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A Racy Java Program

Object x = null;
Boolean done = false;

Thread T1 Thread T2

= new Object();

while(!done) {}
done = true;

X .compute();




Data Race

Object x = null;
Boolean done = false;

Thread T1 Thread T2

while(!done) {}
Xx.compute();

X = new Object();

done = true; <4 -~

Data race Conflicting accesses — two threads access the same shared
variable where at least one access is a write

Concurrent accesses — accesses are not ordered by
synchronization operations




Data Races Are Bad!!l

Object x = null;
Boolean done = false;

Thread T1 Thread T2

done = true;

while(!done) {}

NI= X .compute();

X = new Object();




Impact of Data Races
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Vector Clock Based Race Detection

Thread T1 Thread T2
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Detecting Data Races Using FastTrack

NULL

Var x

Thread T1 Thread T2

T1 T2 T1 T2

C. Flanagan and S. Freund. FastTrack: Efficient and Precise Dynamic Data Race Detection. PLDI, 2009.



Detecting Data Races Using FastTrack

5@T1

Var x

Thread T1 Thread T2

T1 T2 T1 T2

write(x)



Detecting Data Races Using FastTrack

5@T1

Var x

Thread T1 Thread T2

T1 T2 T1 T2

write(x)

5@T1>VC,, [Tl oo
T2 Race  write(x)



Task Parallel Programs

Task-Parallel
Programs

Task Parallelism

Input Data

Parallel
Processing

Result Data

Aggregation
Task

lock(L1)
varl =2
unlock(L1)
var2 =0

lock(L1)
varl = 4
unlock(L1)

Async-Finish
Programs

lock(L1)
varl =5
unlock(L1)




FastTrack on Task Parallel Programs

Task-Parallel

Memory Vector Clocks not
Programs Limit suitable for task
Exceeded parallel programs

~50X

overhead




Data Race Detection

Multi-threaded Task-Parallel
Programs Programs

Vector clock analyses are
generic, inherently parallel,
and have better data locality

than tree-based data
structures.

Vector Clot

Parallel Data Race Detection for Task Parallel Programs

- with Locks
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Adarsh Yoga, Santosh Nagarakatte, and Aarti Gupta. Parallel Data Race Detection for Task Parallel Programs with Locks. FSE, 2016.




FastRacer: An Efficient Dynamic Data Race Detector

Per Task
Optimizations
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FastRacer on Task Parallel Programs

Vector clocks viable
for efficient analysis

Task-Parallel of task-based
Programs programs

Outperforms SOTA
algorithms e.g.
PTRacer, C-Racer

FastRacer




FastTrack: Task Spawn

4[s]s]2 Vaiaining per-

task copies of

Task T clock values is

/ \ \ mostly redundant

Task T1 Task T2 Task T3




FastRacer: Task spawn

Avoiding needless

copies helps
improve space and
time overhead

Task T1 Task T2 Task T3



FastTrack: Task Join




FastTrack: Task Join

Task T
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Task T1




FastTrack: Task Join

No need to store
clock values of

child tasks after

TCISk T join operation!!!
Spawn Spawn
Jom

Task T1 Task T2




FastRacer: Task Join
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FastRacer: Task Join
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FastRacer: Task Join

Global data
structures are

- {T1.T3T4T5.T6)

_ used for efficient
S Task T JomSet\ set operations
pawn /

TTSTATS T6
- {T3.T4.T5,T6) - {TL,13,74,15,76}

Task T2
Task T1




FastTrack: Variable Access

NULL

Var x




FastTrack: Variable Access

C2@T12

Var x

Read(x)



FastTrack: Variable Access




FastTrack: Variable Access

Variable metadata
directly proportional Var x

to number of parallel
accesses




FastRacer: Variable Access

NULL

Var x




FastRacer: Variable Access

C2@T12

Var x

Read(x)



FastRacer: Variable Access




FastRacer: Variable Access

Constant variable
metadata for a Var x

given lockset

TIP: Select the two accesses with highest LCA in inheritance tree



FastRacer: An Efficient Dynamic Data Race Detector

Per Task
Optimizations
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Performance Results
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Scalability Plots and Race Reports
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Scalability Plots
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Contributions

First to show viability of using vector clocks for efficient dynamic analysis of task-based programs

Optimizations discussed are generic enough for several popular frameworks e.g. OpenMP

Publicly available implementations of FastRacer* and related techniques

* https://github.com/prosper/fastracer-omam-2022
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