
CS 636: Shared-Memory Synchronization

Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2025-26-II

Is the Code Thread-Safe?

1 class Set {
2 final Vector elems = new Vector();
3

4 void add(Object x) { // Free of data races
5 if (!elems.contains(x))
6 elems.add(x);
7 }
8 }
9

10 class Vector {
11 synchronized void add(Object o) { ... }
12 synchronized boolean remove(Object o) { ... }
13 synchronized boolean contains(Object o) { ... }
14 }

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 3 / 76

What is the Desired Property?

1 class Set {
2 final Vector elems = new Vector();
3

4 void add(Object x) { // Free of data races
5 if (!elems.contains(x))
6 elems.add(x);
7 }
8 }
9

10 class Vector {
11 synchronized void add(Object o) { ... }
12 synchronized boolean remove(Object o) { ... }
13 synchronized boolean contains(Object o) { ... }
14 }

atomic

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 4 / 76

Synchronization Patterns
Mutual exclusion — updates need to be serialized

bool lock = false;

1 lock_acquire():
2 while TAS(&lock)
3 // spin

1 lock_release():
2 lock = false;
3

Conditional synchronization — events need to occur in a specified order
1 while !condition
2 // spin

Other forms — e.g., synchronize across threads or control the number of simultaneous
accesses to a shared resource

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 5 / 76

Desired Synchronization Properties

Mutual exclusion (safety property)
• Critical sections on the same lock from different threads do not overlap

Deadlock freedom (liveness property)
• If some threads attempt to acquire the lock, then some thread should be able to

acquire the lock
• Individual threads may be infinitely delayed

Starvation freedom (liveness property)
• Every thread that acquires a lock eventually releases it
• A lock acquire request must eventually succeed within bounded steps
• Implies deadlock freedom

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 6 / 76

Classic Mutual Exclusion Algorithms

LockOne: What could go wrong?

1 class LockOne implements Lock {
2 private boolean[] flag = new boolean[2];
3 public void lock() {
4 int i = ThreadID.get();
5 flag[i] = true;
6 j = 1-i;
7 while (flag[j]) {}
8 }
9 public void unlock() {

10 int i = ThreadID.get();
11 flag[i] = false;
12 }
13 }

• LockOne satisfies mutual exclusion
• LockOne fails deadlock-freedom, concurrent execution can deadlock

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 7 / 76

LockTwo: What could go wrong?

1 class LockTwo implements Lock {
2 private int victim;
3 public void lock() {
4 int i = ThreadID.get();
5 victim = i;
6 while (victim == i) {}
7 }
8

9 public void unlock() {}
10 }

• LockTwo satisfies mutual exclusion
• LockTwo fails deadlock-freedom, sequential execution deadlocks

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 8 / 76

Peterson’s Algorithm
1 class PetersonLock {
2 private boolean[] flag = new boolean[2];
3 private int victim;
4

5 public void lock() {
6 int i = ThreadID.get();
7 int j = 1-i;
8 flag[i] = true;
9 victim = i;

10 while (flag[j] && victim == i) {}
11 }
12

13 public void unlock() {
14 int i = ThreadID.get();
15 flag[i] = false;
16 }
17 }

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 9 / 76

Peterson’s Algorithm
1 class PetersonLock {
2 private boolean[] flag = new boolean[2];
3 private int victim;
4

5 public void lock() {
6 int i = ThreadID.get();
7 int j = 1-i;
8 flag[i] = true;
9 victim = i;

10 while (flag[j] && victim == i) {}
11 }
12

13 public void unlock() {
14 int i = ThreadID.get();
15 flag[i] = false;
16 }
17 }

• Does this algorithm satisfy mutual exclusion under
sequential consistency?

• What if we do not have sequential consistency?

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 9 / 76

Filter Lock for n Threads

Filter lock is a generalization of Peterson’s lock to n > 2 threads

• There are n− 1 waiting rooms called
“levels”

• At least one thread trying to enter a
level succeeds

• One thread gets blocked at each level
if many threads try to enter

CS
2 threads

n-1 threads

non-CS with n threads level = 0

level = 1

level = 2

level = n-1

level = n-2

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 11 / 76

Filter Lock

1 class FilterLock {
2 int[] level;
3 int[] victim;
4 public FilterLock() {
5 level = new int[n];
6 victim = new int[n];
7 for (int i=0; i<n; i++)
8 level[i] = 0;
9 }

10 public void unlock() {
11 int me = ThreadID.get();
12 level[me]= 0;
13 }
14

15 public void lock() {
16 int me = ThreadID.get();
17 // Attempt to enter level i
18 for (int i=1; i<n; i++) {
19 // visit level i
20 level[me] = i;
21 victim[i] = me;
22 // spin while conflict exists
23 while ((∃k != me)
24 level[k] >= i && victim[i] ==

me) {}
25 }
26 }
27 }

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 12 / 76

Fairness
Starvation freedom is good, but maybe threads should not wait too much
• For example, it would be great if we could order threads by the order in which they

performed the first step of the lock() method

Bounded Waiting
• Divide the lock() method into two parts

Doorway interval (DA) expresses intent to synchronize, finishes in finite steps
Waiting interval (WA) wait for turn to synchronize, may take unbounded steps

• A lock is first-come first-served if DjA → DkB, then CSjA → CSkB

r-bounded waiting

For threads A and B, if DjA → DkB, then CSjA → CSk+rB

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 13 / 76

Lamport’s Bakery Algorithm

1 class Bakery implements Lock {
2 boolean[] choosing;
3 Label[] lbl;
4 public Bakery(int n) {
5 choosing = new boolean[n];
6 lbl = new Label[n];
7 for (int i = 0; i<n; i++) {
8 choosing[i] = false;
9 lbl[i] = 0;

10 }
11 }
12

13 public void unlock() {
14 choosing[ThreadID.get()] = false;
15 }

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 14 / 76

Lamport’s Bakery Algorithm

15 public void lock() {
16 int i = ThreadID.get();
17 choosing[i] = true; // Getting a label
18 lbl[i] = max(lbl[0], . . ., lbl[n-1]) + 1;
19 while ((∃ k != i) choosing[k] && (lbl[k], k) << (lbl

[i],i)) {}
20 }
21 }

(lbl[i], i) << (lbl[j], j)) iff
• lbl[i] < lbl[j], or

• lbl[i] = lbl[j] and i < j

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 15 / 76

Lamport’s Bakery Algorithm

15 public void lock() {
16 int i = ThreadID.get();
17 choosing[i] = true; // Getting a label
18 lbl[i] = max(lbl[0], . . ., lbl[n-1]) + 1;
19 while ((∃ k != i) choosing[k] && (lbl[k], k) << (lbl

[i],i)) {}
20 }
21 }

(lbl[i], i) << (lbl[j], j)) iff
• lbl[i] < lbl[j], or

• lbl[i] = lbl[j] and i < j

− Need to compare own label with all other threads’ labels irrespective of
their intent to enter the critical section

− Cost of locking increases with the number of threads

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 15 / 76

Lamport’s Fast Lock

• Programs with highly contended locks are likely to not scale
• Insight: Ideally spin locks should be free of contention in well-designed systems, so

optimize for the common case
• Idea:

▶ Use two lock fields fast_check and slow_check
▶ Acquire: Thread t writes its ID to fast_check and slow_check and checks for

intervening writes

L. Lamport. A Fast Mutual Exclusion Algorithm. TOCS, 1987.
Fast Mutual Exclusion, Even With Contention

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 16 / 76

https://dl.acm.org/doi/10.1145/7351.7352
https://www.cs.rochester.edu/research/synchronization/pseudocode/fastlock.html

Lamport’s Fast Lock

1 class LFL implements Lock {
2 // Two checkpoints to guarantee mutual exclusion
3 private int fast_check, slow_check;
4 boolean[] trying;
5 LFL() {
6 slow_check = ⊥;
7 for (int i = 0; i<n; i++)
8 trying[i] = false;
9 }

10 public void unlock() {
11 slow_check = ⊥;
12 trying[ThreadID.get()] = false;
13 }
14 }

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 17 / 76

Lamport’s Fast Lock

14 public void lock() {
15 int self = ThreadID.get();
16 start:
17 trying[self] = true;
18 fast_check = self;
19 if (slow_check != ⊥) {
20 // Someone else is in the CS
21 trying[self] = false;
22 while (slow_check != ⊥) {}
23 goto start; // Retry
24 }
25 slow_check = self;

25 // Ensure atomicity
26 if (fast_check != self) {
27 trying[self] = false;
28 for (i ∈ T) {
29 while (trying[i] == true) {}
30 }
31 if (slow_check != self) {
32 while (slow_check != ⊥) {}
33 goto start;
34 }
35 }
36 }

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 18 / 76

Evaluating Performance of a Lock

Acquisition latency Lock acquire should be cheap in the absence of contention
Space overhead Maintaining lock metadata should not impose high memory

overhead
Fairness Processors should enter the CS in the order of lock requests

Bus traffic Worst case lock acquire traffic should be low
Scalability Latency and traffic should scale slowly with the number of

processors

J. Preshing. Locks Aren’t Slow; Lock Contention Is.

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 19 / 76

https://preshing.com/20111118/locks-arent-slow-lock-contention-is/

Practicality of Classical Mutual Exclusion Algorithms

A write (i.e., regular memory store) by a thread to a memory location can be overwritten
without any other thread seeing the first write

Need to read and write n distinct memory locations where n is the maximum
number of concurrent threads
− n is a lower bound on the number of required locations
• Motivates the need for read-write operations with stronger guarantees

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 20 / 76

Atomic Hardware Instructions

Hardware Locks

• Locks can be completely supported by hardware
• Ideas:

(i) Have a set of lock lines on the bus, processor wanting the lock asserts the line, others
wait, priority circuit used for arbitrating

(ii) Special lock registers, processors wanting the lock acquire ownership of the registers

What could be some problems?

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 21 / 76

Limitations with Hardware Locks

• Waiting logic is critical for lock performance
▶ A thread can (i) busy wait (i.e., spin), (ii) block, or (iii) use a hybrid strategy (e.g., busy

wait for some time and then block)
• Hardware locks are not popularly used

− Limited in number due resource constraints
− Inflexible in implementing wait strategies

ò We continue to rely on software locks
Can optionally make use of hardware instructions for better performance

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 22 / 76

Common Atomic Primitives

Modern architectures provide many atomic read-modify-write (RMW) instructions for
synchronization
• For example, test-and-set, fetch-and-add, compare-and-swap, and

load-linked/store-conditional

TAS X86, SPARC

1 bool TAS(word* loc):
2 atomic {
3 tmp := *loc;
4 *loc := true; // set
5 }
6 return tmp;

swap X86, SPARC

1 word swap(word* a, word b):
2 atomic {
3 tmp := *a;
4 *a := b;
5 }
6 return tmp;

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 23 / 76

Spin Lock with TAS on X86_64

static inline uint8_t tas(volatile uint8_t *p) {
uint8_t old = 1;
asm volatile(

"xchg %0, %1" // atomic xchg with mem
: "+q"(old), "+m"(*p) // old is both input/output; *p is read/write
: // no extra inputs
: "memory" // compiler barrier for reordering

);
return old;

}

static volatile uint8_t lock = 0;

static inline void acquire() {
while (tas(&lock)) { } // Add delay to reduce contention

}

static inline void release() {
asm volatile("" ::: "memory");
lock = 0;

}

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 25 / 76

Spin Lock with TAS on X86_64

#include <atomic>

std::atomic_flag lock = ATOMIC_FLAG_INIT;

// Using sequential consistency as the default ordering

// Spin until the lock is acquired
while (std::atomic_flag_test_and_set(&lock)) {}

std::atomic_flag_clear(&lock);

https://en.cppreference.com/w/cpp/atomic/atomic_flag_test_and_set.html

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 26 / 76

https://en.cppreference.com/w/cpp/atomic/atomic_flag_test_and_set.html

Common Atomic Primitives

fetch_and_inc uncommon

1 int FAI(int* loc):
2 atomic {
3 tmp := *loc;
4 *loc := tmp+1;
5 }
6 return tmp;

fetch_and_add uncommon

1 int FAA(int* loc, int n):
2 atomic {
3 tmp := *loc;
4 *loc := tmp+n;
5 }
6 return tmp;

C++ 11 onward provides std::atomic<T>::fetch_add()

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 27 / 76

Common Atomic Primitives

fetch_and_inc uncommon

1 int FAI(int* loc):
2 atomic {
3 tmp := *loc;
4 *loc := tmp+1;
5 }
6 return tmp;

fetch_and_add uncommon

1 int FAA(int* loc, int n):
2 atomic {
3 tmp := *loc;
4 *loc := tmp+n;
5 }
6 return tmp;

C++ 11 onward provides std::atomic<T>::fetch_add()

How can we implement a mutual exclusion lock
with FAI?

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 27 / 76

Compare-and-Swap (CAS) Primitive
Compare-and-Swap (CAS) compares the contents of a memory location with a given value
and, only if they are the same, updates the contents of that memory location to a new
given value

1 bool CAS(word* loc, word oldval, word newval) {
2 atomic { // Code block will execute atomically
3 res := (*loc == oldval);
4 if (res)
5 *loc := newval;
6 }
7 return res;
8 }

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 29 / 76

Compare-and-Swap (CAS) Primitive

• CAS is implemented as the compare-and-exchange (CMPXCHG) instruction in x86
architectures
▶ On a multiprocessor, the LOCK prefix must be used

• CAS is a popular synchronization primitive for implementing both lock-based and
nonblocking concurrent data structures

1 xor %ecx, %ecx ; ecx=0
2 inc %ecx ; ecx=1
3 RETRY: xor %eax, %eax ; eax=0
4 lock compxchg %ecx, &lk
5 jnz RETRY
6 ret
7

1 void spinLock(lock* lk) {
2 // flg attribute is set when
3 // the lock is acquired
4 while (CAS(&lk->flg,0,1)==1) {
5 // Keep spinning
6 }
7 }

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 30 / 76

Compare-and-Swap (CAS) Primitive

• CAS is implemented as the compare-and-exchange (CMPXCHG) instruction in x86
architectures
▶ On a multiprocessor, the LOCK prefix must be used

• CAS is a popular synchronization primitive for implementing both lock-based and
nonblocking concurrent data structures

1 xor %ecx, %ecx ; ecx=0
2 inc %ecx ; ecx=1
3 RETRY: xor %eax, %eax ; eax=0
4 lock compxchg %ecx, &lk
5 jnz RETRY
6 ret
7

1 void spinLock(lock* lk) {
2 // flg attribute is set when
3 // the lock is acquired
4 while (CAS(&lk->flg,0,1)==1) {
5 // Keep spinning
6 }
7 }

How can you implement
fetch_and_xyz() with CAS?

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 30 / 76

Spin Lock with CAS on X86_64

static inline bool cas32(volatile uint32_t *addr, uint32_t oldVal, uint32_t newVal) {
unsigned char result;
asm volatile(

"lock cmpxchgl %3, %0 \n sete %1"
: "+m"(*addr), "=q"(result), "+a"(oldVal) // loads oldVal into EAX
: "r"(newVal)
: "memory");

return result;
}

uint32_t lock = 0;

void acquire() {
while (!cas32(&lock,0,1)) { } // add delay to reduce contention

}

static inline void release() {
asm volatile("" ::: "memory"); // compiler barrier
lock = 0;

}

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 31 / 76

Load Linked (LL)/Store Conditional (SC) Instructions

LL/SC POWER, MIPS, ARM

1 word LL(word* a):
2 atomic {
3 remember a;
4 return *a;
5 }
6

7 bool SC(word* a, word w):
8 atomic {
9 res := (a is remembered, and has not been evicted

10 since LL)
11 if (res)
12 *a = w;
13 return res;
14 }

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 32 / 76

Load Linked (LL)/Store Conditional (SC) Instructions

LL/SC POWER, MIPS, ARM

1 word LL(word* a):
2 atomic {
3 remember a;
4 return *a;
5 }
6

7 bool SC(word* a, word w):
8 atomic {
9 res := (a is remembered, and has not been evicted

10 since LL)
11 if (res)
12 *a = w;
13 return res;
14 }

How can you implement
fetch_and_func() with LL/SC?

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 32 / 76

ABA Problem

Nonblocking Algorithms

. Blocking algorithms (e.g., lock-based concurrent data structures)
Failure or delay of any one thread can delay other threads
− Use of locks can lead to deadlocks, livelocks, and priority inversion
− Blocked threads do not do useful work, problematic for high-priority or real-time

applications
− Getting the right degree of concurrency and correctness with locks is challenging

� Failure or delay of one thread cannot delay other threads in nonblocking
algorithms
• Provides different progress guarantees: wait-freedom and lock-freedom
• Use RMW instructions like CAS or LL/SC for mutual exclusion
• Eliminate locks altogether

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 33 / 76

Lock-free Stack Data Structure

push

1 void push(node** top, node* new):
2 node* old
3 repeat
4 old := *top
5 new->next := old
6 until CAS(top, old, new)
7

8

pop

1 node* pop(node** top):
2 node* old, new
3 repeat
4 old := *top
5 if old = null return null
6 new := old->next
7 until CAS(top, old, new)
8 return old

top A D

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 34 / 76

Concurrent Modifications to a Lock-free Stack

Thread 1 is executing pop(A)

top A D

Thread 1 sees top points to A, but gets delayed
while executing pop(A)

Assume that deleted nodes can be reused

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 35 / 76

Concurrent Modifications to a Lock-free Stack

Thread 1 is executing pop(A)

top A D

Other threads execute pop(A), push(C), and push(A)

top A DC

1

2

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 36 / 76

ABA Problem

Thread 1 is executing pop(A)

top A D

Other threads execute pop(A), push(C), and push(A)

top A DC

Thread 1’s CAS succeeds
top A DC

1

2

3

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 37 / 76

Avoiding ABA Problem

¥ Common workaround is to add extra “tag” to the memory address being
compared
• Tag can be a counter that tracks the number of updates to the reference
• Can steal lower order bits of memory address or use a separate tag field if 128-bit

CAS is available

ò LL/SC does not suffer from the ABA problem
It checks whether a value has changed in between the interval, rather than comparing
the value itself

ABA Problem

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 38 / 76

https://en.wikipedia.org/wiki/ABA_problem

Scalable Spin Locks

Spin Lock with TAS

1 class SpinLock {
2 bool loc = false;
3 public void lock() {
4 while (TAS(&loc)) {
5 // spin
6 }
7 }
8 public void unlock() {
9 loc = false;

10 }
11 } How can we improve the performance of

TAS-based spinlocks?

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 41 / 76

Test-And-Test-And-Set

• Keep reading the memory location till
the location appears unlocked

+ Reduces bus traffic—why?

1 do {
2 while (TATAS_GET(loc)) {}
3 } while (TAS(loc));

With n threads contending for a critical section,
the time per acquire-release pair is O (n)

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 42 / 76

Spin Lock with TAS and Exponential Backoff
Adapt when to retry to reduce contention
• For example, increase the backoff with the number of unsuccessful retries (implies

high contention)

1 class SpinLock {
2 bool loc = false;
3 const int MIN = . . ., MUL = . . ., MAX = . . .;
4 public void unlock() {
5 loc = false;
6 }
7 public void lock() {
8 int backoff = MIN;
9 while (TAS(&loc)) {

10 pause(backoff);
11 backoff = min(backoff * MUL, MAX);
12 }
13 }
14 }

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 43 / 76

Challenges with Exponential Backoff
• Adapt when to retry to reduce contention

▶ For example, increase the backoff with the number of unsuccessful retries (implies high
contention)

What can be some problems?

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 44 / 76

Challenges with Exponential Backoff
• Adapt when to retry to reduce contention

▶ For example, increase the backoff with the number of unsuccessful retries (implies high
contention)

− Critical section is potentially underutilized
− Avoid concurrent threads getting into a lockstep, backoff for a random duration,

possibly doubling each time till a given maximum
− Best-performing constants depend on the host machine and the application

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 44 / 76

Ticket Lock

• TAS-based locks are unfair
• Ticket lock grants access to threads

based on FCFS

1 class TicketLock implements Lock {
2 int nxt_tkt = 0;
3 int serving = 0;
4 public void unlock() {
5 serving++;
6 }

7 public void lock() {
8 int my_tkt = FAI(&nxt_tkt);
9 while (serving != my_tkt) {}

10 }
11 }
12

Ticket spinlocks

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 45 / 76

https://lwn.net/Articles/267968/

Ticket Lock

• TAS-based locks are unfair
• Ticket lock grants access to threads

based on FCFS

1 class TicketLock implements Lock {
2 int nxt_tkt = 0;
3 int serving = 0;
4 public void unlock() {
5 serving++;
6 }

7 public void lock() {
8 int my_tkt = FAI(&nxt_tkt);
9 while (serving != my_tkt) {}

10 }
11 }
12

How is this different from
Bakery’s algorithm?

Ticket spinlocks

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 45 / 76

https://lwn.net/Articles/267968/

Ticket Lock

• TAS-based locks are unfair
• Ticket lock grants access to threads

based on FCFS

1 class TicketLock implements Lock {
2 int nxt_tkt = 0;
3 int serving = 0;
4 public void unlock() {
5 serving++;
6 }

7 public void lock() {
8 int my_tkt = FAI(&nxt_tkt);
9 while (serving != my_tkt) {}

10 }
11 }
12What are some disadvantages of

ticket lock?
Ticket spinlocks

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 45 / 76

https://lwn.net/Articles/267968/

Queued Locks

Key Idea
• Instead of contending on a single “serving” variable, make threads wait in a queue

(i.e., FCFS)
• Each thread knows its order in the queue

Implementation
• Use an array-based queue

▶ Statically or dynamically allocated depending on the number of threads

• Each thread spins on its own lock (i.e., array element), and knows the successor
information

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 46 / 76

Array-based Queued Lock

1 public class ArrayLock {
2 AtomicInteger tail;
3 volatile boolean[] flag;
4 ThreadLocal<Integer> mySlot = . . .;
5 public ArrayLock(int size) {
6 tail = new AtomicInteger(0);
7 flag = new boolean[size];
8 flag[0] = true;
9 }

10

11

12 public void lock() {
13 int slot = FAI(tail);
14 mySlot.set(slot);
15 while (!flag[slot]) {}
16 }
17 public void unlock() {
18 int slot = mySlot.get();
19 flag[slot] = false;
20 flag[slot+1] = true;
21 }
22 }

+ Provides fairness
+ Invalidation traffic lower than Ticket

lock

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 47 / 76

Array-based Queued Lock

1 public class ArrayLock {
2 AtomicInteger tail;
3 volatile boolean[] flag;
4 ThreadLocal<Integer> mySlot = . . .;
5 public ArrayLock(int size) {
6 tail = new AtomicInteger(0);
7 flag = new boolean[size];
8 flag[0] = true;
9 }

10

11

12 public void lock() {
13 int slot = FAI(tail);
14 mySlot.set(slot);
15 while (!flag[slot]) {}
16 }
17 public void unlock() {
18 int slot = mySlot.get();
19 flag[slot] = false;
20 flag[slot+1] = true;
21 }
22 }

What could be a few disadvantages
of array-based Queued locks?

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 47 / 76

MCS Queue Lock

MCS Queue lock is the state-of-art scalable FCFS lock
• Uses linked lists instead of arrays
+ Space required to support n threads and k locks: O (n+ k)

J. Mellor-Crummey and M. Scott. Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors. ACM TOCS, 1991.

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 48 / 76

https://www.cs.rochester.edu/u/scott/papers/1991_TOCS_synch.pdf

MCS Queue Lock

1 class QNode {
2 QNode next;
3 bool waiting;
4 }
5

6 public class MCSLock {
7 Node tail = null;
8 ThreadLocal<QNode> myNode = . . .;
9 public void lock() {

10 QNode node = myNode.get();
11 QNode prev = swap(tail, node);
12 if (prev != null) {
13 node.waiting = true;
14 prev.next = node;
15 while (node.waiting) {}
16 }
17 }

18 public void unlock() {
19 QNode node = myNode.get();
20 QNode succ = node.next;
21 if (succ == null)
22 if (CAS(tail, node, null))
23 return;
24 do {
25 succ = node.next;
26 } while (succ == null);
27 succ.waiting = false;
28 }
29 }
30

31

32

33

34

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 49 / 76

MCS Lock Operations

Lock
tail

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 50 / 76

MCS Lock Operations

Lock
tail

A

tail

Lock

Owns the
critical section

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 50 / 76

MCS Lock Operations

Lock
tail

A

tail

Lock

Owns the
critical section

B

tail

ALock

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 50 / 76

MCS Lock Operations

C

tail

BALock

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 51 / 76

MCS Lock Operations

C

tail

BALock

C

tail

BLock

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 51 / 76

Properties of MCS Lock

• Threads acquire the lock in FCFS manner
• Minimizes false sharing and resource contention
• Threads joining a lock’s wait queue is wait-free

▶ Wait-freedom implies every operation has a bound on the number of steps it will take
before the operation completes

■ Wait-freedom is the strongest non-blocking guarantee of progress
▶ Guaranteed system-wide progress implies lock-freedom, allows individual threads to

starve
■ Lock-free implies “locking up” the application in some way (e.g., deadlock and livelock),

does not only imply absence of synchronization locks

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 52 / 76

Miscellaneous Lock Optimizations

Reentrant Locks

Reentrant locks can be re-acquired by the owner thread without causing a deadlock
• Freed after an equal number of releases

1 public class ParentWidget {
2 public synchronized void doWork() {
3 . . .
4 }
5 }
6

7 public class ChildWidget extends ParentWidget {
8 public synchronized void doWork() {
9 . . .

10 super.doWork();
11 . . .
12 }
13 }

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 54 / 76

Lazy Initialization In Single-Threaded Context

A variable may require the initialization to be synchronized but future uses may be
read-only

1 class Foo {
2 private Helper helper = null;
3

4 public Helper getHelper() {
5 if (helper == null)
6 helper = new Helper();
7 return helper;
8 }
9 . . .

10 }

Correct for single-threaded execution,
what could go wrong with multiple
threads?

The “Double-Checked Locking is Broken” Declaration

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 55 / 76

https://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

Lazy Initialization In Multi-Threaded Context

1 class Foo {
2 private Helper helper = null;
3
4 public Helper getHelper() {
5 if (helper == null)
6 helper = new Helper();
7 return helper;
8 }
9 . . .

10 }

1 class Foo {
2 private Helper helper = null;
3
4 public synchronized Helper getHelper() {
5 if (helper == null)
6 helper = new Helper();
7 return helper;
8 }
9 . . .

10 }

The “Double-Checked Locking is Broken” Declaration

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 56 / 76

https://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

Lazy Initialization In Multi-Threaded Context

1 class Foo {
2 private Helper helper = null;
3
4 public Helper getHelper() {
5 if (helper == null)
6 helper = new Helper();
7 return helper;
8 }
9 . . .

10 }

1 class Foo {
2 private Helper helper = null;
3
4 public synchronized Helper getHelper() {
5 if (helper == null)
6 helper = new Helper();
7 return helper;
8 }
9 . . .

10 }

Synchronizes even after helper has been allocated.
Can we optimize the initialization pattern?

The “Double-Checked Locking is Broken” Declaration

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 56 / 76

https://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

Double-Checked Locking: Possible Idea

(i) Check if helper is initialized
▶ If yes, return
▶ If no, then obtain a lock

(ii) Double check whether helper has
been initialized
▶ If yes, return
▶ If no, initialize helper, return

1 class Foo {
2 private Helper helper = null;
3

4 public Helper getHelper() {
5 if (helper == null)} {
6 synchronized (this) {
7 if (helper == null)
8 helper = new Helper();
9 }

10 }
11 return helper;
12 }
13 . . .
14 }

The “Double-Checked Locking is Broken” Declaration

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 57 / 76

https://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

Broken Usage of Double-Checked Locking

1 class Foo {
2 private Helper helper = null;
3

4 public Helper getHelper() {
5 if (helper == null) {
6 synchronized (this) {
7 if (helper == null)
8 helper = new Helper();
9 }

10 }
11 return helper;
12 }
13 . . .
14 }

• The writes inside the constructor call
of Helper() and to the field helper
(line 8) can get reordered

• The constructor might be inlined, and
the compiler could then reorder all the
stores

• A partially created object may then
become visible to other threads

• Even the hardware can reorder the
stores

The “Double-Checked Locking is Broken” Declaration

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 58 / 76

https://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

Double-Checked Locking: Broken Fix

1 public Helper getHelper() {
2 if (helper == null) {
3 Helper h;
4 synchronized (this) {
5 h = helper;
6 if (h == null) {
7 synchronized (this) {
8 h = new Helper();
9 }

10 }
11 helper = h;
12 }
13 }
14 return helper;
15 }

• A release operation prevents
operations from moving out of the
critical section

• A release operation does not prevent
helper = h (line 11) from being
moved up (i.e., pulled into the critical
section)

The “Double-Checked Locking is Broken” Declaration

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 59 / 76

https://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

Correct Use of Double-Checked Locking

1 class Foo {
2 private volatile Helper helper = null;
3 public Helper getHelper() {
4 if (helper == null) {
5 synchronized (this) {
6 if (helper == null)
7 helper = new Helper();
8 }
9 }

10 return helper;
11 }
12 }

Other possibilities are to use barriers in both the writer thread (the thread that initializes
helper) and all reader threads

The “Double-Checked Locking is Broken” Declaration

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 60 / 76

https://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

Readers-Writer Locks

Many objects are read concurrently and
updated only a few times

Reader lock No thread holds the write lock
Writer lock No thread holds the reader or

writer locks

1 public interface RWLock {
2 public void readerLock();
3 public void readerUnlock();
4 public void writerLock();
5 public void writerUnlock();
6 }

ò Design Choices in Readers-Writer Locks
Release preference order Writer releases lock, both readers and writers are queued

up
Incoming readers Writers waiting, and new readers are arriving

Downgrading Can a thread acquire a read lock without releasing the
write lock?

Upgrading Can a read lock be upgraded to a write lock safely?

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 61 / 76

Readers-Writer Lock With Reader-Preference

Reader or writer preference impacts degree of concurrency
• Allows starvation of non-preferred threads

1 readerLock():
2 acquire(rd)
3 rdrs++
4 if rdrs == 1:
5 acquire(wr)
6 release(rd)
7

8 readerUnlock():
9 acquire(rd)

10 rdrs--
11 if rdrs == 0:
12 release(wr)
13 release(rd)

14 writerLock():
15 acquire(wr)
16

17 writerUnlock():
18 release(wr)
19

20

21

22

23

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 62 / 76

RCU Locks

• Think about data structures that are mostly read, occasionally written
− Manipulating the read counter with atomic operations is still expensive, the cost

dominates performance for short critical sections

• Idea: Carefully update the data structure so that readers see a consistent view of
data, only writers require locks

• RCU supports concurrency between a single updater and multiple readers
▶ RCU is wait-free for readers and lock-free for the writer

• RCU was introduced in the Linux kernel in 2002,
and is actively used throughout the kernel

What is RCU, Fundamentally?
What is RCU? – “Read, Copy, Update”

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 64 / 76

https://lwn.net/Articles/262464/
https://www.kernel.org/doc/html/next/RCU/whatisRCU.html

RCU Locks

• Readers can enter a CS with just a compiler or memory barrier
• Writers cannot modify data in place, instead the write operation is split

(i) make a copy of the data,
(ii) update the local copy, and

(iii) publish the updated copy atomically with release semantics

• Readers can read potentially stale data
• The old data can be reclaimed only after all readers have completed

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 65 / 76

Using RCU Locks

Writer Thread

1 struct foo {
2 int a, b, c;
3 };
4 struct foo *gp = NULL;
5

6 /* . . . */
7

8 p = kmalloc(sizeof(*p), GFP_KERNEL);
9 p->a = 1;

10 p->b = 2;
11 p->c = 3;
12 // cannot simply use gp = p;
13 rcu_assign_pointer(gp, p);

Reader Thread

1 // Reader-side CS
2

3 // disable preemption
4 rcu_read_lock();
5 p = rcu_dereference(gp);
6 // cannot simply use p = gp;
7 if (p != NULL) {
8 do_something(p->a, p->b, p->c);
9 }

10 // enable preemption
11 rcu_read_unlock();

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 66 / 76

Lock Implementations in a JVM

All objects in Java are potential locks

Recursive lock lock can be acquired multiple times by the owner
Thin lock spin lock used when there is no contention, inflated to a fat lock on

contention
Fat lock lock is contended or is waited upon, maintains a list of contending

threads

D. Bacon et al. Thin Locks: Featherweight Synchronization for Java. PLDI, 1998.

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 67 / 76

https://dl.acm.org/doi/abs/10.1145/277652.277734

Asymmetric Locks

Often objects are accessed by most by one thread but require synchronization for
(i) occasional accesses by different threads or (ii) for potential parallelization in
the future

� Biased locks
• JVMs use biased locks, the acquire/release operations on the owner threads are

cheaper
• Usually biased to the first owner thread
• Synchronize only when the lock is contended, need to take care of several subtle

issues
• -XX:+UseBiasedLocking in HotSpot JVM

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 68 / 76

Monitors

Using Locks to Access a Bounded Queue

• Consider a bounded FIFO queue
• Many producer threads and one

consumer thread access the queue

1 mutex.lock();
2 try {
3 queue.enq(x);
4 } finally {
5 mutex.unlock();
6 }

What are potential challenges?

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 69 / 76

Using Locks to Access a Bounded Queue

• Consider a bounded FIFO queue
• Many producer threads and one

consumer thread access the queue

1 mutex.lock();
2 try {
3 queue.enq(x);
4 } finally {
5 mutex.unlock();
6 }

− Producers and consumers need to know about the size
of the queue

− Every producer and consumer need to follow the
locking convention

− The design may evolve: there can be multiple queues
along with new producers and consumers

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 69 / 76

Monitors to the Rescue!

• Combination of methods, mutual
exclusion locks, and condition
variables

• Provides mutual exclusion for
methods and the possibility to wait
for a condition
▶ Condition variables in monitors have

an associated wait queue
▶ Operations: wait, notify (or signal),

and notifyAll (or broadcast)

1 public synchronized void enq() {
2 que.enq(x);
3 }

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 70 / 76

Condition Variables in Monitors

wait condVar, mtx
• Make the thread wait until a condition encoded by condVar is true

(i) Releases the monitor’s mutex mtx
(ii) Moves the thread to condVar’s wait queue

(iii) Puts the thread to sleep

• Steps (i)–(iii) are atomic to prevent race conditions
• When the thread wakes up, it is assumed to hold mtx

notify condVar
• Invoked by a thread to assert that condition encoded by condVar is true
• Moves one or more threads from the wait queue to the ready queue

notifyAll condVar
Moves all threads from the wait queue to the ready queue

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 71 / 76

Implementing a Monitor
Assume there is a mutex mtx, a condition variable condVar and an associated queue
condVarQ, and an queue entryQ

monitorenter:
enter the method
if mtx is locked
add this thread to entryQ
block this thread

else
lock mtx

wait:
add this thread to condVarQ
schedule
block this thread

monitorexit:
// choose next thread to run
schedule
unlock mtx
return from method

notify:
if condVarQ ̸= φ

remove one thread t from condVarQ
add this thread to entryQ
restart t
// t will occupy the monitor next
block this thread

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 72 / 76

Signaling Policies

There is a conflict between the signaling and signaled processes for access to the
monitor

Signal and wait (SW) • Signaling thread needs to reacquire the lock
• Signaled thread can continue execution

Signal and urgent wait (SU) • Like SW, but signaling thread gets to go after the
signaled thread

• Also called Hoare-style monitors
Signal and continue (SC) • Signaling thread continues to hold the lock

• Java implements SC only
Signal and exit (SX) • Signaling thread exits, signaled thread can continue

execution

Bill Venners. Inside the Java Virtual Machine: Thread Synchronization

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 73 / 76

https://www.artima.com/insidejvm/ed2/threadsynch.html

Bounded Buffers with Spin Locks

1 Queue q;
2

3 Mutex mtx; // protect q

3 producer:
4 while true:
5 data = new Data(. . .);
6 acquire(mtx);
7 while q.isFull():
8 release(mtx);
9 // wait

10 acquire(mtx);
11 q.enq(data);
12 release(mtx);

13 consumer:
14 while true:
15 acquire(mtx);
16 while q.isEmpty():
17 release(mtx);
18 // wait
19 acquire(mtx);
20 data = q.deq();
21 release(mtx);
22

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 74 / 76

Bounded Buffers with Monitors

1 Queue q;
2

3 Mutex mtx; // protect q
4 CondVar empty, full;

5 producer:
6 while true:
7 data = new Data(. . .);
8 acquire(mtx);
9 while q.isFull():

10 wait(full, mtx);
11 q.enq(data);
12 notify(empty);
13 release(mtx);

14 consumer:
15 while true:
16 acquire(mtx);
17 while q.isEmpty():
18 wait(empty, mtx);
19 data = q.deq();
20 notify(full);
21 release(mtx);
22

Swarnendu Biswas (IIT Kanpur) CS 636: Shared-Memory Synchronization Sem 2025-26-II 75 / 76

References

M. Herlihy et al. The Art of Multiprocessor Programming. Chapters 1, 2, 7–8, 2nd edition, Morgan
Kaufmann.

M. L. Scott and T. Brown. Shared-Memory Synchronization. Chapters 1–7, 2nd edition, Springer Cham.

Jeff Preshing. Locks Aren’t Slow; Lock Contention Is.

https://preshing.com/20111118/locks-arent-slow-lock-contention-is/

	Classic Mutual Exclusion Algorithms
	Atomic Hardware Instructions
	ABA Problem
	Scalable Spin Locks
	Miscellaneous Lock Optimizations
	Monitors

