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Atomicity Violations
● Constitute 69%1 of all non-deadlock 

concurrency bugs

1. S. Lu et al. Learning from Mistakes: A Comprehensive Study on Real World Concurrency Bug 
Characteristics. In ASPLOS, 2008. 



Atomicity
● Concurrency correctness property
● Synonymous with serializability

○ Program execution must be equivalent to some serial 
execution of the atomic regions



Atomicity Violation Example

Thread 1 Thread 2

void execute() {

  while (...) {

     prepareList();

     processList();

     resetList();
  }

}

void execute() {

  while (...) {

     prepareList();

     processList();

     resetList();
  }

}



Atomicity Violation Example

Thread 1 Thread 2

void prepareList() {
   synchronized (l1) {

list.add(new Object());
   }
}

void processList() {
    synchronized (l1) {

Object head = list.get(0);
    }
}

   

void resetList() {
  synchronized (l1) {

list = null;
   }
}



Atomicity Violation Example

Thread 1 Thread 2

void prepareList() {
   synchronized (l1) {

list.add(new Object());
   }
}

void processList() {
    synchronized (l1) {

Object head = list.get(0);
    }
}

   

void resetList() {
  synchronized (l1) {

list = null;
   }
}

Null pointer 
dereference

Data-race-free program



Atomicity Violation Example

Thread 1 Thread 2

void execute() {

  while (...) {

     prepareList();

     processList();

     resetList();
  }

}

void execute() {

  while (...) {

     prepareList();

     processList();

     resetList();
  }

}

atomic



● Check for conflict serializability
○ Build a transactional dependence graph
○ Check for cycles

● Existing work
○ Velodrome, Flanagan et al., PLDI 2008
○ Farzan and Parthasarathy, CAV 2008

Detecting Atomicity Violations



Transactional Dependence Graph
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Cycle means Atomicity Violation 

wr o.f

wr o.g

rd o.f

wr o.f

acq lock

rel lock

tim
e

Thread 1 Thread 2 Thread 3

tra
ns

ac
tio

n



Velodrome1

● Paper reports 12.7X overhead
● 6.1X in our experiments

Prior Work is Slow

1. C. Flanagan et al. Velodrome: A Sound and Complete Dynamic Atomicity Checker for Multithreaded 
Programs. In PLDI, 2008. 



● Precise tracking is expensive
○ “last transaction(s) to read/write” for every 

field
○ Need atomic updates in instrumentation

High Overheads of Prior Work



Instrumentation Approach

Program access

Program access

Uninstrumented program Instrumented program



Precise Tracking is Expensive!

Program access

Update metadata 

Program access

Analysis-specific work

Uninstrumented program Instrumented program

Precise tracking 
of dependences

Can lead to remote 
cache misses for 
mostly read-only 
variables



Synchronized Updates are Expensive!
Lock metadata access

Program access

Unlock metadata access

Program access

Uninstrumented program Instrumented program
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Synchronized Updates are Expensive!
Lock metadata access

Program access

Unlock metadata access

Program access

Uninstrumented program Instrumented program

at
om

ic

synchronization 
on every access

slows programs 

at
om

ic



DoubleChecker



● Dynamic atomicity checker based on conflict 
serializability

● Precise
○ Sound and unsound operation modes

● Incurs 2-4 times lower overheads
● Makes dynamic atomicity checking more 

practical

DoubleChecker’s Contributions



Key Insights
● Avoid high costs of precise tracking of 

dependences at every access
○ Common case: no dependences

■ Most accesses are thread local



● Tracks dependences imprecisely
○ Soundly over-approximates dependences
○ Recovers precision when required
○ Turns out to be a lot cheaper

Key Insights



Staged Analysis
● Imprecise cycle detection (ICD)
● Precise cycle detection (PCD)



Imprecise Cycle Detection

● Processes every program access
● Soundly overapproximates dependences, is 

cheap
● Could have false positives

Program 
execution ICD

atomicity
specifications Imprecise 

cycles

sound
tracking



Precise Cycle Detection

● Processes a subset of program accesses
● Performs precise analysis
● No false positives

PCD
Precise 

violations
Imprecise 
cycles access 

information

static program 
locations



Staged Analyses: ICD and PCD
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ICD is Sound
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Role of ICD

● Most accesses in a program are thread-local
○ Uses Octet1 for tracking cross-thread dependences

● Acts as a dynamically sound transaction 
filter

1. M. Bond et al. Octet: Capturing and Controlling Cross-Thread Dependences Efficiently. In OOPSLA, 2013. 
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Role of PCD

● Processes transactions involved in an ICD 
cycle
○ Performs precise serializability analysis
○ PCD has to do much less work

■ Program conforming to its atomicity specification 
will have very few cycles

PCD
Precise 
violation

Imprecise 
cycles access 

information

static program 
locations



Different Modes of Operation
● Single-run mode
● Multi-run mode



 Single-Run Mode

ICD
ICD cycles

read/write logs

Program 
execution ICD+PCDatomicity

specifications

PCD

Atomicity 
violations



 Multi-run Mode
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● Multi-run mode
○ Conditionally instruments non-transactional 

accesses
■ Otherwise overhead increases by 29%

○ Could use Velodrome for the second run
■ But performance is worse

● Second run has to process many accesses
● ICD is still effective as a dynamic transaction filter

Design Choices



Examples
● Imprecise analysis
● Precise analysis
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Precise Analysis
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No Precise Violation
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Precise analysis
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Precise Violation
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● Implementation
● Atomicity specifications
● Experiments

Evaluation Methodology



Implementation
● DoubleChecker and Velodrome

○ Developed in Jikes RVM 3.1.3
○ Artifact successfully evaluated
○ Code shared on Jikes RVM Research Archive



Experimental Methodology
● Benchmarks

○ DaCapo 2006, 9.12-bach, Java Grande, other 
benchmarks used in prior work1

● Platform: 3.30 GHz 4-core Intel i5 processor

1. C. Flanagan et al. Velodrome: A Sound and Complete Dynamic Atomicity Checker for Multithreaded 
Programs. In PLDI, 2008. 



Atomicity Specifications
● Assume provided by the programmers
● We reuse prior work’s approach to infer the 

specifications

DoubleChecker/
Velodrome

atomicity
specification

All methods except 
main(), run(), 
callers of join(), 
wait(), etc.

new violations
reported?

Yes

No

considered 
non-atomic



Soundness Experiments
● Generated atomicity violations with

○ Velodrome - sound and precise
○ DoubleChecker

■ Single-run mode - sound and precise
■ Multi-run mode - unsound

● Results match closely for Velodrome and the 
single-run mode
○ Multi-run mode finds 83% of all violations



Performance Experiments



Performance Experiments

● Single-run mode - 1.9 times 
faster than Velodrome

● Multi-run mode
○ First run - 5.6 times faster
○ Second run - 3.7 times faster



● 2-4 times lesser overhead than current state-of-art
● Makes dynamic atomicity checking more 

practical

DoubleChecker



Related Work
● Type systems 

■ Flanagan and Qadeer, PLDI 2003
■ Flanagan et al., TOPLAS 2008

● Model checking
■ Farzan and Madhusudan, CAV 2006
■ Flanagan, SPIN 2004
■ Hatcliff et al., VMCAI 2004



Related Work
● Dynamic analysis

○ Conflict-serializability-based approaches
■ Flanagan et al., PLDI 2008; Farzan and Madhusudan, CAV 2008

○ Inferring atomicity 
■ Lu et al., ASPLOS 2006; Xu et al., PLDI 2005; Hammer et al., ICSE 2008

○ Predictive approaches
■ Sinha et al., MEMOCODE 2011; Sorrentino et al., FSE 2010

○ Other approaches
■ Wang and Stoller, PPoPP 2006; Wang and Stoller, TSE 2006



What Has DoubleChecker Achieved?

● Improved overheads over current state-of-
art
○ Makes dynamic atomicity checking more practical

● Cheaper to over-approximate 
dependences
○ Showcases a judicious separation of tasks to recover 

precision


