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A Java Program With a Data Race

X = new Object();
done = true;

Thread T1

while (!done) {}
X.compute();

Thread T2

Object X = null;
boolean done= false;



X = new Object();
done = true;

Thread T1

while (!done) {}
X.compute();

write

Thread T2

Object X = null;
boolean done= false;

read

Data race Conflicting accesses – two threads access the same shared 
variable where at least one access is a write

Concurrent accesses – accesses are not ordered by 
synchronization operations



done = true;

X = new Object();

while (!done) {} 
X.compute();

Thread T1 Thread T2

NPE

X = new Object();

done = true;

temp = done;

while (!temp) {} 

Thread T1 Thread T2

Infinite loop
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Data Races 

are Evil

● Challenging to reason about the 

correctness of racy executions

○ May unpredictably break code

● Lack of semantic guarantees in most 

mainstream multithreaded languages

● Usually indicate other concurrency errors

○ Atomicity, order, or sequential consistency 

violations

• S. Adve and H. Boehm. Memory Models: A Case for Rethinking Parallel Languages and Hardware. CACM 

2010.

• S. Adve. Data Races Are Evil with No Exceptions: Technical Perspective. CACM 2010.



Far-Reaching Impact of Data Races

~50 million 
people affected



Get Rid of Data Races!!!

Avoiding and/or eliminating data races 

efficiently is a challenging and unsolved problem



Data Race Detection on Production Systems

No satisfactory solution to date

Avoiding and/or eliminating data races 

efficiently is a challenging and unsolved problem



Data Race Detection Techniques

Static and predictive analyses

• Too many false positives, do not scale



Data Race Detection Techniques

Dynamic 
analysis

Lockset analysis Expensive, reports many false 
positives

Happens-before analysis Sound and precise

Expensive, not scalable, incurs 
space overhead

Coverage limited to observed 
executions

sound – no missed races
precise – no false races

C. Flanagan and S. Freund. FastTrack: Efficient and Precise Dynamic Data Race Detection. PLDI 2009.



Existing Approaches for Data Race Detection on 
Production Runs

• Happens-before-based sampling approaches
• E.g., LiteRace1, Pacer2

• Overheads are still too high for a reasonable sampling rate
• Pacer with 3% sampling rate incurs 86% overhead!!!

1. D. Marino et al. LiteRace: Effective Sampling for Lightweight Data-Race Detection. PLDI 2009.
2. M. D. Bond et al. Pacer: Proportional Detection of Data Races. PLDI 2010.



Existing Approaches for Data Race Detection on 
Production Runs

• Happens-before-based sampling approaches
• E.g., LiteRace1, Pacer2

• Overheads are still too high for a reasonable sampling rate
• Pacer with 3% sampling rate incurs 86% overhead!!!

• RaceMob3

• Optimizes tracking of happens-before relations

• Monitors only one race per run to minimize overhead

• Cannot bound overhead, limited scalability and coverage

1. D. Marino et al. LiteRace: Effective Sampling for Lightweight Data-Race Detection. PLDI 2009.
2. M. D. Bond et al. Pacer: Proportional Detection of Data Races. PLDI 2010.
3. B. Kasikci et al. RaceMob: Crowdsourced Data Race Detection. SOSP 2013.



Existing Approaches  for Data Race Detection on 
Production Runs

• DataCollider4

• Tries to collide racy accesses, synchronization oblivious

• Samples accesses, and uses hardware debug registers for performance

• Dependence on debug registers
• Not portable,  and may not scale well

• Few debug registers

• Cannot bound overhead

4. J. Erickson et al. Effective Data-Race Detection for the Kernel. OSDI 2009.



Outline Data Races

Problems and Challenges

Data Race Detection in Production Systems

Drawbacks of existing approaches

Our contribution: efficient, complementary 

analyses

RaceChaser: Precise data race detection

Caper: Sound data race detection



Our Insight

Decouple data race detection into two lightweight and 
complementary analysis



Our Contributions

Decouple data race detection into two lightweight and 
complementary analysis

RaceChaser – Precise data race detector

• Under-approximates data races

Caper – Dynamically sound data race detector

• Over-approximates data races

Can miss true 
data races

Can report false 
data races
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RaceChaser: Precise Data Race Detection

Desired Properties:

● Performance and Scalability ?

● Bounded time and space overhead ?

● Coverage and Portability ?

Design: 

• Monitor one data race (two source locations) per run 

• Use collision analysis

• Bound overhead introduced



RaceChaser Algorithm

RaceChaser

Two static sites 

involved in a 

potential data race

Max overhead 5%

True data 

race!

avrora.sim.radio.Medium:access$302()

byte offset 0 

←→ 

avrora.sim.radio.Medium:access$402() 

byte offset 2

Data race not 

reproduced



• Limited to one potential 
race pair

Instrumenting Racy 
Accesses

avrora.sim.radio.Medium:

access$302() byte offset 0 

avrora.sim.radio.Medium:

access$402() byte offset 2 



• Use frequency of 
samples taken

and
• Compute overhead 

introduced by waiting

Randomly Sample 
Racy Accesses

Dynamic instance 
992

Dynamic instance 
993

Sampled

avrora.sim.radio.Medium:

access$302() byte offset 0 

avrora.sim.radio.Medium:

access$402() byte offset 2 



• Block thread for some 
time

Try to Collide Racy 
Accesses

Dynamic instance 
992

Dynamic instance 
993

avrora.sim.radio.Medium:

access$302() byte offset 0 

avrora.sim.radio.Medium:

access$402() byte offset 2 

Sampled



Collision is 
Successful

Dynamic instance 
992

Dynamic instance 
993

Dynamic instance 
215

True data race 
detected

avrora.sim.radio.Medium:

access$302() byte offset 0 

avrora.sim.radio.Medium:

access$402() byte offset 2 

Sampled



• Thread unblocks, 
resets the analysis 
state, and continues 
execution

Collision  is 
Unsuccessful

Dynamic instance 
992

Dynamic instance 
993

Next instruction

avrora.sim.radio.Medium:

access$302() byte offset 0 

avrora.sim.radio.Medium:

access$402() byte offset 2 

Sampled



Evaluation 

of 

RaceChaser

• Implementation is publicly available

• Jikes RVM 3.1.3

• Benchmarks 

• Large workload sizes of DaCapo 2006 and 9.12-

bach suite

• Fixed-workload versions of SPECjbb2000 and 

SPECjbb2005 

• Platform 

• 64-core AMD Opteron 6272
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1. B. Kasikci et al. RaceMob: Crowdsourced Data Race Detection. SOSP 2013.

adapted from



Effectiveness 

of 

RaceChaser

• Collision analysis can potentially detect data 

races that are hidden by spurious happens-

before relations

• Data race coverage of collision analysis 

depends on the perturbation and the delay 

• Prior studies seem to indicate that data races often 

occur close in time

• RaceChaser did as well as RaceMob/LiteHB 

over a number of runs



Outline Data Races

Problems and Challenges

Data Race Detection in Production Systems

Drawbacks of existing approaches

Our contribution: efficient, 

complementary analyses

RaceChaser: Precise data race detection

Caper: Sound data race detection



Sound, Efficient Data Race Detection

Use static analysis offline

Options

Use dynamic analysis online

Too many false 
positives

Efficient enough for 
production runs?



Caper: Sound Data Race Detection

Input 

program

Caper 

algorithm
Set of potential 

race pairs
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dynamically 
sound



Caper Algorithm

Static 

analysis

Dynamic 

analysis

Static data 

race detector

Dynamic 

analysis
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Set of potential 
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Sound Dynamic Escape Analysis for Data Race Detection

Reachability-based 
analysis
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Caper’s Dynamic Analysis

deSites =  { s | ( ∃ s’ |〈s, s’〉∈ spPairs ⋃ dpPairs) ∧

s escaped in an analyzed execution } 

dpPairs = {〈s1, s2〉| s1 ∈ deSites ∧ s2 ∈ deSites }
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Effectiveness of Caper

Sound static data 
race detector

Caper Dynamic alias 
analysis

hsqldb6 212,205 1,612 757

lusearch6 4,692 302 292

xalan6 83,488 1,241 581

avrora9 61,193 19,941 570

luindex9 10,257 192 193

lusearch9 7,303 34 39

sunflow9 28,587 200 1,086

xalan9 20,036 1,861 600

pjbb2000 29,604 11,243 1,679

pjbb2005 2,552 984 447
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Usefulness 

of Caper

• Improve performance of analyses whose 

correctness relies on knowing all data 

races

Record and replay systems

Atomicity checking

Software transactional memory

• Generate potential data races for analyses 

like RaceChaser/RaceMob/DataCollider
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