
Lightweight Data Race Detection
for Production Runs

Swarnendu Biswas, UT Austin
Man Cao, Ohio State University

Minjia Zhang, Microsoft Research
Michael D. Bond, Ohio State University
Benjamin P. Wood, Wellesley College

CC 2017

A Java Program With a Data Race

X = new Object();
done = true;

Thread T1

while (!done) {}
X.compute();

Thread T2

Object X = null;
boolean done= false;

X = new Object();
done = true;

Thread T1

while (!done) {}
X.compute();

write

Thread T2

Object X = null;
boolean done= false;

read

Data race Conflicting accesses – two threads access the same shared
variable where at least one access is a write

Concurrent accesses – accesses are not ordered by
synchronization operations

done = true;

X = new Object();

while (!done) {}
X.compute();

Thread T1 Thread T2

NPE

X = new Object();

done = true;

temp = done;

while (!temp) {}

Thread T1 Thread T2

Infinite loop

LI
C

M

Data Races

are Evil

● Challenging to reason about the

correctness of racy executions

○ May unpredictably break code

● Lack of semantic guarantees in most

mainstream multithreaded languages

● Usually indicate other concurrency errors

○ Atomicity, order, or sequential consistency

violations

• S. Adve and H. Boehm. Memory Models: A Case for Rethinking Parallel Languages and Hardware. CACM

2010.

• S. Adve. Data Races Are Evil with No Exceptions: Technical Perspective. CACM 2010.

Far-Reaching Impact of Data Races

~50 million
people affected

Get Rid of Data Races!!!

Avoiding and/or eliminating data races

efficiently is a challenging and unsolved problem

Data Race Detection on Production Systems

No satisfactory solution to date

Avoiding and/or eliminating data races

efficiently is a challenging and unsolved problem

Data Race Detection Techniques

Static and predictive analyses

• Too many false positives, do not scale

Data Race Detection Techniques

Dynamic
analysis

Lockset analysis Expensive, reports many false
positives

Happens-before analysis Sound and precise

Expensive, not scalable, incurs
space overhead

Coverage limited to observed
executions

sound – no missed races
precise – no false races

C. Flanagan and S. Freund. FastTrack: Efficient and Precise Dynamic Data Race Detection. PLDI 2009.

Existing Approaches for Data Race Detection on
Production Runs

• Happens-before-based sampling approaches
• E.g., LiteRace1, Pacer2

• Overheads are still too high for a reasonable sampling rate
• Pacer with 3% sampling rate incurs 86% overhead!!!

1. D. Marino et al. LiteRace: Effective Sampling for Lightweight Data-Race Detection. PLDI 2009.
2. M. D. Bond et al. Pacer: Proportional Detection of Data Races. PLDI 2010.

Existing Approaches for Data Race Detection on
Production Runs

• Happens-before-based sampling approaches
• E.g., LiteRace1, Pacer2

• Overheads are still too high for a reasonable sampling rate
• Pacer with 3% sampling rate incurs 86% overhead!!!

• RaceMob3

• Optimizes tracking of happens-before relations

• Monitors only one race per run to minimize overhead

• Cannot bound overhead, limited scalability and coverage

1. D. Marino et al. LiteRace: Effective Sampling for Lightweight Data-Race Detection. PLDI 2009.
2. M. D. Bond et al. Pacer: Proportional Detection of Data Races. PLDI 2010.
3. B. Kasikci et al. RaceMob: Crowdsourced Data Race Detection. SOSP 2013.

Existing Approaches for Data Race Detection on
Production Runs

• DataCollider4

• Tries to collide racy accesses, synchronization oblivious

• Samples accesses, and uses hardware debug registers for performance

• Dependence on debug registers
• Not portable, and may not scale well

• Few debug registers

• Cannot bound overhead

4. J. Erickson et al. Effective Data-Race Detection for the Kernel. OSDI 2009.

Outline Data Races

Problems and Challenges

Data Race Detection in Production Systems

Drawbacks of existing approaches

Our contribution: efficient, complementary

analyses

RaceChaser: Precise data race detection

Caper: Sound data race detection

Our Insight

Decouple data race detection into two lightweight and
complementary analysis

Our Contributions

Decouple data race detection into two lightweight and
complementary analysis

RaceChaser – Precise data race detector

• Under-approximates data races

Caper – Dynamically sound data race detector

• Over-approximates data races

Can miss true
data races

Can report false
data races

Ef
fi

ci
e

n
t

RaceChaser: Precise Data Race Detection

Desired Properties:

● Performance and Scalability ?

● Bounded time and space overhead ?

● Coverage and Portability ?

Design:

• Monitor one data race (two source locations) per run

• Use collision analysis

• Bound overhead introduced

RaceChaser Algorithm

RaceChaser

Two static sites

involved in a

potential data race

Max overhead 5%

True data

race!

avrora.sim.radio.Medium:access$302()

byte offset 0

←→

avrora.sim.radio.Medium:access$402()

byte offset 2

Data race not

reproduced

• Limited to one potential
race pair

Instrumenting Racy
Accesses

avrora.sim.radio.Medium:

access$302() byte offset 0

avrora.sim.radio.Medium:

access$402() byte offset 2

• Use frequency of
samples taken

and
• Compute overhead

introduced by waiting

Randomly Sample
Racy Accesses

Dynamic instance
992

Dynamic instance
993

Sampled

avrora.sim.radio.Medium:

access$302() byte offset 0

avrora.sim.radio.Medium:

access$402() byte offset 2

• Block thread for some
time

Try to Collide Racy
Accesses

Dynamic instance
992

Dynamic instance
993

avrora.sim.radio.Medium:

access$302() byte offset 0

avrora.sim.radio.Medium:

access$402() byte offset 2

Sampled

Collision is
Successful

Dynamic instance
992

Dynamic instance
993

Dynamic instance
215

True data race
detected

avrora.sim.radio.Medium:

access$302() byte offset 0

avrora.sim.radio.Medium:

access$402() byte offset 2

Sampled

• Thread unblocks,
resets the analysis
state, and continues
execution

Collision is
Unsuccessful

Dynamic instance
992

Dynamic instance
993

Next instruction

avrora.sim.radio.Medium:

access$302() byte offset 0

avrora.sim.radio.Medium:

access$402() byte offset 2

Sampled

Evaluation

of

RaceChaser

• Implementation is publicly available

• Jikes RVM 3.1.3

• Benchmarks

• Large workload sizes of DaCapo 2006 and 9.12-

bach suite

• Fixed-workload versions of SPECjbb2000 and

SPECjbb2005

• Platform

• 64-core AMD Opteron 6272

0

5

10

15

20

25

30

35

40

45

50

hsqdb6 lusearch6 xalan6 avrora9 luindex9 lusearch9 sunflow9 xalan9 pjbb2000 pjbb2005 geomean

Run-time Overhead (%) of RaceChaser

RaceChaser (max = 0%) RaceChaser (max = 5%) RaceChaser (max = 10%) LiteHB FullHB

20%

37%

< 2%

1. B. Kasikci et al. RaceMob: Crowdsourced Data Race Detection. SOSP 2013.

adapted from

Effectiveness

of

RaceChaser

• Collision analysis can potentially detect data

races that are hidden by spurious happens-

before relations

• Data race coverage of collision analysis

depends on the perturbation and the delay

• Prior studies seem to indicate that data races often

occur close in time

• RaceChaser did as well as RaceMob/LiteHB

over a number of runs

Outline Data Races

Problems and Challenges

Data Race Detection in Production Systems

Drawbacks of existing approaches

Our contribution: efficient,

complementary analyses

RaceChaser: Precise data race detection

Caper: Sound data race detection

Sound, Efficient Data Race Detection

Use static analysis offline

Options

Use dynamic analysis online

Too many false
positives

Efficient enough for
production runs?

Caper: Sound Data Race Detection

Input

program

Caper

algorithm
Set of potential

race pairs

m
u

lt
ip

le

ru
n

s

Static

analysis

Dynamic

analysis

dynamically
sound

Caper Algorithm

Static

analysis

Dynamic

analysis

Static data

race detector

Dynamic

analysis

m
u
lt
ip

le

ru
n

s dynamic race

pairs (dpPairs)

Input

program

Input

program

Static race
pairs (spPairs)

Set of potential

race pairs

Sound Dynamic Escape Analysis for Data Race Detection

Reachability-based
analysis

ESCAPED

q

f

ESCAPED

g

p
q.f = p

q

f

ESCAPED

g

NOT_ESCAPED

p
NOT_ESCAPED

ESCAPED

Caper’s Dynamic Analysis

deSites = { s | (∃ s’ |〈s, s’〉∈ spPairs ⋃ dpPairs) ∧

s escaped in an analyzed execution }

dpPairs = {〈s1, s2〉| s1 ∈ deSites ∧ s2 ∈ deSites }

0

20

40

60

80

100

120

hsqldb6 lusearch6 xalan6 avrora9 luindex9 lusearch9 sunflow9 xalan9 pjbb2000 pjbb2005 geomean

Run-time Overhead (%) of Caper

DEA Caper (first run) Caper (steady state)

27%

3%
9%

Effectiveness of Caper

Sound static data
race detector

Caper Dynamic alias
analysis

hsqldb6 212,205 1,612 757

lusearch6 4,692 302 292

xalan6 83,488 1,241 581

avrora9 61,193 19,941 570

luindex9 10,257 192 193

lusearch9 7,303 34 39

sunflow9 28,587 200 1,086

xalan9 20,036 1,861 600

pjbb2000 29,604 11,243 1,679

pjbb2005 2,552 984 447

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400

%
 o

f
d

yn
am

ic
 a

cc
e

ss
e

s
th

at
 n

e
e

d
 t

o
 b

e

in
st

ru
m

e
n

te
d

Run-time overhead (%)

Efficiency vs Precision

Dynamic alias
analysisCaper

Static data race detector,
e.g., Chord

Usefulness

of Caper

• Improve performance of analyses whose

correctness relies on knowing all data

races

Record and replay systems

Atomicity checking

Software transactional memory

• Generate potential data races for analyses

like RaceChaser/RaceMob/DataCollider

Lightweight Data Race Detection
for Production Runs

Swarnendu Biswas, UT Austin
Man Cao, Ohio State University

Minjia Zhang, Microsoft Research
Michael D. Bond, Ohio State University
Benjamin P. Wood, Wellesley College

CC 2017

