Efficient Data Race Detection of Async-Finish Programs
Using Vector Clocks

Shivam Kumar Anupam Agrawal Swarnendu Biswas
IT Kanpur IIT Kanpur IIT Kanpur

Programming Models and Applications for Multicores and Manycores (PMAM 2022)

A Racy Java Program

Object x = null;
Boolean done = false;

Thread T1 Thread T2

= new Object();

while(!done) {}
done = true;

X .compute();

Data Race

Object x = null;
Boolean done = false;

Thread T1 Thread T2

while(!done) {}
Xx.compute();

X = new Object();

done = true; <4 -~

Data race Conflicting accesses — two threads access the same shared
variable where at least one access is a write

Concurrent accesses — accesses are not ordered by
synchronization operations

Data Races Are Bad!!l

Object x = null;
Boolean done = false;

Thread T1 Thread T2

done = true;

while(!done) {}

NI= X .compute();

X = new Object();

Impact of Data Races

003/45/7844

BUSINESS SOFTWARE BUSINESS v
READY *

Nasdaq's Facebook Glitch
Came From Race Conditions

Therac-25 accidents,
1985-87

@Joab_Jackson May 21, 2012 1230 PM | &

The Nasdaq computer system that delayed trade notices of the Facebook IPO on Friday
change announced Monday. As a result of

' 1 . n, the market expects to pay out US$13
research highlights

nismatched Facebook share prices. About
, the exchange estimated.

Technical Perspective
Data Races are Evil
with No Exceptions

By Sarita Adve Hans-J. Boehm
HP Labormories

ms with «penign”’ data races
gra

How to miscompile Pro

EXPLOITING PARALLELISM HAs become the | racy code. Java's safety requiremer
primary means to higher performance. | preclude the use of “undefined” beh

Vector Clock Based Race Detection

Thread T1 Thread T2

T1 12 T1 12

Thread T1's : Last logical clock ’
logical clock Last logical clock received from IThfeaId 'I|'2 |S<
received from Thread T1 ogical cloc

Thread T2

Detecting Data Races Using FastTrack

NULL

Var x

Thread T1 Thread T2

T1 T2 T1 T2

C. Flanagan and S. Freund. FastTrack: Efficient and Precise Dynamic Data Race Detection. PLDI, 2009.

Detecting Data Races Using FastTrack

5@T1

Var x

Thread T1 Thread T2

T1 T2 T1 T2

write(x)

Detecting Data Races Using FastTrack

5@T1

Var x

Thread T1 Thread T2

T1 T2 T1 T2

write(x)

5@T1>VC,, [Tl oo
T2 Race write(x)

Task Parallel Programs

Task-Parallel
Programs

Task Parallelism

Input Data

Parallel
Processing

Result Data

Aggregation
Task

lock(L1)
varl =2
unlock(L1)
var2 =0

lock(L1)
varl = 4
unlock(L1)

Async-Finish
Programs

lock(L1)
varl =5
unlock(L1)

FastTrack on Task Parallel Programs

Task-Parallel

Memory Vector Clocks not
Programs Limit suitable for task
Exceeded parallel programs

~50X

overhead

Data Race Detection

Multi-threaded Task-Parallel
Programs Programs

Vector clock analyses are
generic, inherently parallel,
and have better data locality

than tree-based data
structures.

Vector Clot

Parallel Data Race Detection for Task Parallel Programs

- with Locks
. ’ ' 0711?('](;6, G}'gnlmv7 . “
FastTrack: Efficient and Precise Dynamic Race Detection 4 s —" fengie Programs it endng

Sealahle |
Period Representaton

Adarsh Yoga, Santosh Nagarakatte, and Aarti Gupta. Parallel Data Race Detection for Task Parallel Programs with Locks. FSE, 2016.

FastRacer: An Efficient Dynamic Data Race Detector

Per Task
Optimizations

@ :

Per Variable
Optimizations

Task-Parallel
Programs

Multi-threaded

Programs

FastRacer on Task Parallel Programs

Vector clocks viable
for efficient analysis

Task-Parallel of task-based
Programs programs

Outperforms SOTA
algorithms e.g.
PTRacer, C-Racer

FastRacer

FastTrack: Task Spawn

4[s]s]2 Vaiaining per-

task copies of

Task T clock values is

/ \ \ mostly redundant

Task T1 Task T2 Task T3

FastRacer: Task spawn

Avoiding needless

copies helps
improve space and
time overhead

Task T1 Task T2 Task T3

FastTrack: Task Join

FastTrack: Task Join

Task T
Spawn
/:)in

Task T1

FastTrack: Task Join

No need to store
clock values of

child tasks after

TCISk T join operation!!!
Spawn Spawn
Jom

Task T1 Task T2

FastRacer: Task Join

Sl o

quk T JoinSet
Spawn

oz

Task T1

FastRacer: Task Join

Sl o

Task T JoinSet
7/

S s e

Task T1

FastRacer: Task Join

Global data
structures are

- {T1.T3T4T5.T6)

_ used for efficient
S Task T JomSet\ set operations
pawn /

TTSTATS T6
- {T3.T4.T5,T6) - {TL,13,74,15,76}

Task T2
Task T1

FastTrack: Variable Access

NULL

Var x

FastTrack: Variable Access

C2@T12

Var x

Read(x)

FastTrack: Variable Access

FastTrack: Variable Access

Variable metadata
directly proportional Var x

to number of parallel
accesses

FastRacer: Variable Access

NULL

Var x

FastRacer: Variable Access

C2@T12

Var x

Read(x)

FastRacer: Variable Access

FastRacer: Variable Access

Constant variable
metadata for a Var x

given lockset

TIP: Select the two accesses with highest LCA in inheritance tree

FastRacer: An Efficient Dynamic Data Race Detector

Per Task
Optimizations

@ :

Per Variable
Optimizations

Task-Parallel
Programs

Multi-threaded

Programs

Performance Results

B CRACER
PTRACER
B FASTRACER

0}
€
‘=
=
e
fr
-]
(@]
o
X
o
o
[}
N
©
£
[
o
=

«
£
)
£
£
~
—
©
S
<
|9
-
Q
m

Scalability Plots and Race Reports

8
Threads

Scalability Plots

—8— Unmodified
CRACER

—8— PTRACER

—8— FASTRACER

blackscholes
fluidanimate-r
streamcluster-r
swaptions

convexHull
delRefine
delTriang
nearestNeigh
rayCast

karatsuba
kmeans-r
sort

Race

#Tasks ACC(x10°) DataRaces
(x10°) RDs WRs CR PT FR

0.20
1.60
180
960

8.50
1000
790
2800
1900

1.98
35
0.70

90 50
26 0.7
363 13

77 77

30
15
30
51
160

3.4 0.8
570 10

Data Races

21 21 21
40 40
80 80

0

0
0
0
0
0

0 0 0
75 75 75

11 0.06 1024 1024 1024

Reporis

Contributions

First to show viability of using vector clocks for efficient dynamic analysis of task-based programs

Optimizations discussed are generic enough for several popular frameworks e.g. OpenMP

Publicly available implementations of FastRacer* and related techniques

* https://github.com/prosper/fastracer-omam-2022

Efficient Data Race Detection of Async-Finish Programs
Using Vector Clocks

Shivam Kumar Anupam Agrawal Swarnendu Biswas
IT Kanpur IIT Kanpur IIT Kanpur

Programming Models and Applications for Multicores and Manycores (PMAM 2022)

