Explaining the Performance of Supervised and Semi-Supervised Methods for Automated Sparse Matrix Format Selection

Sunidhi Dhandhania, Akshay Deodhar, Konstantin Pogorelov, **Swarnendu Biswas**, and Johannes Langguth

International Workshop on Deployment and Use of Accelerators ICPP Workshops 2021

Sparse Matrix Vector Multiplication (SpMV)

- Important computation kernel
 - PageRank, Conjugate Gradient, and Indirect solvers for systems of linear equations

J Greathouse and M Daga. Efficient Sparse Matrix-Vector Multiplication on GPUs using the CSR Storage Format. AMD Research 2014.

ICPP Workshop 2021

Performance of SpMV

- Memory accesses are unstructured and have irregular access patterns unlike dense matrix operations
- Limited data reuse, FLOPS/byte is very low memory-bound

Performance is sensitive to

- Sparsity pattern of the input matrix
- Processor microarchitecture and memory hierarchy
- Kernel implementation
- Other aspects like the Compiler and OS

Sparse Matrix Formats

- Representing matrices in a sparse format result in significant memory savings
- MKL from Intel and CUSP and cuSparse from NVIDIA support many popular formats DIA ELL CSR HYB COO

N. Bell and M. Garland. Sparse Matrix-Vector Multiplication on Throughput-Oriented Processors. NVIDIA Research.

ICPP Workshop 2021

Sensitivity to Sparse Formats

	Slov	vdown (relativ	/e)	Optimal Format			
	Pascal	Turing	Volta	Pascal	Turing	Volta	
mawi_201512012345	164.8	194.8	121.3	НҮВ	НҮВ	НҮВ	
lp_osa_60	5.2	8.8	7.5	НҮВ	COO	COO	

- CSR format is used as the default
- CUSP library was used for benchmarking

	1	

mawi_201512012345								
Rows	18571154							
Column	18571154							
Nonzeros	38040320							
Mean nonzeros per row	2.04							
Max nonzeros in a row	16399896							
Average std dev of nonzeros across rows	3805.8							

Sensitivity to Sparse Formats

Average std dev of nonzeros across rows

Challenges with Supervised Methods

Need representative training data and accurate feature set

• Compare the size of ImageNet and SuiteSparse!

Numerical computations are being parallelized across heterogeneous compute devices

• Trained models are specific to the profiled architecture, need to retrain for all possible target architectures

Challenges with Supervised Methods

May need to retrain if new sparsity patterns are found or new sparse formats are proposed

• Several new sparsity formats have been recently proposed (e.g., CVR, CSR5, CSR2, and PELLR)

Training supervised ML models require benchmarking M matrices $\times F$ formats $\times N$ trials, which will often run into days

• Overhead comes from reading matrix files and format conversion

Desired Requirements for Automated Sparse Format Selection

Solution should not be tightly coupled to the target architecture

• Model should be easily portable to different target hardware

Approach should be flexible to incorporate new data

Techniques should aim for the "train once, deploy multiple times" paradigm

DL Techniques for Automated Format Selection

1024x1

32x1

 CNNs have had great success in image classification and computer vision

Flatter

• Why not use CNNs for classifying matrices?

16x16x32 4x4x64

CONV

(3x3x32,

64x64x16

CONV

3x3x32.

CONV

3x3x16

128 x

128

 Y. Zhao et al. Bridging the Gap between Deep Learning and Sparse Matrix Format Selection. PPoPP 2018.
J. Pichel and B. Pateiro-Lopez. A New Approach for Sparse Matrix Classification Based on Deep Learning Techniques. CLUSTER 2018. ICPP Workshop 2021

nat

Do the DL Techniques Address the Challenges?

- DL models require even larger datasets to have good accuracy
- Training and inference is very costly compared to non-DL models

W. Zhou et al. Enabling Runtime SpMV Format Selection through an Overhead Conscious Method. TPDS 2020.

Our Proposal

Semi-Supervised Method for Automated Sparse Matrix Format Selection

Semi-Supervised Format Selection via Clustering

- Create clusters to identify matrices with similar execution characteristics
- Benchmark a **few** matrices from each cluster to assign a label
- Quality of cluster C $quality(C) = \frac{max_f \ count(C, f)}{|c|}$

count(C, f) gives the number of matrices in cluster C having format f

Devising an Accurate Clustering and Labeling Scheme

- Naïve application of K-Means clustering gives poor results
- Our pipeline
 - Apply transformations (log or square root) to the feature set
 - Apply Min-max scaling to scale each feature to [0,1]
 - Use PCA to decompose the features to a vector of size 8
- How to find K?
 - More small clusters will increase accuracy
 - Few large clusters reduces training time and limits overfitting, but can be more inaccurate

Dissecting Clustering-based Format Selection

- Clusters will be invariant across platforms (ideal)
- Assignment of labels to clusters is platform-specific
- Benefits
 - Easy to port the model to a different architecture
 - Easy to include new sparse formats

Implementation and Platforms

- Implemented sparse format selection techniques with scikitlearn and TensorFlow libraries
- Used CUDA Toolkit 9.2 and CUSP library from NVIDIA

	Pascal	Volta	Turing
Model	GTX 1080	V100 SXM3	RTX 8000
# SMs	20	80	72
Memory (GB)	8 (GDDR5)	32 (HBM2)	48 (GDDR6)
Memory bandwidth	320 GB/s	897 GB/s	672 GB/s

Performance of Semi-Supervised Approaches in Local Setting

	# Clusters	MCC	ACC (%)	F1
K-Means + VOTE	300	0.629	88.2	0.877
K-Means + LR	150	0.537	86.0	0.845
K-Means + RF	200	0.631	87.5	0.873
Mean-Shift + VOTE	30	0.137	79.2	0.710
Mean-Shift + LR	30	0.111	79.0	0.705
Mean-Shift + RF	30	0.145	79.3	0.713
BIRCH + VOTE	150	0.622	88.1	0.874
BIRCH + LR	100	0.354	82.2	0.777
BIRCH + RF	200	0.628	87.9	0.874

ICPP Workshop 2021

Performance of Supervised Approaches in Local Setting

	MCC	ACC (%)	F1	GT	CSR	# Slowdown \geq 1.5X
DT	0.83	94.36	0.94	0.99	1.05	17
RF	0.85	95.04	0.95	1	1.05	11
SVM	0.81	93.85	0.94	0.99	1.04	21
KNN	0.85	94.81	0.95	0.99	1.05	15
XGBoost	0.87	95.62	0.96	1	1.05	11
CNN	0.72	90.45	0.94	0.98	1.04	14

Performance of Semi-Supervised Approaches in Transfer Setting

	# Clusters	0%	6 Training Dat	ta	25	25% Training Data				
		MCC	ACC (%)	F1	MCC	ACC (%)	F1			
K-Means+VOTE	1250	0.605	86.6	0.870	0.638	88.1	0.880			
<-Means+LR	125	0.582	87.2	0.861	0.592	87.5	0.863			
K-Means+RF	200	0.630	87.3	0.872	0.642	87.3	0.874			
BIRCH+VOTE	175	0.593	86.4	0.866	0.610	0.878	0.872			
BIRCH+LR	100	0.482	84.9	0.825	0.544	0.862	0.847			
BIRCH+RF	200	0.611	87.2	0.869	0.613	0.879	0.870			

Performance of Supervised Approaches in Transfer Setting

	0% Training Data					25% Training Data				
	MCC	ACC (%)	F1	GT	CSR	MCC	ACC (%)	F1	GT	CSR
DT	0.55	81.06	0.82	0.97	1.03	0.65	86.99	0.87	0.98	1.04
RF	0.63	84.85	0.86	0.98	1.04	0.70	88.94	0.89	0.96	1.05
SVM	0.64	85.49	0.86	0.98	1.04	0.68	88.04	0.88	0.98	1.04
KNN	0.46	76.23	0.78	0.95	1.01	0.54	81.08	0.83	0.96	1.02
XGBoost	0.49	77.47	0.79	0.96	1.02	0.60	83.58	0.85	0.97	1.03

Key Takeaways

- Semi-supervised approaches for sparse format selection can be competitive with supervised approaches
 - Explore additional techniques to improve the performance of semisupervised methods
 - Provides several desirable benefits including easy model portability, easy to include new data, and extend to a runtime with online learning

Explaining the Performance of Supervised and Semi-Supervised Methods for Automated Sparse Matrix Format Selection

Sunidhi Dhandhania, Akshay Deodhar, Konstantin Pogorelov, **Swarnendu Biswas**, and Johannes Langguth

DUAC, ICPP Workshops 2021