
CS 335: Runtime Environments
Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2023-24-II

An Overview of Compilation

lexical
analyzer

syntax
analyzer

semantic
analyzer

intermediate
code

generator

code
optimizer

code
generator

symbol
table

error
handler

source
program

target
program

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 3 / 66

Abstraction Spectrum

� Translating source code requires dealing with all programming language abstractions
▶ For example, names, procedures, objects, control flow, and exceptions

� Physical computer operates in terms of several primitive operations
▶ For example, arithmetic, data movement, and control jumps

� It is not enough to just translate intermediate code to machine code, need to manage
memory when a program is executing

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 4 / 66

Runtime Environment

Definition
A runtime environment is a set of data structures maintained at run time to implement
high-level program structures
� Examples of data structures are stack, heap, and virtual function tables
� Program structures depend on the features of the source and the target language,

examples are procedures and inheritance

� Compilers create and manage the runtime environment in which the target programs
execute

� Runtime deals with the layout, allocation, and deallocation of storage locations,
linkages between procedures, and passing parameters among other concerns

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 5 / 66

Issues Dealt by Runtime Environments

� How to pass parameters when a procedure is called?
� What happens to locals when procedures return from an activation?
� Can a procedure refer to nonlocal names? If yes, then how?
� How to support recursive procedures?
� . . .

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 6 / 66

Storage Organization

� Target program runs in its own logical address
space

� Size of generated code is usually fixed at compile
time unless code is loaded or produced
dynamically

� Compiler can place the executable at fixed
addresses

� Runtime storage can be subdivided into
▶ Target code
▶ Static data objects such as global constants
▶ Stack to keep track of procedure activations and

local data
▶ Heap to keep all other information like dynamic

data

Code
a.k.a. Text

Data
initialized

uninitialized

Heap

Free memory

Stack

m
em

or
y

ad
dr

es
s

D
at

a
se

gm
en

t

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 7 / 66

Virtual Address Space

#include <cstdlib>
#include <iostream>
int main() {
int x = 3;
std::cout << "Start of code segment: " <<

<< (void*)&main << "\nStart of heap segment: "
<< new int << "\nStart of stack segment: " << &x << "\n";

return EXIT_SUCCESS;
}

$ g++ va-space.cpp -o va-space
$./va-space
Start of code segment: 0x55da0d8df1e9
Start of heap segment: 0x55da0f8722c0
Start of stack segment: 0x7ffd7d557b44

The Abstraction: Address Spaces

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 8 / 66

https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf

Program Segments

1 int g_i_data = 2; // initialized global variables are in data
2 // Uninitialized global or global initialized to zero are in .bss
3 float g_f_bss;
4 long g_l_bss = 0;
5 const int MAX = 10000; // .rodata
6 const int MIN = 100; // .rodata
7

8 int main() {
9 static double s_d_bss; // uninitialized static in .bss

10 // Initialized static in .data
11 static int s_i_data = 77;
12 static char s_str[] = "CS335!\n";
13 const float pi = 3.14; // local constant in .rodata
14 // Local non-static variables are on the stack
15 int l_value = 42;
16 return 0;
17 }

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 9 / 66

Program Segments

$ g++ --save-temps -o segments.out segments.cpp
$ size segments.out-segments.o
text data bss dec hex filename
135 16 24 175 af segments.out-segments.o

$ objdump -CS -s -j .data segments.out-segments.o
...
0000000000000000 <g_i_data >:
0: 02 00 00 00

0000000000000004 <main::s_i_data >:
4: 4d 00 00 00 M...

0000000000000008 <main::s_str >:
8: 43 53 33 33 35 21 0a 00 CS335!..

$ objdump -CS -s -j .bss segments.out-segments.o
0000000000000000 <g_f_bss >:

...
0000000000000008 <g_l_bss >:

...
0000000000000010 <main::s_d_bss >:

...

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 10 / 66

Strategies for Storage Allocation

Static allocation
� Lay out storage at compile time only by studying the program text
� Memory allocated at compile time will be in the static area

Dynamic allocation
� Storage allocation decisions are made when the program is running
� Stack allocation — Manage run-time allocation with a stack storage

▶ Local data are allocated on the stack
� Heap allocation — Memory allocation and deallocation can be done at any time

▶ Requires memory reclamation support

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 11 / 66

Static Allocation

Names are bound to storage locations at compilation time
� Bindings do not change, so no runtime support is required
� Names are bound to the same location on every invocation
� Values are retained across activations of a procedure

Limitations
− Size of all data objects must be known at compile time
− Data structures cannot be created dynamically
− Recursive procedures are not allowed

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 12 / 66

Allocating Arrays Statically

#include <cstdlib>
#include <iostream>
using std::cout;
#define NUM_ELEMS (1 << 30)
int main() {
int large_array[NUM_ELEMS];
cout << "Allocation successful!";
for (int i = 0; i < NUM_ELEMS; i++) {
large_array[i] = 0;
cout << "Array[i]: " << large_array[i] << "\n";

}
return EXIT_SUCCESS;

}

$ g++ static-large-array.cpp -o static-large-array.out
$./static-large-array.out
'./static-large-array.out' terminated by signal SIGSEGV (Address boundary error)

Why does a large static array give a seg-fault but dynamic doesn’t? (C++)
Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 13 / 66

https://stackoverflow.com/questions/16269895/why-does-a-large-static-array-give-a-seg-fault-but-dynamic-doesnt-c

Static vs Dynamic Allocation

Static Allocation

� Variable access is fast
▶ Addresses are known at compile time

� Cannot support recursion

Dynamic Allocation

� Variable access is slow
▶ Accesses need redirection through

stack/heap pointer
� Supports recursion

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 14 / 66

Stack vs Heap Allocation

Stack

� Allocation/deallocation is automatic
� Fast allocation, requires only adjusting

the stack pointer
� Space for allocation is limited

Heap

� Allocation/deallocation is explicit
� Allocation is more expensive
� Challenge is heap fragmentation

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 15 / 66

Comparing the Cost of Stack and Heap Allocations

1 #define NUM_ITERS (1e9)
2 using HR = std::chrono::high_resolution_clock;
3 using HRTimer = HR::time_point;
4 using std::chrono::duration_cast;
5 using std::chrono::microseconds;
6 void on_stack() { int i; }
7 void on_heap() { int* i = new int; }
8 int main() {
9 HRTimer start = HR::now();

10 for (int i = 0; i < NUM_ITERS; ++i) { on_stack(); }
11 HRTimer end = HR::now();
12 auto duration = duration_cast <microseconds >(end - start).count();
13 cout << "Time for per on_stack alloc: " << (float)duration / NUM_ITERS << "us\n";
14 start = HR::now();
15 for (int i = 0; i < NUM_ITERS; ++i) { on_heap(); }
16 end = HR::now();
17 duration = duration_cast <microseconds >(end - start).count();
18 cout << "Time for per heap alloc: " << ((float)duration / NUM_ITERS) / 2 << " us\n";
19 return EXIT_SUCCESS;
20 }

$ g++ stack-heap-cost.cpp -o stack-heap-cost.out
$./stack-heap-allocation.out
Time for per stack alloc: 0.0017 us
Time for per heap alloc: 0.0069 us

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 16 / 66

Comparing the Cost of Stack and Heap Allocations

1 #define NUM_ITERS (1e9)
2 using HR = std::chrono::high_resolution_clock;
3 using HRTimer = HR::time_point;
4 using std::chrono::duration_cast;
5 using std::chrono::microseconds;
6 void on_stack() { int i; }
7 void on_heap() { int* i = new int; }
8 int main() {
9 HRTimer start = HR::now();

10 for (int i = 0; i < NUM_ITERS; ++i) { on_stack(); }
11 HRTimer end = HR::now();
12 auto duration = duration_cast <microseconds >(end - start).count();
13 cout << "Time for per on_stack alloc: " << (float)duration / NUM_ITERS << "us\n";
14 start = HR::now();
15 for (int i = 0; i < NUM_ITERS; ++i) { on_heap(); }
16 end = HR::now();
17 duration = duration_cast <microseconds >(end - start).count();
18 cout << "Time for per heap alloc: " << ((float)duration / NUM_ITERS) / 2 << " us\n";
19 return EXIT_SUCCESS;
20 }

$ g++ stack-heap-cost.cpp -o stack-heap-cost.out
$./stack-heap-allocation.out
Time for per stack alloc: 0.0017 us
Time for per heap alloc: 0.0069 us

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 16 / 66

Procedure Abstraction

Activations, calling conventions, and accessing local and nonlocal data

Procedure Calls

� Procedure definition is a declaration that associates an identifier with a statement
(procedure body)
▶ Formal parameters appear in a declaration while actual parameters appear when a

procedure is called

+ Important abstraction in programming
▶ Provides control abstraction and a name space
▶ Defines critical interfaces among large parts of a software

+ Creates a controlled execution environment
▶ Each procedure has its own private named storage or name space
▶ Executing a call instantiates the callee’s name space

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 17 / 66

Control Abstraction

� Each language has rules to
▶ Invoke a procedure (pass control by manipulating the PC)
▶ Map a set of arguments from the caller’s name space to the callee’s name space (pass

data)
▶ Allocate space for local variables when a procedure executes
▶ Return control to the caller, and continue execution after the call

� Linkage convention standardizes the actions taken by the compiler and the OS to
make a procedure call

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 18 / 66

More on Procedure Calls

� Each execution of a procedure P is an activation of the procedure P
� A procedure is recursive if an activation can begin before an earlier activation of the

same procedure has ended
▶ If a procedure is recursive, several activations may be alive at the same time

� The lifetime of an activation of P is the sum of all the steps to execute P and all the
steps in procedures that P calls

� Given activations of two procedures, their lifetimes are either non-overlapping or
nested

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 19 / 66

Activation Tree

� Depicts the way control enters and
leaves activations
▶ Root represents the activation of
main()

▶ Each node represents the activation of
a procedure

▶ Node a is the parent of b if control
flows from a to b

▶ Node a is to the left of b if lifetime of a
occurs before b

� Flow of control in a program
corresponds to depth-first traversal of
the activation tree

int g() { return 42; }
int f() { return g(); }
int main() {
g();
f();

}

main

g() f()

g()

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 20 / 66

Quicksort Code

int a[11];
void readArray() {
int i;
...

}
int main() {
readArray();
a[0] = -99999;
a[10] = 99999;
quicksort(1, 9);

}

void quicksort(int m, int n) {
int i;
if (n > m) {
i = partition(m, n);
quicksort(m, i-1);
quicksort(i+1, n);

}
}
int partition(int m, int n) {
...

}

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 21 / 66

One Possible Activation Tree
main()

rdArr() qsort(1,9)

partn(1,9) qsort(1,3) qsort(5,9)

partn(1,3) qsort(1,0) qsort(2,3) partn(5,9) qsort(5,5) qsort(7,9)

partn(2,3) qsort(2,1) qsort(3,3) partn(7,9) qsort(7,7) qsort(9,9)

a.k.a dynamic call graph

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 22 / 66

Example of Procedure Activations

main()

rdArr() qsort(1,9)

partn(1,9) qsort(1,3) qsort(5,9)

partn(1,3) qsort(1,0) qsort(2,3) partn(5,9) qsort(5,5) qsort(7,9)

partn(2,3) qsort(2,1) qsort(3,3) partn(7,9) qsort(7,7) qsort(9,9)

1 enter main()
2 enter readArray()
3 leave readArray()
4 enter quicksort(1,9)
5 enter partition(1,9)
6 leave partition(1,9)
7 enter quicksort(1,3)
8 ...
9 leave quicksort(1,3)

10 enter quicksort(5,9)
11 ...
12 leave quicksort(5,9)
13 leave quicksort(1,9)
14 leave main()

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 23 / 66

Control Stack

� Procedure calls and returns are usually
managed by a run-time stack called the
control stack

� Each live activation has an activation
record (also called a frame) on the
control stack
▶ Stores control information and data

needed to manage the activation
� A frame is pushed when activation

begins and popped when activation ends
� Suppose node n is at the top of the

stack, then the stack contains the nodes
along the path from n to the root

main()

rdArr() qsort(1,9)

partn(1,9) qsort(1,3)

partn(1,3) qsort(1,0) qsort(2,3)

qsort(2,3)

qsort(1,3)

qsort(1,9)

main()

co
nt

ro
l s

ta
ck

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 24 / 66

Is a Stack Sufficient?

When will a control stack work?
� Once a function returns, its activation record cannot be referenced again
� Every activation record has either finished executing or is an ancestor of the current

activation record
� We do not need to store old nodes in the activation tree

When will a control stack not work?
� A function’s activation record can be referenced after the function returns
� Function closures — procedure and run-time context to define free variables

▶ A variable that a procedure refers to and that is declared outside the procedure’s own
scope is called a free variable

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 25 / 66

Function Closure

Definition
Function closure stores a function together
with its execution environment
� The environment maps each free variable to

the value or reference that the name was
bound to when the closure was created

� Popularly used in languages where
functions are first-class objects
▶ Functions can be returned as results

from higher-order functions or
passed as arguments to other
function calls

1 # Python example
2 def f(x): # returns a closure
3 def g(y):
4 return x+y
5 return g
6 def h(x): # returns a closure
7 return lambda y: x+y
8 # Assign closures to variables
9 a = f(1)

10 b = h(1)
11 assert a(5) == 6
12 assert b(5) == 6
13 # Use closures without binding to
14 # variables (anonymous)
15 assert f(1)(5) == 6
16 assert h(1)(5) == 6

Closure (computer programming)

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 26 / 66

https://en.wikipedia.org/wiki/Closure_(computer_programming)

Environment and State

Environment

� Refers to a function that maps a name
to a storage location

� Maps a name to an l-value

State

� Refers to a function that maps a storage
location to the stored value

� Maps the l-value to an r-value

name storage value

environment state

An assignment changes state, not the environment
An expression evaluated to a location is a l-value.
An expression evaluated to a value is a r-value.

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 27 / 66

Activation Record

� A pointer to the current activation record is maintained in a
register

� Fields in an activation record
(i) Actual parameters
(ii) Returned values
(iii) Control link – Points to the activation record of the caller
(iv) Access link – access non-local data
(v) Saved machine status – information about the machine

state before the procedure call
▶ Return address (value of program counter)
▶ Register contents

(vi) Local data
(vii) Temporaries

Contents and position of fields may vary with language
and implementations

actual
parameters

returned
values

control link

access link

saved machine
status

local data

temporaries

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 28 / 66

Sequence of Activation Record Manipulation

1

main()

integer a[11]

main

Frame for main()

global
variable

local
variable

rdArr() is activated

integer a[11]

main

rdArr

integer i

2

main()

rdArr()

3

main()

rdArr() qsort(1,9) integer i
local

variable

rdArr() is popped, qsort(1,9) is pushed

integer a[11]

main

integer m, n

qsort(1,9)

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 29 / 66

What is in G()’s Activation Record when F() calls G()?

� If a procedure F calls G, then G’s activation record contains information about both F
and G
▶ F is suspended until G completes, at which point F resumes
▶ G’s activation record contains information needed to resume execution of F

� G’s activation record contains
▶ Actual parameters to G (supplied by F)
▶ G’s return value (needed by F)
▶ Space for G’s local variables

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 30 / 66

Procedure Linkage

� Procedure linkage is a contract between
the compiler, the OS, and the target
machine

� Divides responsibility for naming,
allocation of resources, addressability,
and protection

prologue

precall

postreturn
call q

epilogue

procedure p

procedure q

instructions at the entry to
prepare the stack and the

registers for use

prologue

epilogue

instructions at the end to restore
the stack and the registers as

required by the caller

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 31 / 66

Calling and Return Sequence

Calling sequence allocates an activation record on the stack and enters information into its
fields
� Responsibility is shared between the caller and the callee

Return sequence restores the state of the machine, so the calling procedure can continue
its execution after the call

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 32 / 66

Calling Sequence

� Place values communicated between caller and callee at the beginning of the callee’s
activation record, close to the caller’s activation record

� Fixed-length items are placed in the middle
� Data items whose size are not known during intermediate code generation are placed

at the end of the activation record
� Top-of-stack points to the end of the fixed-length fields

▶ Fixed-length data items are accessed by fixed offsets from top-of-stack pointer
▶ Variable-length fields records are actually “above” the top-of-stack

Policies and implementation strategies can differ

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 33 / 66

Division of Tasks Between Caller and Callee

Parameters and return
value

Control link
Links and saved status

Temporaries and local
data

Parameters and return
value

Control link
Links and saved status

Temporaries and local
data

top_stack

...

C
al

le
r's

 re
sp

on
si

bi
lit

y

C
al

le
r's

 a
ct

iv
at

io
n

re
co

rd
C

al
le

e'
s

ac
tiv

at
io

n
re

co
rd

C
al

le
e'

s
re

sp
on

si
bi

lit
y

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 34 / 66

Division of Tasks Between Caller and Callee

Call Sequence
(i) Caller evaluates the actual parameters
(ii) Caller stores a return address and the old value of top_stack into the callee’s

activation record
(iii) Caller then increments top_stack past the caller’s local data and temporaries and the

callee’s parameters and status fields

(a) Callee saves the register values and other status information
(b) Callee initializes its local data and begins execution

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 35 / 66

Division of Tasks Between Caller and Callee

Return Sequence
� Callee places the return value next to the parameters
� Callee restores top_stack and other registers
� Callee branches to the return address that the caller placed in the status field
� Caller copies return value into its activation record

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 36 / 66

Calling Conventions
� Specifies how function calls are set up

and executed
▶ Where are parameters placed? What

is the order for passing parameters?
▶ How are variadic functions handled?
▶ How is the return value passed from

the callee to the caller?
▶ Which registers should be preserved

across calls? Is the caller or the callee
responsible for preserving registers?

myFunc(a,b)

 push a
 push b
 call myFunc

 push b
 push a
 call myFunc

x86-64 calling convention
� First six integral (including pointers) function

arguments are passed in registers %rdi, %rsi,
%rdx, %rcx, %r8, and %r9

� Subsequent arguments are passed on the stack
in the reverse order (arg 7 is at the top)

� The return value is passed in register %rax
� Floating point parameters are passed in

%xmm0-%xmm7
� If the function takes a variable number of

arguments (like printf), then %rax must be set
to the number of floating point arguments

� The stack pointer register %rsp must be aligned
to 16-byte boundary before the call

� Complete set of rules (System V ABI) are
complex

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 37 / 66

Passing Parameters in x86-64

void proc(long a1, long *a1p,
int a2, int *a2p,
short a3, short *a3p,
char a4, char *a4p) {

*a1p += a1;
*a2p += a2;
*a3p += a3;
*a4p += a4;

}

$ gcc -S -fno-asynchronous-unwind-tables
-fno-exceptions proc-call.c

...

...
saved RBP

return address

a4

a4p

...
7th arg

RBP

RBP+8

RBP+16

RBP+24

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 38 / 66

x86-64 Assembly for Example Procedure Call

void proc(long a1, long *a1p,
int a2, int *a2p,
short a3, short *a3p,
char a4, char *a4p) {

*a1p += a1;
*a2p += a2;
*a3p += a3;
*a4p += a4;

}

$ gcc -Og -S
-fno-asynchronous-unwind-tables
-fno-exceptions proc-call.c

1 ...
2 ; q is quadword (8B), l is long word
3 ; (4B), and w is word (2B)
4 ; Fetch a4p, move 8 bytes
5 movq 16(%rsp), %rax
6 addq %rdi, (%rsi) ; *a1p += a1
7 addl %edx, (%rcx) ; *a2p += a2
8 addw %r8w, (%r9) ; *a3p += a3
9 ; Fetch a4 to %dl (low-order 8 bits)

10 movl 8(%rsp), %edx
11 addb %dl, (%rax) ; *a4p += a4
12 ret
13 ...

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 39 / 66

Register Saving Conventions

proc1:
...
movq $0x100, %rdx
call proc2
addq %rdx, %rax
...
ret

proc2:
...
subq $0x200, %rdx
...
ret

� %rbx, %rbp, and %r12–%r15 are
callee-saved registers

� All other registers, excepting %rsp, are
caller-saved

� %rax holds the return value, so
implicitly caller saved

� %rsp is the stack pointer, so implicitly
callee saved

� Caller saved
▶ Caller saves temporary values in its frame (on the stack) before the call
▶ Callee is then free to modify their values

� Callee saved
▶ Callee saves temporary values in its frame before using them
▶ Callee restores them before returning to caller

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 40 / 66

Use of Callee-Saved Registers
long proc2(long);

long proc1(long x, long y) {
long u = proc2(y);
long v = proc2(x);
return u+v;

}

$ gcc -O0 -S
-fno-asynchronous-unwind-tables
-fno-exceptions callee-saved-regs.c

1 proc1:
2 ; x is in %rdi, y is in %rsi
3 pushq %rbp ; callee-saved
4 movq %rsp, %rbp
5 subq $32, %rsp ; allocate memory
6 movq %rdi, -24(%rbp)
7 movq %rsi, -32(%rbp)
8 movq -32(%rbp), %rax
9 movq %rax, %rdi

10 call proc2@PLT
11 movq %rax, -16(%rbp)
12 movq -24(%rbp), %rax
13 movq %rax, %rdi
14 call proc2@PLT
15 movq %rax, -8(%rbp)
16 movq -16(%rbp), %rdx
17 movq -8(%rbp), %rax
18 addq %rdx, %rax
19 leave
20 ret

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 41 / 66

Data Communication between Procedures

Definition
Parameter binding maps the actual parameters at a call site to the callee’s formal
parameters
� Types of mapping conventions: call by value, call by reference, and call by name

Call by Value

� Convention where the caller evaluates
the actual parameters and passes their
r-values to the callee

� A formal parameter in the callee is
treated like a local name

� Any modification of a value parameter
in the callee is not visible in the caller

Call by Reference
� Convention where the compiler passes

an address for the formal parameter to
the callee
▶ Any redefinition of a reference formal

parameter is reflected in the
corresponding actual

� A formal parameter requires an extra
indirection

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 42 / 66

Call by Name
� Reference to a formal parameter

behaves as if the actual parameter had
been textually substituted in its place

� Actual parameters are evaluated inside
the called function when they are used,
not when the function is called
▶ Can update the given parameters
▶ Renaming is used in case of clashes

� Example: Algol-60

procedure double(x);
real x;
begin
x := x*2

end;
double(c[j])

int f(int j) {
int k = j; // k = 9
i = 2; // modify global i
k = j; // a[i] is reevaluated , k = 7

}
char array[3] = { 9, 8, 7 };
int i = 0;
f(a[i]);

Pass-By-Name Parameter Passing
What is "Call By Name"?

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 43 / 66

https://www2.cs.sfu.ca/~cameron/Teaching/383/PassByName.html
https://stackoverflow.com/questions/2962987/what-is-call-by-name

Challenges with Call by Name

procedure swap(a, b)
integer a, b, temp;
begin
temp := a
a := b
b := temp

end;

What will happen when you call
swap(i, x[i])?
temp := i
i := x[i]
x[i] := temp

Before call i = 2 x[2] = 5

After call i = 5 x[2] = 5 x[5] = 2

Pass-By-Name Parameter Passing
Jensen’s device

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 44 / 66

https://www2.cs.sfu.ca/~cameron/Teaching/383/PassByName.html
https://en.wikipedia.org/wiki/Jensen%27s_device

Data Access Rules

Name Spaces, and Lexical and Dynamic Scoping

� Scope is the part of a program to which a name declaration applies
▶ Scope rules provide control over access to data and names

� In lexical scoping, a name refers to the definition that is lexically closest to the use
▶ With lexical (a.k.a., static) scoping, a free variable is bound to the declaration for its name

that is lexically closest to the use
� With dynamic scoping, a free variable is bound to the variable most recently created

at run time (e.g., Common Lisp)

Lexical scoping is more popular, dynamic scoping is relatively challenging to
implement
� Both are identical as far as local variables are concerned

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 45 / 66

Nested Lexical Scopes in Pascal
1 program Main0(inp, op);
2 var x1, y1, z1: integer;
3 procedure Fee1;
4 var x2: integer;
5 begin { Fee1 }
6 x2 := 1;
7 y1 := x2*2+1
8 end;
9 procedure Fie1;

10 var y2: real;
11 procedure Foe2;
12 var z3: real;
13 procedure Fum3;
14 var y4: real;
15 ...

� Compilers can use a static coordinate for a name
for lexically-scoped languages

� Consider a name x declared in a scope s
� Static coordinate is a pair ⟨l, o⟩ where l is the

lexical nesting level of s and o is the offset where
x is stored in the scope’s data area

Scope x y z

Main ⟨1, 0⟩ ⟨1, 4⟩ ⟨1, 8⟩
Fee ⟨2, 0⟩ ⟨1, 4⟩ ⟨1, 8⟩
Fie ⟨1, 0⟩ ⟨2, 0⟩ ⟨2, 8⟩
Foe ⟨1, 0⟩ ⟨2, 0⟩ ⟨3, 0⟩
Fum ⟨1, 0⟩ ⟨4, 0⟩ ⟨3, 0⟩

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 46 / 66

Lexical and Dynamic Scope

int x = 1, y = 0;
int g(int z) {
return x + z;

}

int f(int y) {
int x;
x = y + 1;
return g(x * y);

}

int main() {
print(f(3));

}

What is printed (i) with lexical scoping
and (ii) with dynamic scoping?

free variable

Static (Lexical) Scoping vs Dynamic Scoping (Pseudocode)

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 47 / 66

https://stackoverflow.com/questions/22394089/static-lexical-scoping-vs-dynamic-scoping-pseudocode

Lexical and Dynamic Scope in Perl

$x = 10;
sub f
{
return $x;

}
sub g
{
If local is used , x uses

dynamic scoping . If my is

used , x uses lexical scoping

local $x = 20;
return f();

}
print g()."\n";

What is printed (i) with lexical scoping
and (ii) with dynamic scoping?
$ perl scope.pl

Static (Lexical) Scoping vs Dynamic Scoping (Pseudocode)

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 48 / 66

https://stackoverflow.com/questions/22394089/static-lexical-scoping-vs-dynamic-scoping-pseudocode

Scoping Rules for C and Java Languages

 Global scope
 a, b, c, ...

 file scope
 static names
 x, y, z

 foo
 variables
 parameters
 labels

Block scope
 variables
 labels

 file scope
 static names
 w, x, z

 foo
 variables
 parameters
 labels

Block scope
 variables
 labels

C Public classes

 package P1

 public class A
 fields
 method f1
 local variables
 method f2
 local variables

class B
 fields
 method f3

 package P2
 ...

Java

 package P3
 ...

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 49 / 66

Allocating Activation Records

� Stack allocation
▶ Activation records follow LIFO ordering (e.g., Pascal, C, and Java)

� Heap allocation
▶ Needed when a procedure can outlive its caller (e.g., implementations of Scheme and ML)
▶ Garbage collection support eases complexity

� Static allocation
▶ Procedure P cannot have multiple active invocations if it does not call other procedures
▶ A leaf procedure makes no calls to other procedures
▶ Reduces memory requirement and improves performance

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 50 / 66

Variable Length Data on the Stack

� Data may be local to a procedure but
the size may not be known at compile
time
▶ For example, a local array whose size

depends upon a parameter
� Data may be allocated in the heap but

may require garbage collection
� Possible to allocate variable-sized local

data on the stack

Control link
Links and saved status

Pointer to a

Control link
Links and saved statustop_stack

...

Ac
tiv

at
io

n
re

co
rd

 fo
r p

Ac
tiv

at
io

n
re

co
rd

 fo
r

q
ca

lle
d

fro
m

 p

...

Pointer to b
Pointer to c

...
Array a
Array b
Array c

...

...

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 51 / 66

Data Access without Nested Procedures

� Consider the C-family of languages
� Any name local to a procedure is non-local to other procedures

� Access rules
(i) Global variables are in static storage

▶ Addresses are fixed and known at compile time, use the addresses in the code
(ii) Any other name must be local to the activation at the top of the stack

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 52 / 66

Access to Non-local Data in Nested Procedures

Suppose procedure p at lexical level m is nested in procedure q at level n, and x is
declared in q

We aim to resolve a non-local name x in p

� Finding the declaration for non-local x in p is a static decision
� Compiler models the reference by a static distance coordinate ⟨m − n, o⟩ where o is

offset in the activation record for q
� Compiler needs to translate ⟨m − n, o⟩ into a run-time address
� Finding the relevant activation of q from an activation of p is a dynamic decision
� We cannot use compile-time decisions since there could be many activation records

of p and q on the stack
� Two common strategies: access links and displays

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 53 / 66

Access Links
� Suppose procedure p is nested immediately

within procedure q
▶ p’s nesting depth is i + 1 if q’s nesting depth is i
▶ Procedures not nested within other procedures

have nesting depth 1 (e.g., functions in C)
� Access link in any activation of p points to the

most recent activation of q
▶ Access links form a chain up the nesting

hierarchy of activations whose data and
procedures are accessible to the currently
executing procedure

actual
parameters

returned
values

control link

access link

saved machine
status

local data

temporaries

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 54 / 66

Quicksort in ML using Nested Procedures

1 fun sort (inputFile , outputFile) =
2 let
3 val a = array(11,O);
4 fun readArray(inputFi1e) = .. ;
5 ..a.. ; // use of a
6 fun exchange(i, j) =
7 ..a.. ; // use of a

Procedure Nesting Depth
sort 1
readArray 2
exchange 2
quicksort 2
partition 3

8 fun quicksort(m,n) =
9 let

10 val v = .. ; // pivot
11 fun partition(y,z) =
12 ..a..v..exchange.. // use
13 in
14 ..a..v..partition..quicksort
15 end
16 in
17 ..a..readArray..quicksort..
18 end;

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 55 / 66

Example of Access Links

sort
access link

a

qsort(1,9)
access link

v

qsort(1,3)
access link

v

sort
access link

a

qsort(1,9)
access link

v Why?
Why?

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 56 / 66

How to Find Non-local x?
� Suppose procedure p is at the top of the

stack and has depth np, and q is a procedure
that surrounds p and has depth nq
▶ Usually nq < np; nq == np only if p and q are

the same
� Follow the access link (np − nq) times to

reach an activation record for q
▶ That activation record for q will contain a

definition for x that is non-local to p

sort
access link

a

qsort(1,9)
access link

v

qsort(1,3)
access link

v

part(1,3)
access link

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 57 / 66

Traversing Access Links

� The code to set up access links is part of the calling sequence and depends upon
whether the called procedure is nested within the caller

� Suppose procedure q at depth nq calls procedure p at depth np

� Case 1: nq < np
▶ Called procedure p is nested more deeply than q
▶ Therefore, p must be declared in q, or the call by q will not be within the scope of p
▶ Access link in p should point to the access link of the activation record of the caller q
▶ For example, sort() calls quicksort(), quicksort() calls partition()

� Case 2: nq == np
▶ Procedures are at the same nesting level (i.e., recursive call)
▶ Access link of called procedure p is the same as q
▶ For example, quicksort(1,9) calls quicksort(1,3)

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 59 / 66

Traversing Access Links

� Case 3: nq > np
▶ For example, partition() calls exchange()

▶ Nesting depth of calling function partition() is 3
▶ Nesting depth of called function exchange() is 2

▶ For the call within q to be in the scope of p, q must be
nested within some procedure r , while p is defined
immediately within r

▶ Top activation record for r can be found by following
chain of access links for nq − (np − 1) hops, starting in
the activation record for q

▶ Access link for q will go to the activation for r

sort
access link

a

qsort(1,9)
access link

v

qsort(1,3)
access link

v

part(1,3)
access link

exchg(1,3)
access link

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 60 / 66

Traversing Access Links

actual
parameters

returned
values

control link

access link

saved machine
status

local data

temporaries

actual
parameters

returned
values

control link

access link

saved machine
status

local data

temporaries

actual
parameters

returned
values

control link

access link

saved machine
status

local data

temporaries

Level 2 Level 1 Level 0

ARP

Coordinate Code

⟨2, 24⟩ loadAI %rarp, 24, %r2

⟨1, 12⟩ loadAI %rarp, -4, %r1
loadAI %r1, 12, %r2

⟨0, 16⟩
loadAI %rarp, -4, %r1
loadAI %r1, -4, %r1
loadAI %r1, 16, %r2

ARP stands for activation record pointer
� Assume that the access link is stored at an

offset of -4 from the ARP

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 61 / 66

Displays

Definition
Display is a global array to hold the activation record pointers for the most recent
activations of procedures at each lexical level

sort()
qsort(1,9)

null
...

d[1]
d[2] sort()

qsort(1,9)
null
...

d[1]
d[2]

qsort(1,3)
saved d[2]

...

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 62 / 66

Insight in Using Displays

� Suppose a procedure p is executing and needs to access element x belonging to
procedure q

� The runtime only needs to search in activations from d [i], where i is the nesting depth
of q

� Follow the pointer d [i] to the activation record for q, wherein x should be defined at a
known offset

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 63 / 66

Displays

sort()
qsort(1,9)

null
...

qsort(1,3)
saved d[2]

...
partn(1,3)

null
...

d[1]
d[2]
d[3]

sort()
qsort(1,9)

null
...

qsort(1,3)
saved d[2]

...
partn(1,3)

null
...

d[1]
d[2]
d[3]

exchg(1,3)
saved d[2]

...

Coordinate Code

⟨2, 24⟩ loadAI %rarp, 24, %r2

⟨1, 12⟩
loadAI DISP, %r1
loadAI %r1, 4, %r1
loadAI %r1, 12, %r2

⟨0, 16⟩ loadAI DISP, %r1
loadAI %r1, 16, %r2

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 64 / 66

Access Links vs Displays

Access Links

� Cost of lookup varies
▶ Common case is cheap, but long

chains can be costly
� Cost of maintenance is variable

Displays

� Cost of lookup is constant
� Cost of maintenance is constant

Swarnendu Biswas (IIT Kanpur) CS 335: Runtime Environments Sem 2023-24-II 65 / 66

References

A. Aho et al. Compilers: Principles, Techniques, and Tools. Sections 7.1–7.3, 2nd edition,
Pearson Education.

K. Cooper and L. Torczon. Engineering a Compiler. Sections 6.1–6.5, 7.1–7.2, 7.9, 2nd edition,
Morgan Kaufmann.

	Runtime Environments
	Procedure Abstraction
	Data Access Rules

