
47

A Regression Test Selection Technique for Embedded Software

SWARNENDU BISWAS and RAJIB MALL, Indian Institute of Technology Kharagpur
MANORANJAN SATPATHY, GM India Science Lab

The current approaches for regression test selection of embedded programs are usually based on data-
and control-dependency analyses, often augmented with human reasoning. Existing techniques do not take
into account additional execution dependencies which may exist among code elements in such programs
due to features such as tasks, task deadlines, task precedences, and intertask communications. In this
context, we propose a model-based regression test selection technique for such programs. Our technique first
constructs a graph model of the program; the proposed graph model has been designed to capture several
characteristics of embedded programs, such as task precedence order, priority, intertask communication,
timers, exceptions and interrupt handlers, which we consider important for regression-test selection. Our
regression test selection technique selects test cases based on an analysis of the constructed graph model.
We have implemented our technique to realize a prototype tool. The experimental results obtained using
this tool show that, on average, our approach selects about 28.33% more regression test cases than those
selected by a traditional approach. We observed that, on average, 36.36% of the fault-revealing test cases
were overlooked by the existing regression test selection technique.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—Testing tools

General Terms: Performance, Verification, Reliability

Additional Key Words and Phrases: Embedded programs, intertask communication, regression test selection,
software maintenance, slicing, task execution dependencies

ACM Reference Format:
Biswas, S., Mall, R., and Satpathy, M. 2013. A regression test selection technique for embedded software.
ACM Trans. Embedd. Comput. Syst. 13, 3, Article 47 (December 2013), 39 pages.
DOI: http://dx.doi.org/10.1145/2539036.2539043

1. INTRODUCTION

Of late, there has been a rapid surge in the usage and reach of embedded applications.
A large variety of embedded applications now touch our daily lives. These include home
appliances, communication systems, entertainment systems, and automobiles, just to
name a few. In addition to the rapid increase in the popularity of embedded systems,
an unmistakable trend is their increasing size and sophistication [Seo et al. 2008].
The enhanced capabilities of embedded systems coupled with the user demands for
flexibility have contributed to prolific usage of these systems even in safety-critical
areas, such as nuclear power stations, healthcare, automotive, avionics, etc. [Salewski
and Taylor 2007]. Embedded systems used in safety-critical applications are required
to have far greater reliability than conventional applications. Seo et al. have reported

Authors’ addresses: S. Biswas (corresponding author) and R. Mall, Department of Computer Science and
Engineering, IIT Kharagpur, India 721302; M. Satpathy, GM India Science Lab, Bangalore, India; corre-
sponding author’s email: swarnendu@cse.iitkgp.ernet.in.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1539-9087/2013/12-ART47 $15.00

DOI: http://dx.doi.org/10.1145/2539036.2539043

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

47:2 S. Biswas et al.

Fig. 1. Maintenance process model.

[2008] that though less than 20% of the functionalities of an embedded system are
implemented in software, yet more than 80% of the reported failures could be attributed
to software bugs. In this context, effective regression testing of evolving embedded
software assumes increased significance.

Maintenance of an embedded program is frequently necessitated to fix bugs, to en-
hance or adapt existing functionalities, or to port it to different environments. Figure 1,
adapted from Do et al. [2010], shows a popularly-followed maintenance process model.
As shown in Figure 1, after a software is released, the failure reports and change re-
quests for the software are periodically compiled, and the software is modified to make
the necessary changes. After the necessary changes have been made, unit testing is
carried out to ensure that the changes are proper. The objective of regression testing
is to ensure that no new errors have been introduced in the unmodified parts of the
code due to the changes made [Leung and White 1989]. Here, we would like to note
that some existing papers in the literature also include testing the directly modified
parts of the code as part of regression testing. In our work, we consider testing the
directly changed parts of the code as repeated execution of unit testing. Unit tests
are re-executed to validate the modified parts of the code, while regression testing is
carried out to revalidate the unchanged parts of the code that might have been affected
by the code change. After testing is complete, a new version of the software is released,
which then undergoes a similar maintenance cycle.

Regression testing is carried out during different phases of software development:
at unit, integration, and system testing phases, as well as during the maintenance
phase [Leung and White 1989]. Regression testing of an evolving application is a
crucial activity and consumes significant amounts of time and effort. The extents
to which time and effort are being spent on regression testing are exemplified by
a study [Do et al. 2010] that reports that it took 1,000 machine hours to execute
approximately 30,000 functional test cases for a software product. It is also impor-
tant to note that hundreds of man hours are spent by test engineers on regression
testing activities other than test execution, such as setting up test runs, monitoring
test execution, analyzing results, and maintaining testing resources, etc. [Do et al.
2010]. In fact, regression testing has been estimated to account for almost half of
the total software maintenance costs [Kapfhammer 2004; Leung and White 1989].
To reduce regression testing costs, it is necessary to eliminate all those test cases
that solely run the unaffected parts of the code, because they are unlikely to detect
any bug. At the same time, it is also important to ensure that no test case that has
the potential to detect a regression bug is overlooked. Accurate regression test se-
lection is, therefore, considered to be an issue of considerable practical importance
and has the potential to substantially reduce software maintenance costs [Guan et al.
2006].

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

A Regression Test Selection Technique for Embedded Software 47:3

1.1. Regression Test Selection

Regression test selection (RTS) techniques select a subset of valid test cases from an
initial test suite (T) to test the affected but unmodified parts of a program [Leung
and White 1989; Rothermel and Harrold 1997]. A large number of RTS techniques for
procedural, object-oriented, component-based, aspect-oriented, and Web-based appli-
cations have been reported in the literature [Bates and Horwitz 1993; Binkley 1997;
Rothermel and Harrold 1997; Harrold et al. 2001; Zheng et al. 2006; Orso et al. 2004].
However, research results on RTS for embedded programs are scarce. Possibly this is
one of the reasons why regression test cases for embedded programs in the industry are
selected based either on expert judgment or on some form of manual program analysis
[Guan et al. 2006; Cartaxo et al. 2011]. However, the effectiveness of such approaches
tends to rapidly decrease as the complexity of software increases [Cartaxo et al. 2011].
Furthermore, manual test selection tends to be conservative and often leads to a large
number of test cases to be selected and rerun, even for minor program changes, leading
to unnecessarily high regression testing costs. What probably is more disconcerting is
the fact that many test cases which have the potential to detect regression errors could
get overlooked during manual selection.

1.2. Challenges in RTS of Embedded Programs

As compared to traditional applications, regression testing of embedded programs
poses several additional challenges [Sundmark et al. 2007; Sangiovanni-Vincentelli
and Natale 2007; Netkow and Brylow 2010]. In the following, we briefly highlight
the main complicacies that surface while selecting regression test cases for embedded
applications. Embedded applications usually consist of concurrent and cooperating
tasks having real-time constraints. Apart from verifying the functional correctness
of an embedded program, satisfaction of timing properties of the tasks also needs to
be tested. A cursory analysis of this situation reveals that selection of regression test
suites for embedded programs based on analysis of data or control dependencies alone
would not be satisfactory. Unless timing issues are carefully analyzed and taken into
consideration, several potentially fault-revealing test cases may be omitted during
RTS for embedded programs.

It could be argued that existing RTS techniques [Rothermel and Harrold 1997; Voko-
los and Frankl 1997; Binkley 1997] reported in the context of procedural programs
are unsuited for embedded programs. Traditional RTS techniques do not take into ac-
count the implications of several important features of embedded programs, such as
concurrent and time-constrained tasks. In an embedded application, it is possible that
the execution of a task τi may get delayed due to changes made to the code of some
other task τ j that does not have any data or control dependencies with the task τi.
For example, when two tasks are communicating using a shared variable, the access to
the shared variable is usually guarded by a semaphore. If a task blocks the semaphore
for a longer duration due to a change made to the task code, then the execution of
other tasks using that semaphore may get delayed. An unmodified task could also get
delayed due to a modification made to the code of some other task due to issues such as
message passing, precedence ordering, and priorities. Whenever the code of one task
is changed, it becomes necessary to test those tasks whose execution time could poten-
tially get affected due to implicit task execution dependencies. Therefore, in addition to
traditional data and control dependencies, an RTS technique for embedded programs
needs to take into account the execution dependencies among the various tasks.

In this context, it is important to note the difference between task timing analysis and
execution dependency analysis. While timing analysis deals with prediction of worst-
case execution time (WCET) for tasks, the aim of task execution dependency analysis

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

47:4 S. Biswas et al.

Fig. 2. An example of a regression error introduced due to task execution dependency.

is to identify all those tasks in an application that can affect the timing behavior of a
given task.

We present an example of a regression error that may go unnoticed if regression
tested with test cases selected using a traditional RTS technique [Biswas et al. 2011].
Figure 2(a) shows the pseudocode for an embedded program P which is composed of
three tasks, eh1, eh2, and logger. We make the following assumptions: (a) eh1 and eh2
are invoked in response to events A and B after every 10 ms and 12 ms, respectively,
(b) eh1 is of higher priority than eh2, (c) there is a deadline by which event B needs to
be handled by eh2 after it is invoked, and (d) there are no data or control dependencies
among the program statements in eh1 and eh2. Note that logger is an auxiliary task
and is not dependent on the execution of eh1 and eh2. Suppose the event handling logic
in eh1 is changed in P ′, as shown in Figure 2(b), and as a result, eh1 takes longer to
complete after the modification. Since eh1 is of higher priority, eh2 cannot start until
eh1 is complete, that is, task eh2 is execution dependent on task eh1. Therefore, eh2
would get delayed and miss its deadline. Consider a test case t which tests only the
event handling logic in task eh2. Existing procedural RTS techniques usually select
test cases based on only data and control dependencies and therefore are likely to omit
test cases, such as t for regression testing of P ′.

Programmers extensively use exception handling mechanisms to increase the relia-
bility and robustness of embedded software. Examples of commonly raised exceptions
in embedded systems are timer expiration and NULL pointer exception. When an excep-
tion arises, it causes transfer of control from the point where it is raised (within the
exception block) to the corresponding exception handler routine. Exceptions raised in
a program often change the data-dependence relationships among program elements
[Jiang et al. 2006]. This is because the exception handling mechanism may alter the
definition-use sequences for some variables. Therefore, satisfactory RTS of embedded
programs requires explicit analysis of control flow due to exception handling [Sinha
and Harrold 1998].

In this article, we propose an RTS technique for embedded programs in an attempt to
overcome the identified inadequacies of traditional approaches. We have considered a
subset of MISRA C1 as the programming language. Its inherent flexibility and the ease
with which it can be ported to a wide range of hardware platforms has made MISRA
C a popular choice for developing real-time and safety-critical embedded applications.
We first propose a graph representation that can capture features of an embedded

1http://www.misra.org.uk/.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

A Regression Test Selection Technique for Embedded Software 47:5

program that are important for RTS. Our proposed model, in addition to capturing
data and control dependencies, represents control flow and a few other features of
an embedded program, such as tasks, task precedences, and intertask communica-
tions. Subsequently, we present an RTS technique that is based on an analysis of the
constructed model. We also discuss a prototype implementation of our proposed RTS
technique. The following are the three main contributions of our work.

(1) The models proposed in the literature [Rothermel and Harrold 1997; Orso et al.
2004; Harrold et al. 2001] for use in the RTS process ignore many important fea-
tures of embedded programs, such as tasks, task precedence orders, timeouts, inter-
task communication using message queues and semaphores, exception handling,
and interrupts. However, as we have already discussed, these aspects appear to be
important features that need to be considered during the RTS process. Our pro-
posed model has been designed to capture these important features of embedded
programs and is, therefore, an original contribution.

(2) Existing RTS techniques for procedural programs are based on analysis of data and
control dependencies [Bates and Horwitz 1993; Binkley 1997]. A few techniques are
based solely on analysis of control flow information [Rothermel and Harrold 1997].
However, modifications to a task in an embedded application can affect the timing
behavior (i.e., completion times) of other execution dependent tasks. For this, we
first determine the execution dependencies among tasks that arise due to various
issues, such as task precedence orders, task priorities, intertask communication
using message queues and semaphores, exception handling, and interrupts. Subse-
quently, we select regression test cases by analyzing task execution dependencies
in addition to the usual control and data-dependence analysis.

(3) We have implemented a prototype tool based on our proposed RTS methodology. We
have conducted experimental studies using several industry-standard case studies
with our prototype tool and have analyzed the results of our studies. The results
obtained from our experimental studies highlight the importance of task execution
dependency analysis in RTS of embedded programs.

The rest of this article is organized as follows: In Section 2, we discuss some basic
concepts related to our work. We discuss the different execution dependencies that can
arise among the tasks in an embedded program in Section 3. In Section 4, we present
the graph model that we have designed for embedded C programs. In Sections 5 and
6, we present our proposed RTS technique and the experimental results obtained by
using our technique, respectively. In Section 7, we compare our approach with related
work. Finally, Section 8 concludes.

2. BASIC CONCEPTS

In this section, we discuss certain basic concepts that underlie our approach to RTS for
embedded programs. We first present some definitions used in the context of regres-
sion test selection and then discuss a few models proposed for procedural programs.
Subsequently, we discuss some features of embedded programs that are relevant to
regression test selection and also discuss a procedural RTS technique proposed by
Binkley [1997] which we have used to compare our experimental results.

For notational convenience, in the rest of the article we denote the original and the
modified programs by P and P ′, respectively. The initial test suite for P is denoted by
T , and a test case in T is denoted by t.

2.1. Concepts Related to Regression Test Selection

In this section, we discuss a few important notations and concepts relevant to our work
on regression test selection.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

47:6 S. Biswas et al.

2.1.1. Fault-Revealing Test Cases. Rothermel and Harrold [1996] have defined a fault-
revealing test case for a traditional program P as a test case t ∈ T that can cause P to
fail by producing incorrect outputs for P. However, real-time embedded programs have
time constraints associated with the output. Therefore, we define a fault-revealing test
case in the context of a real-time embedded program as follows. A test case t ∈ T is
said to be fault-revealing for programs P and P ′ if and only if it can cause P ′ to fail by
producing an incorrect output or cause the output to be produced too late.

2.1.2. Modification-Revealing Test Cases. Rothermel and Harrold [1996] have defined a
modification-revealing test case as a test case t ∈ T that produces different outputs for
P and P ′. We extend the definition of a modification-revealing test case for embedded
programs as follows. A test case t ∈ T is said to be modification-revealing for P and
P ′ if and only if it produces different outputs when executed with P and P ′, or if the
outputs for P and P ′ are produced at different instants of time.

2.1.3. Relevant Regression Test Cases, Safety, and Precision. A test case t ∈ T is relevant
to a change if it executes those unmodified parts of P ′ which are affected due to data,
control, or task execution dependencies. Therefore, all relevant test cases need to be
executed during regression testing of P ′.

Rothermel and Harrold [1996] have defined a set of metrics to evaluate the effec-
tiveness of an RTS technique. However, their metrics were proposed in the context
of procedural programs and do not consider specific characteristics of embedded pro-
grams, such as the changed notion of correctness of an embedded program that also
involves the notion of time.

In the context of embedded programs, we argue that a more accurate metric of the
efficacy of RTS is the number (or percentage) of test cases that are selected from those
that failed when all the valid test cases in the initial test suite are run on the modified
program. Thus, the percentage of failed test cases selected by an RTS technique can
serve as a figure of merit.

A cause for concern with testing embedded programs with concurrent tasks is non-
deterministic interleaving of the tasks. It is possible that based on the timing, there are
different interleavings of the tasks leading to different outputs being produced across
runs. So, the set of selected test cases that make an RTS safe for one interleaving may
not include a test case that is fault-revealing for another interleaving. Therefore, safety
of RTS techniques for concurrent embedded programs is limited to safely selecting test
cases based on the test execution history gathered over earlier testing sessions.

Precision measures the extent to which an RTS technique omits selecting non-
relevant test cases.

2.1.4. Regression Testing Cycle. A regression testing cycle consists of the different ac-
tivities that are carried out during regression testing, for example, test setup, test case
selection, test case execution, etc. Therefore, there can be numerous regression testing
cycles during software maintenance phase.

2.2. Procedural Program Models

Graph models of programs have extensively been used in many applications, such as
program slicing [Liang and Harrold 1998; Sinha et al. 1999], reverse engineering [Cleve
et al. 2006], etc. Some of the popular procedural graph models reported in the literature
include control flow graphs (CFG) [Aho et al. 2008], program dependence graphs (PDG)
[Ferrante et al. 1987], and system dependence graphs (SDG) [Horwitz et al. 1990]. In
the following, we briefly review an SDG graph model since it is related to our work.

2.2.1. System Dependence Graph. A major limitation of a PDG representation is that
it can only model a single procedure and is not able to model interprocedural calls.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

A Regression Test Selection Technique for Embedded Software 47:7

Horwitz et al. [1990] enhanced the PDG representation to handle procedure calls and
introduced the system dependence graph (SDG) representation to model a main pro-
gram together with all its non-nested procedures.

Let VTSDG be the set of all node types of an SDG. Then, VTSDG can be expressed as
follows.

VTSDG = {Vassign, Vpred, Vcall, VAin, VAout , VFin, VFout},
where each member of the set VTSDG represents a particular node type. In the following,
we explain the different types of nodes in an SDG.

—Node types Vassign and Vpred represent assignment statements and control predicates,
respectively.

—Call-site nodes (Vcall) represent the procedure call statements in a program.
—Actual-in (VAin) and actual-out (VAout) nodes represent the input and output parame-

ters at a call site. They are control dependent on the corresponding call-site node.
—Formal-in (VFin) and formal-out (VFout) nodes represent the input and output param-

eters at the called procedure. These nodes are control dependent on the procedure’s
entry node.

Let ETSDG denote the different types of edges of an SDG. It can be expressed as

ETSDG = {Ecd, Edd, Ece, EPin, EPout , ESum},
where each member of the set ETSDG represents a particular edge type. In the following,
we explain the different types of edges of an SDG.

—Control (Ecd)- and data (Edd)-dependence edges represent the control and data de-
pendence relationships among the nodes of an SDG, respectively.

—Call edges (Ece) link the call-site nodes with the corresponding procedure entry nodes.
—Parameter-in edges (EPin) connect the actual-in nodes with the respective formal-in

nodes.
—Parameter-out edges (EPout) connect the formal-out nodes with the respective actual-

out nodes.
—Summary edges (ESum) are used to represent the transitive dependencies that arise

due to function calls. A summary edge from an actual-in node a to an actual-out node
b is constructed if the value associated with b can get affected by the value associated
with the node a due to control or data dependence, that is, a summary edge from a
to b is constructed if there exists either a control- or data-dependence edge from the
corresponding formal-in node a′ to the formal-out node b′.

SDG is a generalization of the PDG representation. In fact, for a program without
procedure calls, the PDG and SDG models are identical. The technique for constructing
an SDG consists of first constructing a PDG for every procedure, including the main
procedure, and then interconnecting the PDGs at the call sites.

Example 2. Figure 3 shows a much simplified version of a C program of an au-
tomotive application developed on a VxWorks [Wind River Systems 2010] platform.
The corresponding SDG model for the program has been shown in Figure 4. In this
figure, control-dependence edges are represented by dash-dot-dash edges, while the
dotted edges represent data-dependence edges. The other types of SDG edges, such
as parameter-in, parameter-out, call edge, etc., have been represented by uniformly-
spaced dashed edges. Note that we have not shown all actual-in and actual-out nodes
in the figure to avoid clutter.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

47:8 S. Biswas et al.

Fig. 3. A sample VxWorks program incorporating intertask communication.

Fig. 4. SDG model for the program of Figure 3.

2.3. Tasks and Their Precedence Relations

In the following, we briefly review a standard task model that is popularly being used
in the development of small embedded applications. We also discuss the precedence
relationships that may exist among tasks.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

A Regression Test Selection Technique for Embedded Software 47:9

Fig. 5. A representation of the precedence relations among tasks.

2.3.1. Task Model. OSEK/VDX [2001] and POSIX RT2 [Mall 2007] are two real-time
operating system standards that are popularly being used in the development of em-
bedded applications. In this article, we consider a task model that adopts features
from both these standards. We assume that the tasks are statically created and have
statically assigned priorities. The tasks are either periodic or aperiodic. The aperiodic
tasks arise at random instants in response to user events. The tasks are scheduled
using a priority-driven preemptive task scheduler. The tasks are assumed to commu-
nicate using either shared memory or message passing. This, of course, is usually the
case for many embedded applications. During intertask communication, synchroniza-
tion among tasks is typically achieved by using either of the following two techniques:
shared memory or message passing. To achieve deterministic task execution, it is a gen-
eral practice in embedded programming to guard access to shared memory through the
use of synchronization primitives, such as semaphores and locks. Moreover, to achieve
predictable results, embedded application developers also usually restrict themselves
to using only the synchronous message passing mechanism [Vahid and Givargis 2002].

Development of large and complex embedded systems usually requires relaxation
of many of the constraints on the task model that we have assumed. For example,
large embedded systems may make use of sporadic tasks and asynchronous message
passing. However, our task model is based on the assumptions frequently made in
the development of small embedded applications. For example, an adaptive cruise
controller (ACC) module in an automotive application is usually implemented with
about a dozen periodic real-time tasks that have statically assigned priorities. The tasks
are scheduled using a rate monotonic scheduler [Mall 2007]. Some of the important
concurrently executing tasks in a typical ACC implementation include host vehicle
speed controller (HVSM task) and radar information processor (RIP task), etc.

2.3.2. Task Precedence. Two tasks in an embedded program are said to be precedence
ordered when the execution of one task is dependent on the actions of the other task.
When a periodic task τi precedes another task τ j , then it is implicitly assumed that each
instance of task τi precedes the corresponding instance of τ j . Precedence relationships
define a partial ordering among tasks. An example of precedence ordering among tasks
has been shown in Figure 5. The circles in Figure 5 represent tasks while the edges
among them represent precedence relationships. A directed edge from a task τi to τ j
indicates that task τi should complete before task τ j executes. From Figure 5, it can
be inferred that τ1 and τ4 precede τ2 and τ5, respectively. However, we cannot ascribe
any precedence ordering between the tasks τ1 and τ4 or the tasks τ1 and τ5.

We denote the precedence ordering of a task τi with other tasks by using two func-
tions: Pred(τi) is the set of all those tasks whose execution must be complete be-
fore execution of task τi can be started. Succ(τi) is the set of tasks whose execution

2http://standards.ieee.org/regauth/posix/.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

47:10 S. Biswas et al.

can start only after the task τi has completed. For the example shown in Figure 5,
Succ(τ1) = {τ2, τ3}, and Pred(τ5) = {τ4}.
2.4. Exception Handling in Embedded Systems

Exception handlers in an embedded program execute at certain priority levels. Trig-
gering of an exception and subsequent execution of the exception handler could de-
lay completion of the lower priority tasks in the embedded program. Such delays to
task completion times are often unacceptable for embedded applications having time-
constrained tasks. In this context, a few studies have been reported in the literature to
minimize the overhead of exception handling [Romanovsky et al. 1998].

The C programming language does not directly provide an exception handling mech-
anism. Many embedded programmers therefore implement exception handling either
using jumps and switch-case constructs or through use of specific libraries [Schotland
and Petersen 2011]. In this work, we assume that exception handling in embedded
programs is implemented using the C++ try-catch model.

2.5. Binkley’s SDG-Based RTS Technique

In this section, we briefly discuss Binkley’s interprocedural RTS technique [1997] which
was proposed for procedural programs. Binkley’s technique is based on slicing SDG
models. Two components are said to have equivalent execution patterns if and only if
they are executed an equal number of times on any given input. The concept of com-
mon execution patterns has been introduced as an interprocedural extension to the
equivalent execution patterns proposed in Bates and Horwitz [1993]. Code elements
are said to have a common execution pattern if they have the same equivalent execu-
tion pattern during some call to a procedure. Common execution patterns capture the
semantic differences among code elements. The semantic differences between P and
P ′ are determined by comparing the expanded version (i.e., with every function call
expanded in place) of the two programs. The expanded versions of the two programs
are analyzed to find out affected program elements which need to be regression tested.

Our RTS technique uses an extended SDG model for representing embedded pro-
grams. We therefore compare the effectiveness of our RTS approach with the technique
proposed by Binkley [1997].

3. TASK EXECUTION DEPENDENCIES IN EMBEDDED PROGRAMS

In Section 1, we have pointed out that embedded program features, such as tasks,
task precedences, task deadlines, etc., give rise to execution dependencies among tasks
[Marwedel 2007]. The effect of these dependencies can manifest as a task completion
delay or even temporal failures. In this section, we discuss the causes and effects of
execution dependencies that arise among tasks due to various factors, such as task
precedence, task priority, message passing, use of shared memory, etc. It is important
to note that task execution dependencies are not captured by the traditional notions of
data and control dependencies.

Task Execution Dependency Due to Precedence Order. Given a set of time-constrained
tasks, the completion of a task is dependent on the task precedence order (if any) among
the set of tasks. A task τi cannot execute unless the set of tasks in Pred(τi) have already
completed their execution. In this case, any delay to the completion time of a task τi
could affect the completion time of the tasks in the set Succ(τi).

We explain the effect of execution dependencies introduced due to precedence order
with the help of an example. For our examples, we assume periodic tasks which can
be represented by a four tuple, τi = 〈φi, pi, ei, di〉, where φi is the phase of τi, pi is the
period of τi, ei is the WCET of τi, and di is the relative deadline (with respect to φi) of

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

A Regression Test Selection Technique for Embedded Software 47:11

Fig. 6. Delay to task completions caused due to precedence relationships.

τi. In our work, without any loss of generality, we assume that the phases of all tasks
are zero. Therefore, we represent a task τi by the three tuple 〈pi, ei, di〉.

Example 3. Let us consider an embedded program P consisting of three tasks τ1 =
〈10, 3, 4〉, τ2 = 〈10, 3, 8〉 and τ3 = 〈10, 2, 8〉. Let us further assume that task τ1 precedes
task τ2 and τ2 precedes task τ3. A possible schedule of the tasks in P is shown in
Figure 6(a). Suppose task τ1 is modified in P ′. It is possible that τ1 in P ′ takes longer to
execute, say 3.5 units, due to the modification. This is represented in the schedule shown
in Figure 6(b). As a result of the change, the completion of the tasks in Succ(τ1) = {τ2, τ3}
will also get delayed by 0.5 time units.

Execution dependencies that exist among tasks due to their precedence ordering are
transitive in nature. The set of tasks that are execution dependent on a task τi due to
precedence relations is given by Succ(τi). From this discussion, it can be inferred that
it is important to regression test those tasks which are execution dependent on some
directly modified tasks due to precedence relationships.

Task Execution Dependency Due to Priorities. Execution dependencies among tasks
can arise on account of task priorities. This dependency arises because in a priority-
driven preemptive scheduling environment, the lower priority tasks will not be able to
execute unless all ready higher priority tasks complete their execution.

We illustrate the effect of execution dependencies arising due to task priorities with
the help of the following example and Figure 6.

Example 4. Let us consider the three tasks τ1, τ2 and τ3 shown in Figure 6. Let the
priority of each task be as follows: priority(τ1) > priority(τ2) > priority(τ3). Assume
that the execution order of the tasks are τ1, τ2, τ3. Suppose task τ1 is changed and as a
result takes longer to execute, say 3.5 units. This would delay the other two tasks (as
shown in Figure 6(b)).

Execution dependencies among tasks due to priorities are transitive in nature. For a
given task τi, we denote the set of all lower-priority tasks whose execution times could
potentially be affected by τi by Prior(τi).

Task Execution Dependency Due to Message Passing. Synchronous message passing
in an embedded program gives rise to execution dependencies among a pair of commu-
nicating tasks. A modification to either the sender or the receiver task of a pair of tasks
communicating using synchronous message passing may delay the completion of the
other task.

Task execution dependencies arising due to synchronous message passing are both
symmetric and transitive in nature, since both the sender and the receiver tasks can
delay each other. For a task τi, we denote the set of tasks that could possibly get delayed
by it due to the execution dependencies arising due to messaging passing by ITCmp(τi).

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

47:12 S. Biswas et al.

Fig. 7. Two tasks communicating using shared memory.

Task Execution Dependency Due to Access of Shared Resource. We assume that access
to a shared variable is usually guarded using a synchronization primitive, such as a
semaphore or a lock. The program statements for accessing such primitives provide
implicit synchronization points between the concerned tasks. Therefore, any increase
to the duration for which one task locks a synchronization variable may cause other
tasks needing to lock the variable to get delayed.

Example 5. In Figure 7, we show an example of execution dependency that can
exist among two tasks communicating using a shared variable. The tasks τ1 and τ2
in Figure 7 communicate using the shared variable var and use a semaphore variable
sem to guard the access to var. Let us assume that task τ2 computes and writes a new
value for var which is later read by τ1. Suppose the statement compute var in τ2 is
modified in P ′. This change may cause τ2 to block the semaphore for a longer time,
thereby delaying τ1.

Task execution dependencies arising due to the use of synchronization primitives
are transitive in nature and are also symmetric. For a task τi, we denote the set of tasks
that are execution dependent on it due to access to a shared resource by ITCsyn(τi).

It can be inferred that it is necessary to include in the regression test suite test cases
testing all those tasks which share a resource with the modified tasks.

In the rest of this work, we have assumed that semaphores are used as synchroniza-
tion primitives.

Dependency Due to Execution of Interrupt Handlers. Interrupts are profusely used
in embedded applications to get notification of the occurrence of events of interest. For
example, interrupts may be raised by sensors or peripheral devices. On receiving an
interrupt, the corresponding interrupt service routine (ISR) gets invoked to perform
operations that are necessary to handle the interrupt. The work performed by an ISR
is usually split into two parts: the first-level interrupt handler (FLIH) and the deferred
procedure call (DPC) [Silberschatz et al. 2010; Sales 2005]. The role of FLIH is to
service the interrupt quickly by executing a few instructions only, and the rest of the
handler procedure is executed as a DPC later. A DPC is scheduled as a normal task in
many operating systems, such as the Symbian [Sales 2005].

Interrupt handling can cause unpredictable delays (called jitter) to the completion
of some tasks. Such unpredictable delays to task completion times are usually unac-
ceptable for hard real-time embedded applications. In this work, we assume that the
execution time of an FLIH is negligible compared to a DPC, and the delay caused to a
task due to execution of an FLIH can be ignored, and it is only the effect of the DPCs

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

A Regression Test Selection Technique for Embedded Software 47:13

Fig. 8. Change in task execution order due to execution dependency.

which need to be considered. Since we assume that a DPC gets scheduled at the priority
level of normal tasks, it can delay other tasks executing at the same or a lower priority.

3.1. Effect of Task Execution Dependencies on the Execution of an Embedded Program

Besides causing delays to the completion of certain tasks, the task execution sequence in
an embedded program can also get altered due to execution dependencies among tasks,
possibly leading to a different output being produced. In the following, we discuss an
example to show how execution dependencies among tasks can alter the task execution
sequence of an embedded program.

Example 6. Figure 8(a) shows three tasks and their times of arrival. The relative
priorities of the three tasks are as follows: priority(τ3) > priority(τ2) > priority(τ1).
The execution order of the tasks in Figure 8(a) are τ1, τ2, τ3. Let us assume that task
τ1 is modified and its WCET is increased, as shown in Figure 8(b). The modified task
execution sequence now becomes τ1, τ3, τ2. The modified task execution sequence in P ′
as a result of the execution dependencies introduced due to task priorities can cause
a different output to be produced by P ′, or cause output to be produced at an altered
time.

4. SDGC: A MODEL FOR RTS OF EMBEDDED PROGRAMS

CFG and SDG-based representations of programs are extensively being used in diverse
applications, such as program slicing [Liang and Harrold 1998], reverse engineering
[Cleve et al. 2006], regression test case selection [Rothermel and Harrold 1997; Bates
and Horwitz 1993], etc. However, dependence graph-based representations ignore con-
trol flow information. As a result, it becomes difficult to capture important features of
embedded programs, such as tasks, their execution dependencies, and exception han-
dling among others using dependence graphs. A task is a basic programming entity
that is defined by a group of program statements tied together through control flow
relations. Furthermore, as advocated by many researchers, analysis of timing proper-
ties requires representation of control flow information [Ward and Mellor 1991; Hatley
and Pirbhai 1987]. The semantics of task creation, message passing, semaphore access,
timers, etc., are largely ignored by existing CFG, SDG-based models and are instead
simplified into ordinary function calls. None of the program models proposed in the
literature can represent all the important constructs, such as tasks, intertask commu-
nication, exception handling, that are used in programming embedded applications and
that need to be considered in RTS. In order to overcome these shortcomings, we propose
a graph model for representing embedded programs. Our proposed graph model is an

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

47:14 S. Biswas et al.

extension of the standard CFG and SDG representations [Bates and Horwitz 1993].
We have named our model SDGC for System Dependence Graph with Control flow.

Definition 4.1. An SDGC model for a program P is a directed graph G = (V, E),
where V represents the set of nodes and E represents the set of edges. The various
types of nodes and edges defined for an SDGC model are represented by the sets
VTSDGC and ETSDGC respectively, where,

VTSDGC = {Vassign, Vpred, Vcall, VAin, VAout , VFin, VFout , Vtask, Vmp, Vsem, Vtimer, Veh},
ETSDGC = {Ecd, Edd, Ece, EPin, EPout , ESum, Ecf , Etdef , Eprec, Emp, Esem, Etimer}.

Since an SDGC model is an extension of a CFG and an SDG model, all node and edge
types defined for a CFG and an SDG model are also present in an SDGC model. The sets
VTSDGC and ETSDGC are supersets of the corresponding node and edge sets discussed
for an SDG model in Section 2.2, that is, VTSDG ⊂ VTSDGC, and ETSDG ⊂ ETSDGC.

4.1. Additional Node and Edge Types Introduced in an SDGC Model

We now discuss the additional node and edge types that we have introduced in an SDGC
model to represent those constructs of an embedded program that are important for
RTS. We also provide examples of equivalent APIs as specified in POSIX.

Task Nodes. We introduce a task node type (Vtask) in an SDGC to model tasks of an
embedded program. Task nodes are divided into the following subtypes.

—A task create node (denoted by Vtc) is used to model a task creation that has been
programmed using a construct such as fork()/spawn(). The static priority value
associated with the task is also stored in the task create node.

—A task delay node (denoted by Vtdl) is used to model a task delay that has been
programmed using a construct such as delay().

—A task delete node (denoted by Vtdt) is used to model a task deletion that has been
programmed using a construct such as delete().

—A task exit node (denoted by Vtx) is used to model a task exit that has been pro-
grammed using a construct such as exit().

Message-Passing Nodes. We have introduced a node type called messagepassing (Vmp)
to model the special semantics of message passing among tasks. The message-passing
node type is divided into the following subtypes.

—A message queue create node (denoted by Vqc) is used to model a message creation
statement that has been programmed using a construct such as mq open().

—A message queue send node (denoted by Vqs) is used to model a message send state-
ment that has been programmed using a construct such as mq send().

—A message queue receive node (denoted by Vqr) is used to model a message receive
statement that has been programmed using a construct such as mq receive().

—A message queue delete node (denoted by Vqd) is used to model a message
queue deletion statement that has been programmed using a construct such as
mq unlink()/mq close().

Semaphore Nodes. We have introduced a semaphore node type (Vsem) to model pro-
gram statements performing semaphore operations. The semaphore node type is di-
vided into the following subtypes.

—A semaphore create node (denoted by Vsc) is used to model a statement that creates
a semaphore using a construct such as sem open()/sem init().

—A semaphore req node (denoted by Vst) is used to model a statement that requests a
semaphore using a construct such as sem wait().

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

A Regression Test Selection Technique for Embedded Software 47:15

—A semaphore rel node (denoted by Vsg) is used to model a statement that releases a
semaphore using a construct such as sem post().

—A semaphore delete node (denoted by Vsd) is used to model a statement that deletes
a semaphore variable using a construct such as sem destroy().

Timer Nodes. We have introduced a timer node type (denoted by Vtmr) to model timer
operations. The timer node type is divided into the following subtypes.

—A timer create node (denoted by Vtmc) is used to model a statement that creates a
timer using a construct such as timer create().

—A timer start node (denoted by Vtms) is used to model a statement that starts/sets a
timer using a construct such as timer settime().

—A timer delete node (denoted by Vtmd) is used to model a statement that deletes a
timer using a construct such as timer delete().

Exception-Handling Nodes. Our approach to represent exception handling in an
SDGC is based on previous work [Allen and Horwitz 2003; Jiang et al. 2006; Biswas
et al. 2009]. We introduce an exception-handling node type (Veh) to model exception
handling. The exception-handling node type is divided into the following subtypes.

—A try node (denoted by Vtry) is used to model the start of an exception block.
—A catch node (denoted by Vcatch) is used to model a catch statement.
—A throw node (denoted by Vthrow) is used to model a statement which can raise

exceptions.
—A normal return node (denoted by Vnr) is used to model a return construct during

normal execution of the program.
—An exceptional return node (denoted by Ver) is used to model an abnormal return.
—A normal exit node (denoted by Vnp) is used to model normal termination of a program,

that is, when an exception is not raised.
—An exceptional exit node (denoted by Vxp) is used to model abnormal termination of

a program when an exception is not caught.

We now list the additional edge types that we have introduced in an SDGC over
those present in the SDG model.

Control Flow Edge. Control flow edges (denoted by Ecf) in an SDGC are used to
model possible flows of control among nodes in the individual functions in an embedded
program.

Task Definition Edge. A task definition edge (denoted by Etdef) is used to connect a
node of type Vtc to the Start node of the CFG for the task.

Task Precedence Edge. Task precedence edges (denoted by Eprec) are used to model
precedence relations among tasks. A task precedence edge connects two nodes of type
Vtc representing tasks τi and τ j , if there exists a predefined precedence ordering be-
tween τi and τ j .

Message-Passing Edge. A message-passing edge (denoted by Emp) is used to represent
the execution dependency that arises between a pair of tasks when they communicate
using message queues. A message-passing edge connects a pair of nodes of type Vqs
and Vqr in the sender and the receiver tasks, respectively.

Semaphore Edge. The dependency arising due to the use of a semaphore between
two communicating tasks is represented by a semaphore edge (denoted by Esem). A
semaphore edge connects a pair of nodes of type Vst and Vsg in the two tasks that
access the same semaphore variable.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

47:16 S. Biswas et al.

Fig. 9. SDGC model for the program of Figure 3.

Timer Edge. A timer edge (denoted by Etm) is used to connect a timer create node
with the Start node of its associated handler function, which is invoked when the timer
expires. Nodes of types timer start, timer stop, and timer delete are connected with the
preceding/subsequent nodes of the SDGC model using control flow edges.

Edges to Model Exceptions. We have introduced exception-handling edges to model
changes to the normal control flow due to exceptions.

—A try node is connected to the node representing the first statement in the exception
block through a control flow edge.

—A catch node has two outgoing control flow edges: the TRUE edge connects the catch
node to the first statement in the catch block, and the FALSE edge connects the catch
node to the next catch statement if any.

—A throw node is connected to the corresponding catch node with a control flow edge.
If a throw node is outside a try block, then it is connected to the exceptional exit node
of the function using a control flow edge.

The throw and catch statements are treated as conditional statements which alter
the flow of control depending on the evaluation of the associated expression.

Example 7. The SDGC model of the program of Figure 3 is shown in Figure 9. It can
be observed that the SDGC model in Figure 9 is an extension of the SDG model shown in
Figure 4 and incorporates additional nodes and edges for modeling embedded program
features, such as tasks, message queues, etc. The solid edges in Figure 9 represent
control flow edges for each function in the program. We have omitted the TRUE labels on
control flow edges wherever the flow of control is obvious to avoid cluttering the figure.

The program in Figure 3 has two statements spawning two tasks in lines S4 and S5.
The task names are ‘tMonitor’, and ‘tVarySpeed’, and the task bodies are the functions

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

A Regression Test Selection Technique for Embedded Software 47:17

monitor() and vary speed(), respectively. Since exact semantics of task creation are
ignored by the SDG model, these two constructs in lines S4 and S5 are shown as simple
function calls in Figure 4. In the SDGC model shown in Figure 9, the two task creation
statements are represented by the task creation nodes S4 and S5. These two nodes are
connected to the corresponding function entry nodes E3 and E2, respectively, by using
task definition edges (S4 → E3 and S5 → E2).

The tasks tMonitor and tVarySpeed in the program shown in Figure 3 communicate
using a message queue. The lines in Figure 3 (and the corresponding nodes) related
to message queue management are S7, S11, S22, and S25. Node S7 in Figure 9 is
of type Vmc, node S11 is of type Vmr, while nodes S22 and S25 are of type Vms. Two
message-passing edges have been used to connect nodes S22 and S11 and S25 and
S11, respectively.

4.2. Construction of an SDGC Model

In the following, we discuss the construction of an SDGC model M through a static
analysis of the source code of a program. The pseudocode for the SDGC model construc-
tion step has been shown in Algorithm 1. The input to the algorithm is the embedded
program for which the corresponding SDGC model is to be constructed. The first step
(line number 2 in Algorithm 1) constructs the CFG for each function in the program.
This step involves parsing the input program and constructing the nodes and edges by

ALGORITHM 1: Pseudocode for Constructing an SDGC Model of an Embedded Pro-
gram
1: procedure CONSTRUCTSDGC(input)

� input = Input embedded C program
� Output of ConstructSDGC is the SDGC model for input

2: Construct CFG for each procedure in input
� New nodes such as timer create, task create, and exception handling are constructed.

3: Connect nodes across CFGs to create edges � Edges include Call, Parameter-in and
Parameter-out edges

4: for each CFG in the partially constructed SDGC model do
5: Perform data dependence computation to add data dependence edges
6: Perform control dependence computation to add control dependence edges
7: end for
8: for each task create node do
9: Connect the node to the corresponding function definition node with a task definition

edge
10: end for
11: for each timer create node do
12: Connect the node to the corresponding timer expiry handler with a timer edge
13: end for
14: for each message queue send node do
15: Connect the node to the corresponding message queue receive nodes in all receiver

tasks with a message passing edge
16: end for
17: for each semaphore req node do
18: Create a semaphore edge to connect semaphore req node with the corresponding

semaphore rel node in other tasks � Tasks which block on the same semaphore variable
19: end for

� Checking for precedence constructs join()/wait()
20: Identify precedence order among tasks from input
21: Add task precedence edges to the SDGC model
22: end procedure

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

47:18 S. Biswas et al.

carrying out the appropriate actions corresponding to each rule in the C grammar. All
nodes, including the nodes modeling specific embedded program features, such as task
create, message queue send, timer start, etc., are created in this step. For example, a
task create node is created when a taskSpawn() statement is parsed. Once construction
of the individual CFGs is complete, these are analyzed in lines 4 to 7 to compute and
construct the data- and control-dependence edges.

In the next step, the partially constructed SDGC model is searched to find out the
task create and timer create nodes. This can be accomplished by traversing the SDGC
model along control flow edges and comparing the types of each node. Subsequently,
these nodes are connected to the corresponding functions which are either task defini-
tions or timer expiry handlers using task definition or timer edges, respectively. This
helps in considering the special semantics of these program constructs by differenti-
ating them from simple function calls. As an example, for the embedded C program
shown in Figure 3, the name of the function monitor which is the definition for the
task tMonitor is modeled as an actual-in argument which is connected to the task
create node S4. Subsequently, we connect every message queue send node to the cor-
responding message queue receive node with a message-passing edge. The message
queue receive node corresponding to a message queue send node can be identified from
the message queue identifier over which the communication takes place. The message
queue identifier is usually passed as an argument to the message queue send/receive
statements and are therefore also modeled as an actual-in node. Similarly, semaphore
req nodes are connected to the corresponding semaphore rel nodes using semaphore
edges. A pair of semaphore req and semaphore rel nodes can easily be identified based
on an examination of the name/ID of the semaphore variable.

The last step concerns identification of the precedence relationships among tasks.
For this, the source code is analyzed for identifying the constructs join()/wait(). The
usage of these two constructs determine whether a task τ j precedes another task τi.
We then construct a task precedence edge from the task create node of task τ j to the
task create node of task τi to model the precedence relationship between the two tasks.

Example 8. We illustrate the construction of the SDGC model for a sample pro-
gram shown in Figure 10. First, the CFG for each procedure in the sample program is
constructed. During creation of the CFGs, the actual-in, actual-out, formal-in, formal-
out, call-site, task create, timer create, etc., nodes are also created. Subsequently, the
data-dependence and control-dependence edges are computed and added to the par-
tially constructed SDGC model. The resultant partial SDGC model after this step is
shown in Figure 11. Finally, for this example, adding the task definition, timer, and the
message-passing edges to the partially constructed SDGC model of Figure 11 completes
the construction of the the SDGC model which has been shown in Figure 12.

In Figure 12, the node S16 is of type timer start. If the timer expires before it is reset
in line S22, control flows to the handler routine HandleTimeOut. This is modeled in the
SDGC model of Figure 12 with a timer edge connecting the nodes S16 and E10.

4.3. Complexity Analysis

We now present an analysis of the space and time complexities of the algorithm for
construction of an SDGC model.

Time Complexity. Let us assume that there are n statements in P and let the number
of nodes and edges in the corresponding SDGC model M be m and e, respectively. Let
the number of functions in P be denoted by p. From the pseudocode ConstructSDGC
presented in Algorithm 1, it can be observed that the primary steps of constructing an
SDGC model are (a) construction of the CFG, (b) computation of data-dependence edges,
(c) computation of control-dependence edges, (d) incorporation of information related

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

A Regression Test Selection Technique for Embedded Software 47:19

Fig. 10. A sample VxWorks program incorporating usage of watchdog timers.

Fig. 11. Partially constructed SDGC model after computation of data and control dependencies.

to semantics of tasks, message passing, semaphores, and timer management. The time
complexity of CFG construction is O(n) [Aho et al. 2008], and the time complexity of
control-dependence computation is O(n2) [Ferrante et al. 1987]. Computation of the
data-dependence edges requires traversal of each CFG in the SDGC model and is
bounded by p∗ O(m2). To create edges of type semaphore, task precedence, etc., requires
traversing the SDGC model. This can be expressed by O(m2). Therefore, the time
complexity of SDGC model construction is O(m2).

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

47:20 S. Biswas et al.

Fig. 12. Complete SDGC model for the sample program shown in Figure 10.

Space Complexity. Let us assume that there are n statements in P, and let nf denote
the number of functions in P (including those corresponding to task, timers, message
queue, and semaphore creation), and argmax be the maximum number of arguments of
any function in P. For a given embedded program, the SDGC model typically contains
more number of edges than the SDG model because the SDGC model captures several
types of embedded program features which are not present in the SDG model. The space
complexity for representing a graph is of the order of O(n2), where n is the number of
nodes in the graph. Therefore, the space requirement for constructing an SDGC model
is O((n + 2 ∗ nf ∗ argmax)2). Assuming that the maximum number of arguments for a
procedure call is a constant, say 10, the space complexity reduces to O(n2).

5. RTSEM: AN RTS TECHNIQUE FOR EMBEDDED PROGRAMS

Our proposed RTS technique, RTSEM (Regression Test Selection for EMbedded pro-
grams), is based on analyzing the SDGC model of an embedded C program. More
specifically, our technique selects test cases based on an analysis of control, data and
execution dependencies among tasks. In the following, we first list the assumptions that
we make and then describe the different processing activities carried out in RTSEM.

5.1. Assumptions

Our approach is primarily intended to be applicable to small embedded programs. In
the following, we list the assumptions made in our RTS technique.

—We assume that the embedded programs adhere to the MISRA C coding guidelines.
Although MISRA C guidelines were originally intended for the automotive industry,
it is now widely being used for developing embedded applications. We list a few
important rules to indicate the types of restrictions imposed by MISRA C.
—Rule 8.1. Every function must have a prototype declaration.
—Rule 9.1. All automatic variables are assigned a value before being used.
—Rule 12.10. The comma operator is not used.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

A Regression Test Selection Technique for Embedded Software 47:21

—Rule 12.13. The increment (++) and decrement (−−) operators are not mixed with
other operators in an expression.

—Rule 14.6. Only one break statement can be used in any iteration construct.
—Rule 20.4. Dynamic memory allocation is not used.

We have made two exceptions to the MISRA guidelines in our implementation.
MISRA guidelines do not recommend the use of goto and continue statements to
promote structured programming practices. On the other hand, many studies [Knuth
1974; McConell 2004; Kondoh and Futatsugi 2006] have argued that judicious use
of gotos is beneficial for many types of common programming problems. Embedded
programmers still make heavy use of constructs such as gotos. Code that is auto-
generated using tools, such as MATLAB Real-Time Workshop [Mathworks 2011],
also contain unstructured constructs, such as breaks. In our work, we have therefore
assumed that goto (Rule 14.4) and continue (Rule 14.5) statements are allowed in
the code.

—The tasks can be created both statically or dynamically. Tasks are dynamically cre-
ated in response to events.

—The tasks are assigned priorities statically and are scheduled using a preemptive
and priority-driven operating system.

—At a time, only one instance of a task is active.
—DPCs are assumed to inherit the priority of the tasks which are interrupted.
—The tasks communicate using either shared memory or message passing mecha-

nisms. We further assume that only the synchronous mode of message passing is
used.

—Many embedded applications obtain inputs from sensors, and the computed output
is used to drive actuators. The analog inputs from the sensors are usually trans-
ferred to the program as a set of discrete input data, and the computed output data
are transferred to the actuators as analog signals through logic circuits. Without
any loss of generality, we ignore the analog signals and consider only their digital
counterparts processed by the computer. We therefore assume that the initial test
suite T is available as a formatted text file. For each test case t ∈ T , the formatted
file contains the following information: a unique identifier assigned to each test case,
set of input data, the expected result, and the time constraints, if any.

5.2. Types of Program Changes

An arbitrary change to a program could be any one of the following three types:
(1) addition of a statement, (2) deletion of a statement, or (3) modification of a state-
ment. A change to a program P could be confined to a single line or could span multiple
lines. A change to P might require addition and deletion of some nodes and edges of
the corresponding SDGC model. Any arbitrary modification could be considered to be
composed of a deletion operation followed by an addition operation. Therefore, in our
work, we assume that addition and deletion are the only two basic change operations.
In the following, we identify the changes to the SDGC model required to reflect the
changes caused due to the two basic program change operations.

A single statement-level change could affect the dependency relations among various
elements of a program in subtle ways. In the following, we elaborate how the control
flow and dependency relations are affected due to the two basic types of code changes:
addition and deletion.

—Addition of Statements. Adding new statements to P requires creating new nodes
and edges in the SDGC model M. The additional edges created could be of types
control flow, control or data dependence, parameter-in, etc. It may also be required
to delete certain existing control flow and dependency edges during edge creation.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

47:22 S. Biswas et al.

Fig. 13. Effect of addition of a statement on control flow and dependencies.

We give an example of the effect of addition of a statement in Figure 13. Figure 13(a)
shows a sample code snippet consisting of two sequential program statements, S1
and S2. In the corresponding partial SDGC model, the two nodes (also denoted by S1
and S2) are connected using a control flow edge (denoted by a solid edge). The partial
SDGC model also shows that the statement S2 is data dependent on certain other
program statements Si and Sj . Now, suppose a statement Sk is added to the sample
code snippet, as shown in Figure 13(a). The corresponding partial SDGC model for the
modified program is also shown in Figure 13(b). Due to the addition of the statement
Sk, the control flow edge between S1 and S2 is now deleted, and instead, two new
control flow edges are introduced between the pairs S1 and Sk, and Sk and S2. Due
to the added statement, the data dependency between Sj and S2 ceases to exist, and
instead, a new data dependency is introduced between the nodes Sj and Sk.

—Deletion of Statements. Deletion of one or more statements could affect the depen-
dencies existing among certain other statements, for example, if a statement that
defines a variable is deleted, it could lead to a wrong evaluation of a predicate which
uses that variable. Therefore, before actual deletion of statements, it is important to
identify and mark all those program elements as affected which are data dependent
on the deleted statement before actual deletion.

Before a statement (i.e., one or more nodes) is deleted, first the other nodes in
M that are data or control dependent on the deleted node(s) are identified and are
marked as affected. Then, the node(s) in M corresponding to the deleted statement
are deleted. The different edges which are incident on or emanate from the node(s)
corresponding to the deleted statement are also deleted. In addition, new data- and
control-dependency edges can get created on account of the modified dependency
relationships.

Figure 14(a) shows a code fragment and the corresponding partial SDGC model
consisting of control flow (solid) and data-dependence (dotted) edges. The edge Eij
models the data dependency between the nodes Si and Sj in the original code. Let
us assume that the variables f and g are defined, respectively, in the statements
represented by the nodes Sb and Sa. Therefore, there exists data-dependence edges
from Sb to Sj , and from Sa to Sk. Suppose the statement Sj is deleted, as shown in
Figure 14(b). Due to this change, a control flow (Cik) and a data-dependence edge
Eik are created between the nodes Si and Sk. An additional data dependency from
Sb to Sk is also introduced, as shown in Figure 14(b).

5.3. Processing Activities in RTSEM

During the maintenance phase of a software, there could be numerous regression
testing cycles during which RTS could potentially be carried out. In our approach, we

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

A Regression Test Selection Technique for Embedded Software 47:23

Fig. 14. Effect of statement deletion on data dependencies.

Fig. 15. Activity diagram representation of RTSEM.

divide the regression testing cycles during the maintenance phase into the following:
the first regression testing cycle and the subsequent regression testing cycles. This is
because some of the processing activities in RTSEM need to be carried out only once
during the first cycle and need not be repeated during subsequent RTS cycles. We
refer to the first regression testing cycle as the initial RT cycle, and the subsequent
regression testing cycles as later RT cycles.

The important steps of RTSEM have been represented in the activity model of
Figure 15. In the following, we briefly describe the processing steps involved in
RTSEM.

5.3.1. Initial RT Cycle. We now describe the main steps involved during the first regres-
sion testing cycle.

—Construct SDGC Model. In this step, the SDGC model M for the original program P
is constructed by using Algorithm 1 presented in Section 4.2.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

47:24 S. Biswas et al.

—Identify Changes. In this step, the exact changes that were made to the modified
program P ′ are identified through a semantic analysis of P and P ′. Instead of iden-
tifying all the structural differences between the two files, our semantic analysis
selects only those changes that can affect the output of the program. Therefore, our
semantic analysis technique ignores purely structural changes introduced due to
re-ordering of functions, changes to the order of the argument list, changes due to
commenting, formatting, etc.

The identified statement-level changes between P and P ′ are stored as a formatted
ASCII file which we will refer to as the diff file. Each entry in the diff file corresponds
to a statement-wise change between P and P ′, and contains the changed program
statement in P ′, the line numbers in P or P ′, and the function name to which the
changed statement belongs.

—Instrument and Execute Program. In this step, the original program P is instru-
mented, for example, by inserting print statements. The instrumentation is done at
the level of basic blocks, since instrumentation at the level of basic blocks leads to
more efficient execution trace generation and analysis compared to statement-level
instrumentation without compromising precision. The instrumented code is executed
with the entire test suite T to generate the execution trace for each test case. An
execution trace of a test case essentially is the set of statements of P that is exe-
cuted by a test case. Generating the test coverage information is a one-time activity
for a given program during one testing cycle, and need not be repeated during the
subsequent regression testing cycles. The test coverage information (denoted by C)
generated in this step is saved in a file for later processing. This is shown in Figure 15
by the datastore test coverage information.

At this point, it should be noted that the execution behavior of a real-time em-
bedded program may change due to instrumentation. The effect of unrestricted in-
strumentation could introduce additional delays in execution of certain instructions
which could result in timeouts, causing the program to take alternate execution
paths. In our work, we have tried to mitigate the nondeterminism introduced due
to instrumentation by using the instrumented code only for test coverage genera-
tion and have stripped the instrumentation from the program while executing the
selected regression test cases on the sample test programs. This ensures that the
instrumentation will less likely affect the actual results of regression testing.

—Mark the SDGC Model. In this step, the test coverage information is marked on M.
Marking an SDGC model involves adding additional information to each node in the
SDGC model about the test cases that execute the corresponding program statement.

—Update SDGC Model. In this step, the SDGC model is updated using information
from the diff file so as to make it correspond to the modified program P ′. The steps
required to update the original SDGC model M are explained in Section 5.4. In this
context, it is important to note that the updated SDGC model M corresponding to the
modified program P ′ captures any possible change in execution dependencies among
the tasks in P ′.

The changes between the programs P and P ′ are also marked on the SDGC model
by using the information stored in the diff file. This is achieved as follows: for those
statements which are deleted from P, the nodes in M which were directly data, or
control dependent on the deleted nodes in M (i.e., statements in P) before updating
M are affected due to deletion and are tagged as deleted. Once the model M has been
updated to correspond to P ′, for each statement added or modified in P ′, the nodes
corresponding to the changed statements are searched in the updated model M and
are tagged as changed. We refer to both the set of tagged nodes by T agged.

—Select Test Cases. In this step, the relevant test cases are selected based on control-
data, and task-execution-dependency analysis. This step is elaborated in Section 5.5.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

A Regression Test Selection Technique for Embedded Software 47:25

The selected regression test cases are represented by the datastore regression test
cases in Figure 15.

5.3.2. Later RT Cycles. In the following, we explain the steps in RTSEM which are
carried out during the regression testing cycles other than the first for program versions
P ′ and P ′′. Note that we denote the original program version in these cycles by P ′ and
the modified program version by P ′′.

—Model Maintenance. In this step, the markings, tags, and test coverage information
added to the SDGC model M during the previous regression testing cycle are deleted.
This is achieved by traversing each node in the whole SDGC model and resetting the
information.

—Update Test Coverage Information. The test coverage information could become out-
dated across regression testing cycles because of modifications to both the code and
to the initial test suite. In each regression test cycle, new test cases get added, and
obsolete test cases are deleted from the initial test suite T . This activity is called test
suite maintenance. The new test cases are executed with P ′′ to generate and update
the coverage information.

The test coverage information C generated in the last regression test cycle needs
to be updated to take into account the changes made to both the initial test suite and
the code. Since obsolete test cases are no longer valid for testing P ′′, the coverage
information corresponding to each obsolete test case is deleted from C. The coverage
information for the resolution (generated during resolution testing) and regression
test cases (generated during the previous regression test cycle) are added to C. The
test coverage information C is not affected by redundant test cases. The output of
this step is shown by the datastore update test coverage information in Figure 15.

—Update SDGC Marking. The marking on the SDGC model M is updated according
to the updated test coverage information C generated in step update test coverage
information.

—Update SDGC Model. The SDGC model is updated to take into account the changes
made to the program P ′. Note that the complete SDGC model for P ′′ is not required
to be constructed again in this step. Instead, the SDGC model updation technique
discussed in Sections 5.3.1 and 5.4 is used to incrementally update the SDGC model.

5.4. Incremental Updation of an SDGC Model

Many existing RTS techniques construct program models of both the original and
the modified programs [Rothermel and Harrold 1997; Harrold et al. 2001]. However,
the overhead involved in reconstructing the complete SDGC model for the modified
program each time after a change is made can be unacceptably large and should be
avoided because often only minor changes are made to P. To overcome this source of
inefficiency, we incrementally update the original SDGC model during each regression
testing cycle to reflect the changes made to the original version of the program.

The pseudocode SDGCUpdate for incrementally updating an SDGC model M is
shown in Algorithm 2. SDGCUpdate takes the SDGC model M to be updated and
the diff file (denoted by DiffFile). Algorithm 2 computes the set of nodes (denoted by
T agged) which contains nodes which are added/modified in the updated model M or
nodes which are affected due to deletion of nodes from M. In the following, we discuss
how incremental updation of an SDGC model can be achieved by SDGCUpdate.

—Addition. We create an additional node in M for every new statement that has been
introduced in P ′. It should be noted that though usually only a single node needs
to be created for a new statement, at times, more than one node may need to be
created. For example, for a function call statement, one call-site node and one or

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

47:26 S. Biswas et al.

ALGORITHM 2: Pseudocode to Incrementally Update the SDGC Model
1: procedure SDGCUPDATE(M, Di f f File, T agged)

� M = SDGC model to be updated � DiffFile = diff file
� T agged = set of nodes added/modified in M or affected due to deletion of nodes from M

2: T agged ← �
3: for each entry s in DiffFile do
4: if modification type is addition then
5: Create node(s) corresponding to s
6: for each node n created for the statement s do
7: T agged = T agged ∪ n
8: if n �= VAin and n �= VAout and n �= VFin and n �= VFout) then

� Node is of type Vassign or Vpred or Vcall or Vtask, etc.
9: Connect n with predCF and succCF nodes using control flow edges
10: Delete control flow edge between predCF and succCF node
11: else
12: Connect n with the parent call site node using control dependence edges
13: end if
14: end for
15: else � Modification type is deletion
16: Find node(s) n ∈ M corresponding to s
17: for each node n corresponding to s do
18: Find node(s) q data or control dependent on n
19: T agged = T agged ∪ q
20: Delete all edges emanating from n
21: Delete node n
22: end for
23: end if
24: end for
25: Create edges of type Etdef , Emp, Esem, Etm to connect new nodes
26: Recompute data dependency information for M
27: Recompute control dependency information for CFGs modified in M return T agged
28: end procedure

many actual-in and actual-out nodes may be created. If the newly created node type
is not an argument or a parameter of a function, then control flow edges are created
to connect the newly created node to its control flow predecessor (denoted by predCF)
and successor (denoted by succCF) nodes in the SDGC model. Creation of a new node
in the existing SDGC model between predCF and succCF requires that any existing
control flow edge between predCF and succCF be deleted. If the newly created node
type is an argument or a parameter of a function, then it is connected to its parent
call site node using control-dependence edges.

—Deletion. For a statement s which has been deleted from P, we also delete the cor-
responding nodes from the SDGC model M. However, before deleting a node n ∈ M
corresponding to s, we mark the set of nodes which are data or control dependent
on n as affected. Once the affected nodes are marked, the node n is deleted from
M. Deletion of a node n from M requires deletion of all the edges (control flow, data
dependence, etc.) which are incident on n or emanate from n.

—Create Additional SDGC Model Edges. In this step, any additional edge types defined
for an SDGC model are created to connect relevant pair of nodes, for example, a Vqs
and the corresponding Vqr nodes are connected using an Emp edge.

—Dependency Computation. After the control flow information is updated on model M
for all the entries of the diff file, we recompute the data- and control-dependency
information. The data-dependency information needs to be recomputed for the whole
modified program P ′ to take into account interprocedural data dependencies. This is

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

A Regression Test Selection Technique for Embedded Software 47:27

done by carrying out data-dependency analysis on the SDGC model M. The control-
dependence information is recomputed for only the directly modified functions. Data-
and control-dependency computation for a changed function is done by analyzing the
CFG corresponding to the function.

5.5. Test Case Selection

After a program is changed, apart from selecting test cases based on an analysis of
traditional dependence relationships, RTSEM also selects all test cases that execute
the tasks whose timing behavior may be affected due to the change. More formally, the
set of regression test cases (Treg) selected by RTSEM can be expressed by the following
relationship:

Treg = Tdep ∪ Ttime, (1)

where Tdep denotes the test cases selected through control- and data-dependence anal-
ysis, and Ttime denotes the test cases selected through task-execution-dependency anal-
ysis.

5.5.1. RTS Based on Control and Data-Dependency Analysis. We select regression test cases
based on forward slicing using control and data dependencies. For this, we have de-
signed an algorithm to compute the SDGC model slice. Our forward slicing algorithm
is an extension of the two-phase SDG slicing algorithm proposed by Bates and Horwitz
[1993]. The slicing criterion is the set of nodes in the SDGC model M that are tagged
during update SDGC model.

We have named our algorithm to slice SDGC models as SDGCSlice. The pseudocode
of SDGCSlice is shown in Algorithm 3. Algorithm SDGCSlice takes as input the
marked and updated SDGC model M, the set of nodes tagged in M (denoted by T agged)
during the step update SDGC model, and computes the set of test cases (Tdep) relevant
for regression testing. Our SDGC model slice computation essentially performs a
reachability analysis using data- and control-dependence edges [Horwitz et al. 1990].
Slicing the SDGC model based on data- and control-dependence edges helps to identify
the set of model elements that may get affected due to the modifications. SDGCSlice

ALGORITHM 3: Pseudocode to Select Regression Test Cases by Computing the SDGC
Model Slice Based on Control and Data Dependence
1: procedure SDGCSLICE(M, T agged, Tdep)

� M = updated marked SDGC model � Tdep = selected regression test cases
� T agged = set of nodes in M which are added/modified or are affected due to deletion

2: Tdep ← NULL � Initially, Tdep is empty
3: Dependent ← NULL
4: for each node m in T agged do

� Check for data or control dependence edges from m
5: Find the nodes control or data dependent on m ∈ M
6: Af f ectedSet = Af f ectedSet ∪ {Set of all nodes control or data dependent on m}

� Slicing to consider calls related to tasks/timers/message queues/semaphores
� SDGC traversal to include task definition, timer, message passing, semaphore edges

7: end for
8: if AffectedSet �= � then
9: for each node n ∈ Af f ectedSet do
10: Add the list of test cases that execute n to Tdep
11: end for
12: end if
13: Af f ectedSet ← NULL
14: end procedure

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

47:28 S. Biswas et al.

computes the set (denoted by AffectedSet) of all nodes affected on account of data- and
control-dependence relations by computing the transitive closure of the set Tagged.
These steps are shown in lines 5 to 13 in Algorithm 3.

Once all the affected SDGC model elements are identified through forward slicing,
the test cases executing those model elements are selected for regression testing. This
involves traversing the SDGC model and visiting each node n ∈ AffectedSet to find out
test cases which execute n.

5.5.2. RTS Based on Task-Execution-Dependency Analysis. An important step in our RTS
technique is the selection of all test cases that test tasks which are affected due to
execution dependencies. We have named our algorithm for this step TimingSelect. The
pseudocode for TimingSelect is shown in Algorithm 4.3 TimingSelect takes as input
the marked SDGC model M, the set of marked nodes in M (denoted by Marked), and
produces the selected set of test cases (denoted by Ttiming) as the output. The algorithm
is explained briefly in the following. First, the tasks in P ′ to which one or more nodes in
Marked belong are identified as directly modified and are denoted by �. Then, for each
task τi ∈ �, TimingSelect invokes four functions: PrecSelect, PrioritySelect, MPSelect,
and SemSelect. These functions compute the set of tasks that are execution depen-
dent on τi due to precedence ordering, priorities, and intertask communication using
message passing and semaphores, respectively, that is, for each task τi ∈ �, algorithm
TimingSelect computes Succ(τi), Prior(τi), ITCmp(τi), and ITCsyn(τi), respectively.

The information about the test cases which execute the program statements corre-
sponding to the affected tasks in P ′ are already stored in the Start node of the CFG
for the tasks. The test cases executing the affected tasks are selected for regression
testing.

The timing dependencies have been defined only among tasks (and not statements),
and therefore intra-procedural summary edges are not required to model task-level
dependencies. The task precedence edges and message-passing and semaphore edges
are sufficient to capture task-level dependencies.

6. EXPERIMENTAL STUDIES

To study the effectiveness of our approach, we have implemented a prototype tool based
on RTSEM. We have named the prototype tool MTest to stand for Model-based Test case
selector. In the following, we first briefly describe its implementation. Subsequently,
we present the results of our experimental studies conducted using MTest.

6.1. MTest: A Prototype Implementation of RTSEM

MTest has been developed using C++ programming language on a Microsoft Windows 7
environment running on a Compaq SG3770IL desktop having a 2.8GHz processor and
2GB main memory. The code size of MTest is approximately 17 KLOC, excluding the
external packages used. MTest currently has a rudimentary user interface developed
using Microsoft Visual Basic 6.0. During execution, MTest takes a program P, modified
program P ′, and the test suite T as inputs. The test suite T is prepared as a formatted
text file containing the test case identifiers. The output produced by MTest is a formatted
text file containing the identifiers of the test cases selected for regression testing.

3Note that the algorithm is split across two pages.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

A Regression Test Selection Technique for Embedded Software 47:29

ALGORITHM 4: Pseudocode to Select Regression Test Cases Based on Task Execution
Dependencies
1: procedure TIMINGSELECT(M, Marked, Ttiming)

� M = updated marked SDGC model � Marked = set of nodes marked in M
� Ttiming = selected regression test cases

2: Ttiming ← NULL
3: Identify the directly modified tasks from Marked (denoted by �)
4: for each τi ∈ � do
5: PRECSELECT(M, τi) � Select regression test cases based on task precedence order
6: PRIORITYSELECT(M, τi) � Select regression test cases based on task priorities

� Select regression test cases based on dependencies due to message passing
7: MPSELECT(M, τi)

� Select regression test cases based on dependencies due to semaphores
8: SEMSELECT(M, τi)
9: end for
10: end procedure
11: procedure ADDTEST(Ttiming, Af f ectedT asks) � Af f ectedT asks is the set of affected tasks
12: for each τ j ∈ Af f ectedT asks do
13: Add the test cases that execute the task τ j to Ttiming
14: end for
15: end procedure
16: procedure PRECSELECT(M, τi) � Compute Succ(τi)
17: Succ(τi) ← NULL
18: Traverse M to reach task create node of τi
19: for each task precedence edge emanating from τi do
20: Traverse along the edge to the task create node for the task (denoted by τ j)
21: Succ(τi) = Succ(τi) ∪ τ j � Add τ j to Succ(τi)
22: end for
23: AddTest(Ttiming, Succ(τi))
24: end procedure
25: procedure PRIORITYSELECT(M, τi) � Compute Prior(τi)
26: Prior(τi) ← NULL
27: Traverse M to reach task create node of τi
28: Let priorityi be the priority of task τi � Priority is stored in task create node of M
29: Traverse M along control flow and task definition edges to find out all task create nodes
30: for each task τ j ∈ M, i �= j do
31: if priorityi > priorityj then Prior(τi) = Prior(τi) ∪ τ j � Add τ j to Prior(τi)
32: end if
33: end for
34: AddTest(Ttiming, Prior(τi))
35: end procedure

6.1.1. Open-Source Software Packages Used. We have implemented MTest using the fol-
lowing open-source software packages: Eclipse,4 MinGW,5 ANTLR,6 Graphviz.7 We
have used Eclipse CDT (C/C++ Development Tools) as the IDE and MinGW as the
C/C++ compiler. An advantage of MinGW is that it gets automatically and seamlessly
integrated with Eclipse. We have used ANTLR v2.7.7 as the parser generator and
have adapted the ANTLR grammar file for C language.8 We have used a subset of the
grammar rules for C language which are compliant with MISRA C guidelines. We have

4http://www.eclipse.org/.
5http://www.mingw.org/.
6http://www.antlr.org/.
7http://www.graphviz.org/.
8ANTLR C++ grammar. http://antlr.org/grammar/list.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

47:30 S. Biswas et al.

ALGORITHM 4(Continued): Pseudocode to Select Regression Test Cases Based on
Task Execution Dependencies
36: procedure MPSELECT(M, τi) � Compute ITCmp(τi)
37: ITCmp(τi) ← NU LL
38: Traverse M to reach task create node of τi
39: Traverse along task definition edge to the corresponding task function
40: Traverse the CFG for the function

� Check for nodes of type message queue send or message queue receive
41: if node type is Vms OR node type is Vmr then � Task τi is a send/receiver of data
42: Traverse along message queue edge to reach the message passing node (denoted by

ndest) of the other task (denoted by τ j)
43: Traverse up along the CFG for τ j starting from ndest to reach the task create node
44: ITCmp(τi) = ITCmp(τi) ∪ τ j � Add τ j to ITCmp(τi)
45: end if
46: AddTest(Ttiming, ITCmp(τi))
47: end procedure
48: procedure SEMSELECT(M, τi) � Compute ITCsyn(τi)
49: ITCsyn(τi) ← NULL
50: Traverse M to reach task create node of τi
51: Traverse along task definition edge to the corresponding task function
52: Traverse the CFG for the function

� Check for nodes of type semaphore req or semaphore rel
53: if node type is Vst OR node type is Vsg then � Task τi is a send/receiver of data
54: Traverse along semaphore edge to reach the semaphore node (denoted by ndest) of the

other task (denoted by τ j)
55: Traverse up along the CFG for τ j starting from ndest to reach the task create node
56: ITCmp(τi) = ITCsyn(τi) ∪ τ j � Add τ j to ITCsyn(τi)
57: end if
58: AddTest(Ttiming, ITCsyn(τi))
59: end procedure

used ANTLR version 2.7.7, since the grammar has been developed with ANTLR v2.7.
ANTLR also gets seamlessly integrated into Eclipse as a plugin. The steps to install the
ANTLR plugin in Eclipse is available online.9 We have used Graphviz to graphically
display the SDGC models constructed by MTest.

6.1.2. Components of MTest. The architecture of MTest is shown in the component dia-
gram in Figure 16. From the figure, it can be observed that the primary components of
MTest are SDGC model constructor, test coverage generator, model marker, and test case
selector. The ball and socket connections among the components identify the producer
and consumer components. For example, the test coverage information generated by
the test coverage generator is used by the model marker component. In the following,
we briefly describe the roles of the different components of MTest.

—SDGC Model Constructor. The SDGC model constructor implements the algorithm
ConstructSDGC presented in Section 4.2 for constructing SDGC models. As shown in
Figure 16, the SDGC model constructor component takes P as input and constructs
the SDGC model M. SDGC model constructor first constructs CFGs for each function
of the input program. Once the construction of the CFGs is complete, the iterative
dataflow computation technique described in Aho et al. [2008] is performed on the
CFGs to identify the data dependencies. Finally, the CDG for a function is constructed
using the approach proposed by Ferrante et al. [1987].

9http://antlreclipse.sourceforge.net/.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

A Regression Test Selection Technique for Embedded Software 47:31

Fig. 16. Component model of MTest.

—Test Coverage Generator. The test coverage generator generates test coverage infor-
mation C semi-automatically by executing the input program with all the test cases
from the initial test suite. This step is semi-automatic, since embedded programs
usually require inputs at fixed time steps, which are input manually by a tester. Our
implementation of the test coverage generator makes use of Gcov, an open-source
profiling tool.10 The generated test coverage information is in the form of an ASCII
file listing the functions, tasks, and the line numbers covered by each test case in T .

—Model Marker. The model marker module stores the test coverage information on the
SDGC model M. A statement s in P is modeled using one or more nodes in the SDGC
M. For each program statement s in P, the SDGC M is traversed hierarchically
to search for the corresponding node(s) modeling statement s. The complexity in
repeatedly searching the whole SDGC model is addressed using a two-level searching
technique. In the first level, only the CFG Start nodes in an SDGC model are checked
to find the CFG of the function which the node n corresponding to s belongs to. The
search time involved in this step is limited to a linear search of the maximum number
of functions/tasks defined in the program. In the second level, the CFG is searched
to find out node n. Then, for each node corresponding to s, the model marker stores
the list of test cases that execute s in the node data structure itself. This technique
of storing the test coverage information on the model itself circumvents the use of a
database or file storage and improves the efficiency of our approach. This approach
of storing both the program and the test coverage information in the memory may
be infeasible for very large programs having thousands of test cases. However, this
approach is beneficial for programs for small embedded systems.

—Model Updater. The model updater updates the SDGC model M corresponding to the
original program P so that it reflects the changes made to P and is in sync with the
modified program P ′. The model updater implements the algorithm SDGCUpdate
discussed in Section 5.4.

—Test Case Selector. The test case selector selects regression test cases by using data-,
control- and task-execution-dependency analysis, as discussed in Section 5.5. The
output of this module is a file containing the identifiers of the test cases selected for
regression testing.

10http://gcc.gnn.org/onlinedocs/gcc/Gcor.html.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

47:32 S. Biswas et al.

Table I. Characteristics of the Programs Used in our Experimental Studies

Average Size of SDGC Models
Program Name Size (LOC) (#nodes, #edges)
Power Window Controller 204 (263, 334)
Quasilinear Model 174 (245, 312)
Vector Calculator 156 (209, 283)
Cruise Controller 649 (783, 886)
Power Window Controller
(with obstacle detection) 737 (852, 996)

ATC Disc Copier 588 (722, 836)
Climate Controller 318 (364, 429)
If Pattern 266 (302, 361)

6.2. An Evaluation of the Effectiveness of MTest

The aim of our experimental studies using MTest was to evaluate the performance and
effectiveness of our RTS approach (RTSEM). An intuitive and appealing metric for
evaluating the effectiveness of an RTS technique is the size of the selected regression
test suite. Obviously, it is desirable to have this number as small as possible. How-
ever, for effective RTS, it is more important for a technique not to miss out selecting
any fault-revealing test cases, and at the same time, to minimize instances of false
positives. Therefore, we have defined a new metric called fault-revealing effectiveness.
In the following, we briefly describe these two metrics with which we evaluated the
effectiveness of RTSEM.

—Percentage of Test-Cases Selected for RTS (ϒ). This measure indicates the size of the
regression test suite as a percentage of the initial test suite.

—Fault-Revealing Effectiveness (�). The fault-revealing effectiveness metric can be
defined as the percentage of test cases selected by an RTS technique from the set of
test cases that fail when the valid test cases in the initial test suite are run. That is,
the fault-revealing effectiveness of the test suite selected by a safe RTS technique is
equal to 100%, that is, it is equal to that of the initial test suite.

6.3. Experiments

We have used eight programs from the automotive control domain for our experimen-
tal studies. These applications include a simplified adaptive cruise controller, power
window controller, and climate controller. These C programs have been auto-generated
from Simulink models using the Real-Time Workshop tool in MATLAB [Mathworks
2011] . The size of the uncommented source lines in the programs range from 156
to 737 LOC. Table I summarizes the average size of the sample programs (LOC) and
that of the corresponding SDGC models in terms of the number of nodes and edges. A
snapshot of the SDGC model for the Climate Controller program is shown in Figure 17.
The figure was generated using the dotty tool of Graphviz. The solid edges in the figure
represent control flow edges, while the other SDGC model edge types are annotated in
the figure. We have shown only a partial view of the model in Figure 17 to avoid clutter.

For each program, we systematically created several modified versions by adding,
modifying, or deleting one or more lines of code, or by making a change to the Simulink
model and then auto-generating the code. In order to avoid the possibility of making
unrealistic changes to programs, we consulted several industry professionals involved
in Simulink/Stateflow-based embedded program development. The relative frequency
of occurrence of the different types of changes that we introduced are based on feedback
from the industry experts. These are categorized into three levels: Extremely frequent,
Frequent, and Less frequent. In Table II, we list the different types of modifications

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

A Regression Test Selection Technique for Embedded Software 47:33

Fig. 17. A screenshot of the SDGC model for the climate controller program.

Table II. Types of Program Modifications and Their Relative Frequencies

Type of Change Relative Frequency
Uninitialized variable declarations Extremely frequent
Variables assigned wrong values Extremely frequent

Changed predicates Extremely frequent
Changed datatypes Frequent

Changes made to Simulink Blocks Frequent
Changed function prototypes Less frequent

Task delays Less frequent

that we applied to the programs or to the models and their relative frequencies. Based
on the feedback from some practitioners from the industry on the types of changes
usually made, we introduced the following types of modifications to the programs: (a) a
change is introduced in a Simulink model block and then the code is auto-generated to
realize the modified program; (b) a modification is made directly to the auto-generated
code. The changes made to the Simulink models resulted in auto-generated code that
had new functions, modified function prototypes, etc. An example of a change of type
(a) is changing the value of a gain or a constant block or adding new inputs to a block;
and that for changes of type (b) are changed predicates, changed datatype of variables,
and delays to tasks.

We designed test cases for each program to test the functional and temporal correct-
ness of the programs. The functional test cases were designed using blackbox tech-
niques of category partitioning and boundary value analysis, and performance test
cases were designed to check whether the timing constraints of tasks are met. The test
cases were executed to generate the test coverage information. The modifications made
to the modified program versions were based on the types of changes listed in Table II.
For example, for a change of type predicate change, one predicate was randomly se-
lected for change. For each program, all the test cases from the initial test suite were
run with each modified program version to find out the number of test cases that failed,
that is, produced incorrect results when run with the modified program. Each time,
after making a change, regression test cases were selected using MTest and the num-
ber of regression test cases that failed was determined. To compare the performance

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

47:34 S. Biswas et al.

Table III. Summary of Experimental Results

% of Test Cases Selected (ϒ)
Program Name # Test Cases MTest Binkley’s Approach % Change
Power Window
Controller

30 56.67 43.33 30.77

Quasilinear Model 25 48.00 36.00 33.33
Vector Calculator 20 45.00 30.00 50.00
Cruise Controller 42 61.90 47.62 30.00
Power Window
Controller (with
obstacle detection)

46 65.22 52.17 25.00

ATC Disc Copier 40 57.50 50.00 15.00
Climate Controller 35 54.29 40.00 35.71
If Pattern 30 60.00 46.67 28.57

Table IV. Summary of Results on Fault-Revealing Effectiveness

Fault-revealing Effectiveness (�)
% Test Cases Binkley’s

Program Name Failed MTest Approach % Change
Power Window 23.33 100 57.14 75.00
Quasilinear Model 24.00 100 66.67 50.00
Vector Calculator 25.00 100 80.00 25.00
Cruise Controller 30.95 100 76.92 30.00
Power Window (with obsta-
cle) 30.43 100 78.57 27.27

ATC Disc Copier 27.50 100 72.73 37.50
Climate Controller 28.57 100 70.00 42.86
If Pattern 30.00 100 77.78 28.57

and effectiveness of our approach with an established approach for RTS of procedural
programs, we also selected regression test cases using the SDG-based RTS approach
proposed by Binkley [1997]. We have chosen Binkley’s approach since we were unable
to find any RTS technique that was specifically designed for embedded programs or
any recent approach that advances Binkley’s approach in nontrivial ways. We have
tried to remove any bias in the results by carrying out each experiment ten times with
different changes each time and then averaging the results. This also helped to remove
any bias introduced in the results due to selection of only a specific type of change.

6.4. Results and Analysis

The results obtained from our experiments have been summarized in Tables III and IV.
Table III shows the value of the metric ϒ for MTest and Binkley’s approach. The first
column in Table III shows the type of programs that were tested. Column 2 shows the
number of test cases that were used to test the modified programs. Column 3 shows the
number of test cases that were selected (as a percentage) on the average by MTest from
the initial test suite. Column 4 shows the number of test cases that were selected using
Binkley’s approach [1997]. Column 5 shows the difference in the number of regression
test cases selected by the two approaches as a percentage of the number of regression
test cases selected by Binkley’s approach.

The results of Table III have been presented in the form of a bar graph in Figure 18.
In the figure, the y-axis shows the percentage of selected test cases while the labels
on the x-axis represent the different programs. It can be observed from Table III and
Figure 18 that MTest selected around 45% to 65.22% of test cases for regression testing

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

A Regression Test Selection Technique for Embedded Software 47:35

Fig. 18. Percentage of regression test cases selected (ϒ).

of the modified programs. Considering the results for all the programs, the number of
test cases selected by MTest was on average 28.33% greater than Binkley’s approach
[1997]. This increase can be explained by the fact that, in addition to data and control
dependence, our approach also selects test cases based on task-execution dependencies
that are ignored by Binkley’s approach.

We now give an example to highlight the type of test cases which were omitted by
Binkley’s approach. In a typical ACC implementation, the host vehicle speed controller
(HVSM) task is execution dependent on the radar information processing (RIP) task
due to precedence ordering. In the modified version of the ACC program, the RIP task
was modified which subsequently delayed the completion of the HVSM task causing
the HVSM task to timeout. For such a modification, Binkley’s approach failed to select
test cases that tested the performance constraints of the HVSM task because there
were no data and control dependencies between the RIP and HVSM tasks.

Table IV shows the fault-revealing effectiveness (�) of MTest and Binkley’s approach.
Column 2 in Table IV lists the total number of fault-revealing test cases in the initial
test suite as determined by running the entire test suites on the modified programs.
Columns 3 and 4 present the the fault-revealing effectiveness of MTest and Binkley’s
approach. Column 5 shows the percentage difference between the two. Only the sum-
mary data of the average of the ten systematically selected changes of a given type
have been presented in Table IV.

The results of Table IV have been presented as a bar graph in Figure 19. In the
figure, the y-axis shows the percentage of failed test cases selected while the labels
on the x-axis represent the different programs. The results show that MTest is able to
select all the fault-revealing test cases present in T . In other words, the regression
test suite selected by MTest has the same fault-revealing effectiveness � as the initial
test suite. The fault-revealing effectiveness of Binkley’s approach is lower by 36.36%
on average compared to MTest.

Discussion on Safety. RTSEM is safe in selecting test cases based on only control and
data dependencies. However, the technique may not be safe for selecting all potentially
fault-revealing test cases given the arbitrary number of interleavings possible among
concurrent tasks.

Another challenge lies in nonintrusively instrumenting embedded programs to min-
imize the impact on the execution of the tasks. However, some of the task-execution

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

47:36 S. Biswas et al.

Fig. 19. A comparison of the fault-revealing effectiveness (�) of RTSEM and Binkley’s approach.

dependencies discussed in Section 3 are instrumentation-neutral, for example, task-
execution dependency due to precedence order and priorities. If a task τi precedes task
τ j or is of higher priority, then RTSEM conservatively selects all test cases to test the
ordering of the tasks. Nonintrusively instrumenting programs to monitor task depen-
dencies introduced due to message passing or synchronization primitives is a more
challenging problem, since the order of accesses are often nondeterministic.

6.5. Threats to Validity

Even though we have carefully developed the experimental setup and consciously tried
to avoid various sources of errors, there exist many sources of risks that threaten the
validity of our results. We have considered only eight embedded C programs from the
automotive domain, and the results that we have obtained during our experimental
studies are limited to programs of a maximum size of approximately 740 LOC. Some
of the case studies we have chosen are realistic, since they have been developed based
on industry-relevant applications, and the others are demo models available from the
MATLAB distribution. The number of experimental programs could have been higher,
but we intended the programs to be based on realistic applications. Though the size
of the programs agrees with our objective of selecting regression test cases for small
embedded applications, it would still be interesting to study the results obtained when
MTest is applied to select regression test cases for more complex and larger embedded
programs having large test suites.

Other threats to validity pertain to the implementation of the two prototype tools:
MTest and the tool implementing Binkley’s approach. To address the issues stemming
from defective implementation, we have tested the different components in our pro-
totype tools, such as the SDGC model constructor, before carrying out experimental
studies. Another source of incorrect results could have been unrealistic changes to the
programs giving rise to biased results. However, as discussed in Section 6.4, we have
tried to remove any bias in our studies by carrying out each experiment ten times with
different changes each time and then averaging the results.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

A Regression Test Selection Technique for Embedded Software 47:37

7. COMPARISON WITH RELATED WORK

In spite of our best efforts, we did not find any reported results on RTS of embedded
applications. However, a few results have been reported on other aspects concerning
regression testing of embedded programs in general [Netkow and Brylow 2010]. Netkow
and Brylow [2010] have proposed a framework called Xest for automating the execution
of regression test cases in a test-driven development environment. Their test setup
helps to automatically execute regression test cases for kernel development projects on
embedded hardware. However, their work does not address the problem of RTS and is,
therefore, not directly related to our work.

In the absence of any directly comparable work, we compare our technique with a
few important procedural RTS techniques that have indirect bearing on our work. Ex-
isting procedural RTS techniques [Vokolos and Frankl 1997; Rothermel and Harrold
1997; Binkley 1997] select regression test cases based mainly on analysis of either
one or more of the following relations among program entities: control flow, control
dependence, and data dependence. These techniques are targeted for procedural pro-
grams and therefore ignore features specific to embedded programs, such as tasks,
timers, intertask communication, task precedence, exceptions, etc. As a result, these
techniques completely ignore execution dependencies that might be existing among
tasks during RTS. Consequently, these techniques are likely to omit test cases that
can expose timing errors. Our RTS technique models tasks, task precedence ordering,
task priorities, intertask communication, timers, and exception handling using an ex-
tended SDG model. To model tasks, we capture control flow information in addition
to data and control dependencies. Apart from selecting test cases based on data and
control dependencies, our RTS technique also selects test cases based on task execu-
tion dependencies that are identified by analyzing task precedence, task priority, and
intertask communication using message queues and semaphores. Experimental stud-
ies conducted by using a prototype implementation of our approach shows that on an
average, an additional 28.33% test cases were selected for regression testing and there
was a 36.36% increase in the fault-revealing effectiveness as compared to existing tech-
niques [Binkley 1997]. In fact, our proposed RTS technique, RTSEM, achieved 100%
fault-revealing effectiveness in our experimental studies.

8. CONCLUSION

Existing RTS techniques largely ignore the implications of important embedded pro-
gram features, such as time-constrained tasks, task precedences, intertask commu-
nication, timers, and exception handling, and as a consequence ignore the execution
dependencies that might arise among the tasks. In order to consider execution depen-
dencies among tasks in RTS, we have proposed an augmented SDG model called SDGC.
Our proposed RTS technique RTSEM selects relevant regression test cases by analyz-
ing the SDGC model. During our experimental studies, we observed an increase in the
number of selected regression test cases by approximately 28.33%. We also observed
an increase of 36.36% in the fault-revealing effectiveness of RTSEM as compared to
existing RTS approaches. A promising aspect of RTSEM is that it did not miss out
on selecting fault-revealing test cases for regression testing during our experimental
studies. These results highlight the necessity of modeling tasks and other embedded
program features and of incorporating task execution dependency analysis in RTS of
embedded programs.

Our work is mainly targeted for RTS of small embedded programs. For these pro-
grams, a few simplifying assumptions, such as static task creation and static task
priorities, and synchronous message passing among tasks hold. We plan to investigate
task execution dependencies that might arise due to dynamic creation of tasks and

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

47:38 S. Biswas et al.

asynchronous message passing in large and complex programs. We also intend to ex-
tend our technique to take into account the dependencies introduced among elements of
embedded programs (such as automobile infotainment applications) that are developed
using object-oriented development techniques, such as UML and C++.

REFERENCES

AHO, A., SETHI, R., AND ULLMAN, J. 2008. Compilers: Principles, Techniques and Tools 2nd Ed. Dorling Kinder-
sley (India) Pvt Ltd.

ALLEN, M. AND HORWITZ, S. 2003. Slicing java programs that throw and catch exceptions. In Proceedings
of the ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM’03). ACM, New York, NY, 44–54.

BATES, S. AND HORWITZ, S. 1993. Incremental program testing using program dependence graphs. In Pro-
ceedings of the Conference Record of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM, New York, NY, 384–396.

BINKLEY, D. 1997. Semantics guided regression test cost reduction. IEEE Trans. Softw. Eng. 23, 8, 498–516.
BISWAS, S. 2011. Model-based regression test selection and optimization for embedded programs. M.S. thesis,

Indian Institute of Technology, Kharagpur, India.
BISWAS, S., MALL, R., SATPATHY, M., AND SUKUMARAN, S. 2009. A model-based regression test selection approach

for embedded applications. ACM SIGSOFT Softw. Eng. Notes 34, 4, 1–9.
BISWAS, S., MALL, R., SATPATHY, M., AND SUKUMARAN, S. 2011. Task dependency analysis for regression test

selection of embedded programs. IEEE Embed. Syst. Lett. 3, 4, 117–120.
CARTAXO, E., MACHADO, P., AND NETO, F. 2011. On the use of a similarity function for test case selection in the

context of model-based testing. Softw. Test. Verification Reliab. 21, 2, 75–100.
CLEVE, A., HENRARD, J., AND HAINAUT, J. 2006. Data reverse engineering using system dependency graphs.

In Proceedings of the 13th Working Conference on Reverse Engineering. IEEE Computer Society, Los
Alamitos, CA, 157–166.

DO, H., MIRARAB, S., TAHVILDARI, L., AND ROTHERMEL, G. 2010. The effects of time constraints on test case
prioritization: A series of controlled experiments. IEEE Trans. Softw. Eng. 36, 5, 593–617.

FERRANTE, J., OTTENSTEIN, K., AND WARREN, J. 1987. The program dependence graph and its use in optimization.
ACM Trans. Program. Lang. Syst. 9, 3, 319–349.

GUAN, J., OFFUTT, J., AND AMMANN, P. 2006. An industrial case study of structural testing applied to safety-
critical embedded software. In Proceedings of the ACM/IEEE International Symposium on Empirical
Software Engineering. ACM, New York, NY, 272–277.

HARROLD, M., JONES, J., LI, T., LIANG, D., ORSO, A., PENNINGS, M., SINHA, S., SPOON, S. A., AND GUJARATHI, A.
2001. Regression test selection for java software. In Proceedings of the 16th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages and Applications. ACM, New York, NY, 312–326.

HATLEY, D. AND PIRBHAI, I. 1987. Strategies for Real-Time System Specification. Dorset House Publishing
Company.

HORWITZ, S., REPS, T., AND BINKLEY, D. 1990. Interprocedural slicing using dependence graphs. ACM Trans.
Program. Lang. Syst. 12, 1, 26–61.

JIANG, S., ZHOU, S., SHI, Y., AND JIANG, Y. 2006. Improving the preciseness of dependence analysis using
exception analysis. In Proceedings of the 15th IEEE International Conference on Computing. IEEE
Computer Society, Los Alamitos, CA, 277–282.

KAPFHAMMER, G. 2004. The Computer Science Handbook 2nd Ed. CRC Press, Boca Raton, FL, (Chapter on
Software Testing.)

KNUTH, D. 1974. Structured programming with go to statements. ACM Comput. Surv. 6, 4, 261–301.
KONDOH, H. AND FUTATSUGI, K. 2006. To use or not to use the goto statement: Programming styles viewed from

Hoare Logic. Sci. Comput. Program. 60, 1, 82–116.
LEUNG, H. AND WHITE, L. 1989. Insights into regression testing. In Proceedings of the Conference on Software

Maintenance. 60–69.
LIANG, D. AND HARROLD, M. 1998. Slicing objects using system dependence graphs. In Proceedings of the

International Conference on Software Maintenance. IEEE Computer Society, Los Alamitos, CA, 358–
367.

MALL, R. 2007. Real-Time Systems Theory and Practice 1st Ed. Pearson Education.
MARWEDEL, P. 2007. Embedded System Design. Springer.
MATHWORKS. 2011. MATLAB. http://www.mathworks.com.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

A Regression Test Selection Technique for Embedded Software 47:39

MCCONELL, S. 2004. Code Complete: A Practical Handbook of Software Construction 2nd Ed. Microsoft Press.
NETKOW, M. AND BRYLOW, D. 2010. Xest: An automated framework for regression testing of embedded software.

In Proceedings of the Workshop on Embedded Systems Education (WESE’10). ACM, New York, NY, 7:1–
7:8.

ORSO, A., SHI, N., AND HARROLD, M. 2004. Scaling regression testing to large software systems. In Proceedings
of the 12th ACM SIGSOFT 12th International Symposium on Foundations of Software Engineering.
ACM, New York, NY, 241–251.

OSEK. 2001. OSEK/VDX time-triggered operating system specification 1.0. http://portal.osek-vdx.org.
ROMANOVSKY, A., XU, J., AND RANDELL, B. 1998. Exception handling in object-oriented real-time distributed sys-

tems. In Proceedings of the 1st IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC’98). IEEE Computer Society, Los Alamitos, CA 32–42.

ROTHERMEL, G. AND HARROLD, M. 1996. Analyzing regression test selection techniques. IEEE Trans. Softw.
Eng. 22, 8, 529–551.

ROTHERMEL, G. AND HARROLD, M. 1997. A safe, efficient regression test selection technique. ACM Trans. Softw.
Eng. Methodol. 6, 2, 173–210.

SALES, J. 2005. Symbian OS Internals: Real-Time Kernel Programming. John Wiley & Sons.
SALEWSKI, F. AND TAYLOR, A. 2007. Fault handling in FPGAs and microcontrollers in safety-critical embedded

applications: A comparative survey. In Proceedings of the ACM/IEEE International Symposium on
Empirical Software Engineering (ISESE’06). 124–131.

SANGIOVANNI-VINCENTELLI, A. AND NATALE, M. D. 2007. Embedded system design for automotive applications.
IEEE Computer 40, 42–51.

SCHOTLAND, T. AND PETERSEN, P. 2011. Exception Handling in C without C++. http://www.on-time.com/
ddj0011.htm.

SEO, J., KI, Y., CHOI, B., AND LA, K. 2008. Which spot should I test for effective embedded software test-
ing? In Proceedings of the 2nd International Conference on Secure System Integration and Reliability
Improvement (SSIRI’08). IEEE Computer Society, Los Alamitos, CA, 135–142.

SILBERSCHATZ, A., GALVIN, P., AND GAGNE, G. 2010. Operating System Concepts 8th Ed. Wiley India Pvt Ltd.
SINHA, S., HARROLD, M., AND ROTHERMEL, G. 1999. System-dependence-graph-based slicing of programs with

arbitrary interprocedural control flow. In Proceedings of the 21st International Conference on Software
Engineering. ACM, New York, NY, 432–441.

SINHA, S. AND HARROLD, M. J. 1998. Analysis of programs with exception-handling constructs. In Proceedings
of the International Conference on Software Maintenance (ICSM’98). IEEE Computer Society, 348.

SUNDMARK, D., PETTERSSON, A., ELDH, S., EKMAN, M., AND THANE, H. 2007. Efficient system-level testing of
embedded real-time software. In Proceedings of the Work in Progress Session of the 17th Eurmicro
Conference on Real-Time System. 53–56.

VAHID, F. AND GIVARGIS, T. 2002. Embedded System Design: A Unified Hardware/Software Introduction 1st
Ed. John Wiley & Sons.

VOKOLOS, F. AND FRANKL, P. 1997. Pythia: A regression test selection tool based on textual differencing. In
Proceedings of the 3rd International Conference on Reliability, Quality & Safety of Software-Intensive
Systems (ENCRESS’97). Chapman & Hall, Ltd., London, 3–21.

WARD, P. AND MELLOR, S. 1991. Structured Development for Real-Time Systems. Prentice Hall Professional
Technical Reference.

WIND RIVER SYSTEMS. 2010. Wind River VxWorks: Embedded RTOS with support for POSIX and SMP.
http://www.windriver.com/products/vxworks/.

ZHENG, J., ROBINSON, B., WILLIAMS, L., AND SMILEY, K. 2006. Applying regression test selection for COTS-based
applications. In Proceedings of the 28th International Conference on Software Engineering (ICSE’06).
ACM, New York, NY, 512–522.

Received August 2011; revised May 2012; accepted September 2012

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 3, Article 47, Publication date: December 2013.

