
CS 335: Type Systems

Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2023-24-II

Type Error in Python

def add(x):
return x + 1

class A(object):
pass

a = A()
add(a)

Compilers help detect type errors

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 3 / 68

What is a Type?

Definition
Type is a set of values and operations allowed on those values
� Integer is any whole number in the range −231 ≤ i < 231 and examples of allowed

operations are +, −, ×, and ÷
� Booleans have true and false values and examples operations are &&, | |, and !

Abstraction-based A type is an interface consisting of a set of operations with
well-defined and mutually consistent semantics

Structural A type is either from a collection of built-in types or a composite type
created by applying a type constructor to built-in types

Denotational � A type is a set of values
� A value has a given type if it belongs to the set

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 4 / 68

What is a Type?

Pascal
If both operands of the arithmetic operators of addition, subtraction, and multiplication are
of type integer, then the result is of type integer

C
The result of the unary & operator is a pointer to the object referred to by the operand. If
the type of operand is X , the type of the result is a pointer to X .

The type of a language construct is denoted by a
type expression (e.g., basic types like int and float)

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 6 / 68

Type System

Definition
The set of types and rules to associate type expressions to different parts of a program
(e.g., variables, expressions, and functions) are collectively called a type system
� Type systems include rules for type inference, type equivalence, and type

compatibility
▶ Type inference defines the type of an expression based on the types of its constituent

parts or the surrounding context
▶ Type equivalence determines when types of two values are the same
▶ Type compatibility determines when a value of a given type can be used in a given context

� Goal is to reduce sources of bugs due to type errors

� Different type systems may be used by different compiler implementations for the
same language
▶ Pascal language specification includes the index set of arrays in the type information of a

function, but compiler implementations allow the index set to be unspecified
Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 8 / 68

Type Checking

� Ensure that valid operations are invoked on variables and expressions
▶ E.g., && operator in Java expects two operands of type boolean

� Includes both type inferencing and identifying type-related errors
▶ A type error (or type clash) occurs when we attempt an operation on a value for which

that operation is not defined
▶ Can catch errors, so needs to have a notion for error recovery
▶ Run-time errors (e.g., arithmetic overflow) is outside the scope of type systems

� A type checker implements a type system

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 9 / 68

Catching Type Errors
� Impossible to build a type checker that

can predict which programs will result
in type errors

class A {
i n t add (i n t x) {

return x + 1;
}
public s t a t i c void main (S t r i n g args []) {

A a = new A () ;
i f (fa lse) { add (a) ; }

}
}

� Type checkers make a conservative approximation of what will happen during
execution
▶ Raises error for anything that might cause a type error

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 10 / 68

Type Safety

� A program is type-safe if it is known to be free of type errors
� A language is type-safe if the only operations that can be performed on data in the

language are those allowed by the type of data
▶ All legal programs in that language are type-safe

� Type-safe languages do not allow operations or conversions that violate the rules of
the type system

� Java, Smalltalk, Scheme, Haskell, Ruby, and Ada are examples of type-safe languages,
while Fortran and C are not type-safe

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 11 / 68

Categories of Type Systems

Strongly-typed Every expression can be assigned an unambiguous type
Weakly-typed Allows a value of one type to be treated as another

� Errors may go undetected at compile time and even at run time
Untyped Allows any operation to be performed on any data

� No type checking is done (e.g., Assembly, Tcl, and BCPL)

What is the difference between a strongly typed language and a statically typed language?

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 12 / 68

https://stackoverflow.com/questions/2690544/what-is-the-difference-between-a-strongly-typed-language-and-a-statically-typed?noredirect=1&lq=1

Categories of Type Systems

Statically-typed Every expression can be typed during compilation (e.g., C, C++, Java,
and Rust)

Dynamically-typed Types are associated with run-time values rather than expressions (e.g.,
Lisp, Perl, Python, Javascript, and Ruby)
� Type errors cannot be detected until the code is executed

What is the difference between a strongly typed language and a statically typed language?

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 13 / 68

https://stackoverflow.com/questions/2690544/what-is-the-difference-between-a-strongly-typed-language-and-a-statically-typed?noredirect=1&lq=1

Static vs Dynamic Typing

Static Typing

� Can find errors at compile time
� Low cost of fixing bugs
� Improved reliability and performance of

compiled code
� Effectiveness depends on the strength

of the type system

Dynamic Typing

� Allows fast compilation
� Type of a variable can depend on run

time information
� Can load new code dynamically
� Allows constructs that static checkers

would reject

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 14 / 68

Categories of Type Systems
Static type systems can be explicit or implicit depending on whether the types are
explicitly written

� Manifest (or explicit) typing requires
explicitly identifying the type of a variable
during declaration (e.g., Pascal and Java)

� Type is deduced from context in latent (or
implicit) typing (e.g., Standard ML and
OCaml)

int main() {
float x = 0.0;
int y = 0;
...

}

(* Standard ML*)
let val s = ‘‘Test’’

val x = 0.0
val y = 0

in print "Hello, World!\n"
end

Type systems: nominal vs. structural, explicit vs. implicit
Manifest typing

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 15 / 68

https://softwareengineering.stackexchange.com/questions/181154/type-systems-nominal-vs-structural-explicit-vs-implicit
https://en.wikipedia.org/wiki/Manifest_typing

Categorization of Programming Languages
Statically-Typed Dynamically-Typed

Strongly-Typed ML, Haskell, Java, Pascal Lisp, Scheme
Weakly-Typed C, C++ Perl, PHP

� C is weakly and statically typed
� C++ is statically typed with optional dynamic type casting
� Some languages allow both static and dynamic typing

▶ Java is both statically and dynamically typed (allows downcasting to subtypes)
� Python is strongly and dynamically typed

Is Python strongly typed?

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 16 / 68

https://stackoverflow.com/questions/11328920/is-python-strongly-typed

Categorization of Programming Languages

Magic lies here - Statically vs Dynamically Typed Languages
Comparison of programming languages by type system

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 17 / 68

https://medium.com/android-news/magic-lies-here-statically-typed-vs-dynamically-typed-languages-d151c7f95e2b
https://en.wikipedia.org/wiki/Comparison_of_programming_languages_by_type_system

More on Type Checking

� All checking can be implemented dynamically
� A sound type system ensures that the type of the value computed from an expression

matches the expression’s static type, and thus avoids the need for dynamic checking
� A compiler can implement a statically typed language with dynamic checking

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 18 / 68

Gradual Typing

� Allows parts of a program to be either dynamically typed or statically typed
� Programmer controls the typing with annotations

▶ Unannotated variables have an unknown type, check type at run time
▶ Static type checker considers every type to be compatible with unknown
▶ E.g., Typescript and CPerl

Type Hints in Python v3.5+ (PEP 484)
def sum(num1: int, num2: int) -> int:
return num1 + num2

print(sum(2, 3))
print(sum(1, ‘‘Hello World!’’))

No type checking will happen at run time

Gradual typing
What is Gradual Typing

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 19 / 68

https://en.wikipedia.org/wiki/Gradual_typing
https://wphomes.soic.indiana.edu/jsiek/what-is-gradual-typing/

Are These Types Same?

struct Tree {
struct Tree* left;
struct Tree* right;
int value;

};

struct STree {
struct STree* left;
struct STree* right;
int value;

};

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 20 / 68

Nominal and Structural Typing

� Nominal typing requires that the object
is exactly of the given type (by name) or
is a subtype of that type (e.g., C++, Java,
and Swift)

� Structural typing requires that an object
supports a given set of operations even
if some of them may not be used (e.g,
Ocaml, Haxe, and Haskell)

class Foo {
method(input: string): number {...}

}
class Bar {
method(input: string): number {...}

}
let foo: Foo = new Bar(); // Error!

class Foo {
method(input: string): number {...}

}
class Bar {
method(input: string): number {...}

}
let foo: Foo = new Bar(); // Okay!

Type Systems: Structural vs. Nominal typing explained
Duck Typing vs Structural Typing vs Nominal Typing

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 21 / 68

https://medium.com/@thejameskyle/type-systems-structural-vs-nominal-typing-explained-56511dd969f4
https://medium.com/higher-order-functions/duck-typing-vs-structural-typing-vs-nominal-typing-e0881860bf10

Nominal and Structural Typing

Nominal Typing

function greet(person) {
if (!(person instanceof Person))
throw TypeError;

alert("Hello, " + person.Name);
}

Structural Typing

function greet(person) {
if (!(typeof(person.Name) == string
&& typeof(person.Age) == number))
throw TypeError;

alert("Hello, " + person.Name);
}

Is it possible to have a dynamically typed language without duck typing?

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 22 / 68

https://softwareengineering.stackexchange.com/questions/259941/is-it-possible-to-have-a-dynamically-typed-language-without-duck-typing

Duck Typing

An object’s validity is determined by the presence of certain methods and properties,
rather than the type of the object itself

class Duck:
def fly(self):
print(‘‘Duck flying’’)

class Sparrow:
def fly(self):
print(‘‘Sparrow flying’’)

class Whale:
def swim(self):
print(‘‘Whale swimming’’)

for animal in Duck(), Sparrow(), Whale():
animal.fly()

If it walks like a duck and it quacks like
a duck, then it must be a duck

Duck typing
Type Systems: Structural vs. Nominal typing explained

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 23 / 68

https://en.wikipedia.org/wiki/Duck_typing
https://medium.com/@thejameskyle/type-systems-structural-vs-nominal-typing-explained-56511dd969f4

TypeScript Example

interface Person {
Name : string;
Age : number;

}
function greet(person : Person) {
console.log(‘‘Hello, ’’ + person.Name);

}
greet({ Name: ‘‘svick’’ });

� Compilation error implies
TypeScript uses static structural
typing

� Code still compiles to JavaScript
▶ Implies TypeScript makes use of

dynamic duck typing

function greet(person : Person) {
console.log(‘‘Hello, ’’ + person.Name);

}
greet({ Name: ‘‘svick’’ });

no Age property

Is it possible to have a dynamically typed language without duck typing?

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 24 / 68

https://softwareengineering.stackexchange.com/questions/259941/is-it-possible-to-have-a-dynamically-typed-language-without-duck-typing

Benefits of Types

Usefulness of Types

Type systems help specify precise program behavior
� Hardware does not distinguish the interpretation of a sequence of bits
� Assigning type to a data variable, called typing, gives meaning to a sequence of bits

Abstraction Enables thinking in terms of primitive or composite data structures
Safety Disallows meaningless computations, limits the set of operations in a

semantically valid program
Optimizations Static type checking may allow a compiler to use specialized instructions

for data types
Documentation Clarifies the intent of the programmer on the nature of the computation,

helps reduce bugs

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 25 / 68

Ensure Run-time Safety

� Well-designed type system helps the compiler detect and avoid run-time errors by
identifying misinterpretations of data values

integer real double complex
integer integer real double complex
real real real double complex
double double double double illegal
complex complex complex illegal complex

Result Types for Addition in Fortran 77

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 26 / 68

Enhanced Expressiveness

Strong type systems can support other features
� Operator overloading gives context-dependent meaning to an operator

▶ A symbol that can represent different operations in different contexts is overloaded
� Many operators are overloaded in typed languages
� In untyped languages, lexically different operators are required

Strong type systems allow generating efficient code
� Perform compile-time optimizations, no run-time checks are required
� Otherwise, the compiler needs to maintain type metadata along with the value

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 27 / 68

Implementing Addition

Strongly-Typed Systems

integer ← integer + integer
add %ra %rb %ra+b

double ← integer + double
movss (double_var) %xmm0
cvtsi2ss %ri %xmm1
addss %xmm1 %xmm0

Weakly-Typed Systems

if type_md(a) == int
if type_md(b) == int
value(c) = value(a) + value(b)
type_md(c) = int

else if type_md(b) == float
temp = convert_to_float(a)
value(c) = temp + value(b)
type_md(c) = float

else ...
else ...

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 28 / 68

Classification of Types

Components of a Type System

(i) Basic (or built-in) types
(ii) Rules for constructing new types from basic types
(iii) Method for checking equivalence of two types
(iv) Rules to infer the type of a source language expression

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 29 / 68

Base Types

� Modern languages include types for operating on numbers, characters, and Booleans
▶ Influenced by operations supported by the hardware

� Individual languages may add additional types
▶ Exact definitions and types vary across languages
▶ E.g., C does not have the string type

� There are two additional basic types
void no type value

type_error error during type checking

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 30 / 68

Constructed Types

� Programs often involve ADT concepts like graphs, trees, and stacks
▶ Each component of an ADT has its own type

� Constructed (also called non-scalar) types are created by applying a type constructor
to one or more base types
▶ Examples are arrays, strings, enums, structures, and unions
▶ Lists in Lisp are constructed type: A list is either nil or (cons first rest)

� Constructed types can allow high-level operations (e.g., assign one structure variable
to another variable)

struct Node {
struct Node* next;
int value;

};

Type of Node may be (Node*) × int

union Data {
int i;
float f;
char str[16];

};

Type of Data may be int ∪ float ∪ char[]
Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 31 / 68

Array Type Constructors

� If T is a type expression, then array (I, T) is a type expression denoting the type of an
array with elements of type T and index set I (a set of integers)

int A[10];

� Array A can have type expression array (0 . . . 9, integer)
▶ C uses equivalent of int* as the array type

� If T1 and T2 are type expressions, then the Cartesian product T1 × T2 is a type
expression

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 32 / 68

Function Type Constructors
� Function maps domain set to a range

set denoted by type expression D→ R
� Type of function int* f1(char a,
char b); can be denoted by char ×
char → int*

� Type signature is a specification of the
types of the formal parameters and
return value(s) of a function

Tree and DAG representation of the type
expression char × char → pointer (integer)

type
constructor

basic type

× has higher priority than →, and → is
right-associative

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 33 / 68

Pointer Type Constructors

� If T is a type expression, then pointer (T) is a type expression denoting type pointer to
an object of type T

� Type safety with pointers assumes addresses correspond to typed objects
� Ability to construct new pointers complicates reasoning about pointer-based

computations
▶ Some languages allow manipulating pointers
▶ Autoincrement and autodecrement construct new pointers

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 34 / 68

Polymorphism

Ad hoc and Coercion Polymorphism

Polymorphism means using a single interface for entities of multiple types
� Applicable to both data and functions
� A function that can operate on arguments of different types is a polymorphic function
� Built-in operators for indexing arrays, applying functions, and manipulating pointers are usually

polymorphic

� Ad hoc polymorphism refers to
functions of the same name whose
behavior depends on the type of
arguments
▶ E.g., function and operator

overloading
� Coercion polymorphism occurs when

primitives or objects are cast to other
types

String frts = ‘‘Apple’’ + ‘‘Orange ’’;
int a = b + c;

int(43.2)
double dnum = Double.valueOf(inum);

Explicitly specifies the set of
types at compile time

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 37 / 68

Parametric Polymorphism

� Code takes type or set of types as a
parameter, either explicitly or implicitly

� Parametric polymorphism does not
specify the exact types
▶ Type of the result is a function of the

argument types
� Explicit parametric polymorphism is

called generics (in Java) or templates (in
C++)
▶ Used mostly in statically typed

languages

class L i s t <T> {
class Node<T> {

T elem ;
Node<T> next ;

}
Node<T> head ;
. . .

}

L i s t map(Func<A, B> f , L i s t <A> x) {
. . .

}

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 38 / 68

Subtype Polymorphism

� Used in object-oriented languages to
access derived class objects through
base class pointers
▶ Code is designed to work with values

of some specific type T
▶ Programmer can define extensions of

T to work with the code

abstract class Animal {
abstract S t r i n g t a l k () ;

}
class Cat extends Animal {

S t r i n g t a l k () {
return "Meow!" ;

}
}
class Dog extends Animal {

S t r i n g t a l k () {
return "Woof!" ;

}
}
. . .
void main (S t r i n g [] args) {

(new Cat ()) . t a l k () ;
(new Dog ()) . t a l k () ;

}

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 39 / 68

Static and Dynamic Polymorphism

Static polymorphism
Which method to invoke is determined at compile time by checking the method signatures
(method overloading)
� Usually used with ad hoc and parametric polymorphism

Dynamic polymorphism
Wait until run time to determine the type of the object pointed to by the reference to
decide the appropriate method invocation by method overriding
� Usually used with subtype polymorphism

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 40 / 68

Type Equivalence

Are These Definitions The Same?
� Should the reversal of the order of the fields change type?

▶ Some languages (e.g., ML) say no, and most languages say yes

type R1 = record
a, b : integer

end;

type R2 = record
a : integer
b : integer

end;

type R3 = record
b : integer
c : integer

end;

type str = array [0...9] of char; type str = array [1...10] of char;

� In nominal equivalence, two type expressions are the same if they have the same
name (e.g., C++, Java, and Swift)

� In structural equivalence (e.g., OCaml and Haskell), two type expressions are
equivalent if
(i) Either both are the same basic types, or
(ii) Are formed by applying the same type constructor to equivalent types

Type Systems: Structural vs. Nominal typing explained

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 41 / 68

https://medium.com/@thejameskyle/type-systems-structural-vs-nominal-typing-explained-56511dd969f4

Nominal vs Structural Equivalence

Nominal Equivalence
� Equivalent if the type names are the

same
▶ Identical names can be intentional
▶ Can avoid unintentional clashes
▶ Difficult to scale for large projects

Structural Equivalence
� Equivalent only if the types have the

same structure
▶ Assumes interchangeable objects can

be used in place of one other
▶ Problematic if values have special

meanings

Compilers build trees to represent types
� Construct a tree for each type declaration and compare tree

structures to test for equivalence

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 43 / 68

Type Graph

Two type expressions are equivalent if they are represented by the same node in the type
graph

type link = ↑ cell;
var next : link;

last : link;
p : ↑ cell;

q, r : ↑ cell;

next last

link = pointer

p q r

pointer

cell

� Under nominal equivalence, next and last, and p, q, and r are of the same type
� Under structural equivalence, all the variables are of the same type
� An alternate policy is to assign implicit type names every time a type name appears in

declarations
▶ Type expressions of p and q will then have different implicit names

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 44 / 68

Testing for Structural Equivalence

bool struc_equiv(type s, type t) {
if s and t are the same basic type then
return true

else if s = array (s1, s2) and t = array (t1, t2) then
return struc_equiv(s1, t1) and struc_equiv(s2, t2)

else if s = s1 × s2 and t = t1 × t2 then
return struc_equiv(s1, t1) and struc_equiv(s2, t2)

else if s = pointer (s1) and t = pointer (t1) then
return struc_equiv(s1, t1)

else if s = s1→ s2 and t = t1→ t2 then
return struc_equiv(s1, t1) and struc_equiv(s2, t2)

else
return false

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 45 / 68

Representing Recursively-Defined Types

type link = ↑ cell;
cell = record
info : integer;
next : link
end;

cell = record

info integer next link

cell = record

info integer next pointer

cell
Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 46 / 68

Cycles in Representations of Types

type link = ↑ cell;
cell = record
info : integer;
next : link
end;

cell = record

info integer next pointer

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 47 / 68

Type Equivalence

� C uses structural equivalence for scalar types
and uses nominal equivalence for structs

� Language in which aliased types are distinct is
said to have strict name equivalence

� Loose name equivalence implies aliased types
are considered equivalent

int *p, *q, *r;
typedef int * pint;
pint start, end;

Variable Type Expression
p pointer(int)
q pointer(int)
r pointer(int)
start pint
end pint

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 48 / 68

Efficient Encoding of Type Expressions

� Bit vectors can be used to encode type expressions more efficiently than graph
representations
▶ pointer (t) denotes a pointer to type t
▶ array (t) denotes an array of elements of type t
▶ func(t) denotes a function that returns an object of type t

Type Constructor Encoding
pointer 01
array 10
func 11

Basic Type Encoding
boolean 0000
char 0001
integer 0010
real 0011

Type Expression Encoding
char 000000 0001
func(char) 000011 0001
pointer (func(char)) 000111 0001
array (pointer (func(char))) 100111 0001

six bits are used because there are
three type constructors

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 49 / 68

Efficient Encoding of Type Expressions

� Bit vectors can be used to encode type expressions more efficiently than graph
representations
▶ pointer (t) denotes a pointer to type t
▶ array (t) denotes an array of elements of type t
▶ func(t) denotes a function that returns an object of type t

Type Constructor Encoding
pointer 01
array 10
func 11

Basic Type Encoding
boolean 0000
char 0001
integer 0010
real 0011

Type Expression Encoding
char 000000 0001
func(char) 000011 0001
pointer (func(char)) 000111 0001
array (pointer (func(char))) 100111 0001

Encoding saves space and also tracks the order of the type
constructors in type expressions

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 50 / 68

Type Inference Rules

� Specifies, for each operator, the mapping between the operand types and the result
type
▶ Type of the LHS of an assignment must be the same as the RHS
▶ In Java, for example, adding two integer types of different precision produces a result of

the more precise type
� Some languages require the compiler to perform implicit conversions

▶ Internal representations of integers and floats are different in a computer
▶ Recognize mixed-type expressions and insert appropriate conversions
▶ Implicit type conversion done by the compiler is called type coercion

▶ It is limited to the situations where no information is lost

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 52 / 68

Type Conversion

E → E1 + E2

if (E1.type == integer and E2.type == integer) E.type = integer
else if (E1.type == float and E2.type == integer) E.type = float
. . .

double

float

long

int

short

byte

char

w
id
en

in
g

double

float

long

int

byte char

na
rro

w
in
g

short

according to precision
rules in Java

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 53 / 68

Type Conversion

E → E1 + E2

if (E1.type == integer and E2.type == integer) E.type = integer
else if (E1.type == float and E2.type == integer) E.type = float
. . .

double

float

long

int

short

byte

char

w
id
en

in
g

� Assume two helper functions
max(t1, t2) return the maximum (or least common ancestor) of

the two types in the hierarchy
widen(a, t,w) widen a value of type t at address a into a value of

type w

Addr widen(Addr a, Type t, Type w) {
if (t == w) return a;
else if (t = integer and w = float) {
temp = new Temp();
gen(temp '=' '(float)' a);
return temp;

} else { /* throw error; */ }
}

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 54 / 68

Type Conversion

E → E1 + E2

{ E.type = max(E1.type,E2.type); a1 = widen(E1.addr ,E1.type,E.type);
a2 = widen(E2.addr ,E2.type,E.type);
E.addr = new Temp(); gen(E.addr = a1 “ + ” a2); }

double

float

long

int

short

byte

char

w
id
en

in
g

� Assume two helper functions
max(t1, t2) return the maximum (or least common ancestor) of

the two types in the hierarchy
widen(a, t,w) widen a value of type t at address a into a value of

type w

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 55 / 68

Type Checking

Type Checking Rules for Coercion from Integer to Real

Production Semantic Actions
E → num {E.type = integer}
E → num.num {E.type = real}
E → id {E.type = lookup(id.entry)}

E → E1 op E2

{ if (E1.type == integer and E2.type == integer) E.type = integer
else if (E1.type == integer and E2.type == real) E.type = real
else if (E1.type == real and E2.type == integer) E.type = real
else if (E1.type == real and E2.type == real) E.type = real }

Implicit conversion of constants at compile time
can reduce run time

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 56 / 68

Type Checking of Expressions

� Idea: build a parse tree, assign a type to each leaf element, assign a type to each
internal node with a postorder walk

� Types should be matched for all function calls from within an expression
▶ Possible ideas

(i) Require the complete source code
(ii) Make it mandatory to provide type signatures of functions as function prototype
(iii) Defer type checking until linking or run time

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 58 / 68

Type Synthesis for Overloaded Functions

� Suppose f is an overloaded function
� f can have type si → ti for 1 ≤ i ≤ n, where si ≠ sj for i ≠ j

� x has type sk for some 1 ≤ k ≤ n =⇒ Expression f (x) has type tk

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 59 / 68

Specification of a Simple Type Checker

� Consider a language where each identifier must be declared before use
� Goal: Design a type checker that can handle statements, functions, arrays, and

pointers

P →D;E
D→D;D | id : T
T → char | integer | array[num] ofT | ↑ T
E → literal | num | id | E mod E | E [E] | ↑ E

Example string: key : integer; key mod 1999

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 60 / 68

SDT for Updating Types in Symbol Table

Production Semantic Actions
P → D;E
D→ D;D
D→ id : T {addtype(id.entry, T .type)}
T → char {T .type = char}
T → integer {T .type = integer}
T → array[num] ofT1 {T .type = array (1 . . . num.val, T1.type)}
T →↑ T1 {T .type = pointer (T1.type)}

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 61 / 68

Type Checking of Expressions

Production Semantic Actions
E → literal {E.type = char}
E → num {E.type = integer}
E → id {E.type = lookup(id.entry)}

E → E1 mod E2
{if (E1.type == integer and E2.type == integer) then E.type = integer
else E.type = type_error}

E → E1 [E2]
{if (E2.type == integer and E1.type == array (s, t)) then E.type = t
else E.type = type_error}

E →↑ E1
{if (E1.type == pointer (t)) then E.type = t
else E.type = type_error}

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 62 / 68

Type Checking of Statements

Statements do not have values, use the special basic type void

Production Semantic Actions

S→ id = E {if (id.type == E.type) then S.type = void
else S.type = type_error}

S→ if E then S1
{if (E.type == boolean) then S.type = S1.type
else S.type = type_error}

S→ while E do S1
{if (E.type == boolean) then S.type = S1.type
else S.type = type_error}

S→ S1;S2
{if (S1.type == void and S2.type == void) then S.type = void
else S.type = type_error}

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 63 / 68

Type Checking of Functions

int f(double x, char y) =⇒ f: double × char → int

Production Semantic Actions

E → E1(E2)
{if (E2.type == s and E1.type == s→ t) then E.type = t
else E.type = type_error}

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 64 / 68

Storage Layout for Local Variables

Production
T → BC
B→ int
B→ float
C→ 𝜖

C→ [num]C1

Determine the amount of allocation
(in bytes) in a declaration

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 65 / 68

Computing Types and Their Widths

Production
T → BC
B→ int
B→ float
C→ 𝜖

C→ [num]C1

Production
T → B {t = B.type;w = B.width; }

C {T .type = C.type;T .width = C.width; }
B→ int {B.type = integer;B.width = 4; }
B→ float {B.type = float;B.width = 8; }
C→ 𝜖 {C.type = t;C.width = w; }
C→ [num]C1 {C.type = array (num.val,C1.type);

C.width = num.val × C1.width; }

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 66 / 68

SDT for Array Type

Production
T → BC
B→ int
B→ float
C→ 𝜖

C→ [num]C1

T

B C

int C

C

[2]

[3] type = integer;
width = 4;

type = array(3,integer);
width = 12;

type = array(2,array(3,integer));
width = 24;

type = integer;
width = 4;

type = array(2,array(3,integer));
width = 24;

t = integer;
w = 4;

Swarnendu Biswas (IIT Kanpur) CS 335: Type Systems Sem 2023-24-II 67 / 68

References

M. Scott. Programming Language Pragmatics. Chapters 7–8, 4th edition, Morgan Kaufmann.

A. Aho et al. Compilers: Principles, Techniques, and Tools. Sections 6.3, 6.5, 2nd edition,
Pearson Education.

K. Cooper and L. Torczon. Engineering a Compiler. Section 4.2, 2nd edition, Morgan Kaufmann.

	Understanding Types
	Benefits of Types
	Classification of Types
	Polymorphism
	Type Equivalence
	Type Checking

