
CS 335: Syntax Analysis

Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2023-24-II



An Overview of Compilation

lexical
analyzer

syntax
analyzer

semantic
analyzer

intermediate
code

generator

code
optimizer

code
generator

symbol
table

error
handler

source
program

target
program

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 3 / 31



Interfacing with Parser

parse
tree

source
program

Lexical
Analyzer

Syntax
Analyzer

token

get next token

symbol
table

Rest of the
Front end

IR

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 4 / 31



Syntax Analysis

� Given an input program, a scanner generates a stream of tokens classified according to
the syntactic categories of a programming language PL

� Given a grammar G for PL1
,
2, a parser determines if the input program, represented by

the token stream s, is a valid sentence in PL
▶ The parser attempts to build a derivation for s using G
▶ If the input stream is a valid program, the parser builds a model (e.g., IR) for later phases
▶ If the input stream is invalid (i.e., s ∉ L(G)), the parser reports the problem and diagnostic

information to the user

1Java 17 Grammar
2Python 3.12 Grammar

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 5 / 31

https://docs.oracle.com/javase/specs/jls/se17/html/jls-19.html
https://docs.python.org/3/reference/grammar.html


Context-Free Grammars

� A context-free grammar (CFG) G is a quadruple (T ,NT ,S,P)

T

Set of terminal symbols (also called words) in the language L (G).

A terminal symbol is a word that can occur in a sentence and correspond to
syntactic categories returned by the scanner.

NT

Set of nonterminal symbols that appear in the productions of G.

Nonterminals are syntactic variables that provide abstraction and structure in
the productions.

S Goal or start symbol of the grammar G. S represents the set of sentences in L(G).
P Set of productions (or rules) in G. Each rule in P is of the form NT → (T ∪ NT )∗.

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 7 / 31



Context-Free vs Regular Grammar

� CFGs are more powerful than REs
▶ Every regular language is context-free, but not vice versa
▶ We can create a CFG for every NFA that simulates some RE

� Language that can be described by a CFG but not by a RE

L = anbn | n ≥ 1

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 8 / 31



Definitions

� Derivation is a sequence of rewriting steps that begin with the grammar G’s start
symbol S and ends with a sentence in the language

S
+⇒ w where w ∈ L(G)

� At each point during the derivation process, the string is a collection of terminal or
nonterminal symbols

𝛼A𝛽 → 𝛼𝛾𝛽 if A → 𝛾

▶ Such a string is called a sentential form if it occurs in some step of a valid derivation
▶ A sentential form can be derived from S in zero or more steps

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 9 / 31



Example of a Context-Free Grammar (CFG)

CFG

Expr → (Expr)
| Expr Op name
| name

Op →+ | − | × |÷

Deriving (a + b) × c

Expr →Expr Op name
→Expr × name
→ (Expr) × name
→ (Expr Op name) × name
→ (Expr + name) × name
→ (name + name) × name

Expr

Expr nameOp

( Expr ) X

Expr nameOp

name +

Parse Tree

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 10 / 31



Parse Tree

� A parse tree is a graphical representation of a derivation
▶ Root is labeled with the start symbol S
▶ Each internal node is a nonterminal, and represents the application of a production
▶ If A is a nonterminal labeling some internal node and X1,X2, . . . ,Xn are the labels of the

children of A from left to right, then there must be a production A → X1X2 . . .Xn in the
grammar

▶ Leaves are labeled by terminals and constitute a sentential form, read from left to right,
called the yield or frontier of the tree

� Parse tree filters out the order in which productions are applied to replace
nonterminals, and only represents the rules applied

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 11 / 31



Derivations

� At each step during derivation, we have two choices to make
1. Which nonterminal to rewrite?
2. Which production rule to pick?

� A leftmost derivation rewrites the leftmost nonterminal at each step, denoted by
𝛼 ==⇒

lm
𝛽

▶ Every leftmost derivation can be written as wAy ==⇒
lm

w𝛿y, where w ∈ T ∗

� Rightmost (or canonical) derivation rewrites the rightmost nonterminal at each step,
denoted by 𝛼 ==⇒

rm
𝛽

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 12 / 31



Leftmost Derivation

Expr →Expr Op name
→ (Expr) Op name
→ (Expr Op name) Op name
→ (name Op name) Op name
→ (name + name) Op name
→ (name + name) × name

Expr

Expr nameOp

( Expr ) X

Expr nameOp

name +

Parse Tree

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 13 / 31



Ambiguous Grammars

� A grammar G is ambiguous if some sentence in L(G) has more than one rightmost (or
leftmost) derivation

� An ambiguous grammar can produce multiple derivations and parse trees

Stmt → if Expr then Stmt | if Expr then Stmt else Stmt | Assign

if Expr1 then if Expr2 then Assign1 else Assign2

Stmt

if Expr1 then Stmt

if Expr2 then Stmt else Stmt

Assign1 Assign2

Stmt

if Expr1 then Stmt

if Expr2 then Stmt

Assign1

Assign2

else Stmt

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 14 / 31



Dealing with Ambiguous Grammars

� Compilers use parse trees to interpret the meaning of the expressions during later
stages

� Ambiguous grammars are problematic for compilers since multiple parse trees can give
rise to multiple interpretations

� Ways to fix an ambiguous grammar
(i) Transform the grammar to remove the ambiguity
(ii) Include rules to disambiguate during derivations (e.g., associativity and precedence)

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 17 / 31



Fixing the Ambiguous Dangling-Else Grammar

In all programming languages, an else is matched with the closest then

Stmt → if Expr then Stmt | if Expr then ThenStmt else Stmt | Assign
ThenStmt → if Expr then ThenStmt else ThenStmt | Assign

if Expr1 then if Expr2 then Assign1 else Assign2

⇓
Stmt → if Expr then Stmt

→ if Expr then if Expr then ThenStmt else Stmt
→ if Expr then if Expr then ThenStmt else Assign
→ if Expr then if Expr then Assign else Assign

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 18 / 31



Interpreting the Meaning of Programs

CFG

Expr → (Expr)
| Expr Op name
| name

Op →+ | − | × |÷

a + b × c

Expr →Expr Op name
→Expr × name
→Expr Op name × name
→Expr + name × name
→name + name × name

Expr

Expr nameOp

XExpr nameOp

name +

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 20 / 31



Associativity

string → string + string | string − string |0|1|2| . . . |9

9-5+2

string

string string+

string string-

9 5

2

string

string string-

string string+

5 2

9

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 21 / 31



Associativity
� If an operand has operators on both sides, the side on which the operator takes this

operand is the associativity of that operator
▶ For example, +, −, ×, and / are left-associative and ˆ and = are right-associative

� Grammar to generate strings with right-associative operators

right → letter = right | letter
letter → a|b| . . . |z

a=b=c

right

letter = right

letter = right

letter

a

b

c

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 22 / 31



Encode Precedence into the Grammar

Start →Expr
Expr →Expr + Term | Expr − Term | Term
Term →Term × Factor | Term ÷ Factor | Factor

Factor → (Expr) | num | name

y

pr
io
rit
y

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 23 / 31



Corresponding Parse Tree

a − b + c

Start →Expr
→Expr + Term
→Expr + Factor
→Expr + name
→Expr − Term + name
→Expr − Factor + name
→Expr − name + name
→Term − name + name
→Factor − name + name
→name − name + name

Expr

Expr Term+

Expr Term-

Term

Factor

name

Factor

name

Factor

name

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 24 / 31



Types of Parsers

Top-down
Starts with the root and grows the parse tree toward the leaves (e.g., LL parsers)

Bottom-up
Starts with the leaves and grows the parse tree toward the root (e.g., LR parsers)

Universal
More general algorithms, but inefficient to use in production compilers (e.g., Earley’s parser)

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 25 / 31



Programming Errors

Common source of programming errors
� Lexical errors, e.g., illegal characters and missing quotes around strings

▶ The scanner cannot deal with most errors, e.g., it will mark misspelled keywords as IDs
� Syntactic errors, e.g., misspelled keywords, misplaced semicolons, or extra or missing

braces
� Semantic errors, e.g., type mismatches between operators and operands and

undeclared variables
� Logical errors

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 26 / 31



Goals in Error Handling

(i) Report errors accurately

(ii) Recover from the error and detect subsequent errors

(iii) Add minimal overhead to the compilation of correct programs

Report the source location where the error is detected, chances are the actual error
location is close by

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 27 / 31



Error Recovery Strategies in the Parser

Panic-mode recovery
� Parser discards input symbols until a synchronizing token is found, restarts processing

from the synchronizing token
� Synchronizing tokens are usually delimiters (e.g., ; or })

Phrase-level recovery
� Perform local correction on the remaining input (e.g., replace comma by semicolon)
� Can go into an infinite loop because of wrong correction, or the error may have

occurred before it is detected

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 28 / 31



Handling Errors in the Parser

Error productions
� Augment the grammar with productions that generate erroneous constructs
� Works only for common mistakes and complicates the grammar

Global correction
Given an incorrect input string x and grammar G, find a parse tree for a related string y
such that the number of modifications (i.e., insertions, deletions, and changes) of tokens
required to transform x into y is as small as possible

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 29 / 31



Limitations of Syntax Analysis

Cannot detect many kinds of programming errors
� A variable has been declared before use
� A variable has been initialized
� Variables are of types on which operations are allowed
� Number of formal and actual arguments of a function match

These limitations are handled during semantic analysis

Swarnendu Biswas (IIT Kanpur) CS 335: Syntax Analysis Sem 2023-24-II 30 / 31



References

A. Aho et al. Compilers: Principles, Techniques, and Tools. Sections 2.2, 4.1–4.3, 2nd edition,
Pearson Education.

K. Cooper and L. Torczon. Engineering a Compiler. Sections 3.1–3.2, 2nd edition, Morgan
Kaufmann.


	Syntax Analysis

