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Evaluating Concurrent Programs

Functional correctness
• Does the application compute what it is supposed to do?
• Check for concurrency errors such as atomicity violations, order violations, sequential

consistency violations, deadlocks, and livelocks

Performance correctness
• Does the application meet the performance requirements?
• Difficult to detect performance bottlenecks because of no failure symptoms
• Check for any performance regressions
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Performance Testing

• No one wants slow and inefficient software
▶ Leads to reduced throughput, increased latency, and wasted resources
▶ Leads to poor UX

• Software efficiency is increasingly important
▶ Hardware is not getting faster (per-core), but software is getting more complex
▶ Saving energy is now a primary concern
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Performance Bug

Relatively simple modifications to the source code results in significant
performance improvement, while preserving functionality

Performance bugs can be difficult to fix
• Contradictory requirements — a thread-safe class needs synchronization for

correctness and needs to scale at the same time
• Diminishing returns in fixing performance bugs
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Functional and Performance Bugs

Functional Bugs

• Well-defined notion of success and
failure

• Correctness requirements usually do
not change over time other than
significant changes in the specification

• More focus on researched testing
methodologies

• Rate of bugs generally flatten out with
maturity

Performance Bugs

• Difficult to detect because of no failure
symptoms

• Performance requirements may evolve
over time

• Relative lack of formalized testing
methodologies

• Rate of bugs reported have no trends
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A Thread-Unsafe Class in Groovy

1 class ExpandoMetaClass {
2 private boolean initialized;
3 synchronized void initialize() {
4 if (!this.initialized)
5 this.initialized = true;
6 }
7 boolean isInitialized() {
8 return this.initialized;
9 }

10 }
11
12
13

1 class ExpandoMetaClass {
2 private boolean initialized;
3 synchronized void initialize() {
4 if (!this.initialized)
5 this.setInitialized(true);
6 }
7 synchronized void setInitialized(

boolean b) {
8 this.initialized = b;
9 }

10 synchronized boolean isInitialized() {
11 return this.initialized;
12 }
13 }

Before October 2007: Class
ExpandoMetaClass is not thread-safe October 2007: Fixed the thread safety problem,

but led to performance regression that was
reported in May 2009

M. Pradel et al. Performance Regression Testing of Concurrent Classes. ISSTA, 2014.
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Fixing a Thread-Unsafe Class in Groovy

1 class ExpandoMetaClass {
2 private boolean initialized;
3 synchronized void initialize() {
4 if (!this.initialized)
5 this.setInitialized(true);
6 }
7 synchronized void setInitialized(

boolean b) {
8 this.initialized = b;
9 }

10 synchronized boolean isInitialized() {
11 return this.initialized;
12 }
13 }

1 class ExpandoMetaClass {
2 private volatile boolean initialized;
3 synchronized void initialize() {
4 if (!this.initialized)
5 this.setInitialized(true);
6 }
7 void setInitialized(boolean b) {
8 this.initialized = b;
9 }

10 boolean isInitialized() {
11 return this.initialized;
12 }
13 }
14

September 2009: Fixed performance regression

M. Pradel et al. Performance Regression Testing of Concurrent Classes. ISSTA, 2014.
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Fixing a Thread-Unsafe Class in Groovy

1 class ExpandoMetaClass {
2 private boolean initialized;
3 synchronized void initialize() {
4 if (!this.initialized)
5 this.setInitialized(true);
6 }
7 synchronized void setInitialized(

boolean b) {
8 this.initialized = b;
9 }

10 synchronized boolean isInitialized() {
11 return this.initialized;
12 }
13 }

1 class ExpandoMetaClass {
2 private volatile boolean initialized;
3 synchronized void initialize() {
4 if (!this.initialized)
5 this.setInitialized(true);
6 }
7 void setInitialized(boolean b) {
8 this.initialized = b;
9 }

10 boolean isInitialized() {
11 return this.initialized;
12 }
13 }
14

Is the synchronized keyword required? Would
volatile not suffice?

Difference between volatile and synchronized in Java
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Real-World Performance Bugs: Apache

Apache HTTPD developers forgot to change a parameter of API apr_stat after an API upgrade.
This mistake caused more than ten times slowdown in Apache servers.

G. Jin et al. Understanding and Detecting Real-World Performance Bugs. PLDI, 2012
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Real-World Performance Bugs: Mozilla 1

Mozilla developers implemented a procedure nsImage::Draw() for figure scaling, compositing,
and rendering, which is a waste for transparent figures. This problem did not catch developers’
attention until two years later when 1px×1px transparent GIFs became general purpose spacers
widely used by web developers to work around certain idiosyncrasies in HTML 4. The patch of this
bug skips nsImage::Draw() when the function input is a transparent figure.

G. Jin et al. Understanding and Detecting Real-World Performance Bugs. PLDI, 2012
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Real-World Performance Bugs: Mozilla 2

Users reported that Firefox cost 10 times more CPU than Safari on some popular Web pages, such as www.
gmail.com. Lengthy profiling and code investigation revealed that Firefox conducted an expensive GC process
at the end of every XMLHttpRequest, which was too frequent. A developer then recalled that GC was added
there few years ago when XHRs were infrequent and each XHR replaced substantial portions of the DOM in
JavaScript. However, things have changed in modern Web pages. As a primary feature enabling web 2.0, XHRs
are much more common than before. This bug was fixed by removing the call to GC.

G. Jin et al. Understanding and Detecting Real-World Performance Bugs. PLDI, 2012

Swarnendu Biswas (IIT Kanpur) CS 636: Performance of Concurrent Programs Sem 2024-25-II 12 / 85

www.gmail.com
www.gmail.com
https://dl.acm.org/doi/10.1145/2345156.2254075


Real-World Performance Bugs: Mozilla 3

Users reported that Firefox hung when they clicked “bookmark all (tabs)” with 20+ open tabs. Investigation
revealed that Firefox used N database transactions to bookmark N tabs, which is very time consuming compar-
ing with batching all bookmark tasks into a single transaction. Debugging revealed that the database service
library of Firefox did not provide interface for aggregating tasks into one transaction, because there was almost
no batchable database task in Firefox a few years back. The addition of batchable functionalities such as “book-
mark all (tabs)” exposed this inefficiency problem. After replacing N invocations of doTransact with a single
doAggregateTransact, the hang disappears. During patch review, developers found two more places with
similar problems and fixed them by doAggregateTransact.

G. Jin et al. Understanding and Detecting Real-World Performance Bugs. PLDI, 2012
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Real-World Performance Bugs: MySQL

MySQL synchronization-library developers implemented a fastmutex_lock for fast lock-
ing. Unfortunately, unit tests showed that fastmutex_lock could be 40 times slower
than normal locks. It turns out that library function random() actually contains a lock.
This lock serializes every threads that invoke random(). Developers fixed this bug by
replacing random() with a non-synchronized random number generator.

G. Jin et al. Understanding and Detecting Real-World Performance Bugs. PLDI, 2012
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Performance Bugs are Surprisingly Common!

Type Language # Bugs

Apache Command-line utility + Server + Library C, Java 25
Google Chrome Web browser C, C++ 10
GCC Compiler C, C++ 10
Mozilla GUI Application C++, JS 36
MySQL Server software C, C++, C# 28

G. Jin et al. Understanding and Detecting Real-World Performance Bugs. PLDI, 2012

Swarnendu Biswas (IIT Kanpur) CS 636: Performance of Concurrent Programs Sem 2024-25-II 15 / 85

https://dl.acm.org/doi/10.1145/2345156.2254075


Reasons for Performance Bugs

• Inefficient function call combinations (e.g., “bookmark all (tabs)”)
• Wrong API interpretation (e.g., APACHE HTTPD)
• Redundant work (e.g., MySQL fastmutex_lock)

▶ Wrong functional implementation
• Resource contention (e.g., sub-optimal synchronization and false sharing)

▶ Many synchronization fixes are just because of performance reasons
• Cross core/node data communication
• Miscellaneous

▶ Poor data structure choices, design/algorithm issues, data partitioning, load balancing
and task stealing

Swarnendu Biswas (IIT Kanpur) CS 636: Performance of Concurrent Programs Sem 2024-25-II 16 / 85



Dealing with Performance Bugs

• Compilers and hardware optimizations may not always fix performance problems
• Automation support is limited and is still being explored

▶ Current strategies involve random testing and feedback of testers
▶ Design better performance tests
▶ Use annotation systems
▶ . . .
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Tracking Synchronization Bottlenecks



Synchronization-Related Factors That Affect Performance

affects
performance

may affect
performance

may affect
performance

Frequency of lock acquisitions
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M. Alam et al. SyncPerf: Categorizing, Detecting, and Diagnosing Synchronization Performance Bugs. EuroSys, 2017
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Spectrum of Synchronization Operations

Type Ideal Use Case
atomic instructions simple integer operations (RMW, exchange)
spin locks small critical sections with low contention
read-write locks critical sections with many readers
try locks alternate control flow
mutex locks larger critical sections and may involve waiting
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Reasons for Synchronization-Related Performance Loss

• Wrong granularity choice
▶ For example, refine coarse locks into finer-grained locks

• Over-synchronization
▶ CS data is thread-local or read-only or may write to disjoint addresses
▶ Operations are already protected by another lock

• Use of improper primitives
▶ For example, use of try locks in case of repeated failures, blocking synchronization with

condition variables might be better
• Asymmetric contention

▶ For example, say a poor hash function fails to distribute items to different buckets and
locks are taken per bucket

• Load imbalance
▶ Waiting time for a group of threads is more than for other group(s) of threads
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Automated Analyses for Detecting Synchronization-Related
Performance Bugs

• Lock contention detectors
▶ Measure thread idle time, thread synchronization time
▶ Thread Profiler, IBM Lock Analyzer, SyncProf, ...

• Study impact of critical sections on the critical paths of applications
▶ Focus on locks that can impact performance

• Detect load imbalance
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Speculative Lock Elision



Potential Parallelism Hurt by Synchronization

1 LOCK(locks->error_lock);
2 if (local_error > multi->err_multi)
3 multi->err_multi = local_error;
4 UNLOCK(locks->error_lock);

ocean

R. Rajwar and J. Goodman. Speculative Lock Elision: Enabling Highly Concurrent Multithreaded Execution, MICRO 2001.
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Potential Parallelism Hurt by Synchronization

Thread 1

1 LOCK(hash_tbl.lock)
2 var = hash_tbl.lookup(X)
3 if (!var)
4 hash_tbl.add(X);
5 UNLOCK(hash_tbl.lock)

Thread 2

1 LOCK(hash_tbl.lock)
2 var = hash_tbl.lookup(Y)
3 if (!var)
4 hash_tbl.add(Y);
5 UNLOCK(hash_tbl.lock)

concurrent hash
table

R. Rajwar and J. Goodman. Speculative Lock Elision: Enabling Highly Concurrent Multithreaded Execution, MICRO 2001.
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Problems with Conservative Locking

• Conservative synchronization leads to serialization
• Many lock operations are not necessary

▶ Updates in the critical sections occur infrequently during execution
▶ Updates can occur to disjoint parts of the data structure

• Speculative execution in OOO processors are not able to restore the inherent
parallelism

Swarnendu Biswas (IIT Kanpur) CS 636: Performance of Concurrent Programs Sem 2024-25-II 24 / 85



Speculative Lock Elision (SLE)

Insight: Locks can be elided if atomicity can be guaranteed for all memory operations
within critical sections by some means

Idea
• Speculatively assume lock is not necessary and execute critical section without

acquiring the lock
• Check for conflicts within the critical section
• Roll back if assumption is incorrect and execute with the lock acquired
• Atomicity is not violated if lock release is encountered, elide lock release and commit

speculative state

SLE can be provided with both software and hardware support

R. Rajwar and J. Goodman. Speculative Lock Elision: Enabling Highly Concurrent Multithreaded Execution, MICRO 2001.
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Challenges in Providing SLE

• Either the entire critical section is committed or none of it

• Challenges
▶ How to detect the lock operation that is to be elided?
▶ How to keep track of dependences and conflicts in the critical section?
▶ How to buffer speculative state?
▶ How to support commit and rollback?
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Maintaining Atomicity

• If atomicity is maintained, all locks can be removed
• Conditions for atomicity

▶ Data read is not modified by another thread until critical section is complete
▶ Data written is not accessed by another thread until critical section is complete

• If we know the beginning and end of a critical section, we can monitor the memory
addresses read or written to by the critical section and check for conflicts
▶ For example, using the underlying cache coherence mechanism
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Potential SLE Implementation in Hardware

• Checkpoint register state before entering SLE mode
• In SLE mode

▶ Store: Buffer the update in the write buffer (invisible to other processors), request
exclusive access

▶ Store/Load: Set “access” bit for block in the cache
▶ Trigger misspeculation on some coherence actions

▶ On external invalidation to a block with access bit set
▶ On exclusive access to request to a block with access bit set

▶ If not enough buffering space, trigger misspeculation
• If end of critical section reached without misspeculation, commit all writes (needs to

appear instantaneous)
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Expected Gains from SLE

+ Concurrent critical section execution
+ Reduced memory latencies to lock locations

▶ Lock memory locations can remain shared
+ Reduced memory traffic

▶ No transfer of coherence messages over the bus

− Hardware implementation is constrained by the size of the cache and the write buffers
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SLE vs TM

SLE

• Track memory accesses in critical
sections, detect conflicts, and perform
rollbacks

• “Best effort” — can fallback to acquire
the lock and reexecute
non-speculatively

• Need to identify opportunities for lock
elision

TM

• Track memory accesses in transactions,
detect conflicts, and perform rollbacks

• TM generally is always speculative
• Complete program execution can be

transactional
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Need for Cache Coherence



Types of Parallelism

Instruction-level Parallelism
Overlap instructions within a single thread of execution (e.g., pipelining, superscalar issue,
and out-of-order execution)

Data-level Parallelism
Execute an instruction in parallel on multiple data values (e.g., vector instructions)

for (int i = 0; i < N; i++) {
c[i] = a[i] + b[i];

}

Thread-level Parallelism
Concurrently execute multiple threads
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Shared Memory Multiprocessor Architecture

Single address space shared by multiple cores
+ Exploits TLP by having a number of cores
+ Can share data efficiently, communication is implicit through memory instructions

(i.e., loads and stores)
− Cost for accessing shared memory can be uniform or non-uniform across cores

Processors privately cache data to improve performance
Reduces average data access time and saves interconnect bandwidth
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Block Diagram of a SMP

C0 C1 C2 C3

L1 + L2 L1 + L2 L1 + L2 L1 + L2

Interconnect (On-chip network)

LLC
Bank

LLC
Bank

LLC
Bank

LLC
Bank

Main Memory
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Data Coherence

Private caches create data coherence problem
• Copies of a variable can be present in multiple caches
• Private copies of shared data must be coherent, i.e., all copies must have the same

value (okay if the requirement holds eventually)

Consider the following sequence of operations on a single core system
Final value of x will be 30

C0x = x + 5
x = x + 15 L1 + L2

Main
Memory

x = 10

write-back
cache
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Coherence Challenge with Multicores

C0
x = x + 5
x = x + 15

L1 + L2

C1 L1 + L2

Main
Memory

x = 10

(i) Multicore system setup

C0
x = x + 5
x = x + 15

L1 + L2

C1 L1 + L2

x = 10

x = 10

Main
Memory

x = 10

(ii) Each core reads x
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Coherence Challenge with Multicores

C0x = x + 5 L1 + L2

Main
Memory

x = 10

C1 L1 + L2

x = 15

x = 25x = x + 15

(iii) Each core updates x in its private cache

C0x = x + 5 L1 + L2

Main
Memory

x = 25

C1 L1 + L2

x = 15

x = 25x = x + 15

1

2

(iv) Cores write back x, a store is lost depending on the
order of write backs
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Can Write-through Caches Avoid the Coherence Problem?

Assume 3 cores with write-through caches
(i) Core C0 reads x from memory, caches it, and gets the value 10

(ii) Core C1 reads x from memory, caches it, and gets the value 10

(iii) C1 writes x=20, and updates its cached and memory values

(iv) C0 reads x from its cache and gets the value 10

(v) C2 reads x from memory, caches it, and gets the value 20

(vi) C2 writes x=30, and updates its cached and memory value
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Sources of Errors in the Previous Examples

Write-back cache
• Stores are not visible to memory immediately
• Order of write backs are important
• Lesson learned: do not allow more than one copy of a cache line in dirty state

Write-through cache
• The value in memory may be correct if the writes are correctly ordered
• Our example system allowed a store to proceed when there is already a cached copy
• Lesson learned: must invalidate all cached copies before allowing a store to proceed
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Understanding Coherence

A memory system is coherent if the following hold:
(i) A read from a location X by a core C that follows a write by C to X always returns the

value written by C provided there are no writes of X by another processor between the
two accesses by C.

(ii) A read from a location X by a core C that follows a write to X by another core returns
the written value if the read and write are sufficiently separated in time and no other
writes to X occur between the two accesses.

(iii) Writes to the same location are serialized. That is, two writes to the same location by
any two cores are seen in the same order by all processors.
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Correctness Requirement

For sequential programs, there is only one correct output
A read from a memory location must return the “latest” value written to it

For parallel programs, there can be multiple correct outputs
• Defining “latest” precisely is crucial
• Assume that the latest value of a location is the latest value “committed” by any

thread/process
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Cache Coherence



Cache Coherence Protocol

Multicore processors implement a cache coherence protocol to keep private caches in sync

A “cache coherence protocol” is a set of actions that ensure that a load to address
A returns the “last committed” value to A
• Essentially, makes one core’s write visible to other cores by propagating the write to

other caches
• Aims to make the presence of private caches functionally invisible
• Coherence protocols can operate on granularities from 1–64 bytes, usually operate

on whole cache blocks (e.g., 64 bytes)
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Cache Coherence Protocol Invariants

1. Enforces the Single-Writer-Multiple-Reader (SWMR) invariant
For any given memory location, at any given moment in time, there is either a single core
that may write it (including read) or some number of cores that may read it

2. Data values must be propagated correctly (data invariant)
The value of a memory location at the start of a read-only time period is the same as the
value of the location at the end of its last read-write time period

read-only read-onlyread-write read-write

Cores 2 & 3 Core 2 Core 1 Cores 0 & 1
time
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Alternate Definitions of Coherence

Definition 2
A coherent system must appear to execute all threads’ loads and stores to a single
memory location in a total order that respects the program order of each thread

Definition 3
A coherent system satisfies two invariants:
write propagation every store is eventually made visible to all cores, and
write serialization writes to the same memory location are serialized (i.e., observed in the

same order by all cores)

Swarnendu Biswas (IIT Kanpur) CS 636: Performance of Concurrent Programs Sem 2024-25-II 45 / 85



Implementing Coherence Protocols

Protocols are implemented as finite state machines called coherence controllers
A protocol formalizes the interactions between the different coherence controllers

Core 

Cache
Controller

Private
Cache

interconnection network

Loads and
stores

Loaded
values

Issued coherence
requests and responses

Received coherence 
requests and responses

Core
side

Network
side

Cache controller

LLC/Memory
Controller Memory

interconnection network

Issued coherence
responses

Received coherence 
requests

Network
side

Memory controller
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Important Characteristics of a Cache Block

Coherence protocols are implemented by associating states with each cache block

Validity A valid block has the most up-to-date value for this block. The block may be
read. It can be written if it is also exclusive.

Dirtyness A cache block is dirty if its value is the most up-to-date, and this value differs
from the value in the LLC/memory.

Exclusivity A cache block is exclusive if it is the only privately cached copy of that block
(i.e., the block is not cached anywhere else except perhaps in the shared LLC).

Ownership A cache or memory controller is the owner of a block if it is responsible for
responding to coherence requests for that block. In most protocols, there is
exactly one owner of a given block at all times.
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Stable States

M, S, and I are commonly-used states

Modified (M) The block is valid, exclusive, owned, and potentially dirty. The cache has the
only valid copy of the block, the cache must respond to requests for the
block, and the copy of the block at the LLC/memory is potentially stale.

Shared (S) The block is valid but not exclusive, not dirty, and not owned. The cache has
a read-only copy of the block. There may be multiple processors caching a
line in S state.

Invalid (I) The cache either does not contain the block (not present) or it contains a
potentially stale copy that it may not read or write.

Different protocol extensions add additional states (e.g., E, O, and F) to optimize for certain
sharing patterns
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Common Coherence Transactions

Transaction Goal of Requestor
GetS Obtain block in Shared (read-only) state
GetM Obtain block in Modified (read-write) state
Upg Upgrade block state from read-only (Shared or Owned) to read-write

(Modified); Upg (unlike GetM) does not require data to be sent to re-
questor

PutS Evict block in Shared state
PutE Evict block in Exclusive state
PutO Evict block in Owned state
PutM Evict block in Modified state
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Communication between Core and Cache Controller

Event Response from Cache Controller
Load If cache hit, respond with data from cache; else initiate GetS

transaction
Store If cache hit in state E or M, write data into cache; else initiate

GetM or Upg transaction
Atomic RMW If cache hit in state E or M, atomically execute RMW semantics;

else initiate GetM or Upg transaction
Instruction fetch If I-cache hit, respond with instruction from cache; else initiate

GetS transaction
Read-only prefetch If cache hit, ignore; else (optionally) initiate GetS transaction
Read-write prefetch If cache hit in state M, ignore; else (optionally) initiate GetM or

Upg transaction
Replacement Depending on state of block, initiate PutS, PutE, PutO, or PutM

transaction
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Types of Coherence Protocols

Protocols differ in when and how writes are propagated
• The writes can be propagated synchronously or asynchronously
• Synchronous propagation means a write is made visible to other cores before

returning

Two main axes to classify synchronous protocols
(i) Invalidation-based protocol and Update-based protocol

(ii) Snoopy protocol and Directory protocol
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Invalidation-Based Protocols

Invalidate all cached copies before allowing a store to proceed
Need to know the location of cached copies
Solution 1 : Broadcast that a core is going to do a store and sharers invalidate themselves
Solution 2 : Keep track of the sharers and invalidate them when needed

+ Only store misses go on bus and subsequent stores to the same line are cache hits
− Sharers will miss next time they try to access the line
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Update-Based Protocols

Update all cached copies with the new value of the store
+ Sharers continue to hit in the cache, do not need to initiate and wait for a GetS

transaction to complete
− Prevalence of spatial and temporal locality can lead to unnecessary updates, leading

to increased bandwidth requirements
− Complicates implementing many memory consistency models
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Snoopy Protocol

Cache controller initiates a request for a block by broadcasting a request message
to all other coherence controllers
• Each cache controller snoops (i.e., continuously monitors) the shared medium (e.g.,

bus or switch) for write activity concerned with its cached data addresses
• Assumes a global bus structure where communication can be seen by all
• Relies on the interconnection network to deliver the broadcast messages in a

consistent order to all cores

How do you prevent simultaneous writes from different controllers?
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Snoopy Protocol

Invalidate on a write
• Core that wants to write to an address grabs a bus cycle and broadcasts a “write

invalidate” message
• All snooping caches invalidate their private copy of the appropriate cache line
• Core writes to its cached copy
• Any future read in other cores will now miss in cache and refetch new data

Update on a write
• Core that wants to write to an address grabs a bus cycle and broadcasts new data as

it updates its own copy
• All snooping caches update their copy
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Directory Protocol

Cache controller initiates a request for a block by unicasting it to the block’s home
memory controller
• Memory controller maintains a directory that holds state about each block in the

LLC/memory (e.g., coherence state, the current owner ID, and a bitvector for the list of
current sharers)

• If the LLC/memory is the owner, the memory controller completes the transaction by
sending a data response to the requestor

• If a cache controller is the owner, the memory controller forwards the request to the
owner cache

• When the owner cache receives the forwarded request, it completes the transaction
by sending a data response to the requestor
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Snoopy vs Directory Protocol

Snoopy Protocol

− Does not scale to large core counts
because of broadcast messages

− Requires some ordering guarantees on
messages which limits network
optimizations

Directory Protocol

+ Scalable because messages are unicast
+ The directory can be distributed to

improve scalability
− Few transactions take more cycles when

the home is not the owner
− Memory requirement increases with

core count
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Coherence Protocols



Directory System Model

Cache
Controller

Private
L1D
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Main Memory

interconnection network

LLC/Directory
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Private
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Multicore
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MSI Protocol

Req
I→S

Dir
I→S
S→S

(1) GetS

(2) Data

Req
I→S

Dir
M→S

Owner
M→S

(1) GetS (2) Fwd-GetS

(3) Data

(3) Data

Transitions from I to S

Req
M→I

Dir
M→I

(1) PutM+Data

(2) Put-Ack

Req
S→I

Dir
S→I
S→S

(1) PutS

(2) Put-Ack

Transitions from M or S to I



MSI Protocol

Req
I→M

Dir
I→M

(1) GetM

(2) Data[ack=0]

Req
I→M

Dir
M→M

Owner
M→I

(1) GetM (2) Fwd-GetM

(3) Data[ack=0]

Req
I→M
S→M

Dir
S→M

Sharer
S→I

Sharer
S→I

(1) GetM

(2) Data[ack>0]

(2) Inv

(2) Inv

(3) Inv-Ack

(3) Inv-Ack

Transitions from I or S to M



Usefulness of E State
Cores often read data before updating it
• Oftentimes, there is only one sharer in the system (also applicable for single-threaded

programs)
• But with MSI, the core will issue two coherence transactions: GetS followed by an Upg

Optimization with E state
• A core issues GetS for a block
• Core gets the block in E state if there are no existing sharers
• E state indicates the cache line is clean and is the only cached copy
• The core may then silently upgrade the block from E to M without issuing another

coherence request
• We will assume E is an ownership state, which implies evictions cannot be silent

MESI protocol
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MESI Protocol

Req
I→S

Dir
S→S

(1) GetS

(2) Data

Req
I→S

Dir
M→S

Owner
M→S
E→S

(1) GetS (2) Fwd-GetS

(3) Data

(3) Data

Transitions from I to S

Req
M→I

Dir
M→I

(1) PutM+Data

(2) Put-Ack

Req
E→I

Dir
E→I

(1) PutE (no data)

(2) Put-Ack

Req
S→I

Dir
S→I
S→S

(1) PutS

(2) Put-Ack

Transitions from M or E or S to I



MESI Protocol

Req
I→M

Dir
I→M

(1) GetM

(2) Data[ack=0]

Req
I→M

Dir
M→M
E→M

Owner
M→I
E→I

(1) GetM (2) Fwd-GetM

(3) Data[ack=0]

Req
I→M
S→M

Dir
S→M

Sharer
S→I

Sharer
S→I

(1) GetM

(2) Data[ack>0]

(2) Inv

(2) Inv

(3) Inv-Ack

(3) Inv-Ack
If the only sharer is the requestor, then no Inv messages are sent and
the Data message from the Dir to Req has an Ack count of zero.

Transitions from I or S to M

Req
I→E

Dir
I→E

(1) GetS

(2) Data

Transitions from I to E



Cache Contention



Types of Cache Contention

Cache line contention arises from two types of read-write data sharing: true sharing and
false sharing

True Sharing

• Same location is accessed by multiple
cores

• Can be fixed only by means of
algorithmic changes

False Sharing

• Two unrelated locations lie on the same
cache line and are accessed by multiple
cores

• Can be fixed by modifying the data
layout (manual or automated)

Swarnendu Biswas (IIT Kanpur) CS 636: Performance of Concurrent Programs Sem 2024-25-II 67 / 85



False Sharing

False sharing is a performance problem in cache-coherent systems
• Cores contend on cache blocks instead of data
• Can arise when threads access global or heap memory

Swarnendu Biswas (IIT Kanpur) CS 636: Performance of Concurrent Programs Sem 2024-25-II 68 / 85



Understanding False Sharing

Core 0 Core 1

Main Memory

L1D L1D

(i) Multicore system setup

Core 0 Core 1

Main Memory

L1D L1D

read B0

(ii) Core 0 reads block offset B0
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Understanding False Sharing

Core 0 Core 1

read B3

Main Memory

L1D L1D

(iii) Core 1 reads block offset B3

Core 0 Core 1

Main Memory

L1D L1D

write B0

invalidate

(iv) Core 0 writes block offset B0
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Understanding False Sharing

Core 0 Core 1

Main Memory

L1D L1D

write B3

invalidate

(v) Core 1 writes block offset B3

Core 0 Core 1

Main Memory

L1D L1D

write B0

invalidate

(ii) Core 0 writes block offset B0

Cache misses resulting from data sharing across cores are called coherence misses (e.g.,
the write to B3 by Core 1 in (v))
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Impact of False Sharing
1 int array[100];

3 void *func(void *param) {
int index = *((int*)param);

5 for (int i = 0; i < 100000000; i++)
array[index]+=1;

7 }

9 int main() {
int first_elem = 0;

11 int bad_elem = 1;
int good_elem = 99;

13 pthread_t thread_1;
pthread_t thread_2;

15
clock_gettime(CLOCK_REALTIME, ...);

17 func((void*)&first_elem);
func((void*)&bad_elem);

19 clock_gettime(CLOCK_REALTIME, ...);

clock_gettime(CLOCK_REALTIME, ...);
22 pthread_create(&thread_1, NULL, func,

(void*)&first_elem);
24 pthread_create(&thread_2, NULL, func,

(void*)&bad_elem);
26 pthread_join(thread_1, NULL);

pthread_join(thread_2, NULL);
28 clock_gettime(CLOCK_REALTIME, ...);

30 clock_gettime(CLOCK_REALTIME, ...);
pthread_create(&thread_1, NULL, func,

32 (void*)&first_elem);
pthread_create(&thread_2, NULL, func,

34 (void*)&good_elem);
pthread_join(thread_1, NULL);

36 pthread_join(thread_2, NULL);
clock_gettime(CLOCK_REALTIME, ...);

38 }

https://github.com/MJjainam/falseSharing
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Introducing False Sharing is Easy

1 // Global variables accessed by
2 // different threads me and you
3 me = 1;
4 you = 2;
5

6

1 // Heap objects can lie on the
2 // same line
3 me = new Foo();
4 you = new Bar()
5

1 // Class/struct fields can lie on
2 // the same line
3 class X {
4 int me;
5 float you;
6 };

1 // Array accesses by different
2 // threads me and you
3 array[me] = 12;
4 array[you] = 13;
5
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False Sharing in Real Applications

False sharing problems were reported in Linux kernel, JVM, and Boost library
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https://dl.acm.org/doi/10.5555/1924943.1924944
https://bugs.openjdk.org/browse/JDK-8180450
https://stackoverflow.com/questions/11037655/false-sharing-in-boostdetailspinlock-pool


False Sharing Mitigation Techniques

• Compiler optimizations (cache block padding)
− Inflates memory requirement, can complicate address computations

• Runtime solutions (e.g., use hardware performance counters to detect false sharing)
− Can miss false sharing instances

• Sub-block coherence or false-sharing-aware coherence protocols
• Cache-conscious programming
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Fixing False Sharing can be Non-trivial



Fixing False Sharing can be Non-trivial

Problem is often embedded inside the source code

False sharing is sensitive to
• Application behavior (e.g., mapping of threads to cores)
• Compiler toolchain (e.g., data layout optimizations and memory allocator)

▶ GCC unintentionally eliminates false sharing in Phoenix linear_regression benchmark at
certain optimization levels, while LLVM does not do so at any optimization level

• Execution environment (e.g., object placements on the cache line, hardware platform
with different cache line sizes)
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Detect False Sharing with perf c2c

Idea is to check whether loads/stores frequently hit in a remote cache line that is in M state

Input with false sharing
Compile with gcc -O0 -g false-sharing.c -pthread

Using perf c2c
# May need to update /proc/sys/kernel/perf_event_paranoid to -1
# sudo sh -c ’echo 1 >/proc/sys/kernel/perf_event_paranoid’
perf c2c record -F 30000 -u -- ./a.out
perf c2c report -NN -i perf.data --stdio > ./perf-report.out
# Check the analysis report

C2C – False Sharing Detection in Linux Perf
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https://joemario.github.io/blog/2016/09/01/c2c-blog
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