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Correctness of Shared-Memory Programs

“To write correct and efficient shared memory programs,
programmers need a precise notion of how memory behaves with
respect to read and write operations from multiple processors”

S. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorials. Journal of Computer, vol. 29, no. 12, pp. 66–76, Dec. 1996.
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Busy-Wait Paradigm

1 Object X = null;
2 boolean done = false;

Thread 1

1 X = new Object();
2 done = true;

Thread 2

1 while (!done) {}
2 X.compute();
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Possible Errors

Thread 1

1 X = new Object();
2

3

4 done = true;

Thread 2

1

2 tmp = done;
3 while (!temp) {}
4

Thread 1

1 done = true;
2

3

4 X = new Object();

Thread 2

1

2 while (!done) {}
3 X.compute();
4

Infinite
loop

NPE
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Reordering of Accesses by Hardware

Accesses are to different addresses

Store-store • Non-FIFO write buffer (first store misses in the cache while the second
hits or the second store can coalesce with an earlier sore)

Load-load • Cache hits, dynamic scheduling, execute out of order

Load-store • Cache hits, out-of-order core

Store-load • FIFO write buffer with bypassing, out-of-order core

Swarnendu Biswas (IIT Kanpur) CS 636: Memory Consistency Models Sem 2025-26-II 5 / 83



Reordering of Accesses by Hardware

Accesses are to different addresses

Store-store • Non-FIFO write buffer (first store misses in the cache while the second
hits or the second store can coalesce with an earlier sore)

Load-load • Cache hits, dynamic scheduling, execute out of order

Load-store • Cache hits, out-of-order core

Store-load • FIFO write buffer with bypassing, out-of-order core

• Correct in a single-threaded context
• Non-trivial in a multithreaded context
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What values can a load return?

Ô Return the “last” write
• Uniprocessor: program order defines the “last” write
• Multiprocessor: operations from different cores/threads are not related by

program order
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Memory Consistency Model

� Set of rules that govern how systems process memory operation requests
from multiple processors
• Determines the order in which memory operations appear to execute
• Specifies allowed behaviors of multithreaded programs executing with shared

memory
▶ Both at the hardware-level and at the programming-language-level
▶ There can be multiple correct behaviors

m Importance of memory consistency models
+ Determines what optimizations are correct
+ Contract between the programmer and the hardware
+ Influences ease of programming and program performance
+ Impacts program portability
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Issues with Memory Consistency

� Visibility
When are the effects of one thread (e.g., updating a memory location) visible to another?

� Ordering
When can operations of any given thread appear out of order to another thread?
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Memory Consistency vs Cache Coherence
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Memory Consistency vs Cache Coherence

Memory Consistency

• Defines shared memory behavior
• Related to all shared-memory

locations
• Policy on when new value is

propagated to other cores
• Memory consistency implementations

can use cache coherence as a “black
box”

Cache Coherence

• Does not define shared memory
behavior

• Specific to a single shared-memory
location

• Propagates a new value to other
cached copies

• Invalidation-based or update-based

Swarnendu Biswas (IIT Kanpur) CS 636: Memory Consistency Models Sem 2025-26-II 11 / 83



Sequential Consistency



Sequential Consistency

A multiprocessor system is sequentially consistent if the result of any execution is
the same as if the memory operations of all processors were executed in some
sequential order, and the operations of each individual processor appear in
program order

Uniprocessor • Memory operations execute in program order, and respect data and
control dependences
▶ Read from memory returns the value from the last write in program

order
▶ Compiler optimizations preserve these semantics

Multiprocessor • All operations execute in order, and the operations of each
individual core appear in program order
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Interleavings with SC

1 data = null;
2 flag = false;

Core 1

1 S1: data = new Object();
2 S2: flag = true;
3

Core 2

1 L1: r1 = flag;
2 B1: if (r1 != true) goto L1;
3 L2: r2 = data;

Should r2 always be set to the new Object() stored?
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Interleavings with SC

memory
order (<m)

program order
(<p) of C1

program order
(<p) of C2

S1: data = new Object();

S2: flag = true;

L1: r1 = flag; /* false */

L1: r1 = flag; /* false */

L1: r1 = flag; /* false */

L1: r1 = flag; /* true */

L2: r2 = data;
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SC Formalism

Note
Every load gets its value from the last store before it (in
global memory order) to the same address

Suppose we have two addresses a and b (a == b or a != b). L(a) is a load from a and S(a) is
a store to a.

Constraints (i) If L(a) <p L(b) ⇒ L(a) <m L(b)
(ii) If L(a) <p S(b) ⇒ L(a) <m S(b)

(iii) If S(a) <p S(b) ⇒ S(a) <m S(b)
(iv) If S(a) <p L(b) ⇒ S(a) <m L(b)
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Challenges in Implementing SC

Is preserving program order on a per-location basis sufficient?

• Hardware implementations of SC need to satisfy the following requirements

Program order ▶ Previous memory operation completes before proceeding with the
next memory operation in program order

Write atomicity ▶ Writes to the same location should be serialized, i.e., writes to the
same location should be visible in the same order to all processors
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Dekker’s Algorithm: Need for Program Order

1 flag1 = 0;
2 flag2 = 0;

Core 1

1 S1: ST flag1, 1
2 L1: LD r1, flag2

Core 2

1 S2: ST flag2, 1
2 L2: LD r2, flag1

Can both r1 and r2 be set to zero?
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Need for Write Atomicity

A = B = 0;

tim
e

Core 1

A = 1

Core 2

if (A == 1)
B = 1

Core 3

if (B == 1)
tmp = A

What should A
return?
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Need for Write Atomicity

A = B = 0;

tim
e

Core 1

A = 1

Core 2

if (A == 1)
B = 1

Core 3

if (B == 1)
tmp = A

What should A
return?

• Important to maintain a single sequential order among operations
from all processors

• The effect of a write operation should be visible to all the
processors at the same time (i.e., instantaneous)
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Importance of Maintaining Write-Read Order

• Assume a bus-based system with no caches
• Includes a write buffer with bypassing capabilities

1 flag1 = 0;
2 flag2 = 0;

Core 1

1 S1: ST flag1, 1
2 L1: LD r1, flag2

Core 2

1 S2: ST flag2, 1
2 L2: LD r2, flag1
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Importance of Maintaining Write-Read Order

• Assume a bus-based system with no caches
• Includes a write buffer with bypassing capabilities

1 flag1 = 0;
2 flag2 = 0;

Core 1

1 S1: ST flag1, 1
2 L1: LD r1, flag2

Core 2

1 S2: ST flag2, 1
2 L2: LD r2, flag1

Shared bus

Core 1 Core 2

write buffer write buffer3. LD r1, flag2 4. LD r2, flag1

1. ST flag1, 1 2. ST flag2, 1
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SC in Architecture with Caches

• Replication of data requires a cache coherence protocol
• A coherence protocol propagates a new value to all other cached copies

▶ Several definitions of cache coherence protocols exist
▶ A memory model places bounds on when the value can be propagated to a given

processor

• Propagating new values to multiple other caches is non-atomic
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Providing Write Atomicity with Caches

• Consider a system with caches, and assume that all variables are cached by all the
cores

• SC can be violated with a network with no ordering guarantees

tim
e

Core 1

A = 1

Core 2

if (A == 1)
B = 1

Core 3

if (B == 1)
tmp = A
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Providing Write Atomicity with Caches

• Consider a system with caches, and assume that all variables are cached by all the
cores

• SC can be violated with a network with no ordering guarantees

tim
e

Core 1

A = 1

Core 2

if (A == 1)
B = 1

Core 3

if (B == 1)
tmp = A

Prohibit a read from returning a newly written value until all cached
copies have acknowledged the receipt of the invalidation or update
messages generated by the write
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Serialization of Writes

Core 1

1 A = 1
2 B = 1
3

Core 2

1 A = 2
2 C = 1
3

Core 3

1 while (B != 1) {}
2 while (C != 1) {}
3 tmp1 = A

Core 4

1 while (B != 1) {}
2 while (C != 1) {}
3 tmp2 = A

Writes to A in Cores 1 and 2 should not reach Cores 3 and 4 out of order even if
the network is out of order or does not provide guarantees—it would violate SC
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Serialization of Writes

Core 1

1 A = 1
2 B = 1
3

Core 2

1 A = 2
2 C = 1
3

Core 3

1 while (B != 1) {}
2 while (C != 1) {}
3 tmp1 = A

Core 4

1 while (B != 1) {}
2 while (C != 1) {}
3 tmp2 = A

Writes to A in Cores 1 and 2 should not reach Cores 3 and 4 out of order even if
the network is out of order or does not provide guarantees—it would violate SC

• Cache coherence must serialize writes to the same memory
location

• Writes to the same memory location must be seen in the
same order by all
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End-to-end SC

• Simple memory model that can be implemented both in hardware and in languages

− Performance can take a hit
▶ Naïve hardware
▶ Maintaining program order can be expensive for writes

D. Marino et al. A Case for an SC-Preserving Compiler. PLDI’11.
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SC-Preserving Optimizations

Redundant load Original

t = X; u = X;
=⇒ Optimized

t = X; u = t;

Forwarded load Original

X = t; u = X;

=⇒ Optimized

X = t; u = t;

Dead store Original

X = t; X = u;

=⇒ Optimized

X = u;

Redundant store Original

t = X; X = t;
=⇒ Optimized

t = X;
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Optimizations Forbidden in SC

Loop invariant code motion, common sub-expression elimination, . . .

Original

L1: t = X*2;
L2: u = Y;
L3: v = X*2;

=⇒

Optimized

L1: t = X*2;
L2: u = Y;
M3: v = t;

CSE reorders the memory accesses to Y and the second read from X (relaxes L→L
constraint, performs an eager load)
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Optimizations Forbidden in SC

X = 0;
Y = 0;

Original

L1: t = X*2;
L2: u = Y;
L3: v = X*2;

=⇒

Optimized

L1: t = X*2;
L2: u = Y;
M3: v = t;

Concurrent Thread

C1: X = 1;
C2: Y = 1;

u == 1 && v == 0 is not
possible in the original
code
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Problematic Optimizations with SC

Constant/copy
propagation

Original

L1: X = 1;
L2: P = Q;
L3: t = X;

=⇒

Optimized

L1: X = 1;
L2: P = Q;
L3: t = 1;

Eager load optimizations involve S→L and L→L reordering.
These optimizations perform a load earlier than would have
been performed without the optimizations.
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Problematic Optimizations with SC

Dead store Original

L1: X = 1;
L2: P = Q;
L3: X = 2;

=⇒

Optimized

L1: ;
L2: P = Q;
L3: X = 2;

Redundant store Original

L1: t = X;
L2: P = Q;
L3: X = t;

=⇒

Optimized

L1: t = X;
L2: P = Q;
L3: ;

Swarnendu Biswas (IIT Kanpur) CS 636: Memory Consistency Models Sem 2025-26-II 28 / 83



Implementing SC with Compiler Support

Implement a compiler pass (e.g., in LLVM) to deal with non-SC preserving optimizations

L1: t = X*2;
L2: u = Y;
L3: v = X*2;

=⇒ L1: t = X*2
L2: u = Y
L3: v = t
C3: if (X modified since L1)
L3: v = X*2

D. Marino et al. A Case for an SC-Preserving Compiler. PLDI’11.
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SC Semantics

. SC is not a strong memory model
Does not guarantee data race freedom

Thread 1

a++;

Thread 2

a++;

Thread 3

buffer[index++];

Thread 4

buffer[index++];
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Hardware Memory Models



Characterizing Hardware Memory Models

Relax program order
• For example, Store → Load and Store → Store
• Applicable to pairs of operations with different addresses

Relax write atomicity
• Read other core’s write early
• Applicable to only cache-based systems

Relax both program order and write atomicity
Read own write early
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Can both r1 and r2 be set to zero?

1 x = 0;
2 y = 0;

Core 1

1 S1: x = new Object();
2 L1: r1 = y;

Core 2

1 S2: y = new Object();
2 L2: r2 = x;
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Total Store Order

• Allows reordering stores to loads
▶ A read is not allowed to return the value of another processor’s write until it is made

visible to all other processors (as in SC)

• Requires write atomicity, can read own write early, not other’s writes
• Conjecture: widely-used x86 memory model is equivalent to TSO
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TSO Formalism
Suppose we have two addresses a and b (a == b or a != b)

Constraints 1. If L(a) <p L(b) ⇒ L(a) <m L(b)
2. If L(a) <p S(b) ⇒ L(a) <m S(b)
3. If S(a) <p S(b) ⇒ S(a) <m S(b)
4. If S(a) <p L(b) ⇒ S(a) <m L(b) /* Enables FIFO write buffer */

Every load gets its value from the last store before it to
the same address
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Support for FENCE Operations in TSO

If L(a) <p FENCE ⇒ L(a) <m FENCE

If S(a) <p FENCE ⇒ S(a) <m FENCE

If FENCE <p FENCE ⇒ FENCE <m FENCE

If FENCE <p L(a) ⇒ FENCE <m L(a)

If FENCE <p S(a) ⇒ FENCE <m S(a)

If S(a) <p FENCE ⇒ S(a) <m FENCE

If FENCE <p L(a) ⇒ FENCE <m L(a)
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Possible Outcomes with TSO

1 x = 0;
2 y = 0;

Core 1

1 S1: x = NEW;
2 L1: r1 = x;
3 L2: r2 = y;

Core 2

1 S2: y = NEW;
2 L3: r3 = y;
3 L4: r4 = x;

Assume r2 and r4 are zero. Can r1 or r3 also
be set to zero?
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Possible Outcomes with TSO

memory
order (<m)

program order
(<p) of C1

program order
(<p) of C2

S1: x = NEW;

L1: r1 = x; /* NEW */
S2: y = NEW;

L3: r3 = y; /* NEW */

L4: r4 = x; /* 0 */
L2: r2 = y; /* 0 */

bypass
bypass

Outcome: r2 ==0, r4 == 0, r1 ==  NEW, and r3 == NEW
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RMW in TSO

• Load of a RMW cannot be performed until earlier stores are performed (i.e., exited
the write buffer). Why?

• Load requires read–write coherence permissions, not just read permissions
• To guarantee atomicity, the cache controller may not relinquish coherence

permission to the block between the load and the store
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Relationship among Memory Models

• A memory model Y is strictly more relaxed (weaker) than a memory model X if all X
executions are also Y executions, but not vice versa

• If Y is more relaxed than X, then all X implementations are also Y implementations
• Two memory models may be incomparable if both allow executions precluded by the

other

SC

TSO

TSO

SC

Which is correct?
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Processor Consistency (PC)

� PC is similar to TSO, but does not guarantee write atomicity
Writes may become visible to different processors in different order

A = B = 0;

tim
e

Core 1

A = 1

Core 2

if (A == 1)
B = 1

Core 3

if (B == 1)
tmp = A
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Partial Store Order (PSO)

� PSO allows reordering of store to loads and stores to stores
• Writes to different locations from the same processor can be pipelined or

overlapped and are allowed to reach memory or other cached copies out of
program order

• Can read own write early, not other’s writes
• Write-write reordering is present in many architectures, including Alpha, IA64, and

POWER
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Opportunities to Reorder Memory Operations

1 data1 = data2 = null;
2 flag = false;

Core 1

1 S1: data1 = new Object();
2 S2: data2 = new Object();
3 S3: flag = true;
4

Core 2

1 L1: r1 = flag;
2 B1: if (!r1) goto L1;
3 L2: r2 = data1;
4 L3: r3 = data2;

What order ensures r2 and r3 always see
initialized objects?
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Reorder Operations Within a Synchronization Block

Core 1

1 A1: acquire(lock);
2 // Loads L1i arbitrarily
3 // interleaved with stores S1j
4 R1: release(lock);
5

6

7

8

Core 2

1

2

3

4

5

6 A2: acquire(lock);
7 // Loads L2i arbitrarily
8 // interleaved with stores S2j
9 R2: release(lock);

What order ensures correct handoff from critical section
1 to 2?
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Optimization Opportunities

(i) Non-FIFO coalescing write buffer
(ii) Support non-blocking reads

▶ Hide latency of reads
▶ Use lockup-free caches and speculative execution

(iii) Simpler support for speculation
▶ Need not compare addresses of loads to coherence requests
▶ For SC, need support to check whether the speculation is correct

Swarnendu Biswas (IIT Kanpur) CS 636: Memory Consistency Models Sem 2025-26-II 44 / 83



Relaxed Consistency Rules

� Loads and stores are unordered excepting TSO rules are followed for order-
ing two accesses to the same address
• Every load gets its value from the last store before it to the same address

Constraints 1. If L(a) <p L’(a) ⇒ L(a) <m L’(a)
2. If L(a) <p S(a) ⇒ L(a) <m S(a)
3. If S(a) <p S’(a) ⇒ S(a) <m S’(a)
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Relaxed Consistency Rules

� Loads and stores are unordered excepting TSO rules are followed for order-
ing two accesses to the same address
• Every load gets its value from the last store before it to the same address

Constraints 1. If L(a) <p L’(a) ⇒ L(a) <m L’(a)
2. If L(a) <p S(a) ⇒ L(a) <m S(a)
3. If S(a) <p S’(a) ⇒ S(a) <m S’(a)

If L(a) <p FENCE ⇒ L(a) <m FENCE

If S(a) <p FENCE ⇒ S(a) <m FENCE

If FENCE <p FENCE ⇒ FENCE <m FENCE

If FENCE <p L(a) ⇒ FENCE <m L(a)

If FENCE <p S(a) ⇒ FENCE <m S(a)
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Using Fences under Relaxed Consistency

1 data1 = null;
2 data2 = null;
3 flag = false;

Core 1

1 S1: data1 = new Object();
2 S2: data2 = new Object();
3 F1: FENCE
4 S3: flag = true;
5

6

7

8

Core 2

1

2

3

4 L1: r1 = flag;
5 B1: if (!r1) goto L1;
6 F2: FENCE
7 L2: r2 = data1;
8 L3: r3 = data2;

Are both fences required?

Swarnendu Biswas (IIT Kanpur) CS 636: Memory Consistency Models Sem 2025-26-II 46 / 83



Conservative Use of Fences under Relaxed Consistency

Core 1

1 F11: FENCE
2 A11: acquire(lock);
3 F12: FENCE
4 // Loads L1i arbitrarily
5 // interleaved with stores S1j
6 F13: FENCE
7 R12: release(lock);
8 F14: FENCE
9

10

11

12

13

14

Core 2

1

2

3

4

5

6

7 F21: FENCE
8 A21: acquire(lock);
9 F22: FENCE

10 // Loads L2i arbitrarily
11 // interleaved with stores S2j
12 F23: FENCE
13 R22: release(lock);
14 F24: FENCE
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Examples of Relaxed Consistency Memory Models

[ Weak ordering
• Distinguishes between data and synchronization operations
• A synchronization operation is not issued until all previous operations are

complete
• No operations are issued until the previous synchronization operation completes

[ Release consistency
• Relaxes WO further, distinguishes between acquire and release operations
• All previous acquire operations must be performed before an ordinary load or

store access is allowed to perform
• Previous accesses have to complete before a release is performed
• RCsc maintains SC between synchronization operations
• Acquire → all, all → release, and sync → sync
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Correct Implementation under Relaxed Consistency

Core 1

1 F11: FENCE
2 A11: acquire(lock);
3 F12: FENCE
4 // Loads L1i arbitrarily
5 // interleaved with stores S1j
6 F13: FENCE
7 R12: release(lock);
8 F14: FENCE
9

10

11

12

13

14

Core 2

1

2

3

4

5

6

7 F21: FENCE
8 A21: acquire(lock);
9 F22: FENCE

10 // Loads L2i arbitrarily
11 // interleaved with stores S2j
12 F23: FENCE
13 R22: release(lock);
14 F24: FENCE

Which fences are needed to ensure correct
ordering and visibility between C1 and C2?
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Relaxed Consistency Memory Models

m Why should we use them?
Performance

. Why should we not use them?
Complexity

Swarnendu Biswas (IIT Kanpur) CS 636: Memory Consistency Models Sem 2025-26-II 50 / 83



Hardware Memory Models: One Slide Summary

Model W → R W → W R → RW
Read Own Read Other’s
Write Early Write Early

SC ✓

TSO ✓ ✓

PC ✓ ✓ ✓

PSO ✓ ✓ ✓

WO ✓ ✓ ✓ ✓

RCSC ✓ ✓ ✓ ✓

RCPC ✓ ✓ ✓ ✓ ✓
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Desirable Properties of a Memory Model

m Desirable properties: Programmability, Performance, and Portability
− Hard to satisfy all three

ò Evaluating SC
+ Intuitive when we think of uniprocessor executions
+ Serializability of instructions

− No atomicity of regions
− Inhibits many compiler transformations
− Almost all recent architectures violate SC
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Programming Language Memory
Models



Language Memory Models

• Data-Race-Free-0 (DRF0) model is conceptually similar to Weak Ordering (WO)
• Assumes no data races

▶ DRF0 ensures SC for data-race-free programs
▶ No guarantees for racy programs

• Allows many optimizations in the compiler and hardware

• Language memory models were developed much later than hardware models
▶ Recent standardizations are largely driven by languages

• Most language models are based on DRF0

Why do we need one? Is the hardware mem-
ory model not enough?
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C++ Memory Model and Catch-Fire Semantics
• Adaptation of the DRF0 memory model

▶ Provides SC for data-race-free programs
▶ C/C++ simply ignores data races

• No safety guarantees in the language

1 X* x = null;
2 bool done = false;

Thread 1

1 X = new X();
2 done = true;

Thread 2

1 if (done)
2 X->func();
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Memory Operations in C++

Synchronization Lock, unlock, atomic load, atomic store, atomic RMW
Data Load, store

Compiler reordering is allowed for memory operations M1 and M2 if
• M1 is a data operation and M2 is a read synchronization operation
• M1 is write synchronization and M2 is data
• M1 and M2 are both data with no synchronization between them
• M1 is data and M2 is the write of a lock operation
• M1 is unlock and M2 is either a read or write of a lock

Swarnendu Biswas (IIT Kanpur) CS 636: Memory Consistency Models Sem 2025-26-II 55 / 83



Writing Correct Concurrent C++ Code Using Locks

1 std::mutex mtx;
2 bool ready = false;

Thread 1

1 mtx.lock();
2 prepareData();
3 ready = true;
4 mtx.unlock();

Thread 2

1 mtx.lock();
2 if (ready)
3 consumeData();
4 mtx.unlock();
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Using Atomics Available from C++11

• “Data race free” by definition (e.g., std::atomic<int>)
▶ A store synchronizes with operations that load the stored value—similar to volatile in

Java
• C++ volatile is different!

▶ Does not establish inter-thread synchronization
▶ Can be part of a data race

std::atomic<bool> ready(false);

Thread 1

1 prepareData();
2 ready.store(true);

Thread 2

1 if (ready.load())
2 consumeData();
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Ensuring Visibility

• Writer thread releases a lock
▶ Flushes all writes from the thread’s working memory

• Reader thread acquires a lock
▶ Forces a (re)load of the values of the affected variables

• std::atomic in C++ and volatile in Java
▶ Values written are made visible immediately before any further memory operations
▶ Readers reload the value upon each access

• Thread join
▶ Parent thread is guaranteed to see the effects made by the child thread
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Memory Order of Atomics

Specifies how regular, non-atomic memory
accesses are to be ordered around an
atomic operation
• Default is sequential consistency

atomic.h

1 enum memory_order {
2 memory_order_relaxed,
3 memory_order_consume,
4 memory_order_acquire,
5 memory_order_release,
6 memory_order_acq_rel,
7 memory_order_seq_cst
8 };
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Memory Model Synchronization Modes

Producer

• Producer thread creates data
• Producer thread stores to an atomic

Consumer

• Consumer threads read from the
atomic

• When the expected value is seen, data
from the producer thread is visible to
the consumers

The different memory model modes indicate the strength
of data sharing between threads

Memory model synchronization modes
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Memory Model Modes in C++

memory_order_seq_cst

1 x = 0;
2 y = 0;

Thread 1

1 y = 1;
2 x.store(2);

Thread 2

1 if (x.load() == 2)
2 assert(y == 1);

Can this assert
fail?
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Memory Model Modes in C++

memory_order_seq_cst

1 x = 0;
2 y = 0;

Thread 1

1 y.store(20);
2 x.store(10);
3

Thread 2

1 if (x.load()==10)
2 assert(y.load()==20);
3 y.store(10);

Thread 3

1 if (y.load()==10)
2 assert(x.load()==10);
3

Can these asserts
fail?

Swarnendu Biswas (IIT Kanpur) CS 636: Memory Consistency Models Sem 2025-26-II 62 / 83



Memory Model Modes in C++
memory_order_relaxed: no happens-before edge

Thread 1
1 y.store(20, memory_order_relaxed);
2 x.store(10, memory_order_relaxed);

Thread 2
1 if (x.load(memory_order_relaxed) == 10)
2 assert(y.load(memory_order_relaxed) == 20);
3 y.store(30, memory_order_relaxed);

Thread 3
1 if (y.load(memory_order_relaxed) == 30)
2 assert(x.load(memory_order_relaxed) == 10);

Can these asserts
fail?
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Memory Model Modes in C++
memory_order_relaxed: no happens-before edge

Thread 1
1 x.store(10, memory_order_relaxed);
2 x.store(20, memory_order_relaxed);

Thread 2
1 y = x.load(memory_order_relaxed);
2 z = x.load(memory_order_relaxed);
3 assert(y <= z);

Can this assert
fail?
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Memory Model Modes in C++
memory_order_relaxed: no happens-before edge

Thread 1
1 x.store(10, memory_order_relaxed);
2 x.store(20, memory_order_relaxed);

Thread 2
1 y = x.load(memory_order_relaxed);
2 z = x.load(memory_order_relaxed);
3 assert(y <= z);

• In the absence of HB edges, a
thread should not rely on the
exact ordering of instructions in
another thread

• Once a value of a variable from
Thread 1 is observed in Thread 2,
Thread 2 cannot see an earlier
value
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Memory Model Modes in C++
memory_order_acquire and memory_order_release: introduces HB edges
only between dependent variables

Thread 1
1 y = 20;
2 x.store(10, memory_order_release);

Thread 2
1 if (x.load(memory_order_acquire) == 10)
2 assert(y == 20);

y is a regular
data variable

Can this assert
fail?
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Memory Model Modes in C++

Thread 1
y.store(20, memory_order_release);

Thread 2
x.store(10, memory_order_release);

Thread 3
assert(y.load(memory_order_acquire) == 20

&& x.load(memory_order_acquire) == 0);

Thread 4
assert(y.load(memory_order_acquire) == 0

&& x.load(memory_order_acquire) == 10);

Can these asserts
pass? Can they fail?
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Memory Model Modes in C++
memory_order_consume: removes HB ordering on non-dependent variables

Thread 1

1 n = 1;
2 m = 1;
3 p.store(&n, memory_order_release);

Thread 2

1 t = p.load(memory_order_acquire);
2 assert(*t == 1 && m == 1);

Thread 3

1 t = p.load(memory_order_consume);
2 assert(*t == 1 && m == 1);

Can these asserts
fail?
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Happens-Before Memory Model (HBMM)
Read operation a = rd(t, x, v) may return the value written by any write operation
b = wr(t, x, v) provided

(i) b does not happen after a, i.e., b ≺HB a or b||a,
(ii) There is no intervening write c to x where b ≺HB c ≺HB a

x = y = 0;

Thread 1

1 y = 1;
2 r1 = x;

Thread 2

1 x = 1;
2 r2 = y;

assert (r1 != 0 || r2 != 0);

Can this assert fail?
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HBMM

1 x = 0;
2 y = 0;

Thread 1

1 r = x;
2 y = 1;
3 assert (r == 0);
4

5

Thread 2

1

2

3

4 while (y == 0) {}
5 x = 1;

Will the assertion
pass or fail?
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HBMM

x = 0;

Thread 1

1 x = 10;
2

Thread 2

1 if (x != 0)
2 r2 = r1/x;

• Can anything go wrong with
HBMM?

• What will be the behavior with
std::memory_order_relaxed in
C++?
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DRF0 vs HBMM

x = y = 0;

Thread 1

1 r1 = x;
2 if (r1 == 1) {
3 y = 1;
4 }

Thread 2

1 r2 = y;
2 if (r2 == 1) {
3 x = 1;
4 }

assert (r1==0 && r2 == 0);

Is there a data race on x and y?
• Remember that DRF0 provides SC only

for data-race-free programs
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DRF0 vs HBMM

DRF0

• DRF0 allows arbitrary behavior for
racy executions

• DRF0 is not strictly stronger than
HBMM

HBMM

• HBMM does not guarantee SC for DRF
programs

• HBMM is not strictly stronger than
DRF0
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HBMM
HBMM has the potential to generate out-of-thin-air (OOTA) values

1 x = 0;
2 y = 0;

Thread 1

1 x = y;

Thread 2

1 y = x;

Problematic for garbage-collected languages since the “out-of-thin-air”
value could be an invalid pointer
− Introduces potential security loopholes
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Java Memory Model (JMM)

• First high-level language to incorporate a relaxed memory model
• JMM provides SC for data-race-free executions (like DRF0)
• Java provides memory- and type-safety, so JMM has to define some semantics for

programs with data races
▶ JMM prohibits out-of-thin-air values
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Outcomes Possible with JMM

1 x = 0;
2 y = 0;

Thread 1

1 y = 1;
2 r1 = x;

Thread 2

1 x = 1;
2 r2 = y;

assert (r1 != 0 || r2 != 0);

Can these asserts
fail?
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Outcomes Possible with JMM

1 x = 0;
2 y = 0;

Thread 1

1 r1 = x;
2 y = 1;

Thread 2

1 r2 = y;
2 x = 1;

assert (r1 == 0 || r2 == 0);

Can these asserts
fail?
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Outcomes Possible with JMM
Racy initialization

obj = null;

Thread 1

1 obj = new Circle();
2

Thread 2

1 if (obj != null)
2 obj.draw();

Note
JVMs may not exhibit all behaviors permissible under the JMM

Can there be a NPE
with JMM?
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Outcomes Not Possible with JMM

x = y = 0;

Thread 1

1 r1 = x;
2 y = r1;

Thread 2

1 r2 = y;
2 x = r2;

assert (r1 != 42);

• HBMM permits an execution in which each load reads say 42
• DRF0 allows any arbitrary behavior
• JMM disallows reading 42, is strictly stronger than DRF0 and

HBMM
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JVMs do not comply with the JMM!

1 x = 0;
2 y = 0;

Thread 1

1 r1 = x;
2 y = r1;
3

4

5

6

7

Thread 2

1 r2 = y;
2 if (r2 == 1) {
3 r3 = y;
4 x = r3;
5 } else {
6 x = 1;
7 }

assert (r2 == 0);

Can this assert fail un-
der HBMM and JMM?
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JVMs do not comply with the JMM!

1 x = 0;
2 y = 0;

Thread 1

1 r1 = x;
2 y = r1;
3

4

5

6

7

Thread 2

1 r2 = y;
2 if (r2 == 1) {
3 r3 = y;
4 x = r3;
5 } else {
6 x = 1;
7 }

assert (r2 == 0);

• HBMM allows OOTA values
• JMM only permits executions in which load of y sees 0
• JVM’s JIT optimizing compiler can simplify the code in the right

thread
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Lessons Learned

ò Specifying semantics for racy programs is hard
Simple optimizations may introduce unintended consequences

¥ SC for DRF is now the preferred baseline
• Make sure your program is free of data races
• Compiler and architecture setup will guarantee SC execution
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