
CS 335: Top-Down Parsing

Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2023-24-II

Example Expression Grammar

Start →Expr
Expr →Expr + Term | Expr − Term | Term
Term→Term × Factor | Term ÷ Factor | Factor

Factor → (Expr) | num | name

y

pr
io
rit
y

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 3 / 52

Derivation of name + name × name with Oracular Knowledge

Sentential Form Input
Expr ↑ name + name × name

Expr + Term ↑ name + name × name
Term + Term ↑ name + name × name

Factor + Term ↑ name + name × name
name + Term ↑ name + name × name
name + Term name ↑ +name × name
name + Term name+ ↑ name × name

name + Term × Factor name+ ↑ name × name
name + Factor × Factor name+ ↑ name × name
name + name × Factor name+ ↑ name × name
name + name × Factor name + name ↑ ×name
name + name × Factor name + name× ↑ name
name + name × name name + name× ↑ name
name + name × name name + name × name ↑

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 4 / 52

Derivation of name + name × name with Oracular Knowledge

Sentential Form Input
Expr ↑ name + name × name

Expr + Term ↑ name + name × name
Term + Term ↑ name + name × name

Factor + Term ↑ name + name × name
name + Term ↑ name + name × name
name + Term name ↑ +name × name
name + Term name+ ↑ name × name

name + Term × Factor name+ ↑ name × name
name + Factor × Factor name+ ↑ name × name
name + name × Factor name+ ↑ name × name
name + name × Factor name + name ↑ ×name
name + name × Factor name + name× ↑ name
name + name × name name + name× ↑ name
name + name × name name + name × name ↑

The current input terminal being scanned is
called the lookahead symbol

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 5 / 52

Derivation of name + name × name with Oracular Knowledge

Start Expr Expr

Expr Term+

Expr

Expr Term+

Term

Factor

Expr

Expr Term+

Term

Factor

Expr

Expr Term+

Term

name

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 6 / 52

Derivation of name + name × name with Oracular Knowledge

name

Factor

Factor

name

Factor

Term

Expr

Expr

Term+

Term

Factor

name

Factor

name

Factor

Term

Expr

Expr Term+

Term

Factor

Factor

name

Factor

Term

Expr

Expr

Term+

Term Factor

name

name

Factor

Term

Expr

Expr

Term+

Term

Factor

name

Term

Expr

Expr Term+

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 7 / 52

Top-Down Parsing

High-level idea in top-down parsing
(i) Start with the root (i.e., start symbol) of the parse tree
(ii) Grow the tree downwards by expanding the production at the lower levels of the tree

▶ Select a nonterminal and extend it by adding children corresponding to the right side of
some production for the nonterminal

(iii) Repeat till the lower fringe consists only of terminals and the input is consumed

� Top-down parsing finds a leftmost derivation for an input string
� Expands the parse tree with a preorder depth-first traversal

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 8 / 52

Top-Down Parsing

High-level idea in top-down parsing
(i) Start with the root (i.e., start symbol) of the parse tree
(ii) Grow the tree downwards by expanding the production at the lower levels of the tree

▶ Select a nonterminal and extend it by adding children corresponding to the right side of
some production for the nonterminal

(iii) Repeat till the lower fringe consists only of terminals and the input is consumed

Mismatch in the lower fringe and the remaining input stream implies
(i) Wrong choice of productions while expanding nonterminals, selection of a production

may involve trial-and-error
(ii) Input character stream is not part of the language

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 8 / 52

Top-Down Parsing Algorithm

root = node for the Start symbol
curr = root
push(null) // Stack

word = getNextWord()
while (true)
if curr ∈ Nonterminal
pick next rule A→ 𝛽1𝛽2 . . . 𝛽n to expand curr
create nodes for 𝛽1, 𝛽2, . . . 𝛽n as children of curr
push(𝛽n𝛽n−1 . . . 𝛽1) // reverse order
curr = 𝛽1

if curr == word
word = getNextWord()
curr = pop() // Consumed

if word == EOF and curr == null
accept input

else
backtrack

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 9 / 52

Derivation of name + name × name

Rule # Production
0 Start → Expr
1 Expr → Expr + Term
2 Expr → Expr − Term
3 Expr → Term
4 Term→ Term × Factor
5 Term→ Term ÷ Factor
6 Term→ Factor
7 Factor → (Expr)
8 Factor → num
9 Factor → name

Rule # Sentential Form Input
Expr ↑ name + name × name

1 Expr + Term ↑ name + name × name
3 Term + Term ↑ name + name × name
6 Factor + Term ↑ name + name × name
9 name + Term ↑ name + name × name

name + Term name ↑ +name × name
name + Term name+ ↑ name × name

4 name + Term × Factor name+ ↑ name × name
4 name + Factor × Factor name+ ↑ name × name
9 name + name × Factor name+ ↑ name × name

name + name × Factor name + name ↑ ×name
name + name × Factor name + name× ↑ name

9 name + name × name name + name× ↑ name
name + name × name name + name × name ↑

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 10 / 52

Derivation of name + name × name

Rule # Production
0 Start → Expr
1 Expr → Expr + Term
2 Expr → Expr − Term
3 Expr → Term
4 Term→ Term × Factor
5 Term→ Term ÷ Factor
6 Term→ Factor
7 Factor → (Expr)
8 Factor → num
9 Factor → name

Rule # Sentential Form Input
Expr ↑ name + name × name

1 Expr + Term ↑ name + name × name
3 Term + Term ↑ name + name × name
6 Factor + Term ↑ name + name × name
9 name + Term ↑ name + name × name

name + Term name ↑ +name × name
name + Term name+ ↑ name × name

4 name + Term × Factor name+ ↑ name × name
4 name + Factor × Factor name+ ↑ name × name
9 name + name × Factor name+ ↑ name × name

name + name × Factor name + name ↑ ×name
name + name × Factor name + name× ↑ name

9 name + name × name name + name× ↑ name
name + name × name name + name × name ↑

How does a top-down parser choose which
rule to apply?

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 11 / 52

Deterministically Selecting a Production in Expression Grammar

Rule # Production
0 Start → Expr
1 Expr → Expr + Term
2 Expr → Expr − Term
3 Expr → Term
4 Term→ Term × Factor
5 Term→ Term ÷ Factor
6 Term→ Factor
7 Factor → (Expr)
8 Factor → num
9 Factor → name

Rule # Sentential Form Input
Expr ↑ name + name × name

1 Expr + Term ↑ name + name × name
1 Expr + Term + Term ↑ name + name × name
1 Expr + Term + Term + . . . ↑ name + name × name
1 . . . ↑ name + name × name
1 . . . ↑ name + name × name

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 12 / 52

Deterministically Selecting a Production in Expression Grammar

Rule # Production
0 Start → Expr
1 Expr → Expr + Term
2 Expr → Expr − Term
3 Expr → Term
4 Term→ Term × Factor
5 Term→ Term ÷ Factor
6 Term→ Factor
7 Factor → (Expr)
8 Factor → num
9 Factor → name

Rule # Sentential Form Input
Expr ↑ name + name × name

1 Expr + Term ↑ name + name × name
1 Expr + Term + Term ↑ name + name × name
1 Expr + Term + Term + . . . ↑ name + name × name
1 . . . ↑ name + name × name
1 . . . ↑ name + name × nameA top-down parser can loop indefinitely

with left-recursive grammar

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 13 / 52

Left Recursion

A grammar is left-recursive if it has a nonterminal A such that there is a derivation A
+
=⇒ A𝛼

for some string 𝛼

Direct There is a production of the form A→ A𝛼
Indirect The first symbol on the right-hand side of a rule can derive the symbol on the left

S→Aa | b
A→Ac | Sd | 𝜖

We can often reformulate a grammar to avoid left recursion

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 14 / 52

Remove Direct Left Recursion

Grammar with left recursion

A→ A𝛼1 | A𝛼2 | . . . |A𝛼m | 𝛽1 | . . . | 𝛽n

Grammar without left recursion

A→ 𝛽1A
′ | 𝛽2A

′ | . . . | 𝛽nA
′

A
′ →𝛼1A

′ | 𝛼2A
′ | . . . | 𝛼mA

′ | 𝜖

Example

E →E + T | T
T →T ∗ F | F
F → (E) | id

⇒
E → TE

′

E
′ → +TE

′

T → FT
′

T
′ → ∗FT

′

F → (E) | id
Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 16 / 52

Non-Left-Recursive Expression Grammar

Expression Grammar with Recursion

Rule # Production
0 Start → Expr
1 Expr → Expr + Term
2 Expr → Expr − Term
3 Expr → Term
4 Term→ Term × Factor
5 Term→ Term ÷ Factor
6 Term→ Factor
7 Factor → (Expr)
8 Factor → num
9 Factor → name

Expression Grammar without Recursion

Rule # Production
0 Start → Expr
1 Start → Term Expr ′

2 Expr ′ → +Term Expr ′

3 Expr ′ → −Term Expr ′

4 Expr ′ → 𝜖

5 Term→ Factor Term′

6 Term→ ×Factor Term′

7 Term→ ÷Factor Term′

8 Term′ → 𝜖

9 Factor → (Expr)
10 Factor → num
11 Factor → name

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 17 / 52

Eliminating Indirect Left Recursion

� Input: Grammar G with no cycles or 𝜖-productions
� Algorithm:

Arrange nonterminals in some order A1,A2, . . .An
for i ← 1 . . . n
for j ← 1 . . . i − 1
if ∃ a production Ai → Aj𝛾
Replace Ai → Aj𝛾 with one or more productions that expand Aj

Eliminate the immediate left recursion among the Ai productions

Loop invariant at the start of the outer iteration i
∀k < i, no production expanding Ak has Al in its body (i.e., right-hand side) for all l < k

The algorithm establishes a topological ordering on nonterminals

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 18 / 52

Eliminating Indirect Left Recursion

� Input: Grammar G with no cycles or 𝜖-productions
� Algorithm:

Arrange nonterminals in some order A1,A2, . . .An
for i ← 1 . . . n
for j ← 1 . . . i − 1
if ∃ a production Ai → Aj𝛾
Replace Ai → Aj𝛾 with one or more productions that expand Aj

Eliminate the immediate left recursion among the Ai productions

S→Aa | b
A→Ac | Sd | 𝜖

⇒ S→Aa | b
A→bdA

′ | A′

A
′ →cA

′ | adA
′ | 𝜖

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 19 / 52

Implementing Backtracking

� A top-down parser may need to undo its actions after it detects a mismatch between
the parse tree’s leaves and the input
▶ Implies a possible expansion with a wrong production

� Steps in backtracking
▶ Set curr to parent and delete the children
▶ Expand the node curr with untried rules if any

▶ Create child nodes for each symbol in the right hand of the production
▶ Push those symbols onto the stack in reverse order
▶ Set curr to the first child node

▶ Move curr up the tree if there are no untried rules
▶ Report a syntax error when there are no more moves

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 20 / 52

Backtracking is Expensive

(i) Parser expands a nonterminal with the wrong rule
(ii) Mismatch between the lower fringe of the parse tree and the input is detected
(iii) Parser undoes the last few actions
(iv) Parser tries other productions (if any)

A large subset of CFGs can be parsed without backtracking
The grammar may require transformations

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 21 / 52

Avoid Backtracking

� Parser is to select the next rule
▶ Compare the curr symbol and the next input symbol called the lookahead
▶ Use the lookahead to disambiguate the possible production rules

� Intuition
▶ Each alternative for the leftmost nonterminal leads to a distinct terminal symbol
▶ Which rules to choose becomes obvious by comparing the next word in the input stream

Definition
Backtrack-free grammar (also called predictive grammar) is a CFG for which a leftmost,
top-down parser can always predict the correct rule with a one-word lookahead

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 22 / 52

FIRST Set
Definition
Given a string 𝛾 of terminal and nonterminal symbols, FIRST (𝛾) is the set of all terminal
symbols that can begin any string derived from 𝛾

� We also need to keep track of which symbols can produce the empty string
� FIRST : (NT ∪ T ∪ {𝜖, EOF}) → (T ∪ {𝜖, EOF})

� Steps to compute FIRST set
1. If X is a terminal, then FIRST (X) = {X}
2. If X → 𝜖 is a production, then 𝜖 ∈ FIRST (X)
3. If X is a nonterminal and X → Y1Y2 . . .Yk is a production, then

(i) FIRST (X) = FIRST (Y1) provided Y1 ↛ 𝜖

(ii) If for some i ≤ k and 1 ≤ j < i, a ∈ FIRST (Yi), and ∀j, 𝜖 ∈ FIRST
(
Yj
)
, then a ∈ FIRST (X)

(iii) If 𝜖 ∈ FIRST (Y1, . . .Yk), then 𝜖 ∈ FIRST (X)
� Generalization of FIRST relation to string of symbols

FIRST (X𝛾) =FIRST (X) ifX ↛ 𝜖

FIRST (X𝛾) =FIRST (X) ∪ FIRST (𝛾) ifX → 𝜖

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 23 / 52

Example of FIRST Set Computation

Grammar

Start →Expr

Expr →Term Expr
′

Expr
′ → + Term Expr

′ | − Term Expr
′ | 𝜖

Term→Factor Term
′

Term
′ → × Factor Term

′ | ÷ Factor Term
′ | 𝜖

Factor → (Expr) | num | name

FIRST Sets

FIRST (Start) = {name, num, (}
FIRST (Expr) = {name, num, (}

FIRST
(
Expr

′
)
= {+,−, 𝜖}

FIRST (Term) = {name, num, (}

FIRST
(
Term

′
)
= {×,÷, 𝜖}

FIRST (Factor) = {name, num, (}

How does a parser decide when to apply the 𝜖-production?
Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 24 / 52

FOLLOW Set

Definition
FOLLOW (X) is the set of terminals that can immediately follow X
� That is, t ∈ FOLLOW (X) if there is any derivation containing Xt

S

A

c ...

a
Terminal c is in FIRST (A) and a is
in FOLLOW (A)

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 25 / 52

Steps to Compute FOLLOW Set

(i) Place $ in FOLLOW (S) where S is the start symbol and the $ is the end marker
(ii) If there is a production A→ 𝛼B𝛽, then everything in FIRST (𝛽) except 𝜖 is in

FOLLOW (B)
(iii) If there is a production A→ 𝛼B, or a production A→ 𝛼B𝛽 where FIRST (𝛽) contains 𝜖 ,

then everything in FOLLOW (A) is in FOLLOW (B)

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 26 / 52

Example of FOLLOW Set Computation

Grammar

Start →Expr

Expr →Term Expr
′

Expr
′ → + Term Expr

′ | − Term Expr
′ | 𝜖

Term→Factor Term
′

Term
′ → × Factor Term

′ | ÷ Factor Term
′ | 𝜖

Factor → (Expr) | num | name

FOLLOW Sets

FOLLOW (Start) = {$}
FOLLOW (Expr) = {$,)}

FOLLOW
(
Expr

′
)
= {$,)}

FOLLOW (Term) = {$, +,−,)}

FOLLOW
(
Term

′
)
= {$, +,−,)}

FOLLOW (Factor) = {$, +,−,×,÷,)}

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 27 / 52

Conditions for Backtrack-Free Grammar

� Consider a production A→ 𝛽

FIRST+ (A→ 𝛽) =
{

FIRST (𝛽) if 𝜖 ∉ FIRST (𝛽)
FIRST (𝛽) ∪ FOLLOW (A) otherwise

� For any nonterminal A where A→ 𝛽1 |𝛽2 | . . . |𝛽n, a backtrack-free grammar has the
property

FIRST+ (A→ 𝛽i) ∩ FIRST+
(
A→ 𝛽j

)
= 𝜙, ∀1 ≤ i, j ≤ n, i ≠ j

Expression grammar on the previous slide is backtrack-free

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 28 / 52

Not All Grammars are Backtrack-Free

Start →Expr

Expr →Term Expr
′

Expr
′
→ + Term Expr

′
| − Term Expr

′
| 𝜖

Term→Factor Term
′

Term
′
→ × Factor Term

′
| ÷ Factor Term

′
| 𝜖

Factor → (Expr) | num | name

Factor →name | name[Arglist] | name (Arglist)
Arglist →Expr MoreArgs

MoreArgs→ ,Expr MoreArgs | 𝜖

Given a finite lookahead, we can always devise a non-backtrack-free grammar such
that the lookahead is insufficient

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 29 / 52

Not All Grammars are Backtrack-Free

Start →Expr

Expr →Term Expr
′

Expr
′
→ + Term Expr

′
| − Term Expr

′
| 𝜖

Term→Factor Term
′

Term
′
→ × Factor Term

′
| ÷ Factor Term

′
| 𝜖

Factor → (Expr) | num | name

Factor →name | name[Arglist] | name (Arglist)
Arglist →Expr MoreArgs

MoreArgs→ ,Expr MoreArgs | 𝜖

Given a finite lookahead, we can always devise a non-backtrack-free grammar such
that the lookahead is insufficient

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 29 / 52

Left Factoring

Definition
Left factoring is the process of extracting and isolating common prefixes in a set of
productions

� Algorithm:

A→ 𝛼𝛽1 | 𝛼𝛽2 | . . . |𝛼𝛽n | 𝛾1 | . . . | 𝛾j

⇓

A→𝛼B | 𝛾1 | 𝛾2 . . . | 𝛾j

B→𝛽1 | 𝛽2 | . . . | 𝛽n

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 30 / 52

Summarizing Top-down Parsing

� Efficiency depends on the accuracy of selecting the correct production for expanding
a nonterminal
▶ Parser may not terminate in the worst-case

� A large subset of the context-free grammars can be parsed without backtracking

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 31 / 52

Recursive-Descent Parsing

Recursive-Descent Parsing

� Recursive-descent parsing is a form of top-down parsing that may require
backtracking
▶ Top-down approach is modeled by calls to functions, where there is one function for each

nonterminal

void A() {
Choose an A-production A→ X1X2 . . .Xk
for i ← 1 . . . k
if Xi is a nonterminal
call function Xi

else if Xi equals the current input symbol a
advance the input to the next symbol

else
// error

}

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 32 / 52

Recursive-Descent Parsing with Backtracking

� Consider a grammar with two productions X → 𝛾1 and X → 𝛾2
� Suppose FIRST (𝛾1) ∩ FIRST (𝛾2) ≠ 𝜙

▶ Let us denote one of the common terminal symbols by a

� The function for X will not know which production to use on the input token a

� To support backtracking
▶ All productions should be tried in some order
▶ Failure for some production implies the parser needs to try the remaining productions
▶ Report an error only when there are no other rules

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 33 / 52

Predictive Parsing

Definition
Predictive parsing is a special case of recursive-descent parsing that does not require
backtracking
� Lookahead symbol unambiguously determines which production rule to use
� Advantage is that the algorithm is simple and the parser can be constructed by hand

stmt → expr;
| if (expr) stmt
| for (optexpr; optexpr; optexpr) stmt
| other

optexpr → expr | 𝜖

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 34 / 52

Pseudocode for a Predictive Parser

void stmt() {
switch(lookahead) {
case expr: { match(expr); match(';'); break; }
case if: {
match(if); match('('); match(expr); match(')'); stmt(); break;

}
case for: {
match(for); match('('); optexpr(); match(';'); optexpr(); match(';');
optexpr(); match(')'); stmt(); break;

}
case other: { match(other); break; }
default: { print("syntax error"); }

}
}

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 35 / 52

Non-Recursive Predictive Parsing

LL(k) Grammars

Definition
A CFG G = (T ,NT ,S,P) is LL(1) if and only if for every nonterminal A ∈ NT where
A→ 𝛽1 | 𝛽2 | . . . | 𝛽n such that 𝛽i ∈ Σ∗, we have

FIRST+ (A→ 𝛽i) ∩ FIRST+
(
A→ 𝛽j

)
= 𝜙, ∀1 ≤ i, j ≤ n, i ≠ j

� First L stands for left-to-right scan, second L stands for leftmost derivation, and k
represents the number of lookahead tokens

� LL(k) grammars are the class of CFGs for which no backtracking is required
▶ Predictive parsers accept LL(k) grammars

� Every LL(1) grammar is a LL(2) grammar
� Many programming language constructs are LL(1)

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 36 / 52

Definition of LL(k) Grammar

� For a given word w ∈ T ∗ and non-negative integer k,
▶ w/k is w if |w | ≤ k, or
▶ w/k is a string consisting of the first k symbols of w if |w | > k.

� A CFG G = (T ,NT ,S,P) is LL(k) for some positive integer k if and only if given
(i) a word w ∈ T ∗ such that |w | ≤ k,
(ii) a nonterminal A ∈ NT , and
(iii) a word w1 ∈ T ∗,
there is at most one production p ∈ P such that for some w2,w3 ∈ T ∗,
1. S⇒ w1Aw3,
2. A

+⇒ w2 by first applying production p,
3. w2w3/k = w .

D. Rosenkrantz and R. Stearns. Properties of Deterministic Top-Down Grammars.

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 37 / 52

Definition of LL(k) Grammar

� For a given word w ∈ T ∗ and non-negative integer k,
▶ w/k is w if |w | ≤ k, or
▶ w/k is a string consisting of the first k symbols of w if |w | > k.

� A CFG G = (T ,NT ,S,P) is LL(k) for some positive integer k if and only if given
(i) a word w ∈ T ∗ such that |w | ≤ k,
(ii) a nonterminal A ∈ NT , and
(iii) a word w1 ∈ T ∗,
there is at most one production p ∈ P such that for some w2,w3 ∈ T ∗,
1. S⇒ w1Aw3,
2. A

+⇒ w2 by first applying production p,
3. w2w3/k = w .

Stated informally in terms of parsing, an LL(k) grammar is a CFG such that
for any word in its language, each production in its derivation can be iden-
tified with certainty by inspecting the word from its beginning (left end) to
the kth symbol beyond the beginning of the production.

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 38 / 52

Example LL(2) Parser

S→ AXQ | AYR
lookahead is the set of 2-sequence tokens that indicate
which alternative will succeed

void S() {
if (lookahead(1) == A && lookahead(2) == X) {
match(A); match(X); match(Q);

} else if (lookahead(1) == A && lookahead(2) == Y) {
match(A); match(Y); match(R);

} else {
// Raise error

}
}

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 39 / 52

Nonrecursive Table-Driven LL(1) Parser

Predictive
Parsing Program

Parsing
Table M

a + b $

X

Y

Z

$

Stack

Input

Output

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 40 / 52

LL(1) Parsing Algorithm

� Input: String w and parsing table M for grammar G
� Output: A leftmost derivation of w if w ∈ L(G); otherwise, report an error
� Algorithm:
Let a be the first symbol in w
Let X be the symbol at the top of the stack
while X ! = $
if X == a
pop the stack and advance the input

else if X is a terminal or M [X , a] is an error entry
report error

else if M [X , a] == X → Y1Y2 . . .Yk
// Expand with the production X → Y1Y2 . . .Yk
pop the stack
// Simulate depth-first traversal
push YkYk−1 . . .Y1 onto the stack

X ← top stack symbol

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 41 / 52

Construction of a LL(1) Parsing Table

� Input: Grammar G
� Algorithm:

for each production A→ 𝛼 in G
for each terminal a in FIRST (𝛼)
add A→ 𝛼 to M [A, a]

if 𝜖 ∈ FIRST (𝛼)
for each terminal b in FOLLOW (A)
add A→ 𝛼 to M [A, b]

if 𝜖 ∈ FIRST (𝛼) and $ ∈ FOLLOW (A)
add A→ 𝛼 to M [A, $]

// No production in M [A, a] indicates error

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 42 / 52

LL(1) Parsing Table
Grammar

E →TE
′

E
′
→ + TE

′
| 𝜖

T →FT
′

T
′
→ ∗ FT

′
| 𝜖

F → (E) | id

FIRST Sets
FIRST (E) = {id, (}

FIRST
(
E
′)

= {+, 𝜖}

FIRST (T) = {id, (}

FIRST
(
T
′)

= {∗, 𝜖}

FIRST (F) = {id, (}

FOLLOW Sets
FOLLOW (E) = {$,)}

FOLLOW
(
E
′)

= {$,)}

FOLLOW (T) = {$, +,)}

FOLLOW
(
T
′)

= {$, +,)}

FOLLOW (F) = {$, +, ∗,)}
Nonterminal id + ∗ () $

E E → TE′ E → TE′

E′ E′ → +TE′ E′ → 𝜖 E′ → 𝜖

T T → FT ′ T → FT ′

T ′ T ′ → 𝜖 T ′ → ∗FT ′ T ′ → 𝜖 T ′ → 𝜖

F F → id F → (E)

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 43 / 52

Working of a LL(1) Parser
Stack Input Remark
$E ↑ id + id ∗ id$ Expand E → TE′

$E′T ↑ id + id ∗ id$ Expand T → FT ′

$E′T ′F ↑ id + id ∗ id$ Expand F → id
$E′T ′ id ↑ id + id ∗ id$ Match id
$E′T ′ ↑ + id ∗ id$ Expand T → 𝜖

$E′ ↑ + id ∗ id$ Expand E′ → +TE′

$E′T+ ↑ + id ∗ id$ Match +
$E′T ↑ id ∗ id$ Expand T → FT ′

$E′T ′F ↑ id ∗ id$ Expand F → id
$E′T ′ id ↑ id ∗ id$ Match id
$E′T ′ ↑ ∗ id$ Expand T ′ → ∗FT ′

$E′T ′F∗ ↑ ∗ id$ Match *
$E′T ′F ↑ id$ Expand F → id
$E′T ′ id ↑ id$ Match id
$E′T ′ ↑ $ Expand T ′ → 𝜖

$E′ ↑ $ Expand E′ → 𝜖

$ ↑ $

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 44 / 52

More on LL(1) Parsing

� Grammars whose predictive parsing tables contain no duplicate entries are LL(1)
� No left-recursive or ambiguous grammar can be LL(1)

▶ If grammar G is left-recursive or is ambiguous, then parsing table M will have at least one
multiply-defined cell

� Some grammars cannot be transformed into LL(1)

The below grammar is ambiguous

S→ iEtSS
′ | a

S
′ → eS | 𝜖

E → b

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 45 / 52

Limitations with LL(k) Parsing

LL(k) cannot see past arbitrarily long constructs from the left edge

S→ A+XQ | A+YR

Could left factor, but not always possible and natural

S→ A+ (XQ | YR)

Programming language grammars may not be
LL(k) (e.g., C function declaration vs definition)

func→ type ID ‘(’ arg∗ ‘)’ ‘; ’
→ type ID ‘(’ arg∗ ‘)’ ‘{’ body ‘}’

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 46 / 52

Using Ambiguous Grammars

LL(1) Parsing Table for an Ambiguous Grammar

Grammar
S→ iEtSS

′
| a

S
′
→ eS | 𝜖

E → b

FIRST Sets
FIRST (S) = {i, a}

FIRST
(
S
′)

= {e, 𝜖}

FIRST (E) = {b}

FOLLOW Sets
FOLLOW (S) = {$, e}

FOLLOW
(
S
′)

= {$, e}

FOLLOW (E) = {t}

Nonterminal a b e i t $
S S→ a S→ iEtSS′

S′ S′ → 𝜖

S′ → eS
S′ → 𝜖

E E → b

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 47 / 52

Detecting Errors in Table-Driven Predictive Parsing

Error conditions
(i) Terminal on top of the stack does not match the next input symbol
(ii) Nonterminal A is on top of the stack, a is the next input symbol, and M [A, a] is empty

Choices
(i) Raise an error and quit parsing
(ii) Print an error message, try to recover from the error, and continue with the

compilation

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 48 / 52

Error Recovery in Table-Driven Predictive Parsing

Assume A is the nonterminal at the top of the stack

Panic mode recovery skips over symbols until a token in a set of synchronizing
(synch) tokens is found
(i) Add all tokens in FOLLOW (A) to the synch set for A

▶ Parsing can continue if the parser skips all input tokens until it sees an input symbol in
FOLLOW (A)

(ii) Add symbols in FIRST (A) to the synch set for A
▶ Parsing can continue with A if the parser skips all input tokens until it sees an input

symbol in FIRST (A)
(iii) Add keywords that begin constructs
(iv) Skip input if the table does not have an entry
(v) . . .

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 49 / 52

Using FOLLOW Sets as Synchronizing Tokens
Grammar

E →TE
′

E
′
→ + TE

′
| 𝜖

T →FT
′

T
′
→ ∗ FT

′
| 𝜖

F → (E) | id

FOLLOW Sets
FOLLOW (E) = FOLLOW

(
E
′)

= {$,)}

FOLLOW (T) = FOLLOW
(
T
′)

= {$, +,)}

FOLLOW (F) = {$, +,×,)}

Nonterminal id + ∗ () $
E E → TE′ E → TE′ synch synch

E′ E′ → +TE′ E′ → 𝜖 E′ → 𝜖

T T → FT ′ synch T → FT ′ synch synch

T ′ T ′ → 𝜖 T ′ → ∗FT ′ T ′ → 𝜖 T ′ → 𝜖

F F → id synch synch F → (E) synch synch

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 50 / 52

Error Recovery Moves by Table-Driven Predictive Parser
Stack Input Remark
$E + id ∗ + id$ Error, skip +
$E id ∗ + id$ Expand E → TE′

$E′T id ∗ + id$ Expand T → FT ′

$E′T ′F id ∗ + id$ Expand F → id
$E′T ′ id id ∗ + id$ Match id
$E′T ′ ∗ + id$ Expand T → ∗FT ′

$E′T ′F∗ ∗ + id$ Match ∗
$E′T ′F + id$ Error, M [F , +] = synch, pop F
$E′T ′ + id$ Expand T → 𝜖

$E′ + id$ Expand E′ → +TE′

$E′T+ + id$ Match +
$E′T id$ Expand T → FT ′

$E′T ′F id$ Expand F → id
$E′T ′ id id$ Match id
$E′T ′ $ Expand T ′ → 𝜖

$E′ $ Expand E′ → 𝜖

$ $

Swarnendu Biswas (IIT Kanpur) CS 335: Top-Down Parsing Sem 2023-24-II 51 / 52

References

A. Aho et al. Compilers: Principles, Techniques, and Tools. Sections 2.4, 4.2–4.4, 2nd edition,
Pearson Education.

K. Cooper and L. Torczon. Engineering a Compiler. Section 3.3, 2nd edition, Morgan Kaufmann.

	Top-Down Parsing
	Recursive-Descent Parsing
	Non-Recursive Predictive Parsing
	Using Ambiguous Grammars

