
CS 636: A Brief Introduction to Cache
Coherence

Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2025-26-II

Types of Parallelism

Instruction-level Parallelism
Overlap instructions within a single thread of execution (e.g., pipelining, superscalar
issue, and out-of-order execution)

Data-level Parallelism
Execute an instruction in parallel on multiple data values (e.g., vector instructions)
for (int i = 0; i < N; i++) {

c[i] = a[i] + b[i];
}

Thread-level Parallelism
Concurrently execute multiple threads

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 2 / 36

Shared Memory Multiprocessor Architecture

Single address space shared by multiple cores
+ Exploits TLP by having a number of cores
+ Can share data efficiently, communication is implicit through memory instructions

(i.e., loads and stores)
− Cost for accessing shared memory can be uniform or non-uniform across cores

Processors privately cache data to improve performance
Reduces average data access time and saves interconnect bandwidth

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 3 / 36

Block Diagram of a SMP

C0 C1 C2 C3

L1 + L2 L1 + L2 L1 + L2 L1 + L2

Interconnect (On-chip network)

LLC Slice LLC Slice LLC Slice LLC Slice

Main Memory

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 4 / 36

Data Coherence

. Private caches create data coherence problem
• Copies of a variable can be present in multiple caches
• Private copies of shared data must be coherent, i.e., all copies must have the

same value (okay if the requirement holds eventually)

Consider the following sequence of operations on a single core system with write-back
caches but without coherence

C0x = x + 5
x = x + 15 L1 + L2

Main
Memory

x = 10

write-back
cache

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 5 / 36

Coherence Challenge with Multicores

C0
x = x + 5
x = x + 15

L1 + L2

C1 L1 + L2

Main
Memory

x = 10

(i) Multicore system setup

C0
x = x + 5
x = x + 15

L1 + L2

C1 L1 + L2

x = 10

x = 10

Main
Memory

x = 10

(ii) Each core reads x

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 6 / 36

Coherence Challenge with Multicores

C0x = x + 5 L1 + L2

Main
Memory

x = 10

C1 L1 + L2

x = 15

x = 25x = x + 15

(iii) Each core updates x in its private cache

C0x = x + 5 L1 + L2

Main
Memory

x = 25

C1 L1 + L2

x = 15

x = 25x = x + 15

1

2

(iv) Cores write back x, a store is lost depending on the
order of write backs

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 7 / 36

Can Write-through Caches Avoid the Coherence Problem?

Assume 3 cores with write-through caches

(i) Core C0 reads x from memory, caches it, and gets the value 10

(ii) Core C1 reads x from memory, caches it, and gets the value 10

(iii) C1 writes x=20, and updates its cached and memory values

(iv) C0 reads x from its cache and gets the value 10

(v) C2 reads x from memory, caches it, and gets the value 20

(vi) C2 writes x=30, and updates its cached and memory value

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 8 / 36

Sources of Errors in the Previous Setups

q Write-back cache
• Stores are not visible to memory immediately
− Order of write backs are important
• Lesson learned: do not allow more than one copy of a cache line in dirty state

. Write-through cache
• The value in memory may be correct if the writes are correctly ordered
− A store proceeded when there is already a cached copy
• Lesson learned: must invalidate all cached copies before allowing a store to

proceed

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 9 / 36

Understanding Coherence

[A memory system is coherent if the following hold:
(i) A read from a location X by a core C after a write by C to X always returns the

value written by C, provided there are no writes of X by another processor
between the two accesses by C.

(ii) A read from a location X by a core C after a write to X by another core returns the
written value if the read and write are sufficiently separated in time and no other
writes to X occur between the two accesses.

(iii) Writes to the same location are serialized. That is, two writes to the same location
by any two cores are seen in the same order by all processors.

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 10 / 36

Correctness Requirement

¥ For sequential programs, there is only one correct output
A read from a memory location must return the “latest” value written to it

. For parallel programs, there can be multiple correct outputs
• Defining “latest” precisely is crucial
• Assume that the latest value of a location is the latest value “committed” by any

thread/process

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 11 / 36

Cache Coherence Protocol

Multicore processors implement a cache coherence protocol to keep private caches in
sync

� A “cache coherence protocol” is a set of actions that ensure that a load to
address A returns the “last committed” value to A
• Essentially, makes one core’s write to A visible to other cores by propagating the

write to other caches
• Aims to make the presence of private caches functionally invisible
• Coherence protocols usually operate at the granularity of whole cache blocks

(e.g., 64 bytes)

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 12 / 36

Cache Coherence Protocol Invariants

1. Enforces the Single-Writer-Multiple-Reader (SWMR) invariant
For any given memory location, at any given moment in time, there is either a single core
that may write it (including read) or some number of cores that may read it

2. Data values must be propagated correctly (data invariant)
The value of a memory location at the start of a read-only time period is the same as the
value of the location at the end of its last read-write time period

read-only read-onlyread-write read-write

Cores 2 & 3 Core 2 Core 1 Cores 0 & 1
time

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 13 / 36

Alternate Definitions of Coherence

[Definition 2
A coherent system must appear to execute all threads’ loads and stores to a single
memory location in a total order that respects the program order of each thread

[Definition 3
A coherent system satisfies two invariants:
write propagation every store is eventually made visible to all cores
write serialization writes to the same memory location are serialized (i.e., observed

in the same order by all cores)

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 14 / 36

Cache Coherence Protocols

Implementing Coherence Protocols

Protocols are implemented as finite state machines called coherence controllers
A protocol formalizes the interactions between the different coherence controllers

Core

Cache
Controller

Private
Cache

interconnection network

Loads and
stores

Loaded
values

Issued coherence
requests and responses

Received coherence
requests and responses

Core
side

Network
side

Cache controller

LLC/Memory
Controller Memory

interconnection network

Issued coherence
responses

Received coherence
requests

Network
side

Memory controller

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 15 / 36

Important Characteristics of a Cache Block

Coherence protocols are implemented by associating states with each cache block

Validity A valid block has the most up-to-date values for the block. The block may be
read. It can be written if it is also exclusive.

Dirtyness A cache block is dirty if its value is the most up-to-date, and the value differs
from the value in the LLC/memory.

Exclusivity A cache block is exclusive if it is the only privately cached copy of that block
except perhaps in the shared LLC.

Ownership A cache or memory controller is the owner of a block if it is responsible for
responding to coherence requests for that block. In most protocols, there is
exactly one owner of a given block at all times.

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 16 / 36

Stable States

M, S, and I are commonly-used states

Modified (M) The block is valid, exclusive, owned, and potentially dirty. The cache has the
only valid copy of the block, the cache must respond to requests for the
block, and the copy of the block at the LLC/memory is potentially stale.

Shared (S) The block is valid but not exclusive, not dirty, and not owned. The cache has
a read-only copy of the block. There may be multiple processors caching a
line in S state.

Invalid (I) The cache either does not contain the block (not present) or it contains a
potentially stale copy that it may not read or write.

Different protocol extensions add additional states (e.g., E, O, and F) to optimize for
certain sharing patterns

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 17 / 36

Common Coherence Transactions

Transaction Goal of Requestor
GetS Obtain block in Shared (read-only) state
GetM Obtain block in Modified (read-write) state
Upg Upgrade block state from read-only (Shared or Owned) to read-write

(Modified); Upg (unlike GetM) does not require data to be sent to re-
questor

PutS Evict block in Shared state
PutE Evict block in Exclusive state
PutO Evict block in Owned state
PutM Evict block in Modified state

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 18 / 36

Communication between Core and Cache Controller

Event Response from Cache Controller
Load If cache hit, respond with data from cache; else initiate GetS

transaction
Store If cache hit in state E or M, write data into cache; else initiate

GetM or Upg transaction
Atomic RMW If cache hit in state E or M, atomically execute RMW semantics;

else initiate GetM or Upg transaction
Instruction fetch If I-cache hit, respond with instruction from cache; else initiate

GetS transaction
Read-only prefetch If cache hit, ignore; else (optionally) initiate GetS transaction
Read-write prefetch If cache hit in state M, ignore; else (optionally) initiate GetM or

Upg transaction
Replacement Depending on state of block, initiate PutS, PutE, PutO, or PutM

transaction

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 19 / 36

Types of Coherence Protocols

� Protocols differ in when and how writes are propagated
• The writes can be propagated synchronously or asynchronously
• Synchronous propagation means a write is made visible to other cores before

returning

ò Two main axes to classify synchronous protocols
(i) Invalidation-based protocol and Update-based protocol

(ii) Snoopy protocol and Directory protocol

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 20 / 36

Invalidation-Based Protocols

Invalidate all cached copies before allowing a store to proceed
Need to know the location of cached copies
Solution 1 : Broadcast that a core is going to do a store and sharers invalidate themselves
Solution 2 : Keep track of the sharers and invalidate them when needed

+ Only store misses go on bus and subsequent stores to the same line are cache hits
− Sharers will miss next time they try to access the line

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 21 / 36

Update-Based Protocols

Update all cached copies with the new value of the store
+ Sharers continue to hit in the cache, do not need to initiate and wait for a GetS

transaction to complete
− Prevalence of spatial and temporal locality can lead to unnecessary updates, leading

to increased bandwidth requirements
− Complicates implementing many memory consistency models

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 22 / 36

Snoopy Protocol

Cache controller initiates a request for a block by broadcasting a request
message to all other coherence controllers
• Each cache controller snoops (i.e., continuously monitors) the shared medium (e.g.,

bus or switch) for write activity concerned with its cached data addresses
• Assumes a global bus structure where communication can be seen by all
• Relies on the interconnection network to deliver the broadcast messages in a

consistent order to all cores

How do you prevent simultaneous writes from different controllers?

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 23 / 36

Snoopy Protocol

Invalidate on a write
• Core that wants to write to an address grabs a bus cycle and broadcasts a “write

invalidate” message
• All snooping caches invalidate their private copy of the appropriate cache line
• Core writes to its cached copy
• Any future read in other cores will now miss in cache and refetch new data

Update on a write
• Core that wants to write to an address grabs a bus cycle and broadcasts new data as

it updates its own copy
• All snooping caches update their copy

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 25 / 36

Directory Protocol

Cache controller initiates a request for a block by unicasting it to the block’s
home memory controller
• Memory controller maintains a directory that holds state about each block in the

LLC/memory (e.g., coherence state, the current owner ID, and a bitvector for the list
of current sharers)

• If the LLC/memory is the owner, the memory controller completes the transaction by
sending a data response to the requestor

• If a cache controller is the owner, the memory controller forwards the request to the
owner cache

• When the owner cache receives the forwarded request, it completes the transaction
by sending a data response to the requestor

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 26 / 36

Snoopy vs Directory Protocol

Snoopy Protocol

− Does not scale to large core counts
because of broadcast messages

− Requires some ordering guarantees on
messages which limits network
optimizations

Directory Protocol

+ Scalable because messages are unicast
+ The directory can be distributed to

improve scalability
− Few transactions take more cycles when

the home is not the owner
− Memory requirement increases with

core count

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 27 / 36

Directory System Model

Cache
Controller

Private
L1D

Core

Main Memory

interconnection network

LLC/Directory
Controller LLC Directory

Core

Cache
Controller

Private
L1D

Multicore
Chip

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 28 / 36

MSI Protocol

Req
I→S

Dir
I→S
S→S

(1) GetS

(2) Data

Req
I→S

Dir
M→S

Owner
M→S

(1) GetS (2) Fwd-GetS

(3) Data

(3) Data

Transitions from I to S

Req
M→I

Dir
M→I

(1) PutM+Data

(2) Put-Ack

Req
S→I

Dir
S→I
S→S

(1) PutS

(2) Put-Ack

Transitions from M or S to I

MSI Protocol

Req
I→M

Dir
I→M

(1) GetM

(2) Data[ack=0]

Req
I→M

Dir
M→M

Owner
M→I

(1) GetM (2) Fwd-GetM

(3) Data[ack=0]

Req
I→M
S→M

Dir
S→M

Sharer
S→I

Sharer
S→I

(1) GetM

(2) Data[ack>0]

(2) Inv

(2) Inv

(3) Inv-Ack

(3) Inv-Ack

Transitions from I or S to M

Usefulness of E State
� Cores often read data before updating it
• Oftentimes, there is only one sharer in the system (also applicable for

single-threaded programs)
− With MSI, the core will issue two coherence transactions: GetS followed by an Upg

m Optimization with E state
• The core that issues GetS for a block gets it in E state if there are no existing

sharers
• E state indicates the cache line is clean and is the only cached copy
• The core may then silently upgrade the block from E to M without issuing another

coherence request
• We will assume E is an ownership state, which implies evictions cannot be silent

MESI protocol

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 31 / 36

https://en.wikipedia.org/wiki/MESI_protocol

MESI Protocol

Req
I→S

Dir
S→S

(1) GetS

(2) Data

Req
I→S

Dir
M→S

Owner
M→S
E→S

(1) GetS (2) Fwd-GetS

(3) Data

(3) Data

Transitions from I to S

Req
M→I

Dir
M→I

(1) PutM+Data

(2) Put-Ack

Req
E→I

Dir
E→I

(1) PutE (no data)

(2) Put-Ack

Req
S→I

Dir
S→I
S→S

(1) PutS

(2) Put-Ack

Transitions from M or E or S to I

MESI Protocol

Req
I→M

Dir
I→M

(1) GetM

(2) Data[ack=0]

Req
I→M

Dir
M→M
E→M

Owner
M→I
E→I

(1) GetM (2) Fwd-GetM

(3) Data[ack=0]

Req
I→M
S→M

Dir
S→M

Sharer
S→I

Sharer
S→I

(1) GetM

(2) Data[ack>0]

(2) Inv

(2) Inv

(3) Inv-Ack

(3) Inv-Ack
If the only sharer is the requestor, then no Inv messages are sent and
the Data message from the Dir to Req has an Ack count of zero.

Transitions from I or S to M

Req
I→E

Dir
I→E

(1) GetS

(2) Data

Transitions from I to E

Adding an Owned (O) State

� Suppose a cache has a block in state M or E and receives a GetS
The cache changes the block state from M or E to S and sends the data to both the
requestor and the memory controller
• Why is it necessary to send the data to the memory controller?

MOESI protocol

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 34 / 36

https://en.wikipedia.org/wiki/MOESI_protocol

Adding an Owned (O) State

Owned state indicates that the block is valid, dirty, and shared, and the cache is the
owner
• The owner cache does not have permission to modify the block, and is responsible

for eventually updating memory

m Advantages of MOESI protocol (used in AMD Opteron)
+ Eliminates the extra data message to update the LLC/memory when a cache

receives a GetS request in the M or E state
+ Eliminates potentially unnecessary writes to the LLC if the block is written again

before being written back to the LLC
+ Allows subsequent requests to be satisfied by the private owner cache instead of

the slower LLC/memory

Swarnendu Biswas (IIT Kanpur) CS 636: A Brief Introduction to Cache Coherence Sem 2025-26-II 35 / 36

References

V. Nagarajan et al. A Primer on Memory Consistency and Cache Coherence. Chapters 1,2,6–8, 2nd edition,
Morgan and Claypool.

J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Sections 5.2, 5.4, 6th

edition, Morgan Kaufmann.

A. Gupta et al. Parallel Computer Architecture: A Hardware/Software Approach. Morgan Kaufmann.

Mainak Chaudhuri. Cache Coherence. Computer Architecture Summer School, IIT Kanpur, 2018.

https://www.cse.iitk.ac.in/users/biswap/CASS18/coherence.pdf

	Cache Coherence Protocols

