
DoubleChecker: Efficient
Sound and Precise

Atomicity Checking
Swarnendu Biswas,

Jipeng Huang, Aritra Sengupta, and Michael D. Bond
The Ohio State University

PLDI 2014

Impact of Concurrency Bugs

Impact of Concurrency Bugs

Northeastern blackout, 2003

Impact of Concurrency Bugs

Atomicity Violations
● Constitute 69%1 of all non-deadlock

concurrency bugs

1. S. Lu et al. Learning from Mistakes: A Comprehensive Study on Real World Concurrency Bug
Characteristics. In ASPLOS, 2008.

Atomicity
● Concurrency correctness property
● Synonymous with serializability

○ Program execution must be equivalent to some serial
execution of the atomic regions

Atomicity Violation Example

Thread 1 Thread 2

void execute() {

 while (...) {

 prepareList();

 processList();

 resetList();
 }

}

void execute() {

 while (...) {

 prepareList();

 processList();

 resetList();
 }

}

Atomicity Violation Example

Thread 1 Thread 2

void prepareList() {
 synchronized (l1) {

list.add(new Object());
 }
}

void processList() {
 synchronized (l1) {

Object head = list.get(0);
 }
}

void resetList() {
 synchronized (l1) {

list = null;
 }
}

Atomicity Violation Example

Thread 1 Thread 2

void prepareList() {
 synchronized (l1) {

list.add(new Object());
 }
}

void processList() {
 synchronized (l1) {

Object head = list.get(0);
 }
}

void resetList() {
 synchronized (l1) {

list = null;
 }
}

Null pointer
dereference

Data-race-free program

Atomicity Violation Example

Thread 1 Thread 2

void execute() {

 while (...) {

 prepareList();

 processList();

 resetList();
 }

}

void execute() {

 while (...) {

 prepareList();

 processList();

 resetList();
 }

}

atomic

● Check for conflict serializability
○ Build a transactional dependence graph
○ Check for cycles

● Existing work
○ Velodrome, Flanagan et al., PLDI 2008
○ Farzan and Parthasarathy, CAV 2008

Detecting Atomicity Violations

Transactional Dependence Graph

wr o.f

wr o.g

wr o.f

acq lock

rel lock

tim
e

Thread 1 Thread 2 Thread 3

tra
ns

ac
tio

n

Transactional Dependence Graph

wr o.f

wr o.g

wr o.f

acq lock

rel lock

tim
e

Thread 1 Thread 2 Thread 3

tra
ns

ac
tio

n

Cycle means Atomicity Violation

wr o.f

wr o.g

rd o.f

wr o.f

acq lock

rel lock

tim
e

Thread 1 Thread 2 Thread 3

tra
ns

ac
tio

n

Velodrome1

● Paper reports 12.7X overhead
● 6.1X in our experiments

Prior Work is Slow

1. C. Flanagan et al. Velodrome: A Sound and Complete Dynamic Atomicity Checker for Multithreaded
Programs. In PLDI, 2008.

● Precise tracking is expensive
○ “last transaction(s) to read/write” for every

field
○ Need atomic updates in instrumentation

High Overheads of Prior Work

Instrumentation Approach

Program access

Program access

Uninstrumented program Instrumented program

Precise Tracking is Expensive!

Program access

Update metadata

Program access

Analysis-specific work

Uninstrumented program Instrumented program

Precise tracking
of dependences

Can lead to remote
cache misses for
mostly read-only
variables

Synchronized Updates are Expensive!
Lock metadata access

Program access

Unlock metadata access

Program access

Uninstrumented program Instrumented program

at
om

ic

at
om

ic

Synchronized Updates are Expensive!
Lock metadata access

Program access

Unlock metadata access

Program access

Uninstrumented program Instrumented program

at
om

ic

synchronization
on every access

slows programs

at
om

ic

DoubleChecker

● Dynamic atomicity checker based on conflict
serializability

● Precise
○ Sound and unsound operation modes

● Incurs 2-4 times lower overheads
● Makes dynamic atomicity checking more

practical

DoubleChecker’s Contributions

Key Insights
● Avoid high costs of precise tracking of

dependences at every access
○ Common case: no dependences

■ Most accesses are thread local

● Tracks dependences imprecisely
○ Soundly over-approximates dependences
○ Recovers precision when required
○ Turns out to be a lot cheaper

Key Insights

Staged Analysis
● Imprecise cycle detection (ICD)
● Precise cycle detection (PCD)

Imprecise Cycle Detection

● Processes every program access
● Soundly overapproximates dependences, is

cheap
● Could have false positives

Program
execution ICD

atomicity
specifications Imprecise

cycles

sound
tracking

Precise Cycle Detection

● Processes a subset of program accesses
● Performs precise analysis
● No false positives

PCD
Precise

violations
Imprecise
cycles access

information

static program
locations

Staged Analyses: ICD and PCD

Program
execution ICDatomicity

specifications
Imprecise
cycles

PCD

sound
tracking

Precise
violations access

information

static program
locations

ICD is Sound

Program
execution ICDatomicity

specifications
Imprecise
cycles

PCD

sound
tracking

Precise
violations access

information

true

atomicity

violationsstatic program
locations

Role of ICD

● Most accesses in a program are thread-local
○ Uses Octet1 for tracking cross-thread dependences

● Acts as a dynamically sound transaction
filter

1. M. Bond et al. Octet: Capturing and Controlling Cross-Thread Dependences Efficiently. In OOPSLA, 2013.

Program
execution ICD

atomicity
specifications Imprecise

cycles

sound
tracking

Role of PCD

● Processes transactions involved in an ICD
cycle
○ Performs precise serializability analysis
○ PCD has to do much less work

■ Program conforming to its atomicity specification
will have very few cycles

PCD
Precise
violation

Imprecise
cycles access

information

static program
locations

Different Modes of Operation
● Single-run mode
● Multi-run mode

 Single-Run Mode

ICD
ICD cycles

read/write logs

Program
execution ICD+PCDatomicity

specifications

PCD

Atomicity
violations

 Multi-run Mode

Program
execution ICD+PCD

Atomicity
violations

monitored
transactions

First run

Second run

Program
execution ICD

Potentially
imprecise

cycles

atomicity
specifications

Static transaction
information

sound
tracking

● Multi-run mode
○ Conditionally instruments non-transactional

accesses
■ Otherwise overhead increases by 29%

○ Could use Velodrome for the second run
■ But performance is worse

● Second run has to process many accesses
● ICD is still effective as a dynamic transaction filter

Design Choices

Examples
● Imprecise analysis
● Precise analysis

Imprecise Analysis

tim
e

wr o.f
(WrExT1)

Thread 1 Thread 4Thread 2 Thread 3

tra
ns

ac
tio

n

Imprecise Analysis

tim
e

wr o.f
(WrExT1)

Thread 1 Thread 4Thread 2 Thread 3

Imprecise Analysis

tim
e

wr o.f
(WrExT1)

Thread 1 Thread 4Thread 2 Thread 3

rd o.g
(RdExT2)

Imprecise Analysis

tim
e

wr o.f
(WrExT1)

Thread 1 Thread 4Thread 2 Thread 3

rd o.g
(RdExT2)

rd o.f
(RdShc)

Imprecise Analysis

tim
e

wr o.f
(WrExT1)

Thread 1 Thread 4Thread 2 Thread 3

rd o.g
(RdExT2)

rd o.f
(RdShc)

rd o.h
(fence)

Imprecise Analysis

tim
e

wr o.f
(WrExT1)

Thread 1 Thread 4Thread 2 Thread 3

rd o.g
(RdExT2)

rd o.f
(RdShc)

rd o.h
(fence)

wr o.f
(WrExT1)

Precise Analysis

tim
e

Thread 1 Thread 4Thread 2 Thread 3

rd o.g

rd o.f

rd o.h

wr o.f

No Precise Violation

tim
e

Thread 1 Thread 4Thread 2 Thread 3

rd o.g

rd o.f

rd o.h

wr o.f

ICD Cycle

tim
e

wr o.f
(WrExT1)

Thread 1 Thread 4Thread 2 Thread 3

rd o.g
(RdExT2)

rd o.h
(RdExT2) rd o.f

(RdShc) rd o.h
(fence)

wr o.f
(WrExT1)

Precise analysis

tim
e

wr o.f

Thread 1 Thread 4Thread 2 Thread 3

rd o.g

rd o.h
rd o.f

rd o.h
wr o.f

Precise Violation

tim
e

wr o.f

Thread 1 Thread 4Thread 2 Thread 3

rd o.g

rd o.h
rd o.f

rd o.h
wr o.f

● Implementation
● Atomicity specifications
● Experiments

Evaluation Methodology

Implementation
● DoubleChecker and Velodrome

○ Developed in Jikes RVM 3.1.3
○ Artifact successfully evaluated
○ Code shared on Jikes RVM Research Archive

Experimental Methodology
● Benchmarks

○ DaCapo 2006, 9.12-bach, Java Grande, other
benchmarks used in prior work1

● Platform: 3.30 GHz 4-core Intel i5 processor

1. C. Flanagan et al. Velodrome: A Sound and Complete Dynamic Atomicity Checker for Multithreaded
Programs. In PLDI, 2008.

Atomicity Specifications
● Assume provided by the programmers
● We reuse prior work’s approach to infer the

specifications

DoubleChecker/
Velodrome

atomicity
specification

All methods except
main(), run(),
callers of join(),
wait(), etc.

new violations
reported?

Yes

No

considered
non-atomic

Soundness Experiments
● Generated atomicity violations with

○ Velodrome - sound and precise
○ DoubleChecker

■ Single-run mode - sound and precise
■ Multi-run mode - unsound

● Results match closely for Velodrome and the
single-run mode
○ Multi-run mode finds 83% of all violations

Performance Experiments

Performance Experiments

● Single-run mode - 1.9 times
faster than Velodrome

● Multi-run mode
○ First run - 5.6 times faster
○ Second run - 3.7 times faster

● 2-4 times lesser overhead than current state-of-art
● Makes dynamic atomicity checking more

practical

DoubleChecker

Related Work
● Type systems

■ Flanagan and Qadeer, PLDI 2003
■ Flanagan et al., TOPLAS 2008

● Model checking
■ Farzan and Madhusudan, CAV 2006
■ Flanagan, SPIN 2004
■ Hatcliff et al., VMCAI 2004

Related Work
● Dynamic analysis

○ Conflict-serializability-based approaches
■ Flanagan et al., PLDI 2008; Farzan and Madhusudan, CAV 2008

○ Inferring atomicity
■ Lu et al., ASPLOS 2006; Xu et al., PLDI 2005; Hammer et al., ICSE 2008

○ Predictive approaches
■ Sinha et al., MEMOCODE 2011; Sorrentino et al., FSE 2010

○ Other approaches
■ Wang and Stoller, PPoPP 2006; Wang and Stoller, TSE 2006

What Has DoubleChecker Achieved?

● Improved overheads over current state-of-
art
○ Makes dynamic atomicity checking more practical

● Cheaper to over-approximate
dependences
○ Showcases a judicious separation of tasks to recover

precision

