
Rethinking Support for
Region Conflict Exceptions

Swarnendu Biswas, Rui Zhang, Michael D. Bond, and Brandon Lucia

IPDPS 2019

C++ Program with Data Race

Thread T1

x = new X();
done = true;

Thread T2

if (done) {
x->func();

}

X* x = NULL;
bool done= false;

Catch-Fire Semantics in C++

x = new X();
done = true;

if (done) {
x->func();

}

X* x = NULL;
bool done= false;

Thread T1 Thread T2

C++ treats data races as errors

Catch-Fire Semantics in C++

ANYTHING BAD CAN HAPPEN!

x = new X();
done = true;

Thread T1

while (!done) {}
x->func();

Thread T2

X *x = NULL;
bool done= false;

x = new X();
done = true;

Thread T1

while (!done) {}
x->func();

Thread T2

X *x = NULL;
bool done= false;

x = new X();

done = true;

Thread T1

temp = done;

while (!temp) {}

Thread T2

Infinite
loop

LI
C

M

x = new X();
done = true;

Thread T1

while (!done) {}
x->func();

Thread T2

X *x = NULL;
bool done= false;

Thread T1

done = true;

x = new X();

Thread T2

while (!done) {}
x->func(); NPE

Need for Stronger Semantics for Programs
with Data Races

“The inability to define reasonable semantics for programs with
data races is not just a theoretical shortcoming, but a fundamental
hole in the foundation of our languages and systems.”

“We call upon software and hardware communities to develop
languages and systems that enforce data-race-freedom, ...”

Adve and Boehm,
CACM’10

What Do We Mean by Strong Semantics?

End-to-end guarantees even for programs with
data races

Outline

Impact of Data Races on Language Models

Strong Semantics with Region Conflict Exceptions

Providing Region Conflict Exceptions

ARC: Practical Architecture Support for Region Conflict Exceptions

Comparison of ARC with Related Approaches

Strong Execution Semantics with
Region Conflict Exceptions

C++ Program with Data Race

Thread T1

x = new X();
done = true;

Thread T2

if (done) {
x->func();

}

X* x = NULL;
bool done= false;

Data Race Exceptions

Thread T1

x = new X();
done = true;

Thread T2

if (done) {
x->func();

}

X* x = NULL;
bool done= false;

EXCEPTION

Region Conflicts

Thread T1

wr x

rd x

Thread T2

Conflict

ti
m

e

Synchronization Free Regions (SFRs)
Thread T1

lock m

lock n

Thread T2

unlock n

ti
m

e

Region Conflicts

Thread T1

wr x

rd x

Thread T2

Conflict

ti
m

e

Report a subset of true data races
that can potentially violate region

serializability

Semantics with Region Conflict Exceptions

Conflict-free
execution

SFR
serializability

SFR

SFR

SFR

lock(l)

lock(m)

lock(l)

unlock(l)

ti
m

e

Synchronization-free regions (SFRs) execute
atomically

Semantics with Region Conflict Exceptions

Conflict-free
execution

SFR
serializability

true data
races

Region
conflict

Potential
serializability

violation

Semantics with Region Conflict Exceptions

Conflict-free
execution

SFR
serializability

true data
races

Region
conflict

Exception

Providing Region Conflict
Exceptions

Providing Region Conflict Exceptions

Biswas et al. Valor: Efficient, Software-Only Region Conflict Exceptions. OOPSLA 2015.
Lucia et al. Conflict Exceptions: Simplifying Concurrent Language Semantics With Precise Hardware Exceptions for Data-
Races. ISCA 2010.

Drawbacks with Conflict Exceptions

Builds on top of M(O)ESI-style cache coherence

• Introduces hardware on top existing structures

• Increases complexity

Inter-core communication at region boundaries

• Metadata in private cache lines are forwarded to other cores

• Increases on-chip interconnect bandwidth requirement

Private line evictions communicate with memory

• Relies on in-memory backup for evicted metadata

• Increases off-chip memory bandwidth requirement

Lucia et al. Conflict Exceptions: Simplifying Concurrent Language Semantics With Precise Hardware Exceptions for Data-
Races. ISCA 2010.

ARC: Practical Architecture
Support for Region Conflict
Exceptions
Design Overview

Architectural Modifications

Example Executions with ARC

ARC: Practical Architecture
Support for Region Conflict
Exceptions
• Design Overview
Architectural Modifications

Example Executions with ARC

Baseline Architecture in ARC

Core n

Controller

L1

L2

Main memoryLLC

Core 2

Controller

L1

L2

Core 1

Controller

L1

L2

Baseline Architecture in ARC

Core n

Controller

L1

L2

Main memoryLLC

Core 2

Controller

L1

L2

Core 1

Controller

L1

L2

no coherence
protocol +
directory

no core-to-core
communication

Key Insights in ARC

No
M(O)ESI

Self
invalidation

Release Consistency

X = new Object();
done = true;
unlock(m);

lock(m);
while (!done) {}
X.compute();

ti
m

e

core’s private cache waits to write back its dirty data until a
synchronization release operation

Self-Invalidation

core invalidates private cache lines that may be out-of-date at
synchronization acquire operations

ARC: Our Proposed Technique for Region
Conflict Detection

Explore whether synergistic use of release
consistency and self-invalidation can be
competitive

Provide consistency and coherence at SFR
boundaries and on private cache line evictions

Understanding how ARC Works

ARC Core

ti
m

e

• Line is fetched
• Check for conflicts with

the LLC

Last Level
Cache (LLC)

private cache line

private cache line

• Line is evicted LLC
• Check for conflicts with

the LLC

Understanding how ARC Works

ARC Core

ti
m

e

• Line is fetched
• Check for conflicts with

the LLC

Last Level
Cache (LLC)

private cache line

private cache line

• Line is evicted LLC
• Check for conflicts with

the LLC

Region boundary operations

Serializability of Regions

A region appears serializable
if:

There were no conflicts

Writes appear atomic

Values read are consistent

Region Boundary Operations in ARC

A region appears serializable
if:

There were no conflicts

Writes appear atomic

Values read are consistent

At a region boundary, an ARC core executes:

Pre-commit – Write back dirty lines
to the LLC

provide
coherence

Region Boundary Operations in ARC

A region appears serializable
if:

There were no conflicts

Writes appear atomic

Values read are consistent

At a region boundary, an ARC core executes:

Pre-commit – Write back dirty lines
to the LLC

Read validation – Validate reads
using version and value validation

ensure
consistency

Region Boundary Operations in ARC

A region appears serializable
if:

There were no conflicts

Writes appear atomic

Values read are consistent

At a region boundary, an ARC core executes:

Pre-commit – Write back dirty lines
to the LLC

Read validation – Validate reads
using version and value validation

Post-commit – Clear per-core
metadata, self-invalidate private lines

provide
coherence

ARC: Practical Architecture
Support for Region Conflict
Exceptions
Design Overview

• Architectural Modifications
Example Executions with ARC

Detecting Sound and Precise Conflicts

Byte
offset i

R W

per-byte
metadata

read/write bits

Private cache line

Modifications Introduced by ARC

Core n

Controller

L1

L2

Main memoryLLCconsistency
controller

Core 2

Controller

L1

L2

Core 1

Controller

L1

L2

access metadata

Metadata Management

Byte
offset i

per-byte
metadata

R W read/write bits

evicted line +
metadataincoming line line to be evicted

LLC

Private cache

line + metadata
evicted to memory

Access Information Memory (AIM)

AIM is a dedicated metadata cache adjacent to the LLC

AIM lines in ARC can be large

• 100 bytes for 8 cores, 178 bytes for 16 cores, and 308 bytes for 32
cores

• Impractical to have large AIM cache structures

ARC assumes a realistic AIM design with 32K entries

ARC Architecture with AIM Cache

Core n

Controller

L1

L2

Main memory

Access
information

buffer

LLC

consistency
controller

AIM

Core 2

Controller

L1

L2

Core 1

Controller

L1

L2

access metadata

ARC: Practical Architecture
Support for Region Conflict
Exceptions
Design Overview

Architectural Modifications

• Example Executions with ARC

Example Execution with ARC: No Conflict

Core 1

W- R

Core 2

W- R

Last Level
Cache (LLC)

W

X 0 0

- R

Y 0 0

P 0 0

Q 0 0

Example Execution with ARC: No Conflict

Core 1

X = …

… = Y

W

X 0 1

- R

Y 1 0

Core 2

P = …

Q = …

W

P 0 1

- R

Q 0 1

Last Level
Cache (LLC)

W

X 0 0

- R

Y 0 0

P 0 0

Q 0 0

Example Execution with ARC: No Conflict

Core 1

X = …

… = Y

W

X 0 0

- R

Y 0 0

Core 2

P = …

Q = …

W

P 0 1

- R

Q 0 1

Last Level
Cache (LLC)

W

X 0 0

- R

Y 0 0

P 0 0

Q 0 0

no region conflict, Core 1
writes back local updates

to shared memory

… = R

R 1 0

Example Execution with ARC: No Conflict

Core 1

X = …

… = Y

W

X 0 0

- R

Y 0 0

Core 2

P = …

Q = …

W

P 0 0

- R

Q 0 0

Last Level
Cache (LLC)

W

X 0 0

- R

Y 0 0

P 0 0

Q 0 0
… = R

R 0 0

no region conflict, Core 2
writes back local updates

to shared memory

Eager Conflict Detection with ARC: Conflict on
Evicted Line

Core 1

W- R

Core 2

W- R

Last Level
Cache (LLC)

W

X 0 0

- R

Y 0 0

P 0 0

Q 0 0

Eager Conflict Detection with ARC: Conflict on
Evicted Line

Core 1

X = …

… = Y

W

X 0 1

- R

Y 1 0

Core 2

P = …

Q = …

W

P 0 1

- R

Q 0 1

Last Level
Cache (LLC)

W

X 0 0

- R

Y 0 0

P 0 0

Q 0 0

Eager Conflict Detection with ARC: Conflict on
Evicted Line

Core 1

X = …

… = Y

W

Y 1 0

- R

Core 2

P = …

Q = …

W

P 0 1

- R

Q 0 1

Last Level
Cache (LLC)

W

X 0 1

- R

Y 0 0

P 0 0

Q 0 0

cache line
containing X
gets evicted

Eager Conflict Detection with ARC: Conflict on
Evicted Line

Core 1

X = …

… = Y

W

Y 1 0

- R

Core 2

P = …

Q = …

W

P 0 1

- R

Q 0 1

Last Level
Cache (LLC)

W

X 0 1

- R

Y 0 0

P 0 0

Q 0 0

X 1 0

… = X

eager
conflict

Lazy Conflict Detection with ARC: Conflict on
Private Lines

Core 1

W- R

Core 2

W- R

Last Level
Cache (LLC)

W

X 0 0

- R

Y 0 0

P 0 0

Q 0 0

Lazy Conflict Detection with ARC: Conflict on
Private Lines

Core 1

X = 20

W

X 0 1

- R

Core 2

… = X (5)
W

X 1 0

- R

Last Level
Cache (LLC)

W

X 0 0

- R

Y 0 0

P 0 0

Q 0 0

no eager invalidation
in Core 2 on write

Lazy Conflict Detection with ARC: Conflict on
Private Lines

Core 1

X = 20

… = Y

W

X 0 1

- R

Core 2

… = X (5)

Q = …

W

X 1 0

- R

Q 0 1

Last Level
Cache (LLC)

W

X 0 0

- R

Y 0 0

P 0 0

Q 0 0

Y 1 0

Lazy Conflict Detection with ARC: Conflict on
Private Lines

Core 1

X = 20

… = Y

W

X 0 0

- R

Core 2

… = X (5)

Q = …

W

X 1 0

- R

Q 0 1

Last Level
Cache (LLC)

W

X 0 0

- R

Y 0 0

P 0 0

Q 0 0

Y 0 0

no region conflict, Core 1
writes back local updates

to shared memory

Lazy Conflict Detection with ARC: Conflict on
Private Lines

Core 1

X = 20

… = Y

W

X 0 0

- R

Core 2

… = X (5)

Q = …

W

X 1 0

- R

Q 0 1

Last Level
Cache (LLC)

W

X 0 0

- R

Y 0 0

P 0 0

Q 0 0

Y 0 0

no region conflict, Core 1
writes back local updates

to shared memory fails to ensure
consistency of reads

lazy conflict
on X

Comparison of ARC with Related
Approaches
Implementation and Evaluation

Comparing Conflict Exceptions and ARC

Conflict Exceptions

• Builds on M(O)ESI
• Coherence at granularity of

memory accesses

• Requires support for a Directory
and point-to-point
communication

• Detects conflicts eagerly

ARC

• Adapts release consistency and
self-invalidation schemes
• Coherence at region granularity

• Requires a AIM cache, write
signatures, and consistency
controllers

• Uses a mix of eager and lazy
conflict detection

Lucia et al. Conflict Exceptions: Simplifying Concurrent Language Semantics With Precise Hardware Exceptions for Data-
Races. ISCA 2010.

Implementation and Evaluation

• Simulation
• A Pintool generates a stream of memory and synchronization events

• Events are processed by model implementations of Conflict Exceptions (CE)
and ARC

• Use McPAT to estimate energy usage

https://github.com/PLaSSticity/ce-arc-simulator-ipdps19

Run-time Performance

0

0.2

0.4

0.6

0.8

1

blackscholes bodytrack canneal dedup ferret fluidanimate raytrace streamcluster swaptions vips x264 geomean

CE-4 ARC-4 CE-8 ARC-8 CE-16 ARC-16 CE-32 ARC-32

normalized
to CE-4

R
u

n
-t

im
e

n
o

rm
al

iz
ed

 t
o

 C
E-

4

Run-time Performance

0

0.2

0.4

0.6

0.8

1

blackscholes bodytrack canneal dedup ferret fluidanimate raytrace streamcluster swaptions vips x264 geomean

CE-4 ARC-4 CE-8 ARC-8 CE-16 ARC-16 CE-32 ARC-32

normalized
to CE-4

R
u

n
-t

im
e

n
o

rm
al

iz
ed

 t
o

 C
E-

4

Run-time Performance

0

0.2

0.4

0.6

0.8

1

blackscholes bodytrack canneal dedup ferret fluidanimate raytrace streamcluster swaptions vips x264 geomean

CE-4 ARC-4 CE-8 ARC-8 CE-16 ARC-16 CE-32 ARC-32

normalized
to CE-4

R
u

n
-t

im
e

n
o

rm
al

iz
ed

 t
o

 C
E-

4

0

0.5

1

1.5

2

2.5

blackscholes bodytrack canneal dedup ferret fluidanimate raytrace streamcluster swaptions vips x264 geomean

CE-4 ARC-4 CE-8 ARC-8 CE-16 ARC-16 CE-32 ARC-32

Energy Usage normalized
to CE-4

Overhead of Providing Region Conflict
Detection
• Current shared-memory systems provide undefined semantics for

racy programs

Approaches

Overhead comparison at 32 cores

Run-time
performance (%)

Energy usage (%)

CE 26.7 41.4

ARC 12.5 27.8

Key
Takeaways!

Release consistency and self-invalidation techniques
can be a good fit for detecting region conflicts

Small metadata cache provides reasonable tradeoffs
between performance and complexity

Compared to state-of-art, ARC shows promise in
making region conflict detection practical

Rethinking Support for
Region Conflict Exceptions

Swarnendu Biswas, Rui Zhang, Michael D. Bond, and Brandon Lucia

IPDPS 2019

