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Abstract
Shared-memory languages and systems generally provide weak or
undefined semantics for executions with data races. Prior work
has proposed memory consistency models that ensure well-defined,
easy-to-understand semantics based on region serializability (RS),
but the resulting system may throw a consistency exception in
the presence of a data race. Consistency exceptions can occur
unexpectedly even in well-tested programs, hurting availability and
thus limiting the practicality of RS-based memory models.

To our knowledge, this paper is the first to consider the problem
of availability for memory consistency models that throw consis-
tency exceptions. We first extend existing approaches that enforce
RSx, a memory model based on serializability of synchronization-
free regions (SFRs), to avoid region conflicts and thus consistency
exceptions. These new approaches demonstrate both the potential
for and limitations of avoiding consistency exceptions under RSx.
To improve availability further, we introduce (1) a new memory
model called RIx based on isolation of SFRs and (2) a new ap-
proach called Avalon that provides RIx. We demonstrate two vari-
ants of Avalon that offer different performance–availability trade-
offs for RIx.

An evaluation on real Java programs shows that this work’s
novel approaches are able to reduce consistency exceptions, thereby
improving the applicability of strong memory consistency mod-
els. Furthermore, the approaches provide compelling points in the
performance–availability tradeoff space for memory consistency
enforcement. RIx and Avalon thus represent a promising direction
for tackling the challenge of availability under strong consistency
models that throw consistency exceptions.

CCS Concepts •Software and its engineering→ Runtime en-
vironments

Keywords Memory consistency models; data races
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1. Introduction
Compilers and architectures for shared-memory parallel programs
perform intra-thread optimizations assuming no interactions with
concurrent threads. To avoid visibly affecting program semantics,
these optimizations are restricted from reordering across synchro-
nization operations (e.g., lock acquire and release). Under these re-
strictions, code regions between synchronization operations appear
to execute atomically—but only for program executions that are
free of data races (conflicting accesses to the same variable that
are not ordered by synchronization operations) [2, 4]. However,
for executions with data races, compiler and hardware optimiza-
tions lead to behaviors that are ill-defined in theory and erroneous
in practice [2, 4, 18, 22, 26, 28, 38, 41, 47, 66, 75, 78].

To address this semantic hole, which afflicts programs writ-
ten in widely used shared-memory languages including C++ and
Java [20, 61, 78], researchers have proposed memory models that
provide well-defined semantics for all program executions [7, 14,
15, 35, 59, 60, 62, 63, 68, 74, 76, 80, 81, 84, 92]. Notable among
these models are those that provide fail-stop semantics for data
races, throwing a consistency exception for a data race that may
violate consistency guarantees [14, 15, 35, 59, 62, 74, 80, 92] (Sec-
tion 2). Consistency exceptions seem to be an inherent feature of
memory models that provide region serializability, as Section 2 ex-
plains.

Problem. In today’s systems, data races have undefined behavior,
leading to observable errors sporadically (e.g., under a new com-
piler or a rare thread interleaving). In contrast, in a world where the
default is a memory model with fail-stop behavior for data races,
programs will have well-defined semantics but might throw consis-
tency exceptions. This situation is analogous to memory errors such
as buffer overflows, for which unsafe languages such as C++ give
undefined behavior, while memory- and type-safe languages such
as Java provide fail-stop semantics.

Even well-tested software has data races that manifest under
some production environments, inputs, or thread interleavings [52,
69, 85]—which under fail-stop semantics will lead to unexpected
consistency exceptions. Unexpected exceptions hurt an execution’s
availability (this paper’s term for the duration a program can ex-
ecute without throwing exceptions), losing some or all of a pro-
gram’s work and thus translating into degradation of performance
or quality of service (Section 2).

Our approach. To the best of our knowledge, this paper is
the first to consider and address the problem of availability in
memory consistency models that generate consistency exceptions.
Our first step in this paper is to extend enforcement of an exist-
ing strong memory model called RSx based on serializability of
synchronization-free regions [14, 15, 59], to avoid region conflicts,
and thus consistency exceptions, by pausing a thread that is about
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to perform a conflicting access. While these extensions improve
availability significantly, their efficacy is limited by the need to
provide strict serializability

In an effort to improve availability further, we introduce a new
memory model called RIx based on isolation of synchronization-
free regions. For an execution with a data race, RIx generates a
consistency exception or ensures isolation of executing regions—a
guarantee based on snapshot isolation [11, 36, 39, 50, 55, 56, 70]
that is not as strong as strict serializability.

To enforce RIx, we introduce a software approach called Ava-
lon. RIx’s semantics permit Avalon to tolerate read–write conflicts
safely, allowing the conflicting write’s region to proceed until its
end. Interestingly, Avalon provides isolation of regions, or else it
deadlocks due to a dependence cycle of waiting on conflicts from
true data races. Avalon detects such deadlocks and throws a consis-
tency exception.

RIx not only enables an approach (Avalon) that helps avoid con-
sistency exceptions, but it also allows trading some of these avoid-
ance benefits for better performance. We show that Avalon can op-
tionally detect read–write conflicts imprecisely (risking false con-
flicts, but not missing true conflicts) without jeopardizing support
for RIx. We leverage this idea to introduce a variant of Avalon,
called Avalon-I, that represents variables’ last reader information
imprecisely, enabling lower run-time costs and complexity than the
precise variant, which we call Avalon-P.

Our evaluation on benchmarked versions of large, real programs
shows that Avalon-P, Avalon-I, and our extended RSx-based ap-
proaches provide significantly better availability, at competitive
cost, than approaches from prior work. Avalon-P provides signif-
icantly better availability than the extended RSx-based approaches,
at comparable cost. Avalon-I’s imprecise conflict detection leads to
lower overhead but also lower availability than Avalon-P.

Contributions. This paper makes the following contributions:

• extended designs of RSx-enforcement approaches that provide
best-effort avoidance of consistency exceptions;
• a new memory consistency model called RIx;
• Avalon, a run-time approach that enforces RIx, with two ver-

sions that offer different availability–performance tradeoffs;
• a study of RIx’s effectiveness at avoiding erroneous behaviors

allowed by weak memory models; and
• a performance–availability evaluation that demonstrates new,

compelling points in the design space.

2. Background and Motivation
This section motivates the benefits and challenges of memory con-
sistency models that provide fail-stop semantics.

Modern shared-memory languages such as Java and C++ pro-
vide variants of the DRF0 memory model, introduced by Adve and
Hill in 1990 [4, 20, 61]. DRF0 (and its variants) provide a strong
guarantee for well-synchronized, or data-race-free, executions: se-
rializability of synchronization-free regions (SFRs) [2, 59].1 An
SFR is a dynamic sequence of executed instructions bounded by
synchronization operations (e.g., lock acquires and releases) with
no intervening synchronization operations. Every executed non-
synchronization instruction is in exactly one SFR. An execution
is region serializable if it is equivalent to some serial execution of
regions (i.e., some total order of non-interleaved regions).

However, for executions with data races, DRF0 provides weak
or no behavior guarantees [2, 18, 19, 21, 22]. C++’s memory

1 DRF0 also provides sequential consistency (SC) [51] for DRF0 execu-
tions. SFR serializability implies SC.

model gives undefined semantics for data races [20]. The Java
memory model (JMM) provides weak, complex guarantees for
executions with data races, in an effort to preserve memory and
type safety [61]. However, the JMM precludes common Java virtual
machine (JVM) compiler optimizations [78]. In practice, JVMs
perform optimizations that violate the JMM [22, 78].

Despite much effort by researchers and practitioners, data races
are difficult to avoid, detect, and fix [1, 14, 23, 24, 29, 35, 37, 38, 40,
48, 64, 65, 67, 71, 73, 77, 86, 87, 96]. Data races can manifest only
under certain environments, inputs, and thread interleavings [43,
58, 85, 97]. Data races thus occur unexpectedly in production
systems, sometimes with severe consequences [52, 69, 85].

Despite the shortcomings of DRF0-based memory models, lan-
guages and systems continue to use them in order to maximize per-
formance. DRF0 permits compilers and hardware to perform un-
inhibited intra-thread optimizations within SFRs. Any attempt to
provide stronger consistency must consider the impact of restrict-
ing optimizations.

Sequential consistency. Much work has focused on providing
sequential consistency (SC) as the memory consistency model [2,
3, 42, 53, 54, 63, 72, 79, 81, 84].

An execution is SC if its operations appear to interleave in
some order that conforms to program order [51].

Enforcing end-to-end SC (i.e., SC with respect to the original pro-
gram) requires restricting optimizations by both the compiler and
hardware. (Enforcing SC in the compiler or hardware alone does
not provide end-to-end SC.) SC does not necessarily provide a
compelling strength–performance tradeoff. Programmers tend to
think at a granularity larger than individual memory accesses, Adve
and Boehm argue that “programmers do not reason about correct-
ness of parallel code in terms of interleavings of individual memory
accesses” [2]. We find that SC does not eliminate some errors due
to data races (Section 8.7).

Region serializability. In contrast, memory consistency based on
region serializability [7, 14, 15, 59, 60, 68, 76] requires fewer or no
restrictions on compiler and hardware optimizations. Furthermore,
region serializability is strictly stronger than SC. We define RS as a
property of executions that are SFR serializable:

An execution is RS if it is equivalent to a serialization of
SFRs.

RS places no new restrictions on compiler and hardware optimiza-
tions, which already respect synchronization boundaries.

Prior work introduces a memory model, which we call RSx, that
treats data races as fail-stop errors [59]:

RSx is a memory model that either ensures RS or generates
a consistency exception—but only if the execution has a data
race [14, 15, 59].

Since RSx may or may not throw a consistency exception for an
execution with a data race, it permits implementation flexibility:
an implementation of RSx does not need to incur the cost and
complexity of detecting all data races or RS violations precisely.
Prior work provides RSx by detecting region conflicts [14, 15, 59],
which occur when one region’s access conflicts with an access
performed by another ongoing region.2

Why throw consistency exceptions at all? Why not enforce
RS unconditionally without the possibility of exceptions? Some
work has enforced RS (without consistency exceptions) [44, 68].
However, enforcing RS efficiently relies on speculative execution,

2 Two memory accesses conflict if they are accesses to the same variable by
different threads and at least one is a write.
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which adds costs and complexity and cannot easily handle “irrevo-
cable” operations such as I/O [10, 31, 34, 44, 68, 91, 93]. Further-
more, some programs that make progress under SC cannot make
progress under RS [76].

Drawbacks of fail-stop semantics. Although RSx provides strong,
well-defined semantics, it runs the risk of generating consistency
exceptions. In essence, RSx converts DRF0’s undefined behavior
for data races into fail-stop errors, much like how memory- and
type-safe languages handle buffer overflows. If consistency excep-
tions occur unexpectedly and frequently, they may frustrate devel-
opers and users more than than today’s practical consequences of
data races under DRF0.

What happens when a program executing under RSx (or other
memory model with fail-stop behavior) generates a consistency
exception? The execution could restart from the beginning, or it
could resume from a checkpoint. In the case of a server program
that handles requests, the execution could abort the current request,
relying on the client to resend a request. Consistency exceptions
thus degrade performance or quality of service.

Prior work has not considered the issue of availability nor how
to reduce exceptions for memory models that generate consistency
exceptions, which is fundamental to the usability and adoptability
of these memory models.

3. Goals and Overview
This paper’s goals are to address the challenge of availability and
to explore the tradeoff between availability, performance, and se-
mantics in memory consistency models.

Section 4 extends existing RSx enforcement approaches to im-
prove availability. Even with these extensions, it seems inherently
hard under RSx to avoid consistency exceptions and to achieve high
performance. Section 5 introduces a new memory model, called
RIx, that allows more flexibility to avoid consistency exceptions
and to improve performance. Section 6 presents an approach called
Avalon that enforces RIx, including versions of Avalon that provide
different tradeoffs between performance and availability.

4. Increasing Availability Under RSx
This section extends two approaches from prior work that enforce
RSx to avoid exceptions by waiting at conflicts. These two ap-
proaches, FastRCD and Valor [14], detect region conflicts (con-
flicting accesses in two concurrent regions) at run time and throw a
consistency exception.

FastRCD and FastRCD-A. FastRCD (whose design resembles
the design of the FastTrack data race detector [40]), detects re-
gion conflicts when they occur [14]. Our extended analysis, called
FastRCD-A (Available), avoids consistency exceptions by waiting
when it detects a region conflict.

At a high level, FastRCD-A detects conflicts by tracking each
shared variable’s last writer region and last reader region(s). When
FastRCD-A detects a conflict, it waits until the conflict no longer
exists, thus avoiding the conflict.

We present FastRCD-A (and Avalon in Section 6) using the
following notation:

clock(T) – Returns the current clock c of thread T.

epoch(T) – Returns the epoch c@T, where c is the current clock
of thread T.

Wx – Represents last-writer metadata for variable x, as the epoch
c@t, which means t last wrote x at time c.

Rx – Represents last-reader metadata for x, as a read map from
each thread to a clock value (or 0 if not present in the map).

Algorithm 1 REGION BOUNDARY [FastRCD-A]: thread T
reaches region boundary (program synchronization operation)

1: incClock(T)

Algorithm 2 WRITE [FastRCD-A]: thread T writes x
1: let c@t←Wx

2: if c@t 6= epoch(T) then . First write to x by this region?
3: if t 6= T ∧ clock(t) = c then . Write–write conflict?
4: if deadlocked then
5: throw consistency exception
6: else
7: Retry from line 1
8: for all t’ 7→ c’ inRx do
9: if t’ 6= T ∧ clock(t’) = c’ then . Read–write conflict?

10: if deadlocked then
11: throw consistency exception
12: else
13: Retry from line 1
14: Wx ← epoch(T) . Update write metadata
15: Rx← ∅ . Clear read metadata

Algorithm 3 READ [FastRCD-A]: thread T reads x
1: if clock(T) 6=Rx[T] then . First read to x by this region?
2: let c@t←Wx

3: if t 6= T ∧ clock(t) = c then . Write–read conflict?
4: if deadlocked then
5: throw consistency exception
6: else
7: Retry from line 1
8: Rx[T]← clock(T) . Update read metadata

Algorithm 1 shows how FastRCD-A increments clock(T) at re-
gion boundaries. Algorithms 2 and 3 show FastRCD-A’s actions
at program reads and writes. The first if statement in both algo-
rithms checks whether this region has already written or read this
variable, respectively, in which case the algorithm does not need to
check for conflicts or update read/write metadata. Otherwise, Fast-
RCD-A checks for write–write and read–write conflicts (lines 3 and
9 in Algorithm 2) and write–read conflicts (line 3 in Algorithm 3)
by checking whether the last writer region or reader region(s) are
still executing. If FastRCD-A detects a conflict, the current thread
T waits (by retrying from line 1) for the region (executed by t) to
finish its executing region. (In contrast, when FastRCD detects a
conflict, it throws a consistency exception immediately [14].)

After checking for (and potentially waiting on) conflicts, the
analysis at a write or read updates the variable’s write and/or read
metadata. An implementation must provide atomicity of instrumen-
tation for each operation, as discussed in Section 7.

FastRCD-A detects waiting-induced cyclic dependences by
maintaining a global region wait-for graph and using an edge-
chasing algorithm to find cycles [49]. A detected cycle indicates a
deadlock, and FastRCD-A generates a consistency exception.

Valor and Valor-A. As prior work [14] and our evaluation show,
FastRCD adds high run-time overhead, which is mainly caused by
tracking last-reader metadata in order to detect read–write conflicts
exactly. Prior work thus introduces Valor, which elides tracking of
x’s last-reader metadata [14]. Instead, Valor logs each read in a per-
thread read log, and infers read–write conflicts lazily at region end.
We introduce Valor-A, which extends Valor to wait at detected con-
flicts instead of throwing a consistency exception. Like FastRCD-
A, Valor-A waits at detected write–write and write–read conflicts
until the conflict no longer exists or the analysis detects a deadlock
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T1 T2
int t = x + y + 1; (1) int t = x + y + 1; (1)
y = t; x = t;

(a) RI and SC but not RS.

T1 T2
int t = x + 1; (1) int t = x + 1; (1)
x = t; x = t;

(b) SC but not RI (and thus not RS).

T1 T2
x = 1; y = 1;
int t = y; (0) int t = x; (0)
(c) RI but not SC (and thus not RS).

Figure 1. Example executions comparing RI to RS and SC. Each thread executes just one region. Shared variables x and y are initially 0.
Values in parentheses are the result of evaluating a statement’s right-hand side.

due to waiting on conflicts. However, Valor-A cannot wait when it
infers a read–write conflict: the read and write have both already
executed, so it is too late to avoid the conflict.

Valor-A (and Valor) thus throw asynchronous consistency ex-
ceptions for read–write conflicts. Asynchronous exceptions are dif-
ficult for programs to handle and for developers to debug. Fur-
thermore, asynchronous exceptions leave regions in an inconsistent
state. This problem is particularly acute in the context of an unsafe
language such as C++, where so-called “zombie” regions can cause
corruption that is not feasible in any RS execution [14, 30, 45].

FastRCD-A and Valor-A only perturb thread interleavings, so they
do not introduce behaviors that are not already possible in the
original program.

Section 8 shows that although FastRCD-A and Valor-A improve
availability (i.e., decrease the rate of consistency exceptions) sig-
nificantly compared with FastRCD and Valor, their effectiveness is
limited by the RSx requirements of serializability and precise con-
flict detection. This insight leads us to introduce a new memory
model that is not as strict as serializability but still provides guar-
antees at the granularity of synchronization-free regions.

5. RIx: A New Strong Memory Model
This section introduces a new memory consistency model called
RIx, which is based on providing isolation of regions.

5.1 Isolation of SFRs (RI)
We define isolation of synchronization-free regions (RI) as a prop-
erty of executions:

An execution is SI if it satisfies two properties: write atom-
icity and read isolation of SFRs.

Database systems have provided these properties in the context of
snapshot isolation (SI) [11, 36, 39, 70]. RI is essentially equivalent
to the typical definition of SI, but the database literature typically
defines SI operationally, and not all definitions are semantically
equivalent. We thus use the new term RI for clarity.

Instead of defining RI precisely, we define conflict RI, a suffi-
cient condition for RI that a dynamic analysis can feasibly check
on the fly. The rest of this paper uses conflict RI as its working
definition of RI. Conflict RI for RI is analogous to conflict serial-
izability for serializability [13, 88]. The following definitions are
closely based on prior work (on SI for database systems) [5, 6].

A multithreaded execution consists of reads and writes execut-
ing in regions (SFRs). The following notation describes read and
write operations in an execution:

• wi(x) — a write to variable x by region Ri

• rj(xi) — a read from x by region Rj , which sees the value
written by region Ri (i = j is allowed)

The following definition captures the notion of ordering in a multi-
threading execution:

Definition (Time-precedes order). The time-precedes order ≺t is
a partial order over an execution’s operations such that:

1. si ≺t ei, i.e., the start of a region i precedes its end.

2. For any two regions Ri and Rj , either ei ≺t sj or sj ≺t ei.
That is, the end of one region is always ordered with start of
every other region.

Note that we use time-precedes order only to define conflict RI. To
check conflict RI at run time, a dynamic analysis does not need to
compute time-precedes order.

Definition (Conflict RI). An execution is conflict RI if the following
conditions hold:

1. Two concurrent regions cannot modify the same variable. That
is, for any two writes wi(x) and wj(x) such that i 6= j, either
ei ≺t sj or ej ≺t si.

2. Every read sees the latest value written by preceding regions.
That is, for every ri(xj) such that i 6= j:3

(a) ej ≺t si; and
(b) for any wk(x) in the execution such that j 6= k, either

si ≺t ek or ek ≺t sj .

Note that changing si ≺t ek (in part 2b) to ei ≺t sk yields a
definition for conflict serializability [13, 88].

Examples. Figure 1 shows three examples to help understand the
differences between RS, RI, and sequential consistency (SC). In
each example, suppose that each thread’s operations are in a single
SFR that executes concurrently with the other thread’s SFR. Each
example thus has one or more data races. If the regions did not have
data races, then only RS behaviors would be possible.

Figure 1(a) shows by example that RI is weaker than RS: the
reads see values that are not possible under RS. The database liter-
ature calls such behaviors write skew; prior work has observed that
write skew behaviors are rare in practice [39, 56], and our study of
real program errors suggests that such behaviors are rare in shared-
memory programs (Section 8.7). (Prior work detects and corrects
write skew through dependence graph analysis and “promotion”
of reads [27, 56].) Figure 1(b)’s execution violates RI (and thus
RS): under RI, the regions cannot appear to execute concurrently
because their write sets overlap. While Figure 1(b) shows that SC
does not imply (i.e., is not strictly stronger than) RI, Figure 1(c)
shows that RI does not imply SC.

Under RI, compilers and hardware can optimize SFRs freely,
i.e., they can perform the same optimizations allowed under RSx
and DRF0. In contrast, (end-to-end) SC requires restricting com-
piler and hardware optimizations, e.g., by assuming or inserting
memory fences at all memory accesses (Section 2).

Understanding RI. Just as today’s programmers mostly ignore or
misunderstand memory models, we do not envision programmers
needing to reason about RI if memory models by default employ
RI semantics. Note that in our RI-based memory model (introduced
next), RI semantics can arise only when there is a data race, which
should still be considered an error. Nonetheless, expert program-
mers and system designers may want to understand RI. Intuitively,
RI provides write atomicity and read isolation, i.e., writes in an SFR
appear as a single operation, and a region’s reads see writes from a
consistent snapshot, never from concurrently executing regions.

3 if i = j, ri(xj) sees the value from the latest wi(xi).
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A more relevant question than comprehensibility is how well
RI, compared with DRF0 and SC and RS, avoids errors caused by
data races. Section 8.7 evaluates this question.

5.2 A Memory Model Based on RI

We introduce a new memory model called RIx based on RI. Similar
to RSx (Section 2), under RIx, an execution with a data race may
provide RI or throw a consistency exception if the execution has a
data race.

RIx is a memory model that guarantees (1) RS for data-
race-free executions and (2) RI or a consistency exception
for executions with data races.

Note that RIx relaxes semantics from RS to RI only for executions
with data races, which under DRF0 have weak or undefined seman-
tics anyway. For data-race-free executions, RIx provides the same
semantics as RSx: serializability of SFRs (and SC).

6. Avalon: Runtime Support for RIx
This section introduces Avalon, a novel, software-only approach
that provides the RIx memory consistency model.

Overview. Avalon shares some functionality with FastRCD-A
(Section 4). Like FastRCD-A, when Avalon detects a write–write
or write–read conflict, it waits until the conflict no longer exists,
thus avoiding the conflict. However, when Avalon detects a read–
write conflict, it allows the writing thread to proceed until the end
of its current region, thus tolerating the conflict legally under RIx.

Like FastRCD-A, Avalon detects cycles of waiting dependences
and throws a consistency exception. Note that in Avalon, a deadlock
must involve at least one write–write or write–read dependence,
since Avalon naturally allows regions with mutual read–write de-
pendences to proceed once all of the regions end.

In addition to the notation for FastRCD-A, our presentation of
Avalon uses following notation:

T.waitMap – Represents the regions that thread T is waiting on.
T.waitMap is a map from a thread t to the latest clock value c
of t that executed a read that conflicts with a write in T’s current
region (or 0 if not in the map).

Region boundaries. To tolerate read–write conflicts, a thread
waits at a region boundary, without starting the next region. Avalon
thus extends per-thread clocks to differentiate region execution
from waiting at a region boundary. In particular, thread T’s clock
represents two execution states of T:

• clock(T) is odd if the region is executing. Note that initially
clock(T) is 1.
• clock(T) is even if the region has finished executing but is

waiting for read–write conflicts at a region boundary.

Algorithm 4 shows how Avalon maintains this invariant by incre-
menting clock(T) both before and after a region waits for tolerating
any remaining read–write conflicts. While clock(T) is even, the al-
gorithm checks whether read–write conflicts still exist; if the reader
region is still executing (i.e., if clock(t) = c), the algorithm waits
until the reader region finishes executing, throwing a consistency
exception if Avalon detects deadlock.

Avalon can detect read–write conflicts either precisely or impre-
cisely, without risking spurious consistency exceptions. Section 6.1
presents a precise version of Avalon called Avalon-P (Precise),
and Section 6.2 presents an imprecise version called Avalon-I
(Imprecise).

Algorithm 4 REGION BOUNDARY [Avalon]: thread T reaches
region boundary (program synchronization operation)

1: incClock(T) . Last region done; not ready to start next region
2: for each t 7→ c in T.waitMap do
3: while clock(t) = c do . Read–write conflict still exists?
4: if deadlocked then
5: throw consistency exception
6: T.waitMap← ∅
7: incClock(T) . Ready to start next region

Algorithm 5 WRITE [Avalon-P]: thread T writes x
1: let c@t←Wx

2: if c@t 6= epoch(T) then . First write to x by this region?
3: if t 6= T ∧ clock(t) ≤ c+ 1 then . Write–write conflict?
4: if deadlocked then
5: throw consistency exception
6: else
7: Retry from line 1
8: for all t’ 7→ c’ inRx do
9: if t’ 6= T ∧ clock(t’) = c’ then . Read–write conflict?

10: T.waitMap[t′]← c′

11: Wx ← epoch(T) . Update write metadata
12: Rx← ∅ . Clear read metadata

Algorithm 6 READ [Avalon-P]: thread T reads x
1: if clock(T) 6=Rx[T] then . First read to x by this region?
2: let c@t←Wx

3: if t 6= T ∧ clock(t) ≤ c+ 1 then . Write–read conflict?
4: if deadlocked then
5: throw consistency exception
6: else
7: Retry from line 1
8: Rx[T]← clock(T) . Update read metadata

6.1 Avalon-P: Detecting Conflicts Precisely
Algorithms 5 and 6 show Avalon-P’s analysis at program writes
and reads. Like FastRCD-A, if Avalon-P detects a write–write or
write–read conflict, the current thread T waits for the writer region
(executed by t) to finish any waiting at its region boundary. In
order to take into account the two increments to clock(t) at a
region boundary, T checks if the writer thread t’s clock is at least
two greater than the variable’s clock c, i.e., clock(t) ≥ c + 2.
In contrast with FastRCD-A, when Avalon-P detects a read–write
conflict (line 9 in Algorithm 5), instead of waiting, the current
thread T records the conflicting thread t’ and its current clock c’
in T.waitMap.

Examples. To help understand Avalon-P’s algorithm, Figure 2
shows examples of how Avalon enforces RIx. The figure applies
to both Avalon-P and Avalon-I, which behave the same for each of
the examples. In the figure, concurrent regions access the shared
variables x and y. The gray dashed lines (around synchronization
operations, e.g., acq(l) and rel(l)) indicate SFR boundaries. Ri and
Rj are SFR identifiers, where i and j are per-thread clocks for the
respective threads.

In Figure 2(a), T2 tries to read x, which is a region conflict
with the previous write to x by T1 in region Ri, because T1 is
still executing Ri. T2 handles the region conflict by waiting until
T1 finishes its region (Ri), at which point T2 retries its read at
time (2) and continues execution safely. In Figure 2(b), T2 waits on
the read–write conflict at its region boundary, but T1 is unable to
make progress due to a cyclic dependence. In Figure 2(c), a cyclic
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(a) Avalon avoids region conflicts. (b) Avalon deadlocks.
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(c) Avalon tolerates region conflicts. (d) Avalon deadlocks.

Figure 2. Examples showing how Avalon works. (The examples applies to both Avalon-P and Avalon-I.) Dashed lines indicate where Avalon
increments its clock. The exact synchronization operations (e.g., acq(m) versus rel(l)) are arbitrary and not pertinent to the examples.

dependence exists, but each region can reach its region boundary,
allowing each to proceed. In Figure 2(d), Avalon deadlocks due
to a cycle of transitive dependences involving two variables. Each
thread gets stuck waiting: T1 and T3 at accesses, and T2 at a region
boundary.

6.2 Avalon-I: Leveraging Approximation for Performance
Tolerating read–write conflicts allows Avalon-P to avoid exceptions
encountered by prior work, but tracking each variable’s last readers
precisely is expensive (as prior work also finds [14]). Based on
this observation, this section describes Avalon-I, a design that over-
approximates last readers.

The key insight of having imprecise readers is that a thread can
wait to perform a write that is potentially involved in a read–write
conflict. Importantly, Avalon-I still provides RIx: although Avalon-
I may wait on a false read–write conflict, any deadlock must include
at least one (true) write–read or write–write conflict (this property
also holds for Avalon-P), indicating a data race.

In the design of Avalon-P from Section 6.1, each variable x has
metadata both for writes (Wx) and reads (Rx). Both are needed for
precise tracking of last reader(s). In particular, the read metadata is
inflated into a read map when there are multiple concurrent reader
regions. Since Avalon-I does not require precise detection of read–
write conflicts, it allows for a more efficient design.

Metadata compression. Like Avalon-P, Avalon-I maintains the
epoch of the last writer for each shared variable x. Unlike Ava-
lon-P, Avalon-I maintains precise last-reader information only if
there exists a single reader; for multiple readers, it abandons pre-
cise tracking (so any ongoing region is a potential reader). As a
result, Avalon-I represents a variable’s last writer and reader infor-
mation as a single unit of metadataMx that always has one of the
following values:

WrExc@t — x was last accessed by region c@t, and that region
performed a write to x.

RdExc@t — x was last accessed by region c@t, and that region
performed only reads to x.

RdSh — At some point since the last write to x, there were mul-
tiple concurrent reader regions of x. Any ongoing region may
have read x, but no ongoing region may have written x.

The first write to x in region c@t updatesMx to WrExc@t. Simi-
larly, the first read to x in c (if there is no prior write in the same
region) updatesMx to RdExc@t. If a second read from a different
thread reads the variable while the first read’s region is still ongo-
ing, Avalon-I changesMx from RdExc@t to RdSh. IfMx can be
encoded in a single word, a single atomic instruction is sufficient to
update it (Section 7).

Avalon-I’s analysis. Algorithms 7 and 8 show the analysis that
Avalon-I performs at each program write and read. In Algorithm 7,

Algorithm 7 WRITE [Avalon-I]: thread T writes x
1: ifMx 6= WrExc@T | c = clock(T) then
2: . First write to x by region?
3: ifMx = WrEx*@t | t 6= T then
4: if clock(t) ≤ c+ 1 | Mx = WrExc@t then
5: . Write–write conflict?
6: if deadlocked then
7: throw consistency exception
8: else
9: Retry from line 1

10: else ifMx = RdEx*@t | t 6= T then
11: if clock(t) = c | Mx = RdExc@t then
12: . Potential read–write conflict?
13: T.waitMap[t]← clock(t)
14: else ifMx = RdSh then
15: for each thread t 6= T do . Potential read–write conflicts
16: T.waitMap[t]← clock(t)
17: Mx ←WrExc@T | c = clock(T)

Algorithm 8 READ [Avalon-I]: thread T reads x
1: ifMx /∈

{
RdExc@T,WrExc@T,RdSh

}
| c = clock(T) then

2: . First access to x by region?
3: M′x ← RdExc@T | c = clock(T)
4: ifMx = WrEx*@t | t 6= T then
5: if clock(t) ≤ c+ 1 | Mx = WrExc@t then
6: . Write–read conflict?
7: if deadlocked then
8: throw consistency exception
9: else

10: Retry from line 1
11: else ifMx = RdEx*@t | t 6= T then
12: if clock(t) = c | Mx = RdExc@t then
13: . Concurrent reader?
14: M′x ← RdSh
15: Mx ←M′x

if the last write to x comes from the same region, the current write
can skip the rest of the analysis operations (line 1) sinceMx not
need to be updated. If the last write is from the same thread T, the
write can update Mx with the epoch of the current region (Rc).
Otherwise, T handles WrEx*@t and RdEx*@t (* denotes “any clock
value”) similarly to Avalon-P, by detecting a write–write or a read–
write conflict (lines 3–13). IfMx is RdSh, Avalon-I conservatively
assumes read–write conflicts with other threads’ ongoing regions
(lines 14–16).

In Algorithm 8, if the same region has already read or written
x orMx is RdSh, T does not need to updateMx (line 1). If the
read is the first read to x in a region before any writes to x, the
read updatesMx from WrExc’@t to RdExc@T, so that a write from
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Threads Memory accesses Region conflicts Dyn. Avg. accesses
Total Max live Reads Writes Write–write Write–read Read–write SFRs per SFR

eclipse6 18 12 4,500M 1,400M 0 3.2K 21 150M 40
hsqldb6 402 102 250M 31M 0 33 1.9 11M 25
lusearch6 65 65 1,100M 400M 0 96 0 9.9M 150
xalan6 9 9 990M 220M 1.4K 520 26 58M 21

avrora9 27 27 900M 440M 380K 3.4M 25K 3.9M 350
jython9 3 3 720M 230M 0 0 0 100M 9.2
luindex9 2 2 290M 97M 0 0 0 540K 720
lusearch9* 32 32 1,100M 350M 38 5.7K 22 7.2M 210
pmd9 5 5 290M 97M 6.6K 5.3K 120 2.4M 160
sunflow9* 64 32 6,700M 720M 0 3.9 4.9 16K 450K
xalan9* 32 32 940M 210M 200 1.4K 42 22M 53

Table 1. Runtime characteristics of the evaluated programs, rounded to two significant figures. *Three programs support varying the number
of active application threads; by default, this value is equal to the number of cores (32 in our experiments).

a different thread can still detect a read–write conflict precisely at
a WrExc’@t → WrExc@T transition instead of having a potential
read–write conflict (an alternative is to change Mx to RdSh, but
it would lead to unnecessary imprecision and more consistency
exceptions).

7. Implementation
We have implemented FastRCD-A, Valor-A, Avalon-P, and Ava-
lon-I in Jikes RVM 3.1.3 [8, 9], a JVM that performs competitively
with commercial JVMs [14]. Our FastRCD-A and Valor-A imple-
mentations extend publicly available Jikes RVM implementations
of FastRCD and Valor [14]. We have made our implementations
publicly available on the Jikes RVM Research Archive.4

Our implementations, which target IA-32,5 extend Jikes RVM’s
just-in-time compilers to insert instrumentation at synchronization
operations and memory operations. The implementations transform
the same set of memory operations (field and array element ac-
cesses in the application and libraries), demarcate regions in the
same way (at lock, monitor, thread, volatile operations, and other
synchronization such as atomic accesses), and reuse code as much
as possible. Java supports reentrant locks; the implementations de-
marcate regions at critical sections on reentered locks, but an im-
plementation could instead safely ignore these operations.

We note that all of the implementations apply to existing, un-
modified Java programs. The implementations demarcate regions at
existing program synchronization operations. They do not require
any annotations from programmers. They do not remove or disable
any synchronization operations; even under RIx or RSx, programs
still need their lock operations to ensure mutual exclusion of critical
sections.

Avalon-P and FastRCD-A add two words of per-variable meta-
data for tracking writes and reads. Each variable’s read metadata
can be inflated to a pointer to a read map, and the map’s space
overhead is proportional to the number of reader threads. In con-
trast, Avalon-I uses a single metadata word per variable: 21 bits for
the clock, 9 bits for the thread ID, and 2 bits for encoding the state
(WrEx vs. RdEx vs. RdSh).

Avalon-I safely resets clocks to 0 or 1 at full-heap garbage col-
lection to avoid overflow (adapting prior work’s optimization [14]).

Instrumentation atomicity. Avalon-P and FastRCD-A use two
words or more of per-variable metadata (to support a read map).
The instrumentation initially “locks” one of the variable’s meta-
data words (using an atomic operation and spin loop) and later

4 http://www.jikesrvm.org/Resources/ResearchArchive/
5 Jikes RVM provides robust backend support for IA-32 but not yet x86-64.

“unlocks” it (using a store and memory fence) when updating the
metadata. The instrumentation performs no synchronization when
it performs no metadata updates (for a read or write in the same
region).

In contrast, Avalon-I and Valor-A use a single word of shared
metadata per variable, so they provide lock-free instrumentation
atomicity, using a single atomic operation for updates.

8. Evaluation
This section measures availability, performance, scalability, space
usage, and other characteristics for Avalon and competing ap-
proaches that provide RSx and RIx.

8.1 Methodology

Benchmarks. Our evaluation uses benchmarked versions of
large, real applications: the DaCapo benchmarks with the de-
fault workload size, versions 2006-10-MR2 and 9.12-bach (dis-
tinguished with names suffixed by 6 and 9) [16]. We omit single-
threaded programs and programs that Jikes RVM 3.1.3 cannot exe-
cute.

Experimental setup. For each implementation (FastRCD-A,
Avalon-P, etc.), we build a high-performance configuration of Jikes
RVM that adaptively optimizes the code and uses the default, high-
performance, generational garbage collector [17], which adjusts
the heap size automatically at run time. Each performance result is
the mean of 25 trials. Each reported statistic is the mean from 10
trials of a special statistics-gathering configuration. For each result,
we also report a 95% confidence interval.

Platform. The experiments execute on an Intel Xeon E5-4620
machine with four 8-core processors (32 cores total), running Red-
Hat Enterprise Linux 6.7, kernel 2.6.32.

Run-time characteristics. Table 1 shows characteristics of the
evaluated programs that are independent of the implementation
(e.g., Avalon-P vs. FastRCD-A). The Threads columns report both
threads created and maximum threads active at any time. Memory
accesses are executed program loads and stores of fields and array
elements, which all implementations instrument.

The Region conflicts columns show how many of each kind of
region conflict occur. Conflicts vary significantly in count and type
across programs, but they are generally many orders of magnitude
smaller than total memory operations, except for avrora9, which
incurs millions of dynamic conflicts. We find that these conflicts
are due to 14 static data races (distinct unordered pairs of static
program locations).
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FastRCD [14] Valor [14] FastRCD-A Valor-A Avalon-P Avalon-I

eclipse6 6.8K ± 10K 260 ± 510 0.2 ± 0.5 0.2 ± 0.3 0.3 ± 0.6 1.2 ± 1.6
(14K ± 24K) (1.8K ± 3.5K) (0.2 ± 0.5) (0.7 ± 0.9) (0.3 ± 0.6) (1.2 ± 1.6)

hsqldb6 27 ± 2.7 73 ± 2.6 0.8 ± 0.5 0.6 ± 0.3 0.1 ± 0.1 1.0 ± 0.5
(53 ± 5.6) (140 ± 5.4) (0.8 ± 0.5) (0.6 ± 0.3) (0.1 ± 0.1) (1.2 ± 0.6)

lusearch6 0.1 ± 0.1 0.2 ± 0.2 0 ± 0 0 ± 0 0 ± 0 0 ± 0
(0.1 ± 0.1) (0.2 ± 0.2) (0 ± 0) (0 ± 0) (0 ± 0) (0 ± 0)

xalan6 48 ± 1.7 53 ± 1.7 12 ± 1.3 25 ± 1.1 5.5 ± 1.4 10 ± 1.3
(120 ± 5.8) (93 ± 3.4) (12 ± 1.3) (39 ± 1.1) (5.5 ± 1.5) (11 ± 1.4)

avrora9 200K ± 3.1K 230K ± 2.6K 38K ± 760 28K ± 400 16K ± 430 18K ± 430
(610K ± 6.4K) (670K ± 9.7K) (39K ± 820) (36K ± 920) (24K ± 730) (27K ± 760)

jython9 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
(0 ± 0) (0 ± 0) (0 ± 0) (0 ± 0) (0 ± 0) (0 ± 0)

luindex9 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
(0 ± 0) (0 ± 0) (0 ± 0) (0 ± 0) (0 ± 0) (0 ± 0)

lusearch9 63 ± 9.7 62 ± 7.3 62 ± 7.6 13 ± 3.3 20 ± 3.7 19 ± 5.7
(110 ± 25) (93 ± 13) (62 ± 7.6) (13 ± 3.3) (21 ± 4.5) (21 ± 6.6)

pmd9 450 ± 150 370 ± 150 91 ± 10 71 ± 7.2 52 ± 9.5 77 ± 7.2
(3.3K ± 520) (3.5K ± 930) (93 ± 11) (170 ± 62) (110 ± 51) (120 ± 17)

sunflow9 6.1 ± 1.8 11 ± 3.6 0 ± 0 0 ± 0 0 ± 0 4.6 ± 1.1
(23 ± 6.3) (37 ± 14) (0 ± 0) (0 ± 0) (0 ± 0) (4.7 ± 1.2)

xalan9 330 ± 35 3.0K ± 490 4.7 ± 3.7 40 ± 3.6 0.3 ± 0.4 16 ± 3.2
(1.5K ± 220) (6.2K ± 1.2K) (4.7 ± 3.7) (40 ± 3.6) (0.3 ± 0.4) (19 ± 4.5)

Table 2. The number of consistency exceptions reported by implementations that provide RSx and RIx, with 95% confidence intervals. For
each program, the first row is dynamic regions that report at least one exception, and the second row (in parentheses) is dynamic exceptions
reported. Reported values are rounded to two significant figures (except for values < 1).

The last two columns of Table 1 report regions executed and av-
erage region size (i.e., memory operations executed in each SFR).
All programs except sunflow9 perform synchronization at least ev-
ery 720 memory operations on average.

8.2 Availability

The programs we evaluate have not been developed or debugged
under the assumption that data races are (fail-stop) errors. They
have data races that frequently manifest as region conflicts. Under
an RSx- or RIx-by-default assumption, programmers would fix fre-
quently occurring data races, but other data races would remain. By
comparing how many consistency exceptions each implementation
throws, we can estimate its relative ability to avoid exceptions if
programs had been developed and debugged to mostly avoid con-
sistency exceptions.

Table 2 reports consistency exceptions thrown by all implemen-
tations. The implementations do not actually generate real excep-
tions; rather, they simply report the exception and allow execution
to proceed. In practice, a system could handle consistency excep-
tions by terminating the execution, by restarting the execution, or
resuming from a checkpoint (Section 2). Thus, generating a consis-
tency exception is undesirable but not unacceptable, and decreasing
the rate of consistency exceptions is desirable.

FastRCD and Valor report an exception whenever they detect
a conflict. FastRCD-A, Valor-A, Avalon-P, and Avalon-I report an
exception whenever they detect a deadlock. Valor and Valor-A also
report an exception whenever they infer a conflict from a read
validation failure.

An executed region might execute multiple, possibly related,
conflicting accesses. To downplay this effect, the first row for
each program is the number of dynamic regions that report at
least one consistency exception. The second row is the number of
consistency exceptions reported during the program execution.

A key benefit of this paper’s approaches is their ability to im-
prove the availability of memory models with fail-stop semantics.
Comparing with prior work’s FastRCD and Valor, FastRCD-A, Va-

lor-A, Avalon-P, and Avalon-I report substantially fewer consis-
tency exceptions. Compared with FastRCD and Valor, Avalon-P re-
duces exceptions by up to three orders of magnitude (e.g., eclipse6,
hsqldb6, xalan6, pmd9, and xalan9), or eliminates consistency ex-
ceptions completely (e.g., lusearch6 and sunflow9).

Avalon’s ability to reduce consistency exceptions comes from
two sources: (1) avoiding write–write and write–read conflicts and
(2) tolerating read–write conflicts (by exploiting RIx). To analyze
the effect of the first feature alone, we can compare FastRCD-
A with FastRCD, and Valor-A with Valor. Waiting at conflicts is
generally effective at reducing consistency exceptions, reducing
exceptions significantly for most programs, albeit not as much as
for Avalon-P. This evaluation of waiting at conflicts—which to our
knowledge is the first such evaluation—suggests that this technique
is generally effective at avoiding consistency exceptions while still
preserving the consistency model (whether RSx or RIx).

To analyze the effect of the second feature—tolerating read–
write conflicts by exploiting RIx’s properties—we can compare
Avalon-P with FastRCD-A. As expected, the table shows that Ava-
lon-P generally avoids more consistency exceptions than FastRCD-
A. Avalon-P has fewer exceptional regions than FastRCD-A for six
programs, and never has more exceptional regions than FastRCD-A
(for eclipse6, the difference is not statistically significant).

Relaxed precision. A separate aspect of Avalon is that it permits
relaxing precision of conflict detection, potentially improving per-
formance, but at the cost of potentially more consistency excep-
tions. To evaluate this cost, we compare reported consistency ex-
ceptions for Avalon-P and Avalon-I. Unsurprisingly, Avalon-I re-
ports more exceptions than Avalon-P, since Avalon-I introduces
waiting at region boundaries for spurious read–write conflicts. This
effect is mixed across programs: for six programs, Avalon-I gen-
erates more exceptions than Avalon-P (although the increases are
often modest), whereas we find no statistically significant differ-
ence for the other five programs.
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Figure 3. Run-time overhead of prior work’s FastRCD and Valor [14] and our FastRCD-A, Valor-A, Avalon-P, and Avalon-I.

In summary, Avalon increases availability significantly over ex-
isting approaches that support RSx for all benchmarks. The im-
provement is particularly significant for applications for which ex-
isting approaches generate hundreds or thousands consistency ex-
ceptions, while Avalon generates a few or no exceptions. Waiting
at conflicts and providing RIx (instead of RSx) both contribute to
Avalon’s availability improvement over prior work. Relaxing Ava-
lon’s precision decreases availability, but perhaps not excessively.
Of course, each approach’s suitability is a function of not only
availability, but also performance, which we evaluate next.

8.3 Performance

This section measures and compares the performance of the RSx-
and RIx-enforcing implementations. Since executions are multi-
threaded, performance overheads include not just instrumentation
overhead but also time spent on waiting, which differs among ap-
proaches that use different waiting conditions. Section 8.5 tries to
isolate this cost by varying application thread counts.

Figure 3 shows run-time overhead added over execution on an
unmodified JVM. Our results are in agreement with prior work,
which shows that FastRCD adds high run-time overhead in order
to maintain last readers, while Valor incurs significantly lower
overhead by logging reads locally and validating them lazily [14].
FastRCD-A and Valor-A each add modest overhead over FastRCD-
A and Valor-A, respectively, by waiting at conflicts.

Avalon-P tracks write and read metadata in the same way as
FastRCD and FastRCD-A, so unsurprisingly it incurs similar over-
head. However, Avalon-P incurs slightly less overhead than Fast-
RCD-A because Avalon-P avoids waiting at read–write conflicts
(instead defers waiting until region end; Section 6). Still, Avalon-P
adds 260% overhead on average in order to provide precise conflict
detection. In contrast, Avalon-I enables a significantly faster analy-
sis that adds 128% overhead on average, which is competitive with
the fastest approach, Valor.

To analyze the performance difference between Avalon-I and
Avalon-P, we implemented a configuration (not shown in the fig-
ure) that tracks both read and write metadata similarly to Ava-
lon-P (i.e., separate write and read metadata words), but does not
track multiple readers precisely, representing multiple readers us-
ing a simple “read shared” state. On average this configuration
incurs 75% of the overhead that Avalon-P incurs over Avalon-I,
suggesting that most but not all of Avalon-I’s performance advan-
tage comes from being able to compress its metadata in a single
metadata word and use a lock-free update, leading to significantly
cheaper instrumentation.

To isolate Avalon-I’s overhead due to waiting at conflicts (ver-
sus instrumentation overhead), we evaluated an Avalon-I configura-
tion, which we call Avalon-I-no-wait (not shown in the figure), that
does not wait at conflicts, but instead allows a thread to proceed
immediately after detecting a region conflict. Compared with Ava-
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Figure 4. Availability vs. performance for all implementations.

lon-I-no-wait), default Avalon-I adds only 9.5% additional over-
head (relative to baseline, unmodified execution), suggesting that
little of Avalon-I’s overhead is due to waiting at conflicts. This re-
sult makes sense because conflicts are orders of magnitude smaller
than total memory operations (Table 1). That is, run-time overhead
is dominated by detecting memory access conflicts.

All of our exception-avoiding implementations perform close to
the state-of-the-art software-only approaches that support RSx. On
average, FastRCD-A and Avalon-P’s run-time overheads are within
9% of FastRCD’s overhead. The run-time overheads of Valor-A and
Avalon-I are within 24% of Valor’s overhead on average.

8.4 Performance–Availability Tradeoff
In order to evaluate availability and performance together, Figure 4
plots the previous availability and performance results. The x-
axis is the geomean of run-time overhead across all programs.
The y-axis is availability, which is defined as the geomean of
memory accesses performed without interruption by a consistency
exception. That is, for each program execution,

availability =
# memory accesses executed
# consistency exceptions + 1

Larger values represent better availability. Points closer to the top-
left corner represent a better performance–availability tradeoff.

Valor performs best, but provides worse availability than Fast-
RCD-A, Valor-A, Avalon-P, and Avalon-I. Avalon-P has the best
availability, but its performance overhead is relatively high. Ava-
lon-I and Valor-A arguably each offer the best tradeoff between
availability and performance. Although Valor-A provides a stronger
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Figure 6. Space overhead of relevant implementations.

model than Avalon-I (RSx vs. RIx), Avalon-I does not have Va-
lor-A’s disadvantage of asynchronous exceptions and safety issues
for unsafe languages (Section 4), and Avalon-I incurs significantly
lower space overhead than other implementations (Section 8.6).

8.5 Scalability

The implementations that avoid exceptions by waiting at conflicts—
FastRCD-A, Valor-A, Avalon-P, and Avalon-I—incur not only in-
strumentation overhead but also overhead from waiting. In an ef-
fort to isolate the cost of waiting, this section evaluates scalability
across varying numbers of applications threads. Three of the eval-
uated programs support varying the number of application threads
(Table 1). Figure 5 compares execution time of three pairs of wait-
ing and non-waiting versions of otherwise-identical implementa-
tions. We omit Avalon-P since Avalon-I spends more time waiting
at conflicts. We use Avalon-I-no-wait (mentioned in Section 8.3) as
a comparison configuration for Avalon-I.

Overall, waiting at conflicts is not detrimental to scalability. For
all three benchmarks, the waiting implementations (FastRCD-A,
Valor-A, Avalon-I) scale as well as the non-waiting implementa-
tions (FastRCD, Valor, Avalon-I-no-wait).

8.6 Space Overhead

The implementations use memory to maintain write and read meta-
data. Figure 6 shows the space overhead of all implementations
that wait at conflicts, relative to unmodified JVM execution. For
each execution, we define its space usage as the maximum memory
used after any full-heap garbage collection (GC). We omit luindex9
since its baseline execution triggers no full-heap GC.

On average, FastRCD-A adds 105% space overhead in order
to maintain precise write and read metadata, which is particularly
costly for variables with concurrent reader regions. Avalon-P main-
tains the same metadata and thus adds similar memory overhead
(103% on average). Although Valor-A avoids storing per-variable

JMM SC RS RI
hsqldb6 Infinite loop None None None
sunflow9 Null ptr exception None None None
jbb2000 Corrupt output Corrupt output None None
jbb2000 Infinite loop None None None
sor Infinite loop None None None
lufact Infinite loop None None None
moldyn Infinite loop None None None
raytracer Fails validation Fails validation None None

Table 3. Erroneous behaviors possible under the Java memory
model, and what errors are allowed by SC, RS, and RI. jbb2000
has two distinct errors, each caused by a different data race.

read metadata, it adds high space overhead (110% on average) for
per-thread read logs.

Avalon-I adds 58% average space overhead, about half as much
as the other approaches. Avalon-I uses less space by maintain-
ing imprecise reader information and by compressing per-variable
metadata into a single word.

8.7 Evaluating RI’s Behavior

Just as most programmers today do not reason about weak memory
models, we expect them to be largely oblivious to an RIx-by-default
memory model. After all, RI behavior is only possible when there
is a data race—which is still an error. Instead, we are interested in
what behaviors RI allows in practice for real data races.

Table 3 shows erroneous behaviors due to data races that are
possible under Java’s memory model (JMM) [61], and whether
other memory models permit them, for the DaCapo programs,
SPECjbb2000 [83], and the Java Grande benchmarks [82]. The
JMM, SC, and RS columns are from prior work that exposes weak
memory errors using adversarial memory [41, 76].6 The RI col-
umn is based on our manual inspection of and reasoning about
these errors. The SC column shows that 2 of 8 errors are actu-
ally possible under SC. In contrast, these erroneous behaviors can-
not be exposed under RS or RI, according to our manual inspec-
tion of, and reasoning about, these errors. We find that RI avoids
these errors because they generally involve violations of visibility
or atomicity—violations that RI mostly avoids, since it provides
write atomicity and read isolation, violating serializability only in
case of write skew (Section 5). This (admittedly limited) empiri-
cal study suggests that RI tolerates erroneous behaviors in practice,
allowing fewer erroneous behaviors than even SC.

6 Despite avrora9’s many dynamic data races (Table 1), prior work that
uses adversarial memory has mostly failed to expose erroneous behavior in
avrora9 [41, 76]. However, by using hundreds of trials, Cao et al. found
that adversarial memory can occasionally expose errors in avrora9 [28].
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9. Discussion
This paper shows how to improve availability under RSx, and it
introduces RIx and Avalon to increase availability beyond RSx-
based approaches. These approaches advance the state of the art
but incur run-time costs that are likely to be too high for most pro-
duction settings (an issue also faced by software approaches that
provide RSx [14]). In Section 8.3, we find that virtually all over-
head comes from detecting memory access conflicts. In contrast,
existing work on custom hardware can efficiently detect memory
access conflicts, in order to enforce RSx [15, 59] or other region-
serializability-based consistency model [7, 45, 62, 80].

We believe that future work can apply our work’s insights and
approaches to hardware and achieve similar benefits. First, future
work can extend architecture support for RSx to wait at detected
conflicts, either (a) avoiding conflicts or (b) incurring deadlock
and generating a consistency exception. Second, future hardware
support can target RIx, improving availability and enabling simpler,
more efficient designs since conflict detection does not need to be
precise.

10. Related Work
To the best of our knowledge, prior work has not considered or ad-
dressed the problem of availability for memory consistency models
that provide fail-stop semantics. This section compares our work
against prior work not already covered in Section 2.

Serializability of bounded regions. Prior work supports a mem-
ory model based on serializability of regions smaller than SFRs [7,
60, 62, 76, 80]. Besides being weaker than RSx, bounded region
serializability requires restricting compiler optimizations across re-
gion boundaries. Our RIx model and Avalon analyses relax RSx in
a different way: they retain full SFRs but provide isolation without
serializability, in order to improve availability and reduce costs.

Detecting and tolerating data races. Sound and precise data race
detectors can provide RSx by throwing a consistency exception on
every detected data race [35, 92]. However, state-of-the-art data
race detectors slow programs by an order of magnitude or rely on
custom hardware [33, 40].

Clean is a data race detector that detects write–write and write–
read races but not read–write races [74]. By providing fail-stop se-
mantics at the detected data races, Clean eliminates the most egre-
gious weak memory model behaviors (so-called “out-of-thin-air”
violations [22, 61]). Clean and Avalon both relax the requirement of
detecting read–write conflicts precisely. While Clean avoids some
erroneous behaviors, it does not provide RIx or any guarantee re-
sembling region isolation.

By providing well-defined behavior for data races, Avalon nar-
rows the set of possible thread interleavings and behaviors, which
is conceptually related to dynamic approaches that automatically
avoid concurrency errors [46, 94, 95].

Avoiding deadlocks. Wang et al. avoid existing deadlocks in
lock-based programs by avoiding potentially unsafe interleav-
ings [89, 90]. In contrast, our approaches intentionally risk dead-
locks for mutually dependent data races, essentially converting
(cycles of) conflicts into deadlocks.

Deterministic execution. Systems that ensure deterministic mul-
tithreaded execution have employed mechanisms that are related to
those used by FastRCD-A, Valor-A, and Avalon. DMP delays each
region’s writes until a point where all regions perform writes at the
same time, in order to produce a deterministic outcome [12, 32].
Dthreads exploits existing relaxed memory models in order to per-
form loads and stores in isolation and merge them at synchroniza-
tion operations [57]. In contrast, Avalon detects conflicts in order

to provide the RIx memory model, and it waits at conflicts in an
effort to increase availability.

Region isolation in other contexts. Database management sys-
tems commonly support snapshot isolation (SI) as an alternative to
strict serializability semantics for transactions [36, 39, 70]. These
systems typically implement SI using multi-versioning to track
multiple versions of data, based on a globally ordered timestamp
that provides a total order for all committed transactions. Maintain-
ing globally ordered transactions and multiple versions of data at
the language level would incur high overhead and poor scalability.

Some software transactional memory (STM) systems use SI
as the isolation model [50, 55]. In contrast, our work focuses on
SI-based semantics for memory consistency models. Furthermore,
databases and STMs execute transactions speculatively (i.e., con-
flicts lead to rollbacks), whereas our work converts data races with
ill-defined semantics to well-defined behaviors, and employs SI in
an effort to increase availability and reduce costs and complexity.

Burckhardt et al. consider the effects of isolation on program
regions [25]. Their work introduces a new task-parallelism-based
programming model, while we focus on enforcing the RIx memory
model for existing programs written in legacy languages. Their
work requires programmers to choose isolation types and specify
how to merge on conflict, whereas our work is fully automatic.

11. Conclusion
Programming languages and runtime systems need a precise and
practical memory model definition that balances semantics, perfor-
mance, and availability. This paper is the first to address the chal-
lenge of availability for strong memory consistency models that
throw consistency exceptions, which is crucial for their practical
adoption.

We introduce FastRCD-A, Valor-A, the RIx memory model,
and Avalon, which significantly reduce consistency exceptions
compared with prior approaches. Overall, our approaches generate
significantly fewer consistency exceptions than prior approaches,
while providing competitive performance and scalability. Further-
more, RIx increases availability and enables efficient designs, with-
out exposing erroneous behaviors, according to a study of real er-
rors. Ultimately, our approaches advance the state of the art by
providing new and compelling design points in the availability–
performance–semantics tradeoff space.
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D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wieder-
mann. The DaCapo Benchmarks: Java Benchmarking Development
and Analysis. In OOPSLA, pages 169–190, 2006.

[17] S. M. Blackburn and K. S. McKinley. Immix: A Mark-Region Gar-
bage Collector with Space Efficiency, Fast Collection, and Mutator
Performance. In PLDI, pages 22–32, 2008.

[18] H.-J. Boehm. How to miscompile programs with “benign” data races.
In HotPar, 2011.

[19] H.-J. Boehm. Position paper: Nondeterminism is Unavoidable, but
Data Races are Pure Evil. In RACES, pages 9–14, 2012.

[20] H.-J. Boehm and S. V. Adve. Foundations of the C++ Concurrency
Memory Model. In PLDI, pages 68–78, 2008.

[21] H.-J. Boehm and S. V. Adve. You Don’t Know Jack about Shared
Variables or Memory Models. CACM, 55(2):48–54, 2012.

[22] H.-J. Boehm and B. Demsky. Outlawing Ghosts: Avoiding Out-of-
Thin-Air Results. In MSPC, pages 7:1–7:6, 2014.

[23] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer: Proportional
Detection of Data Races. In PLDI, pages 255–268, 2010.

[24] C. Boyapati, R. Lee, and M. Rinard. Ownership Types for Safe
Programming: Preventing Data Races and Deadlocks. In OOPSLA,
pages 211–230, 2002.

[25] S. Burckhardt, A. Baldassin, and D. Leijen. Concurrent Programming
with Revisions and Isolation Types. In OOPSLA, pages 691–707,
2010.

[26] J. Burnim, K. Sen, and C. Stergiou. Testing Concurrent Programs on
Relaxed Memory Models. In ISSTA, pages 122–132, 2011.

[27] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable Isolation for
Snapshot Databases. In SIGMOD, pages 729–738, 2008.

[28] M. Cao, J. Roemer, A. Sengupta, and M. D. Bond. Prescient Memory:
Exposing Weak Memory Model Behavior by Looking into the Future.
In ISMM, pages 99–110, 2016.

[29] M. Christiaens and K. De Bosschere. TRaDe, A Topological Approach
to On-the-fly Race Detection in Java Programs. In JVM, pages 15–15,
2001.

[30] L. Dalessandro and M. L. Scott. Sandboxing Transactional Memory.
In PACT, pages 171–180, 2012.

[31] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: Streamlining
STM by Abolishing Ownership Records. In PPoPP, pages 67–78,
2010.

[32] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Deterministic
Shared Memory Multiprocessing. In ASPLOS, pages 85–96, 2009.

[33] J. Devietti, B. P. Wood, K. Strauss, L. Ceze, D. Grossman, and
S. Qadeer. RADISH: Always-On Sound and Complete Race Detection
in Software and Hardware. In ISCA, pages 201–212, 2012.
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