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Correctness of Shared-Memory Programs

“To write correct and efficient shared memory programs,
programmers need a precise notion of how memory behaves with
respect to read and write operations from multiple processors”

S. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorials. Journal of Computer, vol. 29, no. 12, pp. 66-76, Dec. 1996.
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https://ieeexplore.ieee.org/document/546611

Busy-Wait Paradigm

+ Object X = null;
. boolean done = false;

Thread 1 Thread 2
. X = new Object(); . while (!done) {}
. done = true; . X.compute();
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Possible Errors

Thread 1 Thread 2 Infinite
loo 1

1 X = new Object(); 1 .

, > tmp = done;

s ;> while (!temp) {}

+ done = true; 4

Thread 1 Thread 2

1 done = true; 1

s > while (!done) {}

s s X.compute(); NPE

. X = new Object(); 4
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Reordering of Accesses by Hardware

Accesses are to different addresses

Store-store @ Non-FIFO write buffer (first store misses in the cache while the second
hits or the second store can coalesce with an earlier sore)

Load-load @ Cache hits, dynamic scheduling, execute out of order
Load-store @ Cache hits, out-of-order core

Store-load @ FIFO write buffer with bypassing, out-of-order core
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Reordering of Accesses by Hardware

Accesses are to different addresses

Store-store @ Non-FIFO write buffer (first store misses in the cache while the second
hits or the second store can coalesce with an earlier sore)
Load-load e c| e Correct in a single-threaded context

Load-store e c{ ® Non-trivial in a multithreaded context

Store-load @ FIFO write buffer with bypassing, out-of-order core
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What values can a load return?

Q3 Return the “last” write
® Uniprocessor: program order defines the “last” write

® Multiprocessor: operations from different cores/threads are not related by
program order
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Memory Consistency Model

@ Set of rules that govern how systems process memory operation requests
from multiple processors
® Determines the order in which memory operations appear to execute

® Specifies allowed behaviors of multithreaded programs executing with shared
memory

» Both at the hardware-level and at the programming-language-level
» There can be multiple correct behaviors

s& Importance of memory consistency models
+ Determines what optimizations are correct
-+ Contract between the programmer and the hardware
+ Influences ease of programming and program performance
-+ Impacts program portability
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Issues with Memory Consistency

@ Visibility
When are the effects of one thread (e.g., updating a memory location) visible to another?

@ Ordering
When can operations of any given thread appear out of order to another thread?
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Memory Consistency vs Cache Coherence

Program 1 Program n
Consistency load() load_response
model store() store_response
-
— A
Q
C1l o £
G4
Qo
read_request \1 read_response
& write_request write_response j
/Coherence v \
Private Private Private Private
Cache Cache Cache Cache

| Shared LLC |

Main memory
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Memory Consistency vs Cache Coherence

Memory Consistency Cache Coherence
® Defines shared memory behavior ® Does not define shared memory
® Related to all shared-memory behavior
locations ® Specific to a single shared-memory
® Policy on when new value is location
propagated to other cores ® Propagates a new value to other
® Memory consistency implementations cached copies
can use cache coherence as a “black ® Invalidation-based or update-based

box”
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Sequential Consistency



Sequential Consistency

A multiprocessor system is sequentially consistent if the result of any execution is
the same as if the memory operations of all processors were executed in some

sequential order, and the operations of each individual processor appear in
program order

Uniprocessor @ Memory operations execute in program order, and respect data and

control dependences

» Read from memory returns the value from the last write in program
order

» Compiler optimizations preserve these semantics

® All operations execute in order, and the operations of each
individual core appear in program order

Multiprocessor
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Interleavings with SC

1 data = null;
. flag = false;
Core1 Core2
1 S1: data = new Object(); 1 L1: r1 = flag;
> S2: flag = true; > Ba: if (ra !'= true) goto L1;
3 5 L2: r2 = data;

Should r2 always be set to the new Object() stored?
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Interleavings with SC

program order
(<p) of C1

Swarnendu Biswas (IIT Kanpur)

memory program order
order (<) (<p) of C2
L1: rl1 = flag; /* false */
S1: data = new Object();
L1: rl1 = flag; /* false */
L1: rl1 = flag; /* false */
S2: flag = true;
L1: rl1 = flag; /* true */
L2: r2 = data;
V A\ 4
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SC Formalism

(Note )
{Every load gets its value from the last store before it (in J

global memory order) to the same address

Suppose we have two addresses aand b (a == b or a!=b). L(a) is a load from a and S(a) is
a store to a.

Constraints (i) If L(a) <p L(b) = L(a) <m L(b)
(i) If L(a) <p S(b) = L(a) <m S(b)
(iii) If S(a) <p S(b) = S(a) <m S(b)
(iv) If S(a) <p L(b) = S(a) <m L(b)
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Challenges in Implementing SC

Is preserving program order on a per-location basis sufﬁcient?'

® Hardware implementations of SC need to satisfy the following requirements

Program order » Previous memory operation completes before proceeding with the
next memory operation in program order

Write atomicity  » Writes to the same location should be serialized, i.e., writes to the
same location should be visible in the same order to all processors
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Dekker’s Algorithm: Need for Program Order

. flagal = o;
. flag2 = o;
Core 1 Core 2
. Sa: ST flagi, 1 . S2: ST flag2, 1
> Li: LD ri, flag2 > L2: LD r2, flaga

| Can both r1 and r2 be set to zero?
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Need for Write Atomicity

A =B = 0;
Core 1 Core 2 Core 3
£ A =1
if (A == 1)
B =1
if (B == 1)
tmp = A
M What should A
return?
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Need for Write Atomicity

Core 1 Core 2 Core 3

time
=
1]
[y

® Important to maintain a single sequential order among operations
from all processors
® The effect of a write operation should be visible to all the

1 processors at the same time (i.e., instantaneous)
whatshould A
return?
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Importance of Maintaining Write-Read Order

1

2

® Assume a bus-based system with no caches
® Includes a write buffer with bypassing capabilities

. flaga = o;
> flag2 = o;
Core1 Core 2
Si: ST flagi, 1 . S2: ST flag2, 1
Li: LD ri, flag2 > L2: LD r2, flaga
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Shared bus

3.LDr1,flag2 | |write buffer 4.LDr2,flagl| |write buffer

1.STflagl, 1 2.STflag2, 1

Swarnendu Biswas (IIT Kanpur) CS 636: Memory Consistency Models Sem 2025-26-11 19/83



SC in Architecture with Caches

® Replication of data requires a cache coherence protocol
® A coherence protocol propagates a new value to all other cached copies

» Several definitions of cache coherence protocols exist
» A memory model places bounds on when the value can be propagated to a given
processor

® Propagating new values to multiple other caches is non-atomic
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Providing Write Atomicity with Caches

® Consider a system with caches, and assume that all variables are cached by all the
cores

® SC can be violated with a network with no ordering guarantees

Core 1 Core 2 Core 3
A=1
if (A == 1)
) B =1
£ if (B == 1)
tmp = A
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Providing Write Atomicity with Caches

® Consider a system with caches, and assume that all variables are cached by all the
cores

® SC can be violated with a network with no ordering guarantees

o =N =N

Prohibit a read from returning a newly written value until all cached
copies have acknowledged the receipt of the invalidation or update
messages generated by the write

B =1

time

if ( == 1)

B
tmp

Swarnendu Biswas (IIT Kanpur) CS 636: Memory Consistency Models Sem 2025-26-11 21/83



Serialization of Writes

W N o

Core 1 Core 2 Core 3 Core 4

A =1 T A= 2 1+ while (B = 1) {} 1 while (B != 1) {}

B =1 > C =1 > while (C !'= 1) {} > while (C !'= 1) {}
3 3 tmp1 = A 3 tmp2 = A

Writes to A in Cores 1 and 2 should not reach Cores 3 and 4 out of order even if
the network is out of order or does not provide guarantees—it would violate SC
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Serialization of Writes

W N o

Core 1 Core 2 Core 3 Core 4

A =1 T A= 2 .+ while (B != 1) {} 1+ while (B != 1) {}

B =1 > C =1 > while (C !'= 1) {} > while (C !'= 1) {}
3 3 tmp1 = A 3 tmp2 = A

® Cache coherence must serialize writes to the same memory

the ne e Writes to the same memory location must be seen in the
— same order by all

ven if
ate SC
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End-to-end SC

® Simple memory model that can be implemented both in hardware and in languages

— Performance can take a hit

» Naive hardware
» Maintaining program order can be expensive for writes

D. Marino et al. A Case for an SC-Preserving Compiler. PLDI'11.
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SC-Preserving Optimizations

Redundant load' Original

t =X; u-=X;

Forwarded load ' Original

Original

Redundant store I Original

t=X; X =1,
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Optimized

t =X; u

1]
—+

Optimized

X =t; u

]
+

Optimized

X = u;

Optimized

t = X;
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Optimizations Forbidden in SC

Loop invariant code motion, common sub-expression elimination, ...

Original Optimized
L1: t = Xx2; = L1: t = X*2;
L2: u =Y; L2: u =Y;
L3: v = X*2; M3: v = t;

CSE reorders the memory accesses to Y and the second read from X (relaxes L—L
constraint, performs an eager load)
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Optimizations Forbidden in SC

X = 0;
Y = 0;
Original Optimized Concurrent Thread
L1: t = Xx2; = L1: t = X*2; Ci: X = 1;
L2: u =Y, L2: u =Y; C2: Y = 1,
L3: v = X*2; M3: v = t; N

u==1&&v==0Iis not
possible in the original
code
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Problematic Optimizations with SC

Original Optimized
Constant/copy I
ropagation
propas L1: X = 1; = L1: X = 1;

L2: P L2: P Q;
L3: t = X; L3: t = 1;

nonon
Jo

Eager load optimizations involve S—L and L—L reordering.
These optimizations perform a load earlier than would have
been performed without the optimizations.

Swarnendu Biswas (IIT Kanpur) CS 636: Memory Consistency Models Sem 2025-26-1



Problematic Optimizations with SC

Original Optimized

Li1: X = 1; = L1: ;
L2: P = Q; L2: P = Q;
L3: X = 2; L3: X = 2;

Redundant Store' Original Optimized

Li1: t = X; = Li: t = X;
L2: P = Q; L2: P = Q;
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Implementing SC with Compiler Support

Implement a compiler pass (e.g., in LLVM) to deal with non-SC preserving optimizations

Li: t = X*2; Li: t = X*2
L2: u = VY; = L2: u =Y
L3: vV = X*2; |_3: Vv = t

C3: if (X modified since L1)
L3: V = X*2

D. Marino et al. A Case for an SC-Preserving Compiler. PLDI'11.
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SC Semantics

A SCis not a strong memory model
Does not guarantee data race freedom

Thread 1 Thread 2
a++; at+;

Thread 3 Thread 4
buffer[index++]; buffer[index++];
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Hardware Memory Models



Characterizing Hardware Memory Models

Relax program order
® For example, Store — Load and Store — Store
® Applicable to pairs of operations with different addresses

Relax write atomicity
® Read other core’s write early
® Applicable to only cache-based systems

Relax both program order and write atomicity
Read own write early
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Can both r1 and r2 be set to zero?

T X = 0;
>y = 05
Core 1 Core 2
. S1: x = new Object(); 1 S2: y = new Object();
> L1: ri1 = vy; > L2t r2 = x;
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Total Store Order

® Allows reordering stores to loads

» Aread is not allowed to return the value of another processor’s write until it is made
visible to all other processors (as in SC)

® Requires write atomicity, can read own write early, not other’s writes
® Conjecture: widely-used x86 memory model is equivalent to TSO
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TSO Formalism

Suppose we have two addresses a and b (a == b or a != b)

Constraints 1. If L(a) <p L(b) = L(a) <m L(b)
2. If L(a) <p S(b) = L(a) <m S(b)
3. 1f S(a) <p S(b) = S(a) <m S(b)

4. H-S{a<pHb=-Sta)<mtb) /* Enables FIFO write buffer */

Every load gets its value from the last store before it to
the same address
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Support for FENCE Operations in TSO

If L(a) <p FENCE = L(a) <m FENCE If S(a) <p FENCE = S(a) <m FENCE
If S(a) <p FENCE = S(a) <m FENCE If FENCE <p L(a) = FENCE <m L(a)
If FENCE <p FENCE = FENCE <, FENCE
If FENCE <p L(a) = FENCE <m L(a)

If FENCE <p S(a) = FENCE <m S(a)
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Possible Outcomes with TSO

v X = 0;
> Yy = 0,
Core 1 Core 2
1 S1: x = NEW; 1 S2: y = NEW;
> L1: ra1 = x; > L3: r3 =vy;
s L2 r2 = vy, s L4 r4 = x;

Assume r2 and r4 are zero. Can r1 or r3 also
be set to zero?
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Possible Outcomes with TSO

program order memory program order
(<p) of C1 order (<p,) (<p) of C2

S1: x = NEW;

S2:y = NEW,

L1:rl=x; /*NEW* \pypass

lbypass / L3: 13 =y; I* NEW */

\‘ L4:rd=x;/*0%

\4 V A\ 4

L2:r2=y; /0%

Outcome: r2 ==0, r4 == 0, r1 == NEW, and r3 == NEW
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RMW in TSO

® Load of a RMW cannot be performed until earlier stores are performed (i.e., exited
the write buffer). Why?

® Load requires read-write coherence permissions, not just read permissions

® To guarantee atomicity, the cache controller may not relinquish coherence
permission to the block between the load and the store

Sem 2025-26-
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Relationship among Memory Models

® A memory model Y is strictly more relaxed (weaker) than a memory model X if all X
executions are also Y executions, but not vice versa

® If Y is more relaxed than X, then all X implementations are also Y implementations

® Two memory models may be incomparable if both allow executions precluded by the
other

Which is correct?
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Processor Consistency (PC)

@ PCis similar to TSO, but does not guarantee write atomicity
Writes may become visible to different processors in different order

A =B = 0;
Core 1 Core 2 Core 3
£ A =1
- if (A == 1)
B =1
if (B == 1)
tmp = A
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Partial Store Order (PSO)

@ PSO allows reordering of store to loads and stores to stores

® Writes to different locations from the same processor can be pipelined or

overlapped and are allowed to reach memory or other cached copies out of
program order

@ Can read own write early, not other’s writes

® Write-write reordering is present in many architectures, including Alpha, 1A64, and
POWER

Swarnendu Biswas (IIT Kanpur) CS 636: Memory Consistency Models Sem 2025-26-1



Opportunities to Reorder Memory Operations

1 datai1 = data2 = null;
> flag = false;

Core 1 Core 2

S1: datai = new Object(); L1: r1 = flag;

1 1

> S2: data2 = new Object(); > B1: if (!'ra) goto L1;
s S3: flag = true; 5 L2: r2 = datai;

4 + L3: r3 = data2z;

What order ensures r2 and r3 always see
initialized objects?
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Reorder Operations Within a Synchronization Block

Core 1 Core 2

A1: acquire(lock);

// Loads L, arbitrarily

// interleaved with stores S,
R1: release(lock);

A2: acquire(lock);

// Loads L,; arbitrarily

// interleaved with stores S,
R2: release(lock);

® N O U W N o

[What order ensures correct handoff from critical section}
1to 2?
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Optimization Opportunities

(i) Non-FIFO coalescing write buffer
(ii) Support non-blocking reads
» Hide latency of reads
» Use lockup-free caches and speculative execution
(iii) Simpler support for speculation

» Need not compare addresses of loads to coherence requests
» For SC, need support to check whether the speculation is correct
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Relaxed Consistency Rules

@ Loads and stores are unordered excepting TSO rules are followed for order-
ing two accesses to the same address

® Every load gets its value from the last store before it to the same address
Constraints 1. If L(a) <p L'(@) = L(a) <m L'(a)

2. If L(a) <p S(a) = L(a) <m S(a)
3. If S(a) <p S'(a) = S(a) <m S'(a)
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Relaxed Consistency Rules

@ Loads and stores are unordered excepting TSO rules are followed for order-
ing two accesses to the same address

® Every load gets its value from the last store before it to the same address

Constraints 1. If L(a) <p L'(@) = L(a) <m L'(a)
2. If L(@) <p S(a) = L(a) <m S(a)
3. If S(a) <p S'(a) = S(a) <m S'(a)
If L(a) <p FENCE = L(a) <m FENCE If FENCE <p L(a) = FENCE <m L(a)

If S(a) <p FENCE = S(a) <m FENCE If FENCE <p S(a) = FENCE <m S(a)

If FENCE <p FENCE = FENCE <m FENCE
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Using Fences under Relaxed Consistency

1 dataa = null;
> data2 = null;
;5 flag = false;

Core 1 Core 2
1 S1: datai = new Object(); 1
> S2: data2 = new Object(); 2
3 Fa1: FENCE 3
. S3: flag = true; + Li: ra = flag;
5 s B1: if (!ra) goto L1;
6 ¢ F2: FENCE
7 ; L2: r2 = datai;
8 s L3: r3 = dataz;

LAre both fences reqtﬂred?J
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Conservative Use of Fences under Relaxed Consistency

Core 1 Core 2
1+ F11: FENCE 1
> A11: acquire(lock); 2
3 Fa12: FENCE 3
s // Loads L, arbitrarily 4
s // interleaved with stores S, 5
s F13: FENCE 6
7 R12: release(lock); 7 F21: FENCE
s F14: FENCE s A21: acquire(lock);
9 9 F22: FENCE
10 1w // Loads L,; arbitrarily
n w // interleaved with stores S,
2 2 F23: FENCE
3 13 R22: release(lock);
1% w F24: FENCE
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Examples of Relaxed Consistency Memory Models

& Weak ordering
® Distinguishes between data and synchronization operations

® A synchronization operation is not issued until all previous operations are
complete
® No operations are issued until the previous synchronization operation completes

B Release consistency
® Relaxes WO further, distinguishes between acquire and release operations

® All previous acquire operations must be performed before an ordinary load or
store access is allowed to perform

® Previous accesses have to complete before a release is performed
® RCsc maintains SC between synchronization operations
® Acquire — all, all — release, and sync — sync
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Correct Implementation under Relaxed Consistency

Core 1 Core 2
1+ F11: FENCE 1
> A11: acquire(lock); 2
3 F12: FENCE 3
s // Loads L, arbitrarily 4
s // interleaved with stores S, 5
s F13: FENCE 6
7 R12: release(lock); 7 F21: FENCE
s F14: FENCE s A21: acquire(lock);
9 9 F22: FENCE
10 NN 1w // Loads L,; arbitrarily
n [Which fences are needed to ensure correct} w // interleaved with stores S,
12 | ordering and visibility between C1 and C2? = F23: FENCE
3 13 R22: release(lock);
1% w F24: FENCE
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Relaxed Consistency Memory Models

s&@ Why should we use them?
Performance

A Why should we not use them?
Complexity
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Hardware Memory Models: One Slide Summary

Read Own Read Other’s
Write Early  Write Early

SC v
TSO
PC
PSO
WO
RCsc
RCpc

Model W—R W—-W R—RW

S < BN < BN <
o < BN <

\
N BB
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Desirable Properties of a Memory Model

ué Desirable properties: Programmability, Performance, and Portability
— Hard to satisfy all three

© Evaluating SC
+ Intuitive when we think of uniprocessor executions
+ Serializability of instructions

— No atomicity of regions
— Inhibits many compiler transformations
— Almost all recent architectures violate SC
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Programming Language Memory
Models



Language Memory Models

® Data-Race-Free-o (DRF0) model is conceptually similar to Weak Ordering (WO)
® Assumes no data races

» DRFo ensures SC for data-race-free programs
» No guarantees for racy programs

® Allows many optimizations in the compiler and hardware

® Language memory models were developed much later than hardware models
» Recent standardizations are largely driven by languages

® Most language models are based on DRFo

Why do we need one? Is the hardware mem-
ory model not enough?
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C++ Memory Model and Catch-Fire Semantics

® Adaptation of the DRFO memory model

» Provides SC for data-race-free programs
» C/C++simply ignores data races

® No safety guarantees in the language

1 X* X = null;
> bool done = false;

Thread 1 Thread 2
1 X = new X(); » if (done)
> done = true; 2 X->func();
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C++ Memory Model and Catch-Fire Semantics

@ Adaptation of the DRFO memory model

» Provides SC for data-race-free programs
» C/C++ simply ignores data races

. true; X->func();
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Memory Operations in C++

Synchronization Lock, unlock, atomic load, atomic store, atomic RMW

Data Load, store

Compiler reordering is allowed for memory operations M1 and M2 if

M1 is a data operation and M2 is a read synchronization operation
M1 is write synchronization and M2 is data

M1 and M2 are both data with no synchronization between them
M1 is data and M2 is the write of a lock operation

M1 is unlock and M2 is either a read or write of a lock
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Writing Correct Concurrent C++ Code Using Locks

1 std::mutex mtx;
> bool ready = false;

Thread 1 Thread 2

mtx.lock(); 1 mtx.lock();
prepareData(); . if (ready)
ready = true; 3 consumeData();
mtx.unlock(); . mtx.unlock();

&~ w N -
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Using Atomics Available from C++11

® “Data race free” by definition (e.g., std: :atomic<int>)
» A store synchronizes with operations that load the stored value—similar to volatile in
Java
® C++volatile is different!
» Does not establish inter-thread synchronization
» Can be part of a data race

std::atomic<bool> ready(false);

Thread 1 Thread 2
1 prepareData(); . if (ready.load())
. ready.store(true); 2 consumeData();
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Ensuring Visibility

® Writer thread releases a lock

» Flushes all writes from the thread’s working memory
® Reader thread acquires a lock

» Forces a (re)load of the values of the affected variables
® std::atomic in C++and volatile in)ava

» Values written are made visible immediately before any further memory operations
» Readers reload the value upon each access

® Thread join
» Parent thread is guaranteed to see the effects made by the child thread
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Memory Order of Atomics

Specifies how regular, non-atomic memory
accesses are to be ordered around an
atomic operation

® Default is sequential consistency

atomic.h

1 enum memory_order {

2 memory_order_relaxed,
3 memory_order_consume,
4 memory_order_acquire,
5 memory_order_release,
6 memory_order_acq_rel,
7 memory_order_seq_cst

s };
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Memory Model Synchronization Modes

Producer Consumer

® Producer thread creates data ® Consumer threads read from the
atomic

® When the expected value is seen, data
from the producer thread is visible to
the consumers

® Producer thread stores to an atomic

The different memory model modes indicate the strength
of data sharing between threads

Memory model synchronization modes
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https://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync

Memory Model Modes in C++

memory_order_seq_cst

Thread 1

Thread 2

Ly = 1
> X.store(2);

1

2

if (x.load() == 2)
assert(y == 1);

Swarnendu Biswas (IIT Kanpur)

Can this assert
fail?
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Memory Model Modes in C++

memory_order_seq_cst

1 X = 0
2 Yy = 0;
Thread 1 Thread 2 Thread 3
1 y.store(20); 1 if (x.load()==10) 1 if (y.load()==10)
> x.store(10); 2 assert(y.load()==20); 2 assert(x.load()==10);
3 3 y.store(10); 3
AN
Can these asserts
fail?
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Memory Model Modes in C++

memory_order_relaxed: no happens-before edge

Thread 1

1 y.store(20, memory_order_relaxed);
> X.store(1e, memory_order_relaxed);

Thread 2
1 if (x.load(memory_order_relaxed) == 10)
2 assert(y.load(memory_order_relaxed) == 20);
3 y.store(3e, memory_order_relaxed);

NN
Can these asserts

Thread 3 [fail? }
1 if (y.load(memory_order_relaxed) == 30)
2 assert(x.load(memory_order_relaxed) == 10);
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Memory Model Modes in C++

1
2

1
2
3

memory_order_relaxed: no happens-before edge

Thread 1

x.store(1e0, memory_order_relaxed);
x.store(20, memory_order_relaxed);

Thread 2

y = x.load(memory_order_relaxed);
z = x.load(memory_order_relaxed);

assert(y <= ;
(y z) N

Can this assert
fail?

Swarnendu Biswas (IIT Kanpur)
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Memory Model Modes in C++

memory_order_relaxed: no happens-before edge

Thread 1 ® In the absence of HB edges, a
thread should not rely on the
oS rCi0, WMo i AlErEe)s exact ordering of instructions in

x.store(20, memory_order_relaxed);
’ ! Y- - ' another thread

® Once a value of a variable from
Thread 2 Thread 1 is observed in Thread 2,
Thread 2 cannot see an earlier
value

1y = x.load(memory_order_relaxed);
> z = x.load(memory_order_relaxed);
3 assert(y <= z);
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Memory Model Modes in C++

memory_order_acquire and memory_order_release: introduces HB edges
only between dependent variables

Thread 1
1y = 20,
> X.store(1e, memory_order_release);
v is a regular
data variable
Thread 2
1 if (x.load(memory_order_acquire) == 10)
2 assert(y == 20); N
Can this assert
fail?
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Memory Model Modes in C++

Thread 1

y.store(20, memory_order_release);

Thread 2

x.store(1e, memory_order_release);

Thread 3
assert(y.load(memory_order_acquire) == 20
§5 x.load(memory_order_acquire) == 0);
NN
Thread Can these asserts
read 4 pass? Can they fail?
assert(y.load(memory_order_acquire) == o
§& x.load(memory_order_acquire) == 10);
Sem 2025-26-I1 67/83
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Memory Model Modes in C++

memory_order_consume: removes HB ordering on non-dependent variables

Thread 1
T n = 1;
> m = 1;

5 p.store(&n, memory_order_release);

Thread 2
1t = p.load(memory_order_acquire);
> assert(*t == 1 §& m == 1);
Thread S
3 (Can these asserts
1t = p.load(memory_order_consume); fail?
> assert(xt == 1 §& m == 1);
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Happens-Before Memory Model (HBMM)

Read operationa = rd(t, x, v) may return the value written by any write operation
b = wr(t, x, v) provided

(i) b does not happen after a, i.e.,, b <yg a or bl|a,
(ii) There is no intervening write c to x where b <yg ¢ <yp a

X = y = @;
Thread 1 Thread 2
1 y = 1; 1 X = 1,
> r1 = X; 2 T2 = Y;
assert (r1 !'= 0 || r2 '= 0);

NN
[Can this assert fail?)
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Happens-Before Memory Model (HBMM)

Read operationa = rd(t, x, v) may return the value written by any write operation
b = wr(t, x, v) provided

(i) b does not happen after a, i.e.,, b <yg a or bl|a,
(ii) There is no intervening write c to x where b <yg ¢ <yp a

X = y = @;
Thread 1 Thread 2
1 ri1 = X; 1 r2 =y,
2 y = 1; 2 X = 1,
assert (r1 == 0 || r2 == 0);

NN
[Can this assert fail?)
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HBMM

1X=O;
2 Yy = 05
Thread 1 Thread 2
o= Xy 1
2y=1; 2
; assert (r == 0); 3
. . while (y == o) {}
5 5 X = 1,

Will the assertion
pass or fail?
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HBMM

Thread 1 Thread 2

X = 10; . 1if (x '= 0)
2 r2 = ri/x;

1

2

® Can anything go wrong with
HBMM?

® What will be the behavior with
std::memory_order_relaxed in
C++?
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DRFO vs HBMM

X = y =] 0'
Thread 1 Thread 2
1 r1 = X, 1 r2 =y,
> if (r1 == 1) { > if (r2 == 1) {
3 y = 1; 3 X = 1;
A } 4 }
assert (ri1==0 §5 r2 == 0);

Is there a data race on x and y?
® Remember that DRFo provides SC only
for data-race-free programs
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DRFO vs HBMM

DRFo

® DRFo allows arbitrary behavior for
racy executions

® DRFo is not strictly stronger than
HBMM

HBMM

® HBMM does not guarantee SC for DRF
programs

® HBMM is not strictly stronger than
DRFO

Swarnendu Biswas (IIT Kanpur) CS 636: Memory Consistency Models Sem 2025-26-1



HBMM

HBMM has the potential to generate out-of-thin-air (OOTA) values

o
o ©

Thread 1 Thread 2

X o=y, Y =X

Problematic for garbage-collected languages since the “out-of-thin-air”
value could be an invalid pointer
— Introduces potential security loopholes
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Java Memory Model (JMM)

@ First high-level language to incorporate a relaxed memory model

® JMM provides SC for data-race-free executions (like DRFO)

® Java provides memory- and type-safety, so JMM has to define some semantics for
programs with data races

» JMM prohibits out-of-thin-air values
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Outcomes Possible with JMM

Thread 1 Thread 2

1y = 1, X 1;

> r1 = X; r2 A
assert (r1 !'= o || r2 !'= 0);

Swarnendu Biswas (IIT Kanpur)

fail?

[Can these asserts}
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Outcomes Possible with JMM

1 X = 0,
2y = 0;
Thread 1 Thread 2
1 ri o= X, 1 r2 =y,
2 Yy = 1, > X = 1,
assert (ri1 == [l r2 == 0);
NN
Can these asserts
fail?

Swarnendu Biswas (IIT Kanpur) CS 636: Memory Consistency Models Sem 2025-26-I1 78/ 83



Outcomes Possible with JMM

Racy initialization

obj = null;
Thread 1 Thread 2
1 obj = new Circle(); . if (obj != null)
2 2 obj.draw();

NN
Can there be a NPE
with JMM?

(Note
LJVMS may not exhibit all behaviors permissible under the JMM

N1/

Swarnendu Biswas (IIT Kanpur) CS 636: Memory Consistency Models Sem 2025-26- 79/83



Outcomes Not Possible with JMM

X = y = 0;
Thread 1 Thread 2
1 r1 = X, 1 r2 =y,
2y = ri; 2 X = I2;
assert (ri !'= 42);

@ HBMM permits an execution in which each load reads say 42
® DRFo allows any arbitrary behavior

® JMM disallows reading 42, is strictly stronger than DRFo and
HBMM
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JVMs do not comply with the JMM!

1 X = 0,
2 Yy = 0;
Thread 1 Thread 2
1 r1 = X, 1 r2 =y,
>y = ri; > if (r2 == 1) {
3 3 r3 =y,
4 4 X = r3;
5 s } else {
6 Can this assert fail un- | ¢ X =13
7 (der HBMM and JMM? } 7}

assert (r2 == 0);
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JVMs do not comply with the JMM!

1

X = 0;
2y

0;

Thread 1 Thread 2

1= X; 1 r2 = vy;

N/ -\ (s

® HBMM allows OOTA values
® JMM only permits executions in which load of y sees 0

® JVM's JIT optimizing compiler can simplify the code in the right
thread

N o o r W N o

assert (r2 == 0);
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Lessons Learned

O Specifying semantics for racy programs is hard
Simple optimizations may introduce unintended consequences

& ScC for DRF is now the preferred baseline
® Make sure your program is free of data races
® Compiler and architecture setup will guarantee SC execution
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