
CS 636: Concurrency Bugs

Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2025-26-II

Production Software Contains Bugs!
• AT&T hangs up its long-distance service (1990)*

▶ On Jan 15 1990, 50% of long-distance calls placed were dropped for a duration of nine hours. The
problem lay with the software that controlled the company’s long-distance relay switches and
had been recently updated. AT&T lost $60 million that day.

• FDIV error in early Pentium chips (1993)†
▶ Early Pentium processors would return incorrect binary floating point results when dividing

certain pairs of high-precision numbers because of the bug. Intel spent $475 million to recall the
defective processors in December 1994 and issue replacements.

• The Mars Climate Orbiter disintegrates in space (1998) ‡
▶ NASA’s $655 million robotic space probe plowed into Mars’s upper atmosphere at the wrong angle,

burning up in the process. The failure was because the software computed the thrusters’ output in
the wrong units (pound–seconds instead of newton–seconds).

*D. Burke. All Circuits are Busy Now: The 1990 AT&T Long Distance Network Collapse. Nov 1995.
†Pentium FDIV bug
‡Mars Climate Orbiter

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 3 / 89

https://users.csc.calpoly.edu/~jdalbey/SWE/Papers/att_collapse.html
https://en.wikipedia.org/wiki/Pentium_FDIV_bug
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter

Examples of Real-World Concurrency Bugs

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 4 / 89

Examples of Real-World Concurrency Bugs

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 4 / 89

Challenges in Concurrent Programming

Develop Parallel Programs

From my perspective, parallelism is the biggest challenge since high-
level programming languages. It’s the biggest thing in 50 years be-
cause industry is betting its future that parallel programming will be
useful.
. . .
Industry is building parallel hardware, assuming people can use it.
And I think there’s a chance they’ll fail since the software is not nec-
essarily in place. So this is a gigantic challenge facing the computer
science community.

– David Patterson, ACM Queue, 2006.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 5 / 89

Develop Parallel Programs

To save the IT industry, researchers must demonstrate
greater end-user value from an increasing number of
cores.

– A View of Parallel Computing Landscape, CACM 2009.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 6 / 89

Challenges in Developing Parallel Programs

. Programmers tend to think sequentially
Correctness issues concurrency bugs like data races and deadlocks

Performance issues redundant communication across cores or nodes

ò Other challenges
Amdahl’s law, overheads of parallel execution, and load balancing

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 7 / 89

Concurrency vs Parallelism

Confusing terms in system design: concurrency vs parallelism, performance vs scalability, proxy vs reverse proxy

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 8 / 89

https://preparingforcodinginterview.wordpress.com/2018/10/01/concurrency-vs-parallelism/

Concurrency vs Parallelism

Concurrency

• Correct and efficient control of access
to shared resources

• Correctness perspective

Parallelism

• Use additional resources to speed up
computation

• Performance perspective

What is the difference between concurrency and parallelism?

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 9 / 89

https://stackoverflow.com/questions/1050222/what-is-the-difference-between-concurrency-and-parallelism

Types of Concurrency Bugs

Order Violation

Thread 1

1 void init(...) {
2 ...
3 ...
4 ...
5 mThread = PR_CreateThread(mMain, ...);
6 ...
7 }

Thread 2

1 ...
2 void mMain() {
3 mState=mThread->State;
4 }
5 ...
6

7

Mozilla: nsthread.cpp

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 10 / 89

Atomicity Violation

Thread 1

1 . . .
2 if (thd->proc_info) {
3

4

5

6 puts(thd->proc_info, . . .)
7 }
8 . . .

Thread 2

1

2 . . .
3

4 thd->proc_info = NULL;
5

6 . . .
7

8

MySQL: ha_innodb.cc

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 11 / 89

Sequential Consistency Violation

1 Object X = null;
2 boolean done = false;

Thread 1

1 X = new Object();
2 done = true;

Thread 2

1 while (!done) {}
2 X.compute();

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 12 / 89

Deadlock

1 public class Account {
2 int bal = 0;
3 synchronized void transfer(int x, Account trg) {
4 this.bal -= x;
5 trg.deposit(x);
6 }
7 synchronized void deposit(int x) {
8 this.bal += x;
9 }

10 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 13 / 89

Starvation and Livelock

� Starvation
A thread is unable to get regular access to shared resources and so is unable to make
progress

� Livelock
Threads are not blocked, their states change, but they are unable to make progress

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 14 / 89

Non-Deadlock Concurrency Bugs

97% of non-deadlock concurrency bugs are due to
atomicity and order violations

Two-thirds of non-deadlock concurrency bugs are
due to atomicity violations

Two-thirds of non-deadlock concurrency bugs are
due to concurrent accesses to one variable

S. Lu et al. Learning from Mistakes — A Comprehensive Study on Real World Concurrency Bug Characteristics. ASPLOS, 2008.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 15 / 89

https://dl.acm.org/doi/10.1145/1346281.1346323

Deadlock Bugs

30% of concurrency bugs are due to deadlocks

97% of deadlocks are due to two threads circularly
waiting for at most two resources

S. Lu et al. Learning from Mistakes — A Comprehensive Study on Real World Concurrency Bug Characteristics. ASPLOS, 2008.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 16 / 89

https://dl.acm.org/doi/10.1145/1346281.1346323

Considerations with Concurrency Bugs

. Bugs can be non-deterministic
• No assumptions can be made on the order of execution between threads
• Makes it very hard to debug and analyze

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 17 / 89

Challenges with Concurrent Programming

Less
synchronization

More
synchronization

Order, atomicity, and
sequential consistency

violations

DeadlockConcurrent
and correct

Poor performance:
lock contention,

serialization

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 18 / 89

Detecting Data Races

An Example of a Data Race

1 Object X = null;
2 boolean done = false;

Thread 1

1 X = new Object();
2 done = true;

Thread 2

1 while (!done) {}
2 X.compute();

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 19 / 89

Data Race

• Two accesses from two different threads conflict when they access the same shared
variable where at least one access is a write

• Accesses are not ordered by synchronization operations are concurrent (i.e., can
happen at the same time)

[Data race
A pair of concurrent and conflicting accesses form a data race

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 20 / 89

Data Races are Evil!

• Often indicate the presence of other types of concurrency errors
• Data races ̸= race conditions

▶ Race conditions are timing errors on thread interleavings, lock operations
▶ Data races are on “data variables”

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 21 / 89

Get Rid of Data Races

Note
Avoiding and/or eliminating data races efficiently is a challenging
and unsolved problem

. Notoriously difficult to detect data races
• May be induced only by specific thread interleavings
• Impact on output may not be easily observable unlike deadlocks
• There are potentially many shared memory locations to monitor

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 22 / 89

Soundness and Precision

� Sound analysis
• Analysis does not miss any occurrence of bugs
• False negatives imply analysis is unsound

� Precise analysis
• Analysis does not report false occurrence of bugs
• False positives imply imprecise analysis

These are not standard terms across all domains, others refer to these properties as complete
and sound.

What is soundness (in static analysis)?
Soundness and Completeness: Defined With Precision
B. Livshits et al. In Defense of Soundiness: A Manifesto. CACM, 2015.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 23 / 89

http://www.pl-enthusiast.net/2017/10/23/what-is-soundness-in-static-analysis/
https://cacm.acm.org/blogcacm/soundness-and-completeness-defined-with-precision/
https://dl.acm.org/doi/10.1145/2644805

Static Data Race Detection

• Compile-time analysis of the code
• Advantages

+ Can potentially reason about all
inputs and interleavings

+ No run-time overhead

• Type-based analysis
▶ Augmented language type system to

encode synchronization relations
▶ A correctly typed program implies

there is no data race
− Restrictive and tedious

1 class Account {
2 int balance guarded by this;
3 int deposit(int x) requires this {
4 this.balance = this.balance + x
5 }
6 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 24 / 89

Challenges with Static Data Race Detection

− Static analysis does NOT scale well (e.g., may/must-happen-in-parallel)
− Language features like dynamic class loading and reflection in Java make static

analysis difficult
− Too conservative leading to many false positives

M. Naik et al. Effective Static Race Detection for Java. PLDI, 2006.
S. Blackshear et al. RacerD: Compositional Static Race Detection. OOPSLA, 2018.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 25 / 89

https://dl.acm.org/doi/pdf/10.1145/1133255.1134018
https://dl.acm.org/doi/10.1145/3276514

Dynamic Data Race Detection

• Monitor program operations during execution
• Program may be instrumented with additional instructions
• Instrumentation should not change program functionality

• Post-mortem analyses
• On-the-fly analyses

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 26 / 89

Dynamic Data Race Detection Techniques

• Happens-before-based algorithms [e.g., DJIT+, FastTrack, Pacer]

• Lockset algorithms [e.g., Eraser]

• Hybrid analysis [e.g., Goldilocks]

• Other partial order relation-based algorithms [e.g., CP, RVPredict, WCP]

• Other techniques [e.g., DataCollider, RaceChaser]

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 27 / 89

https://dl.acm.org/doi/10.1145/781498.781529
https://dl.acm.org/doi/10.1145/1543135.1542490
https://dl.acm.org/doi/10.1145/1806596.1806626
https://dl.acm.org/doi/10.1145/265924.265927
https://dl.acm.org/doi/10.1145/1273442.1250762
https://dl.acm.org/doi/10.1145/2103656.2103702
https://dl.acm.org/doi/10.1145/2666356.2594315
https://dl.acm.org/doi/10.1145/3062341.3062374
https://dl.acm.org/doi/10.5555/1924943.1924954
https://dl.acm.org/doi/10.1145/3033019.3033020

Happens-before Relation

• Smallest transitively-closed relation ≺HB over operations
• Given two operations a and b, a ≺HB b if one of the

following conditions hold

▶ Program order
■ Operation a is performed by the same thread before

operation b

▶ Synchronization order
■ a is a lock release and b is an acquire of the same lock

▶ Fork-join order
■ a is a fork operation (e.g., fork(t, u)) and b is by thread u
■ a is by thread u and b is a join operation (e.g., join(t, u))

Thread 1

read x

write y

read x

write z

L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. CACM, 1978.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 28 / 89

https://dl.acm.org/doi/10.1145/359545.359563

Happens-before Relation

• Smallest transitively-closed relation ≺HB over operations
• Given two operations a and b, a ≺HB b if one of the

following conditions hold

▶ Program order
■ Operation a is performed by the same thread before

operation b
▶ Synchronization order

■ a is a lock release and b is an acquire of the same lock

▶ Fork-join order
■ a is a fork operation (e.g., fork(t, u)) and b is by thread u
■ a is by thread u and b is a join operation (e.g., join(t, u))

Thread 1

read x

write y

rel l

Thread 2

acq l

read z

write p

L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. CACM, 1978.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 28 / 89

https://dl.acm.org/doi/10.1145/359545.359563

Happens-before Relation

• Smallest transitively-closed relation ≺HB over operations
• Given two operations a and b, a ≺HB b if one of the

following conditions hold

▶ Program order
■ Operation a is performed by the same thread before

operation b
▶ Synchronization order

■ a is a lock release and b is an acquire of the same lock
▶ Fork-join order

■ a is a fork operation (e.g., fork(t, u)) and b is by thread u
■ a is by thread u and b is a join operation (e.g., join(t, u))

Thread t

read x

fork u

Thread u

read z

write p

write q

read x

join u

write x

L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. CACM, 1978.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 28 / 89

https://dl.acm.org/doi/10.1145/359545.359563

Happens-before (HB) Relation

If a ≺HB b and b ≺HB c, then a ≺HB c

If a ⊀HB b and b ⊀HB a, then a ∥HB b

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 29 / 89

Tracking Happens-before with Vector Clocks

• Each thread T maintains its own logical clock “c”
▶ Initially c=0 when T starts
▶ Clock is incremented at synchronization release operations (e.g., release(m) and volatile

write)

• Vector clock is a vector of logical clocks for all the threads in the process

A B
5 2Thread A's

logical time
Thread B's
logical time

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 30 / 89

Understanding Vector Clocks

VC1 ⊑ VC2 iff ∀ t VC1(t) ≤ VC2(t)

A B
4 2

C
3

A B
4 2

C
3 ?

A B
4 5

C
3

A B
4 2

C
3 ?

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 31 / 89

Properties on Vector Clocks

VC1 ⊑ VC2 iff ∀ t VC1(t) ≤ VC2(t)

if VCa ⊏ VCb, then ¬(VCb ⊏ VCa)

if VCa ⊏ VCb, then a ≺HB b

if (VCa ⊏ VCb) ∧ (VCb ⊏ VCc), then VCa ≺HB VCb

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 32 / 89

Operations on Vector Clocks

Join VC1 ⊔ VC2 = λt.max(VC1(t), VC2(t))

Initialization ⊥V = λt.0

Increment inct(V) = λu. ifu == t then VC(u) + 1 else VC(u)

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 33 / 89

Vector Clock-based Race Detection: DJIT+ Algorithm

A B
5 2Thread A's

logical time Logical time last
received from Thread B

A B
3 4

Logical time last
received from Thread A

Thread B's
logical time

• Each thread has its own clock that is incremented at lock synchronization operations
with release semantics

• Each thread also keeps a vector clock Ct
▶ For a thread u, Ct(u) gives the clock for the last operation of u that happened before the

current operation of t

• Each lock has a vector clock
• Each shared variable x has two vector clocks Rx and Wx

E. Pozniansky and A. Schuster. Efficient On-the-Fly Data Race Detection in Multithreaded C++ Programs. PPoPP, 2003.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 34 / 89

https://dl.acm.org/doi/10.1145/781498.781529

Snapshot of Process Memory

5 2 2

5 6 4

5 2 7

4 2 2

Thread A

Thread B

Thread C

Lock m

4 2 2
1 1 1

Shared
variable x

5 6 4
2 1 1

Shared
variable y

Rx

Wx

Rx

Wx

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 35 / 89

Thread A Thread B

A B
5 2

A B
3 4

Thread A Thread B

write x 5 2

tim
e

A B
5 2

A B
3 4

Thread A Thread B

write x 5 2

tim
e unlock m 5 2

5 2
A B A B

3 4

6 2
A B

Thread A Thread B

write x 5 2

tim
e unlock m 5 2

A B
6 2

lock m5 4

A B
3 4

A B
5 4

Thread A Thread B

write x 5 2

tim
e unlock m 5 2

A B
6 2

lock m5 4

write x5 4

A B
5 4

Thread A Thread B

write x 5 2

tim
e unlock m 5 2

A B
6 2

lock m5 4

write x5 4

read x ? ?

A B
5 4

Thread A Thread B

write x 5 2

tim
e unlock m 5 2

A B
6 2

lock m5 4

write x5 4

read x ? ?

DJIT+

A B
5 4

Analysis of HB Tracking
• HB analysis are

+ precise, i.e., no false positives,
▶ dynamically sound, i.e., no false negatives given the observed run
− can miss data races that did not manifest in observed run, but may happen in another

interleaving

Thread A

1 y = y + 1
2 lock m
3 v = v + 1
4 unlock m
5

6

7

8

Thread B

1

2

3

4

5 lock m
6 v = v + 1
7 unlock m
8 y = y + 1

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 37 / 89

Lockset Algorithms

• Assumes that all shared-memory
accesses follow a consistent locking
discipline

• Keeps track of the locks associated
with each thread and program variable

Thread A LocksetA

L = {}
lock m

L = {m}
write x

L = {m}
lock n

L = {m, n}
write y

L = {m, n}
unlock n

L = {m}
unlock m

L = {}
read x

L = {}

S. Savage et al. Eraser: A Dynamic Data Race Detector for Multithreaded Programs. TOCS, 1997.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 38 / 89

https://dl.acm.org/doi/10.1145/265924.265927

Inferring the Locking Discipline

• Assumes that all shared-memory
accesses follow a consistent locking
discipline

• Keeps track of the locks associated
with each thread and program variable

• Two accesses from different threads
with non-intersecting locksets form a
data race

• How do we know which lock protects
which variable?
▶ Programmer annotations are

cumbersome

1 acq(l)
2 acq(m)
3 x++
4 rel(m)
5 rel(l)
6

7

8

9 acq(m)
10 acq(n)
11 x++
12 rel(n)
13 rel(m)

x is protected by
l, or m, or both

x is protected by
m, or n, or both

x is protected by m

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 39 / 89

Eraser Algorithm

• Eraser monitors every read/write and lock/unlock operation in an execution
• Eraser assumes that it knows the full set of locks in advance
• For each variable v, Eraser maintains the lockset C(v)—candidate locks for the lock

discipline
▶ For each variable v, initialize C(v) to the set of all locks

• For each read/write on variable v by thread t,
▶ Let L(t) be the set of locks held by thread t
▶ C(v) := C(v) ∩ L(t)
▶ If C(v) = φ, report that there is a data race for v

Lockset
refinement

S. Savage et al. Eraser: A Dynamic Data Race Detector for Multithreaded Programs. TOCS, 1997.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 40 / 89

https://dl.acm.org/doi/10.1145/265924.265927

Properties of Lockset Algorithms

Thread A

1 y = y + 1
2 lock m
3 v = v + 1
4 unlock m
5

6

7

8

Thread B

1

2

3

4

5 lock m
6 v = v + 1
7 unlock m
8 y = y + 1

Are lockset algorithms sound and precise?

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 41 / 89

DJIT+ vs Eraser

Run-time Overhead

Pr
ec

is
io

n

Eraser

DJIT+

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 42 / 89

Why is DJIT+ expensive?

Reads and writes to shared-memory locations (i.e., scalar fields and
array elements) constitute ≥ 90% of all monitored operations

A B
4 2

C
5

A B
4 2

C
6

O (n)

U. Mathur et al. A Tree Clock Data Structure for Causal Orderings in Concurrent Executions. ASPLOS, 2022.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 43 / 89

https://dl.acm.org/doi/10.1145/3503222.3507734

FastTrack: Efficient HB Tracking

Run-time Overhead
Pr

ec
is

io
n

Eraser

DJIT+FastTrack

� Insight
• All writes to a shared variable, till the first race, are totally ordered
• Reads are not totally-ordered even in data-race-free programs (e.g., read-shared

data)

C. Flanagan and S. Freund. FastTrack: Efficient and Precise Dynamic Data Race Detection. PLDI, 2009.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 44 / 89

https://dl.acm.org/doi/10.1145/1543135.1542490

Thread A Thread B

write x

tim
e

unlock m

A B
5 2

lock m

write x

A B
3 4

5 4

5 4

5 2

5 2

write x 5 2

Write-Write and Write-Read Data Races
Thread A Thread B Thread C Thread D

x = 1

x = 2

x = 3

x = 4

?

?
?

O (n)

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 46 / 89

No Data Races Yet: Writes Totally Ordered
Thread A Thread B Thread C Thread D

x = 1

x = 2

x = 3

x = 4

?

O (n)

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 47 / 89

Last Writer Epoch

Thread A Thread B

write x 5 2

tim
e unlock m 5 2

5 2
A B A B

3 4

6 2
A B

5@A

6@A
write x 6 2

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 48 / 89

Last Writer Epoch

Thread A Thread B

write x 5 2

tim
e unlock m 5 2

5 2
A B A B

3 4

6 2
A B

5@A

6@A
write x 6 2

c@t ≺HB V iff c ≤ V(t)

O (1)

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 48 / 89

Thread A Thread B

A B
5 2

A B
3 4

Thread A Thread B

write x 5@A

tim
e unlock m 5 2

5 2
A B A B

3 4

6 2
A B

Thread A Thread B

write x 5@A

tim
e unlock m 5 2

6 2
A B A B

3 4

lock m5 4

A B
5 4

Thread A Thread B

write x 5@A

tim
e unlock m 5 2

6 2
A B A B

5 4

lock m5 4

write x4@B

Thread A Thread B

write x 5@A

tim
e unlock m 5 2

6 2
A B A B

5 4

lock m5 4

write x4@B

read x ? ?

Read-Write Data Races — Ordered Reads

Thread A Thread B Thread C Thread D

read x

read x

read x

x = 4

?

Most common case: thread-local, lock-protected, ...
Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 50 / 89

Read-Write Data Races — Unordered Reads

Thread A Thread B Thread C

fork

x = 0

read x read x read x

x = 2

? ? ?

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 51 / 89

Comparing Lockset and HB Analyses

Lockset analysis

• Assumes consistent locking discipline
• Imprecise, reports many false

positives

Happens-before analysis

• Coverage limited to observed
executions

• Dynamically sound and precise
• Correctness depends on exact

knowledge of synchronization
• Not scalable, incurs space overhead

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 52 / 89

Performance of Lockset and HB Algorithms

• FastTrack’s slowdowns are still ∼4–8X
• Intel Thread Checker has 200X overhead
• Google’s ThreadSanitizer (part of LLVM) incurs around ∼5–15X overhead
• Happens-before-based sampling approaches (e.g., LiteRace† and Pacer§)

▶ Overheads are still too high for a reasonable sampling rate
▶ Pacer with 3% sampling rate incurs 86% overhead!!!

Large overheads impact the thread interleaving pattern

†D. Marino et al. LiteRace: Effective Sampling for Lightweight Data-Race Detection. PLDI 2009.
§M. Bond et al. Pacer: Proportional Detection of Data Races. PLDI 2010

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 53 / 89

https://dl.acm.org/doi/10.1145/1543135.1542491
https://dl.acm.org/doi/10.1145/1806596.1806626

Is there a data race?

1 Object X = null;
2 volatile boolean done = false;

Thread 1

1 X = new Object();
2 done = true;

Thread 2

1 while (!done) {}
2 X.compute();

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 54 / 89

Is there a data race?

1 int data = 0;
2 boolean flag = false;

Thread 1

1 data = ...;
2 synchronized(m) {
3 flag = true;
4 }
5

6

7

8

9

10

11

Thread 2

1

2

3

4

5 boolean f;
6 synchronized(m) {
7 f = flag;
8 }
9 if (f) {

10 ... = data;
11 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 55 / 89

Is there a data race?

Thread 1

1 x++;
2 malloc();
3

4

5

6

7

8

9

10

11

12

Thread 2

1

2

3

4

5

6

7

8

9

10

11 malloc();
12 x++;

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 56 / 89

Is there a data race?

Thread 1

1 x++;
2 malloc() {
3 lock();
4 ...
5 unlock();
6 }
7

8

9

10

11

12

Thread 2

1

2

3

4

5

6

7 malloc() {
8 lock();
9 ...

10 unlock();
11 }
12 x++;

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 57 / 89

Is there a data race?

Thread 1

1 x++;
2 malloc() {
3 lock();
4 ...
5 unlock();
6 }
7

8

9

10

11

12

Thread 2

1

2

3

4

5

6

7 malloc() {
8 lock();
9 ...

10 unlock();
11 }
12 x++;

Correctness depends on exact knowledge
of synchronization

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 57 / 89

Collision Analysis

� Make two conflicting accesses happen at the same time
(i) Pause one thread just before accessing a memory location x

(ii) Catch other threads that make conflicting accesses to x in the meantime

Implementation: Either software or hardware (more efficient but has other limitations)

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 58 / 89

Instrument Racy Accesses
The figure shows one
potential race pair

avrora.sim.radio.Medium:
access$302() byte offset 0

avrora.sim.radio.Medium:
access$402() byte offset 2

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 59 / 89

Randomly Sample Racy Accesses and Try to Collide Them
Block thread for some
time

Benefits: Can track frequency
of samples taken and
estimate overhead
introduced by waiting

avrora.sim.radio.Medium:
access$302() byte offset 0

avrora.sim.radio.Medium:
access$402() byte offset 2

Dynamic
instance 992

Dynamic
instance 993

tim
eo

ut

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 60 / 89

Collision is Successful

avrora.sim.radio.Medium:
access$302() byte offset 0

avrora.sim.radio.Medium:
access$402() byte offset 2

Dynamic
instance 992

Dynamic
instance 993

Dynamic
instance 215

True race
detected

tim
eo

ut

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 61 / 89

Collision is Unsuccessful
Thread unblocks, resets
the analysis state, and
continues execution

avrora.sim.radio.Medium:
access$302() byte offset 0

avrora.sim.radio.Medium:
access$402() byte offset 2

Dynamic
instance 992

Dynamic
instance 993

tim
eo

ut

Next
instruction

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 62 / 89

Advantages of Collision Analysis

+ Oblivious to synchronization patterns (i.e., no inference is necessary)
+ Low memory overhead compared to maintaining vector clocks
+ Can potentially detect data races that are hidden by spurious HB relations
− Race coverage is sensitive to perturbation and delay

▶ Prior studies indicate that data races often happen close in time

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 63 / 89

DataCollider: Hardware Implementation of Collision Analysis

• Uses hardware debug registers (DR0...DR7) to monitor access locations
▶ x86 has four usable debug registers (DR0...DR3)
▶ Two are aliases (DR4 and DR5) and two are for control (DR6 and DR7)

• Writes an address to a debug register, sets the control flags
• Generates a trap when some other thread tries to access the address
• Good performance, hardware does all the work

J. Erickson et al. Effective Data-Race Detection for the Kernel. OSDI, 2009.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 64 / 89

https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Erickson.pdf

Challenges with DataCollider

• Small delays at several shared-memory
accesses would still introduce large
overheads

• Uses sampling, i.e., only execute slow
path when certain conditions are met
▶ Prioritize cold code regions or sample

based on allowed tolerable overhead

1 runtime_instrumentation() {
2 numCounter++;
3 if (numCounter % 10 == 0) {
4 // slow path
5 do_analysis();
6 } else {
7 // Do nothing
8 }
9 }

− Usually, # of threads ≫ # debug registers (i.e., 4) which reduces the effectiveness of
the analysis

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 65 / 89

Model Checking for Race Conditions

• Develop a system model
• Explore the model to check for reachable error states

Detailed model more compute-intensive
Simpler model needs to contain enough information of interest

• Any verification using model-based techniques is only as good as the model of the
system

• Model checking of concurrent programs is a challenge
▶ Very large state space given all possible thread interleavings
▶ Sound as long as the analysis terminates

J. Huang et al. Maximal Sound Predictive Race Detection with Control Flow Abstraction. PLDI, 2014.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 66 / 89

https://dl.acm.org/doi/10.1145/2666356.2594315

Recent Research on Data Race Detection

• Not a lot of new ideas in trying to improve performance targeted to production
environments

• Existing tools usually combine several ideas like static race detection, lockset
analysis, and HB analysis†

• More focus on trying to improve race detection coverage
▶ Many relationships weaker than HB (like CP§, WCP¶, and DC have been proposed)

• Still remains one of the most actively-researched topics in PL

†S. Blackshear et al. RacerD: Compositional Static Race Detection. OOPSLA, 2018.
§Y. Smaragdakis et al. Sound Predictive Race Detection in Polynomial Time. POPL 2012.
¶D. Kini et al. Dynamic Race Prediction in Linear Time. PLDI 2017.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 67 / 89

https://dl.acm.org/doi/10.1145/3276514

Detecting Atomicity Violations

Are there Data Races?

Following snippet is from an old version of java.lang.stringbuffer

1 public final class StringBuffer {
2 public synchronized StringBuffer append(StringBuffer sb) {
3 int len = sb.length();
4 ...
5 ...
6 sb.getChars(0, len, value, count);
7 ...
8 }
9 public synchronized int length() { ... }

10 public synchronized void getChars(...) { ... }
11 ...
12 }

C. Flanagan and S. Freund. Atomizer: A Dynamic Atomicity Checker for Multithreaded Programs. POPL, 2004.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 68 / 89

https://dl.acm.org/doi/10.1145/982962.964023

Data Race Freedom (DRF) vs Atomicity

è Note
Data race freedom is neither necessary nor sufficient to ensure absence
of concurrency bugs

Atomicity is a more fundamental non-interference property

ò Why Study Atomicity Violation Detection?
Violation of atomicity is the most common (almost two-thirds) type of all non-deadlock
concurrency bugs*

*S. Lu et al. Learning from Mistakes — A Comprehensive Study on Real World Concurrency Bug Characteristics. ASPLOS, 2008.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 69 / 89

https://dl.acm.org/doi/10.1145/1346281.1346323

Atomicity Property

• Maximal non-interference property that enables
sequential reasoning

• Atomic region’s execution appears not to be
interleaved with other concurrent threads

• Program execution must be equivalent to a
serial execution of atomic regions

• Synonymous with serializability for
programming language semantics

T1 T2 T3

at
om

ic
 re

gi
on

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 70 / 89

Atomizer

Idea • Given operations from a region marked “atomic”, check whether we can
always guarantee that the instructions can be shuffled into an
uninterrupted sequence by local, pairwise swaps

• Warn if the reordering attempts fail with the given set of operations

Eraser Lipton's Theory
of Reduction

Atomizer

C. Flanagan and S. Freund. Atomizer: A Dynamic Atomicity Checker for Multithreaded Programs. POPL, 2004.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 71 / 89

https://dl.acm.org/doi/10.1145/982962.964023

Commuting Actions: Left and Right Movers

b c

c b

b is right mover if swapping the operations do not change the
resulting state
c is left mover if swapping the operations do not change the
resulting state

b and c are operations
from concurrent threads

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 72 / 89

Commuting Actions: Both Mover

b mem(m, L, t)

bmem(m, L, t)

Memory access to m is always protected by lockset L, and thread
t holds at least one lock during the access

race-free variable
access

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 73 / 89

Commuting Actions: Non-Mover

b mem(m, L, t)

bmem(m, L, t)

Memory access to m is always protected by lockset L, but none
of the locks in L is held by thread t during the access

racy variable
access

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 74 / 89

Theory of Reduction [R. Lipton’75]

S0 S7S1 S2
acq(this) X j = bal Y bal = j+n Z rel(this)

S3 S4 S5 S6

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 75 / 89

Theory of Reduction [R. Lipton’75]

S0 S7S1 S2
acq(this) X j = bal Y bal = j+n Z rel(this)

S3 S4 S5 S6

S0 S7S1 S2
X Y acq(this) j = bal bal = j+n rel(this) Z

S3 S4 S5 S6

Suppose a path through a code block contains a sequence of right-movers,
followed by at most one non-mover action and then a sequence of left-movers.
Then this path can be reduced to an equivalent serial execution, with the same
resulting state, where the path is executed without any interleaved actions by
other threads.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 75 / 89

Performing Reduction Dynamically

Reducible methods: (R|B)∗ [N] (L|B)∗

inRight inLeft Error
start atomic

block

L|N R|N

R|B
L|B

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 76 / 89

Atomizer Algorithm

inLeft wrong

Outside
atomic

inRight

REL(l,t)

ACQ(l,t)

END

BEGIN

REL(l,t)
M

EM
(m

,a
,t)

an
d

m
is

un
pr

ot
ec

te
d

ACQ(l,t)

MEM(m,a,t) and m is
unprotected

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 77 / 89

Velodrome: Dynamically Sound and Precise Atomicity Checking

• Tracks HB relations between transactions (i.e., atomic regions)
▶ A transaction is a dynamic execution of an atomic block
▶ Lifts HB relations from operations to transactions

• Builds a transactional dependence graph
• Checks for presence of cycles in the graph

▶ Depicts violations of conflict serializability

C. Flanagan and S. Freund. Velodrome: A Sound and Complete Dynamic Atomicity Checker for Multithreaded Programs. PLDI, 2008.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 78 / 89

https://dl.acm.org/doi/10.1145/1379022.1375618

Transactional Dependence Graph
Thread 1 Thread 2 Thread 3

tra
ns

ac
tio

ntim
e

acq lock

rel lock

wr o.f

wr o.g
wr o.f

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 79 / 89

Transactional Dependence Graph
Thread 1 Thread 2 Thread 3

tra
ns

ac
tio

ntim
e

acq lock

rel lock

wr o.f

wr o.g
wr o.f

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 79 / 89

Cycle means Atomicity Violation
Thread 1 Thread 2 Thread 3

tra
ns

ac
tio

ntim
e

acq lock

rel lock

wr o.f

rd o.f

wr o.g
wr o.f

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 80 / 89

Challenges in Velodrome

• Transactional dependence graph can become huge
▶ Each statement outside an atomic region requires a node (i.e., unary transactions)
▶ Basic analysis is correct but will not scale for large programs

• Garbage collect completed transactions if they have no in edges
▶ Only the current transaction can create in edges
▶ Will never be in a cycle

• Optimize allocation of unary nodes
▶ Avoid allocation if they do not have in edges (e.g., last readers and writer nodes have

already been collected)
▶ If there is a single in edge, then reuse predecessor node

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 81 / 89

Optimize Allocation of Unary Nodes

• Avoid node allocation if there are no in
edges
▶ Can never participate in a cycle

test b == 2

test b == 2

test b == 2

test b == 2

test b == 2

 atomic {
 t1 = x
 x = t1 + 100
 …
 b = 2
 }

test b == 1

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 82 / 89

Optimize Allocation of Unary Nodes

• Avoid node allocation if there are no in
edges
▶ Can never participate in a cycle test b == 2

test b == 2

test b == 2

test b == 2

 atomic {
 t1 = x
 x = t1 + 100
 …
 b = 2
 }

test b == 1

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 82 / 89

Optimize Allocation of Unary Nodes

• Avoid node allocation if there are no in
edges
▶ Can never participate in a cycle

test b == 2

test b == 2

test b == 2

 atomic {
 t1 = x
 x = t1 + 100
 …
 b = 2
 }

test b == 1

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 82 / 89

Optimize Allocation of Unary Nodes

• Avoid node allocation if there are no in
edges
▶ Can never participate in a cycle

• If there is a single in edge, then reuse
predecessor node

test b == 2

test b == 2

test b == 2

 atomic {
 t1 = x
 x = t1 + 100
 …
 b = 2
 }

test b == 1

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 83 / 89

Optimize Allocation of Unary Nodes

• Avoid node allocation if there are no in
edges
▶ Can never participate in a cycle

• If there is a single in edge, then reuse
predecessor node

test b == 2

test b == 2

test b == 2

 atomic {
 t1 = x
 x = t1 + 100
 …
 b = 2
 }

test b == 1

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 83 / 89

Optimize Allocation of Unary Nodes

• Avoid node allocation if there are no in
edges
▶ Can never participate in a cycle

• If there is a single in edge, then reuse
predecessor node

test b == 2

test b == 2

test b == 2

 atomic {
 t1 = x
 x = t1 + 100
 …
 b = 2
 }

test b == 1

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 83 / 89

Performance Challenges with Velodrome

. Precise tracking is expensive
• “last transaction(s) to read/write” every field or array element
• Need atomic updates in the instrumentation
• ∼6X overhead reported by implementations

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 84 / 89

Instrumentation Approach

Program access

UnInstrumented program

=⇒
Program access

analysis

Instrumented program

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 85 / 89

Precise Tracking is Expensive!

Program access

UnInstrumented program

=⇒

Analysis-specific
work

Program access

Instrumented program

Update metadata

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 86 / 89

Synchronized Updates are Expensive!

Program access

UnInstrumented program

=⇒

Lock metadata
access

Unlock metadata
access

Program access

analysis

at
om

ic

Instrumented program

synchronization
on every access

slows
programs

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 87 / 89

Related Work on Atomicity Checking

Dynamic analysis

• Conflict-serializability-based approaches [e.g., Flanagan et al., PLDI 2008; Farzan and
Madhusudan, CAV 2008; AeroDrome, ASPLOS 2020]

• Inferring atomicity [e.g., Lu et al., ASPLOS 2006; Xu et al., PLDI 2005; Hammer et al., ICSE
2008]

• Predictive approaches [e.g., Sinha et al., MEMOCODE 2011; Sorrentino et al., FSE 2010]

• Other approaches [e.g., Wang and Stoller, PPoPP 2006; Wang and Stoller, TSE 2006]

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrency Bugs Sem 2025-26-II 88 / 89

References

Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Systems: Three Easy Pieces. Chapters
26, 32, Online.

https://pages.cs.wisc.edu/~remzi/OSTEP/
https://pages.cs.wisc.edu/~remzi/OSTEP/

	Concurrency Bugs
	Data Races
	Atomicity Violations

