
Efficient Data Race Detection of Async-Finish Programs

Using Vector Clocks

Shivam Kumar

IIT Kanpur

Swarnendu Biswas

IIT Kanpur

Anupam Agrawal

IIT Kanpur

Programming Models and Applications for Multicores and Manycores (PMAM 2022)

A Racy Java Program

x = new Object();
done = true;

Thread T1

Object x = null;
Boolean done = false;

while(!done) {}
x.compute();

Thread T2

Data Race

x = new Object();
done = true;

Thread T1

Object x = null;
Boolean done = false;

while(!done) {}
x.compute();

Thread T2

Data race Conflicting accesses – two threads access the same shared
variable where at least one access is a write

Concurrent accesses – accesses are not ordered by
synchronization operations

write

read

Data Races Are Bad!!!

done = true;

x = new Object();

Thread T1

Object x = null;
Boolean done = false;

while(!done) {}
x.compute();

Thread T2

NPE

Impact of Data Races

Vector Clock Based Race Detection

T1 T2

3 4

T1 T2

5 2

Thread T1 Thread T2

Thread T1’s
logical clock

Thread T2’s
logical clock

Last logical clock
received from

Thread T2

Last logical clock
received from

Thread T1

Detecting Data Races Using FastTrack

T1 T2

5 2

Thread T1

T1 T2

3 4

Thread T2

NULL

Var x

C. Flanagan and S. Freund. FastTrack: Efficient and Precise Dynamic Data Race Detection. PLDI, 2009.

Detecting Data Races Using FastTrack

T1 T2

5 2

Thread T1

T1 T2

3 4

Thread T2

5@T1

Var x

write(x)

Detecting Data Races Using FastTrack

T1 T2

5 2

Thread T1

T1 T2

3 4

Thread T2

5@T1

Var x

write(x)

write(x)
5@T1 > VCT2 [T1](=3)

Data
Race

Task Parallel Programs

Task-Parallel
Programs

Async-Finish
Programs

FastTrack on Task Parallel Programs

Task-Parallel
Programs

FastTrack

Memory
Limit

Exceeded

~50X
overhead

Vector Clocks not
suitable for task

parallel programs

Data Race Detection

Vector Clock Tree Based

Multi-threaded
Programs

Task-Parallel
Programs

Vector clock analyses are
generic, inherently parallel,

and have better data locality
than tree-based data

structures.

Adarsh Yoga, Santosh Nagarakatte, and Aarti Gupta. Parallel Data Race Detection for Task Parallel Programs with Locks. FSE, 2016.

FastRacer: An Efficient Dynamic Data Race Detector

FastTrack FastRacer

Per Task
Optimizations

Per Variable
OptimizationsMulti-threaded

Programs

Task-Parallel

Programs

FastRacer on Task Parallel Programs

Task-Parallel
Programs

FastRacer

Outperforms SOTA
algorithms e.g.

PTRacer, C-Racer

Vector clocks viable
for efficient analysis

of task-based
programs

FastTrack: Task Spawn

4 8 3 2

4 8 3 2 1 4 8 3 2 2 4 8 3 2 3

Task T1 Task T2 Task T3

Task T

Maintaining per-
task copies of
clock values is

mostly redundant

FastRacer: Task spawn

REF

Task T1 Task T2 Task T3

Task T

4 8 3 2

REF 1 REF 2 REF 3

Avoiding needless
copies helps

improve space and
time overhead

FastTrack: Task Join

1

Task T

1 2

Task T1

Spawn

FastTrack: Task Join

1

Task T

1 2 5 8 6

Task T1

Spawn

Join

FastTrack: Task Join

Task T

1 2 5 8 6

Task T1

Spawn

Join

1 2 5 8 6

Spawn

1 2 5 8 6 3

Task T2

No need to store
clock values of

child tasks after
join operation!!!

FastRacer: Task Join

1

Task T

1 2

Task T1

Spawn

{}

JoinSet

{}

FastRacer: Task Join

1

Task T

1 2

Task T1

Spawn

{}

JoinSet

{T3,T4,T5,T6}

FastRacer: Task Join

1

Task T

1 2

Task T1

Spawn

JoinSet

{T3,T4,T5,T6}

{T1,T3,T4,T5,T6}

1 3 {T1,T3,T4,T5,T6}

Task T2

Global data
structures are

used for efficient
set operations

FastTrack: Variable Access

NULL T1

T2

T3 T4

Var x

FastTrack: Variable Access

C2@T2 T1

T2

T3 T4

Var x

Read(x)

FastTrack: Variable Access

C2@T2, C3@T3 T1

T2

T3 T4

Var x

Read(x)

Read(x)

FastTrack: Variable Access

C2@T2, C3@T3, C4@T4 T1

T2

T3 T4

Var x

Read(x)

Read(x) Read(x)

Variable metadata
directly proportional
to number of parallel

accesses

FastRacer: Variable Access

NULL T1

T2

T3 T4

Var x

FastRacer: Variable Access

C2@T2 T1

T2

T3 T4

Var x

Read(x)

FastRacer: Variable Access

C2@T2, C3@T3 T1

T2

T3 T4

Var x

Read(x)

Read(x)

FastRacer: Variable Access

C2@T2, C3@T3 T1

T2

T3 T4

Var x

Read(x)

Read(x) Read(x)

Constant variable
metadata for a
given lockset

TIP: Select the two accesses with highest LCA in inheritance tree

FastRacer: An Efficient Dynamic Data Race Detector

FastTrack FastRacer

Per Task
Optimizations

Per Variable
OptimizationsMulti-threaded

Programs

Task-Parallel

Programs

Performance Results

Scalability Plots and Race Reports

Scalability Plots Race Reports

Contributions

First to show viability of using vector clocks for efficient dynamic analysis of task-based programs

Optimizations discussed are generic enough for several popular frameworks e.g. OpenMP

Publicly available implementations of FastRacer* and related techniques

* https://github.com/prosper/fastracer-pmam-2022

Efficient Data Race Detection of Async-Finish Programs

Using Vector Clocks

Shivam Kumar

IIT Kanpur

Swarnendu Biswas

IIT Kanpur

Anupam Agrawal

IIT Kanpur

Programming Models and Applications for Multicores and Manycores (PMAM 2022)

