miller. 1992. What Are Race Condi-
tions? Some Issues and Formalizations. ACM Letters on Programming
Language and Systems 1, 1 (March 1992), 74–88.

[26] Robert O’Callahan and Jong-Deok Choi. 2003. Hybrid Dynamic Data
Race Detection. In PPoPP. 167–178.

[27] PCWorld. 2012. Nasdaq’s Facebook Glitch Came From Race Con-
ditions. Online. http://www.pcworld.com/article/255911/nasdaqs_
facebook_glitch_came_from_race_conditions.html

[28] Yuanfeng Peng, Benjamin P. Wood, and Joseph Devietti. 2017.
PARSNIP: Performant Architecture for Race Safety with No Impact on
Precision. In MICRO. 490–502.

[29] K. Poulsen. 2004. SecurityFocus News: Tracking the blackout bug.
http://www.securityfocus.com/news/8412

[30] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and
Eran Yahav. 2010. Efficient Data Race Detection for Async-Finish
Parallelism. In RV. 368–383.

[31] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and
Eran Yahav. 2012. Scalable and Precise Dynamic Datarace Detection
for Structured Parallelism. In PLDI. 531–542.

[32] Jake Roemer, Kaan Genç, and Michael D. Bond. 2018. High-coverage,
Unbounded Sound Predictive Race Detection. In PLDI. 374–389.

[33] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and
Thomas Anderson. 1997. Eraser: A Dynamic Data Race Detector for
Multi-threaded Programs. In SOSP. 27–37.

[34] Koushik Sen. 2008. Race Directed Random Testing of Concurrent
Programs. In PLDI. 11–21.

[35] Konstantin Serebryany, Alexander Potapenko, Timur Iskhodzhanov,
and Dmitriy Vyukov. 2012. Dynamic Race Detection with LLVM
Compiler. In RV. 110–114.

[36] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons,
Aapo Kyrola, Harsha Vardhan Simhadri, and Kanat Tangwongsan. 2012.
Brief Announcement: The Problem Based Benchmark Suite. In SPAA.
68–70.

[37] Robert Utterback, Kunal Agrawal, Jeremy T. Fineman, and I-Ting An-
gelina Lee. 2016. Provably Good and Practically Efficient Parallel Race
Detection for Fork-Join Programs. In SPAA. 83–94.

[38] Benjamin P. Wood, Luis Ceze, and Dan Grossman. 2014. Low-Level
Detection of Language-Level Data Races with LARD. In ASPLOS.
671–686.

[39] Adarsh Yoga, Santosh Nagarakatte, and Aarti Gupta. 2016. Parallel
Data Race Detection for Task Parallel Programs with Locks. In FSE.
833–845.

http://www.pcworld.com/article/255911/nasdaqs_facebook_glitch_came_from_race_conditions.html
http://www.pcworld.com/article/255911/nasdaqs_facebook_glitch_came_from_race_conditions.html
http://www.securityfocus.com/news/8412

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Race Detection with Vector Clocks
	2.2 Race Detection for Async-Finish Programs

	3 FastRacer: Efficient Dynamic Data Race Detection for Async-Finish Programs
	3.1 Adapting Vector Clocks for Task Parallelism
	3.2 Specializing for Async-Finish Programs
	3.3 Detecting Data Races
	3.4 Characterizing FastRacer

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance Results
	5.3 Data Races and Run-time Statistics

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

