Rethinking Support for
Region Conflict Exceptions

Swarnendu Biswas, Rui Zhang, Michael D. Bond, and Brandon Lucia

IPDPS 2019

C++ Program with Data Race

X% X = NULL;
bool done= false;
Thread T1 Thread T2
X = new X(); if (done) {
done = true; x->func();

}

Catch-Fire Semantics in C++

C++ treats data races as errors

X* X = NULL;
bool done= false;
Thread T1 Thread T2
X = new X(); if (done) {
done = true; x->func();

}

. J .

Catch-Fire Semantics in C++

4

HAPPEN! |

X *x = NULL;
bool done= false;

Thread T1 Thread T2
x = new X(); while (!done) {}
done = true; x->func();

Thread T1

X *x = NULL;
bool done= false;

x = new X();
done = true;

Thread T2

Thread T1

while (!done) {}
x->func();

7

X = new X();

kdone = true;

Thread T2

) (

J \

temp = done; q

while (!temp) {}

>

)

-l

X *x = NULL;
bool done= false;

Thread T1 Thread T2
x = new X(); while (!done) {}
done = true; x->func();

Thread T1 Thread T2

p
done = true;

while (!done) {}
x->func();

X = new X();

KILLED BY A MACHINE: Ti|
THERAC-25

BUSINESS SOFTWARE BUSINESS v
READY *

Nasdaq's Facebook Glitch
Came From Race Conditions

I:@'J Oab_Ja';:RS':}rl M ay 21, 2012 12:30 PM

The Nasdag computer system that delayed trade notices of the Facebook IPO on Friday

was plagued by race conditions, the stock exchange announced Monday. As a result of

SEARCH

r

“henign” aces
programs with “benigh datar

Data Races are Evil 1 Boctm
with No Exceptions Hp Laboratories

By Santa Adve

EXPLOITING PARALLELISM HAS become the racy code. Java's .‘:'EIFEI:_‘.-' Ft'."q'l.'liﬁ."]‘.l'IE

rimary means to higher performance. | preclude the use of “undefined" beh SUBSCRIBE

The Therac-25 was not a device anyone was happy to see. It was a radiation therapy machine. In layman’s terms it
was a “cancer zapper”: a linear accelerator with a human as its target. Using X-rays or a beam of electrons, | Enter Email Address |m

Need for Stronger Semantics for Programs
with Data Races Adve and Boehim,

CACM’10

“The inability to define reasonable semantics for programs with
data races is not just a theoretical shortcoming, but a fundamental
hole in the foundation of our languages and systems.”

“We call upon software and hardware communities to develop
languages and systems that enforce data-race-freedom, ...”

What Do We Mean by Strong Semantics?

End-to-end guarantees even for programs with

data races

Outline

Strong Semantics with Region Conflict Exceptions

Providing Region Conflict Exceptions

ARC: Practical Architecture Support for Region Conflict Exceptions

~

Comparison of ARC with Related Approaches

J

Strong Execution Semantics with
Region Conflict Exceptions

C++ Program with Data Race

X% X = NULL;
bool done= false;
Thread T1 Thread T2
X = new X(); if (done) {
done = true; x->func();

}

Data Race Exceptions

X* x = NULL;

Thread T1

X = new X()3
done = true;

Region Conflicts

Thread T1 Thread T2

Synchronization Free Regions (SFRs)

Thread T1 Thread T2

lock m
unlock n

lock n

Region Conflicts

Thread T1 Thread T2

Report a subset of true data races
that can potentially violate region
serializability

)\

Semantics with Region Conflict Exceptions

lock(l)
Conflict-free SFR >FR
execution -y serializability
lock(m)
SFR
Synchronization-free regions (SFRs) execute lock(1l)
atomically
SFR

unlock(1)

Semantics with Region Conflict Exceptions

Conflict-free SFR
execution :> serializability

true data _
races Potential

Region Z> serializability
conflict violation

Semantics with Region Conflict Exceptions

Conflict-free SFR
execution S serializability

true data
races

Region i> Exception
conflict

Providing Region Conflict
Exceptions

Providing Region Conflict Exceptions

Valor: Efficient, Software-Only Region Conflict Exceptions *

Conflict Exceptions: Simplifying Concurrent Language
Semantics with Precise Hardware Exceptions for Data-Races

Biswas et al. Valor: Efficient, Software-Only Region Conflict Exceptions. OOPSLA 2015.

Lucia et al. Conflict Exceptions: Simplifying Concurrent Language Semantics With Precise Hardware Exceptions for Data-
Races. ISCA 2010.

Drawbacks with Conflict Exceptions

Builds on top of M(O)ESI-style cache coherence

e Introduces hardware on top existing structures
e [ncreases complexity

Inter-core communication at region boundaries

e Metadata in private cache lines are forwarded to other cores
e [ncreases on-chip interconnect bandwidth requirement

Private line evictions communicate with memory

e Relies on in-memory backup for evicted metadata
e [ncreases off-chip memory bandwidth requirement

Lucia et al. Conflict Exceptions: Simplifying Concurrent Language Semantics With Precise Hardware Exceptions for Data-
Races. ISCA 2010.

ARC: Practical Architecture
Support for Region Conflict
Exceptions

ARC: Practical Architecture
Support for Region Conflict
Exceptions

Baseline Architecture in ARC

-

[LLC]

~

Main memory

Core 1

Controller

L1

L2

Core 2

\/

Controller

L2
L1

OO

Coren

Controller

L1

L2

Baseline Architecture in ARC

no coherence
protocol +
directory

-

{LLC]

~

Main memory

Core 1

Controller

L1

L2

Core 2

Controller

L2

L1

\/

no core-to-core
communication

A,

Coren

Controller

L1

L2

Key Insights in ARC

Self
invalidation

Release Consistency

core’s private cache waits to write back its dirty data until a
synchronization release operation

X = new Object();
done = true;
unlock(m);

lock(m);
while (!done) {}
X.compute();

Self-Invalidation

core invalidates private cache lines that may be out-of-date at
synchronization acquire operations

ARC: Our Proposed Technigue for Region
Conflict Detection

4 -
Explore whether synergistic use of release

consistency and self-invalidation can be
competitive

N

/
Provide consistency and coherence at SFR
boundaries and on private cache line evictions

o

AN

Understanding how ARC Works

Last Level

ARC Core Cache (LLC)

 Lineis fetched
 Check for conflicts with

the LLC
private cache line

* Lineis evicted LLC
orivate cache line * Check for conflicts with
the LLC

Understanding how ARC Works

ARC Core

private cache line

private cache line

Last Level
Cache (LLC)

 Lineis fetched
 Check for conflicts with
the LLC

 Lineis evicted LLC
* Check for conflicts with
the LLC

Region boundary operations

Serializability of Regions

A region appears serializable
if:

There were no conflicts
Writes appear atomic

Values read are consistent

Region Boundary Operations in ARC

A region appears serializable [At a region boundary, an ARC core executes:

if:
provide
coherence Pre-commit — Write back dirty lines
: to the LLC
There were no conflicts
I Writes appear atomic [1
Values read are consistent

| |

Region Boundary Operations in ARC

A region appears serializable [At a region boundary, an ARC core executes:

if:
Pre-commit — Write back dirty lines
. to the LLC
There were no conflicts
i ~- ensure . :
[Writes app A (Read validation — Validate reads J
B Values read are ... L using version and value validation

| |

Region Boundary Operations in ARC

A region appears serializable

€ [At a region boundary, an ARC core executes:
IT:

Pre-commit — Write back dirty lines
to the LLC

There were no conflicts

Writ tomi . :
I Writes appear atomic Read validation — Validate reads
using version and value validation

I Values read are consistent

provide
coherence (Post-commit — Clear per-core
L metadata, self-invalidate private lines

ARC: Practical Architecture
Support for Region Conflict
Exceptions

Design Overview

 Architectural Modifications

Example Executions with ARC

Detecting Sound and Precise Conflicts

R | W | read/write bits

ﬁ per-byte
L | metadata

Byte
offset i

Private cache line

Modifications Introduced by ARC
- p

P AT S
consistency \ [LLC J Main memory

\ controller
N J
/

~~-—,

l

Core 1 Core 2 Coren

Controller Controller Controller

ZI L2 El L2 O O EI L2

access metadata

Metadata Management

R

incoming line

Byte
offset i

per-byte
metadata

W | read/write bits

1

Private cache

line to be evicted

evicted line +
metadata

> >>>>> 2

LLC

line + metadata
evicted to memory

Access Information Memory (AIM)

AlIM is a dedicated metadata cache adjacent to the LLC

AIM lines in ARC can be large

e 100 bytes for 8 cores, 178 bytes for 16 cores, and 308 bytes for 32
cores

e Impractical to have large AIM cache structures

ARC assumes a realistic AIM design with 32K entries

ARC Architecture with AIM Cache

-

_

===\
1AM

I ----- -
Access I
information I

1 buffer I

. - o e el
consistency
controller

G))

l

Core 1

Controller

o |

L2

Main memory

\/

Core 2

Controller

L2
L1 l

access metadata

OO

Coren

Controller

o |

L2

ARC: Practical Architecture

Support for Region Conflict
Exceptions

Design Overview

Architectural Modifications

 Example Executions with ARC

Example Execution with ARC: No Conflict

Last Level
Corel Cache (LLC) Core 2

Example Execution with ARC: No Conflict

Last Level
Core 1 Cache (LLC) Core 2
R W
X _ R W P —
X 0 1 x| olo
Y 1 0 vlolo q -
=Y P 0 O

Example Execution with ARC: No Conflict

r ™
Last Level
Core 1l \ Cache (LLC)) Core 2
T 4) 2)
X _ R W P =
X 0 O x| olo
Y 0 O
Y 0 O Q =
P 0 O
J - R
Q 0 O

no region conflict, Core 1
writes back local updates
to shared memory

Example Execution with ARC: No Conflict

r N
Last Level
Core 1l \ Cache (LLC)) Core 2
T 2) 2)
X _ R W P =
X 0 0 x| ol o
Y 0 O
Y 0 O Q =
=Y P 0 O
_ / - R

no region conflict, Core 2
writes back local updates
to shared memory

Eager Conflict Detection with ARC: Conflict on
Evicted Line

Last Level
Corel Cache (LLC) Core 2

Eager Conflict Detection with ARC: Conflict on
Evicted Line

Last Level
Core 1l Cache (LLC) Core 2
il X = .. ol i P =
X 0 1 _y x| olo
Y 1 0 vlolo Q -
P 0 O

Eager Conflict Detection with ARC: Conflict on
Evicted Line

Last Level
Corel Cache (LLC) Core 2
R W
X _ R W P —
Y 1 0
=Y X 0 1
Y O 0 _
cache line Q -
containing X P 0 O

gets evicted

Eager Conflict Detection with ARC: Conflict on
Evicted Line

<
Last Level
Corel

Cache (LLC)) Core 2

1|
<

eager
conflict

Lazy Conflict Detection with ARC: Conflict on
Private Lines

Last Level
Corel Cache (LLC) Core 2

Lazy Conflict Detection with ARC: Conflict on
Private Lines

Last Level
Corel Cache (LLC) Core 2

v
=
I

X (5)

20

X
I

no eager invalidation
in Core 2 on write

Lazy Conflict Detection with ARC: Conflict on
Private Lines

Last Level
Corel Cache (LLC) Core 2
R |W R W = X (5)
X 0 1 x| ol o
X = 20
Y 1 0 vlolo q -
=Y
P 0 O

Lazy Conflict Detection with ARC: Conflict on
Private Lines

r N

Last Level
Corel \ Cache (LLC)) Core 2
4) 2)
R | W R W = X (5)
X 0 O x| o I8
X = 20
Y 0 O vlolo q -
=Y
P 0 O
J

Q 0 O

no region conflict, Core 1
writes back local updates
to shared memory

Lazy Conflict Detection with ARC: Conflict on
Private Lines

4)
Last Level

Core 1 ~ Cache (LLC) Core 2

no region conflict, Core 1 _ .
writes back local updates ! lazy conflict
to shared memory fails to ensure on X

consistency of reads

Comparison of ARC with Related
Approaches

Comparing Conflict Exceptions and ARC

Conflict Exceptions ARC
* Builds on M(O)ESI * Adapts release consistency and
* Coherence at granularity of self-invalidation schemes
memory accesses e Coherence at region granularity
* Requires support for a Directory « Requires a AIM cache, write
and point-to-point signatures, and consistency
communication controllers
* Detects conflicts eagerly * Uses a mix of eager and lazy

conflict detection

Lucia et al. Conflict Exceptions: Simplifying Concurrent Language Semantics With Precise Hardware Exceptions for Data-
Races. ISCA 2010.

Implementation and Evaluation

 Simulation
* A Pintool generates a stream of memory and synchronization events

* Events are processed by model implementations of Conflict Exceptions (CE)
and ARC

* Use MCcPAT to estimate energy usage

https://github.com/PLaSSticity/ce-arc-simulator-ipdps19

Run-time normalized to CE-4

Run-time Performance normalized

0.

0o

0.

()}

0.

D

0.

N

o

to CE-4

BCE-4 WARC-4 mCE-8 WARC-8 ECE-16 mARC-16 mCE-32 mARC-32

blackscholes bodytrack canneal dedup ferret fluidanimate raytrace streamcluster swaptions vips X264 geomean

Run-time normalized to CE-4

Run-time Performance

BCE-4 WARC-4 mCE-8 WARC-8 ECE-16 mARC-16 mCE-32 mARC-32

0.

0o

0.

()}

0.

D

0.

N

o

blackscholes bodytrack canneal dedup ferret fluidanimate raytrace streamcluster swaptions vips

normalized
to CE-4

MbALLL

X264 geomean

Run-time normalized to CE-4

Run-time Performance

BCE-4 WARC-4 mCE-8 WARC-8 ECE-16 mARC-16 mCE-32 mARC-32

0.

0o

0.

()}

0.

D

0.

N

o

blackscholes bodytrack cannea dedup ferret fluidanimate raytrace streamcluster swaptions vips

normalized
to CE-4

AGLbALLLLLA

X264 geomean

E ﬂ e rgy U Sa ge normalized

to CE-4

B CE-4 WARC-4 mCE-8 ARC-8 mCE-16 W ARC-16 mCE-32 mARC-32

blackscholes bodytrack canneal dedup ferret fluidanimate raytrace streamcluster swaptions vips X264 geomean

2.5

N

1.

(S,

0.

(%]

o

Overhead of Providing Region Conflict
Detection

e Current shared-memory systems provide undefined semantics for
racy programs

Overhead comparison at 32 cores

Approaches Run-time

(0)
performance (%) Energy usage (%)

CE 26.7 41.4

ARC 12.5 27.8

Key
Takeaways!

Release consistency and self-invalidation techniques
can be a good fit for detecting region conflicts

Small metadata cache provides reasonable tradeoffs
between performance and complexity

Compared to state-of-art, ARC shows promise in
making region conflict detection practical

Rethinking Support for
Region Conflict Exceptions

Swarnendu Biswas, Rui Zhang, Michael D. Bond, and Brandon Lucia

IPDPS 2019

