
CS 335: Register Allocation

Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2023-24-II

Impact of Register Operands

� Instructions involving register operands
are faster than those involving memory
operands
▶ Code is often smaller and hence is

faster to fetch
� Efficient utilization of registers is

important
▶ Number of general-purpose registers

is limited (e.g., 16–32 64-bit GPRs)

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 3 / 54

Goals in Register Allocation

� All variables are not used (or live) at the same time
� Register allocator in a compiler helps answer the following questions

(i) Which values should reside in registers?
(ii) Which register should hold each of those values?

� At each program location, values stored in virtual registers in the IR are mapped to
physical registers

Register
Allocator

Output
program

Input
program

n
registers

m
registers

n >> m

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 4 / 54

Goals in Register Allocation

� Given that programs spend most of their time in loops, it is natural to store values in
innermost loops in registers

� Register pressure measures the availability of free registers
▶ High register pressure implies that a large fraction of registers are in use

� When no registers are available to store a computation, the contents of one of the
in-use registers must be stored in memory
▶ This is called register spilling, and requires generating load and store instructions
▶ Spilling increases execution time and code size

� The goal in register allocation is to minimize the impact of spills, especially for
performance-critical code

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 5 / 54

Register Allocation and Assignment

Register Allocation
� Maps an unlimited namespace onto the register set of the target machine
� Register-to-register model: map virtual registers to the physical register set and spill

values that do not fit in the physical register set
� Memory-to-memory model: map a subset of memory locations to a set of physical

registers

Register Assignment
� Assumes that allocation has already been performed
� Maps an allocated name set to the physical registers of the target machine

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 6 / 54

Challenges in Register Allocation

(i) Architectures provide different register classes
▶ General purpose registers, floating-point registers, predicate and branch target registers
▶ General-purpose registers may be used for floating-point register spills, which implies an

order for allocation
▶ Registers may be aliased, cannot use a register and its constituent registers at the same

time
▶ x86 has 32-bit registers whose lower halves are used as 16-bit or 8-bit registers
▶ Similar for vector registers like zmm, ymm, and xmm

▶ If different register classes overlap, the compiler must allocate them together
(ii) Architecture calling conventions place more constraints on register usage

▶ For example, PowerPC requires parameters to be passed in R3-R10 and the return is in R3

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 7 / 54

Register Allocation Problem

� General formulation of the problem is NP-Complete
▶ For example, register allocation for a set of BBs, multiple control flow paths, multiple data

types, and non-uniform cost of memory access complicate the analysis
▶ Optimal allocation can be done in polynomial time for very restricted versions with a

single BB and with one data type

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 8 / 54

More about Register Allocation

� Types of allocation
local over a BB

global over a whole function
inter-procedural across function boundaries traversed via call graph

� Backend includes instruction selection, register allocation, and instruction scheduling
▶ Performing allocation first restricts the movement of code during scheduling, not a good

idea
▶ Scheduling instructions first cannot handle spill code introduced during allocation
▶ Possible order: selection→ scheduling→ allocation→ scheduling

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 9 / 54

Local Register Allocation

Frequency count and variable usage

Local Register Allocation

Assumptions � Considers only a single basic block (BB)
� Loads values from memory at the start of a BB and stores to memory at

the end of the BB
� IR makes use of many virtual registers
� Target machine has a uniform class of k general-purpose registers

 op1 vr1d, vr1s1, vr1s2
 op2 vr2d, vr2s1, vr2s2
 ...
 opn vrnd, vrns1, vrns2

 op1 ??, ??, ??
 op2 ??, ??, ??
 ...
 opn ??, ??, ??

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 10 / 54

Top-Down Allocation with Frequency Counts

� Count the frequency of occurrence of virtual registers
� Map virtual registers to physical registers in descending order of frequency
� If the BB uses fewer than k virtual registers, then mapping is trivial
� A few registers (F ≈ 2 − −4) registers are reserved to execute spill code
� Assign the top k − F virtual registers to physical registers
� Rewrite the code and replace virtual registers with physical registers
� For unassigned virtual registers, generate code sequence to spill code using the F

reserved registers

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 11 / 54

Example of Top-Down Allocation
Assume there are three physical
registers

Usage Count
Ra = 4

Rb = 3

Rc = 2

Rd = 2

Re = 2

Rf = 2

Rg = 2

Rh = 2

Liveness Information
LD Ra, 1028

Ra
MOV Rb,Ra

Ra Rb
MUL Rc ,Ra,Rb

Ra Rb Rc
LD Rd , x // Spill Rc based on usage count

Ra Rb Rc Rd
SUB Re,Rd ,Rb // Reuse Rb

Ra Rc Re
LD Rf , z // Reuse Rd

Ra Rc Re Rf
MUL Rg,Re,Rf // Reuse Re

Ra Rc Rg
SUB Rh,Rg,Rc // Restore Rc , reuse Rg

Ra
MOV Ra,Rh

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 12 / 54

Example of Top-Down Allocation

LD Ra, 1028
MOV Rb, Ra
MUL Rc, Ra, Rb
LD Rd , x
SUB Re, Rd , Rb
LD Rf , z
MUL Rg, Rc, Rf
SUB Rh, Rg, Rc
MOV Ra, Rh

Generate
======⇒

spill
LD Ra, 1028
MOV Rb, Ra
MUL Rc, Ra, Rb
ST offc(RSP), Rc
LD Rd , x
SUB Re, Rd , Rb
LD Rf , z
MUL Rg, Re, Rf
LD Rc, offc(RSP)
SUB Rh, Rg, Rc
MOV Ra, R

Register
=======⇒
assignment

LD R1, 1028
MOV R2, R1
MUL R3, R1, R2
ST offc(RSP), R3
LD R3, x
SUB R2, R3, R2
LD R3, z
MUL R2, R2, R3
LD R3, offc(RSP)
SUB R2, R2, R3
MOV R1, R2

� Top-down local allocation allocates a physical register to one virtual register for the
entire BB

� Allocation can be suboptimal if variables show phased behavior (e.g., Ra)
▶ A variable that is heavily used in the first half of the BB and not used in the second half

still stays in the physical register
Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 13 / 54

Bottom-Up Allocation Based on Variable Usage

� Iterate over the instructions in the BB and make decisions based on variable usage
(not count)

� Assumes that the physical registers are initially empty and places them on a free list
� Satisfies demand for registers from the free list until that list is exhausted
� If the free list is empty, spill a variable to memory and reuse the register

▶ Spill the variable whose next use is farthest in the future

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 14 / 54

Bottom-Up Allocation

� Assume that registers are grouped in
classes (e.g., general-purpose,
floating-point)
▶ Size: # of physical registers,
▶ Name: virtual register name,
▶ Next: distance to next reuse,
▶ Free: flag to indicate whether

currently in use,
▶ Stack: free physical registers

struct RegClass {
int Size;
int Name[Size];
int Next[Size];
int Free[Size];
int Stack[Size];
int StackTop;

}

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 15 / 54

Helper Functions in the Bottom-Up Algorithm

Ensure(vr, regClass)
if vr is already in regClass
pr = physical register for vr

else
pr = Allocate(vr, regClass)
emit code to move vr into pr

return pr

Free(pr, regClass)
// 0 ≤ i < Size
regClass.Name[i] = null
regClass.Next[i] = -1
regClass.Free[i] = true
push(regClass , pr)

Allocate(vr, regClass)
if regClass.StackTop >= 0
// free register available
i = pop(regClass)

else
// Check for farthest use
i = j s.t. ∀j∈Size max(regClass.Next[j])
// Emit spill code
store contents of j

regClass.Name[i] = vr
regClass.Next[i] = -1
regClass.Free[i] = false
return i

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 16 / 54

Bottom-Up Algorithm

for each instruction i = {1 . . . n} in BB
// Instruction i: op i vr id vr is1 , vr is2
rx = Ensure(vr is1, regClass(vr is1))
ry = Ensure(vr is2, regClass(vr is2))
if vr is1 is not needed after i
Free(rx, regClass(rx))

if vr is2 is not needed after i
Free(ry, regClass(ry))

rz = Allocate(vr id , regClass(vr id))
rewrite i as op i rz, rx, ry
if vr is1 is needed after i
regClass.next[rx]= Dist(vr is1)

if vr is2 is needed after i
regClass.next[ry]= Dist(vr is2)

regClass.next[rz]= Dist(vr id)

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 17 / 54

Behaviour with Bottom-Up Allocation
Assume there are three physical
registers

Liveness Information
LD Ra, 1028

Ra
MOV Rb,Ra

Ra Rb
MUL Rc ,Ra,Rb

Ra Rb Rc
LD Rd , x // Spill Ra based on farthest use

Ra Rb Rc Rd
SUB Re,Rd ,Rb // Reuse Rb

Ra Rc Re
LD Rf , z // Reuse Rd

Ra Rc Re Rf
MUL Rg,Re,Rf // Reuse Re

Ra Rc Rg
SUB Rh,Rg,Rc // Restore Ra, reuse Rg

Ra
MOV Rh,Ra

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 18 / 54

Challenges in Bottom-Up Allocation
� A store on a spill is unnecessary if the data is clean

▶ That is, the register contains a constant value or a return from a load
� A spill should be stored only if the data is dirty

� Assume a two-register machine: values x1 is clean and x2 is dirty
� Assume the reference stream for the rest of the BB is x3x1x2

On spilling dirty
values

 ...
 store x2
 load x3
 load x2
 ...

On spilling clean
values

 ...
 load x3
 load x1
 ...

overwrite x1

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 19 / 54

Challenges in Bottom-Up Allocation
� A store on a spill is unnecessary if the data is clean

▶ That is, the register contains a constant value or a return from a load
� A spill should be stored only if the data is dirty

� Assume a two-register machine: values x1 is clean and x2 is dirty
� Assume the reference stream for the rest of the BB is x3x1x3x1x2

On spilling clean
values

 ...
 load x3
 load x1
 load x3
 load x1
 ...

On spilling dirty
values

 ...
 store x2
 load x3
 load x2
 ...

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 19 / 54

Global Register Allocation

Global Register Allocation

� Scope is either multiple BBs or a whole procedure
� Decision problem: Given an input program in IR form (e.g., CFG) and a number k, is

there an assignment of registers to program variables such that no conflicting
variables are assigned the same register, no extra loads and stores are introduced, and
at most k registers are used?

� Fundamentally a more complex problem than local register allocation
▶ Need to consider def-use across multiple blocks
▶ Cost of spilling may not be uniform because it depends on the execution frequency of the

block where a spill happens

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 20 / 54

Live Ranges

� Rather than simply allocating a variable to a register throughout an entire sub-program
(i.e., the BBs under analysis), it is more profitable to split variables into live ranges

� A variable is live at a point p in the CFG if there is a use of the variable in the path
from p to the end of the CFG

� A live range for a variable is the smallest set of program points at which it is live
▶ A variable’s live range starts at the point in the code where the variable receives a value

and ends where that value is used for the last time
▶ Live ranges can be tracked in terms of individual instructions or BBs
▶ A single variable may be represented by many live ranges
▶ Two overlapping live ranges for the same variable must be merged

▶ Merged live ranges are also called webs

� Two variables interfere or conflict if their live ranges intersect (i.e., both are live)

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 21 / 54

Example of Live Ranges

 if (cond) {
 A = …
 } else {
 B = …
 }
 if (cond) {
 … = A
 } else {
 … = B
 }

if (cond)

A = ... B = ...

if (cond)

... = A ... = A

T F

B1

T F

B2 B3

B4

B6B5

Both A and B
are live

Live range of A: B2, B4, B5
Live range of B: B3, B4, B6

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 22 / 54

Utility of Live Ranges

 z = 1
 x = 2 * x
 y = 3 * z
 w = x + y
 print y+z
 x = y * w

x y w z

R1 R2 R1 R3

x’s and w’s live ranges do not overlap! They can
therefore be assigned to the same register.

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 23 / 54

Global Register Allocation Based on Usage Counts
� Heuristic method to allocate registers for most frequently-used variables
� Requires information about liveness of variables at the entry and exit of each BB in

the loop body L
� After v is computed into a register (i.e., defined), it stays in that register until the end

of the BB and all further references are to that register
� For every usage of a variable v in a BB before it is first defined, do savings(v) =

savings(v) + 1
� For every variable v computed in a BB, if it is live on exit from the BB, count a savings

of 2 because it is not necessary to store it at the end of the BB
▶ Assume load/store instructions cost two units

� Total savings per variable v is ΣblocksB in Luse(v,B) + 2 × live(v,B)
▶ live(v,B) is 1 or 0 depending on whether v is live on exit from B

� Estimate of savings is approximate since all BBs are not executed with the same
frequency

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 24 / 54

Example of Global Register Allocation Based on Usage Counts

 a = b * c
 d = b - a
 e = b / f

 b = a - f
 e = d + c f = e * a

 b = c - d

T F

bcf

acdf acde

cdf

B1

B2 B3

B4
bcf

B1 B2 B3 B4 Sum
a (0+2) (1+0) (1+0) (0+0) 4
b (3+0) (0+0) (0+0) (0+2) 5
c (1+0) (1+0) (0+0) (1+0) 3
d (0+2) (1+0) (0+0) (1+0) 4
e (0+2) (0+0) (1+0) (0+0) 3
f (1+0) (1+0) (0+2) (0+0) 4

If there are 3 registers, they will be
allocated to b, and (say) a and d

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 25 / 54

Global Register Allocation Based on Usage Counts for Nested Loops

� Assign registers for inner loops first
before considering outer loops

� Let loop L1 nest L2
� For variables assigned registers in L2

but not in L1, load these variables on
entry to L2 and store them on exit from
L2

� For variables assigned registers in L1
but not in L2, store these variables on
entry to L2 and load them on exit from
L2

Body of L2L2 L1

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 26 / 54

Global Register Allocation Using Graph
Coloring

Chaitin’s allocator

The Graph Coloring Problem

� For an arbitrary graph G, a coloring of G assigns a
color to each node in G so that no pair of adjacent
nodes have the same color

� A coloring that uses k colors is termed a
k-coloring

� The smallest possible k for a given graph is called
the graph’s chromatic number

� Determining if a graph is k-colorable, for some
fixed k, is NP-complete

1

2 3 4

5

2-colorable

1

2 3 4

5

3-colorable

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 27 / 54

Global Register Allocation with Graph Coloring

An interference graph models conflicts in live regions
� If variables a and b are live at the same point, they cannot be assigned to the same

register
� Nodes in an interference graph represent live ranges (LR) for a variable, and an edge

(i, j) indicates LRi and LRj cannot share a register

Compilers model register allocation through k-coloring on an interference graph
where k is the number of physical registers available to the allocator
� Each color represents an available register
� Spill some values to memory and retry if k-coloring is not possible

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 28 / 54

Identifying Global Live Ranges

Requirement � Group all definitions that reach a single use
� Group all uses that a single definition can reach

Assumptions � Register allocation operates on the SSA form
▶ In SSA, each name is defined once, and each use refers to one definition
▶ 𝜙 functions are used at control flow merge points

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 29 / 54

Discovering Live Ranges Using SSA Form

B0

B1 B2

B3

B0

B1 B2

B3

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 30 / 54

Interferences and the Interference Graph

� If there is an operation during which both LRi and LRj are live, they cannot reside in
the same register

� Two live ranges LRi and LRj interfere if one is live at the definition of the other and
they have different values

B0

B1 B2

B3

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 31 / 54

Interferences and the Interference Graph

B0

B1 B2

B3
The allocator will need to spill either LRa or LRb
if only two registers are available

swapped

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 32 / 54

Chaitin’s Algorithm: High-level Idea

1. While ∃ vertices with degree less than k,
▶ Choose an arbitrary node with degree less than k and put it on a stack
▶ Remove that node and all its edges from the graph
▶ This may decrease the degree of some other nodes and cause some more nodes to have a

degree less than k
2. At some point, if all remaining vertices have a degree greater than or equal to k, then

some node has to be spilled
▶ Pick vertex n based on heuristic, spill live range of n
▶ Remove vertex n and its incident edges from the graph, put n on “spill list”
▶ Goto step 1

3. If the spill list is not empty, insert spill code, then rebuild the interference graph and
try to allocate

4. If no vertex needs to be spilled, successively pop vertices off the stack and color them
in a color not used by neighbors (reuse colors as much as possible)

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 33 / 54

Chaitin’s Algorithm: High-Level Idea
Assume three physical registers are available

2

3

1 4 5

Stack

2
1

2

3

1 4 5

Stack

1

2

3

1 4 5

Stack

only node with
degree < k

2

3

1 4 5

Stack
Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 34 / 54

Detailed Steps in Chaitin’s Algorithm

(i) Renaming — find all distinct live ranges and
number them uniquely

(ii) Build — construct the interference graph
(iii) Coalesce — remove unnecessary copy or move

operations for non-interfering variables
(iv) Spill costs — estimate the dynamic cost of spilling

each live range
(v) Simplify — construct an ordering of the nodes in

the interference graph
▶ Remove nodes with degree < k from the graph and push

them on a stack
▶ If every remaining node has degree ≥ k, select a node, mark it

for spilling, and remove it from the graph

(vi) Spill code — insert spill operations
(vii) Select — assign a register to each variable

renumber

build

coalesce

spill costs

simplify

select

spill code

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 35 / 54

Example of Renaming Live Ranges

a = ... a = ...

... = a

a = ...

... = a ... = a

=⇒

s1 = ... s1 = ...

... = s1

s2 = ...

... = s2 ... = s2

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 36 / 54

Example of Renaming

Original Code
1. x = 2
2. y = 4
3. w = x + y
4. z = x + 1
5. u = x * y
6. x = z * 2

=⇒
After Renaming

s1 = 2 // live range: 1-5
s2 = 4 // live range: 2-5
s3 = s1 + s2 // live range: 3-4
s4 = s1 + 1 // live range: 4-6
s5 = s1 * s2 // live range: 5-6
s6 = s4 * 2 // live range: 6-...

How to model constraints on register usage? For
example, say s4 cannot live in register R1.
� Create nodes corresponding to the physical

registers in the interference graph
� Add edges between interfering nodes (e.g., s4

and R1)

s1s3s5

s2s4s6

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 37 / 54

Live Range and Interference Graph

x = ...
y = ...

y = ...

x = ...
... = y

... = x

... = y
... = x
x = ...

... = x

B1

B3B2

B4 B5

B6

w1 def of x in B2, def of x in B3, use of x in
B4, use of x in B5

w2 def of x in B5, use of x in B6
w3 def of y in B2, use of y in B4
w4 def of y in B1, use of y in B3

w1 w2

w4w3

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 38 / 54

Coalescing

� Consider a copy instruction b = e
� If the live ranges of b and e do not overlap, then b and e can be given the same register

(i.e., color)
▶ The copy instruction can then be removed from the final program

� Coalesce by merging b and e into one node that contains edges of both nodes

d

a

be f

a

d

a

b e f

a

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 39 / 54

Copy Subsumption or Coalescing

b = e + 1
 live range
 of e

 live range
 of old b

 live range
 of new b

Copy subsumption is not applicable

b = e

 live range
 of e

 live range
 of old b

 live range
 of new b

Copy subsumption is possible, live ranges of
e and new def of b do not interfere

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 40 / 54

Repeated Application of Copy Subsumption

b = e

 live range
 of e

 live range
 of old b

 live range
 of new b

a = b

 live range
 of a

Copy subsumption happens twice, once between b
and e, and second between a and b.
e, b, and a can all be given the same register.

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 41 / 54

Coalescing

� Coalesce all possible copy instructions
� Rebuild the interference graph

▶ May offer further opportunities for coalescing
▶ Build-coalesce phase is repeated till no further coalescing is possible

� Coalescing reduces the size of the interference graph and possibly reduces spilling

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 42 / 54

Splitting of Live Ranges

� Splitting live ranges creates an interference graph that is easier to color
▶ Eliminates interference in a variable’s “inactive” zones
▶ Increases the flexibility of coloring, can now allocate the same variable to different

registers

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 43 / 54

Estimating Spill Cost

� If a node n in the interference graph has a degree less than k, remove n and all its
edges from the graph and place n on a stack

� We need to spill a node when no such nodes are available
▶ Implies loading a variable x into a register before every use of x and storing x from

register into memory after every definition of x

� The higher the degree of a node to spill the greater the chance that it will help coloring
� Estimate of spill cost for a live range v: cost (v) = Σall load or store operations in vc × 10d ,

where c is the cost of the operation, d is the loop nesting depth, and 10 is the average
number of loop iterations (assumption)

� The node to be spilled is the one with min(cost (v)/deg(v))
� Negative spill costs are useful when there are only load and store operations to a

memory location with no other uses
� Infinite spill cost is useful to model a definition followed immediately by a use

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 44 / 54

Effect of Spilling on Live Range

x = ...
y = ...

y = ...

x = ...
... = y

... = x

... = y
... = x
x = ...

... = x

B1

B3B2

B4 B5

B6

w1 def of x in B2, def of x in B3, use of x in
B4, use of x in B5

w2 def of x in B5, use of x in B6
w3 def of y in B2, use of y in B4
w4 def of y in B1, use of y in B3

w1 w2

w4w3

Assume that x is spilled in live range w1

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 45 / 54

Effect of Spilling on Live Range

x = ...
ST X
y = ...

y = ...

x = ...
ST x
... = y

LD x
... = x
... = y

LD x
... = x
x = ...

... = x

B1

B3B2

B4 B5

B6

w1 def of x in B2, ST of x in B2
w2 def of x in B3, ST of x in B3
w3 def of x in B5, use of x in B6
w4 def of y in B2, use of y in B4
w5 def of y in B1, use of y in B3
w6 LD of x in B4, use of x in B4
w7 LD of x in B5, use of x in B5

w4 w5

w1w6 w2

w3

w7

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 46 / 54

Chaitin’s Algorithm: Detailed Example

1 t1=202
2 i=1
3 L1: t2=i>100
4 if t2 goto L2
5 t1=t1-2
6 t3=addr(a)
7 t4=t3-4
8 t5=4*i
9 t6=t4+t5

10 *t6=t1
11 i=i+1
12 goto L1
13 L2:

Variable Live Range
t1 1–10
i 2–11
t2 3–4
t3 6–7
t4 7–9
t5 8–9
t6 9–10

t6 t5

t1 i

t2 t3

t4

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 47 / 54

Chaitin’s Algorithm: Detailed Example

t6 t5

t1 i

t2 t3

t4

=⇒
Assume there are three physical registers.

Nodes t6, t2, and t3 are pushed on to the stack
during graph reduction.

t4

t5

t1 i

cannot be reduced further,
spilling is necessary

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 48 / 54

Chaitin’s Algorithm: Detailed Example

t4

t5

t1 i

Node Cost(v) deg(v) Cost(v)/deg(v)
t1 1+(1+1+1)*10=31 3 10
i 1+(1+1+1+1)*10=41 3 14
t4 (1+1)*10=20 3 7
t5 (1+1)*10=20 3 7

Let us pick t5 for spilling

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 49 / 54

Chaitin’s Algorithm: Detailed Example

t6 t5

t1 i

t2 t3

t4

i
t1
t4
t3
t2
t6

Stack

R3

R1

R3

R3

R3

R2

spilled 1 R1=202
2 R2=1
3 L1: R3=R2>100
4 if R3 goto L2
5 R1=R1-2
6 R3=addr(a)
7 R3=R3-4
8 t5=4*R2
9 R3=R3+t5

10 *R3=R1
11 R2=R2+1
12 goto L1
13 L2:

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 50 / 54

Problem with Chaitin’s Algorithm

� Constructing and modifying the interference
graphs are very costly

� Chaitin’s original algorithm suggests always
coalescing copy nodes

1

32

4

65

� Coalesce carefully
▶ Do not coalesce if it increases the degree of

a node to ≥ k

21

3

54

There is a 3-coloring, but Chaitin’s heuristic
does not find it

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 51 / 54

Briggs’ Optimistic Allocator

� Instead of spilling, Briggs pushes the spill
candidate on the stack, hoping there will be a
color available
▶ Spill a node only when it is popped and

there are no colors available

21

3

54

renumber

build

coalesce

spill costs

simplify

select

spill code

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 52 / 54

Chaitin-Briggs’ Algorithm: High-level Idea

1. While ∃ vertices with degree less than k,
▶ Choose an arbitrary node with degree less than k and put it on a stack
▶ Remove that node and all its edges from the graph
▶ This may decrease the degree of some other nodes and cause some more nodes to have a

degree less than k
2. At some point, if all remaining vertices have a degree greater than or equal to k, then

some node may have to be spilled
▶ Pick vertex n based on heuristic, do not spill
▶ Remove vertex n and its incident edges from the graph, put n on the stack
▶ Goto step 1

3. Successively pop vertices off the stack and color them using a color not used by some
neighbor
▶ If some vertex cannot be colored, then pick an uncolored vertex to spill, spill it, and

restart at step 1

Swarnendu Biswas (IIT Kanpur) CS 335: Register Allocation Sem 2023-24-II 53 / 54

References

A. Aho et al. Compilers: Principles, Techniques, and Tools. Section 8.8, 2nd edition, Pearson
Education.

K. Cooper and L. Torczon. Engineering a Compiler. Chapter 13, 2nd edition, Morgan Kaufmann.

Y. N. Srikanth. Global Register Allocation, NPTEL Course on Principles of Compiler Design.

H. Leather. Compiler Optimization: Register Allocation

https://www.youtube.com/playlist?list=PLbMVogVj5nJQNjkHZgwuAlfQ9tzmQDxjA
https://www.inf.ed.ac.uk/teaching/courses/copt/lecture-7.pdf

	Code Generation
	Local Register Allocation
	Global Register Allocation
	Global Register Allocation Using Graph Coloring

