
CS 335: Lexical Analysis

Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2023-24-II

An Overview of Compilation

lexical
analyzer

syntax
analyzer

semantic
analyzer

intermediate
code

generator

code
optimizer

code
generator

symbol
table

error
handler

source
program

target
program

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 3 / 59

Overview of Lexical Analysis

First stage of a three-part front end to help understand the source program
� Processes every character in the input program, so good performance is important
� If a word is valid, then it is assigned to a syntactic category

Similar to identifying the part of speech of an English word

Compilers are engineered objects.

noun verb adjective noun punctuation

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 4 / 59

Description of Lexical Analysis

Input: A high-level language (e.g., C++ and Java) program in the form of a sequence
of ASCII characters

Output: A sequence of tokens along with attributes corresponding to different
syntactic categories that are forwarded to the parser for syntax analysis

Functionality: � Strips off blanks, tabs, newlines, and comments from the source
program

� Keeps track of line numbers for better error messages
� Performs some preprocessor functions in languages like C

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 5 / 59

Recognizing Word “new”

1 ch = getNextChar();
2 if (ch == 'n')
3 ch = getNextChar();
4 if (ch == 'e')
5 ch = getNextChar();
6 if (ch == 'w')
7 report success;
8 else
9 // Other logic

10 else
11 // Other logic
12 else
13 // Other logic

S0

S1

S2

S3

n

e

w

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 6 / 59

Formalism for Scanners
Regular expressions, DFAs, and NFAs

Definitions

� An alphabet is a finite set of symbols
▶ Typical symbols are letters, digits, and punctuations
▶ ASCII and UNICODE are examples of alphabets

� A string over an alphabet is a finite sequence of symbols drawn from that alphabet
� A language is any countable set of strings over a fixed alphabet

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 7 / 59

Finite State Automaton

� A finite state automaton (FSA) is a quintuple
(S, Σ, 𝛿, s0,SF) where
▶ S is a finite set of states,
▶ Σ is the alphabet or character set, is the union of

all edge labels in the FSA, and is finite,
▶ 𝛿(s, c) represents the transition from state s on

input c,
▶ s0 ∈ S is the designated start state,
▶ SF ⊆ S is the set of final states

� A FSA accepts a string x if and only if
(i) FSA starts in s0,
(ii) Executes transitions for the sequence of

characters in x,
(iii) Final state is an accepting state ∈ SF after x has

been consumed.

FSA for recognizing “new”

S0 S1

S2S3

n

e

w

S = (s0, s1, s2, s3)
Σ = {n, e,w}

𝛿 = {s0
n−→ s1, s1

e−→ s2, s2
w−→ s3}

s0 = s0

SF = {s3}

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 8 / 59

Finite State Automaton

� A finite state automaton (FSA) is a quintuple
(S, Σ, 𝛿, s0,SF) where
▶ S is a finite set of states,
▶ Σ is the alphabet or character set, is the union of

all edge labels in the FSA, and is finite,
▶ 𝛿(s, c) represents the transition from state s on

input c,
▶ s0 ∈ S is the designated start state,
▶ SF ⊆ S is the set of final states

� A FSA accepts a string x if and only if
(i) FSA starts in s0,
(ii) Executes transitions for the sequence of

characters in x,
(iii) Final state is an accepting state ∈ SF after x has

been consumed.

FSA for recognizing “new”

S0 S1

S2S3

n

e

w

S = (s0, s1, s2, s3)
Σ = {n, e,w}

𝛿 = {s0
n−→ s1, s1

e−→ s2, s2
w−→ s3}

s0 = s0

SF = {s3}

String is recognized in time proportional
to the length of the input

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 9 / 59

Implementing an FSA

F = (S, Σ, 𝛿, s0,SF)
S = (s0, s1, s2, se)
Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

𝛿 = {s0
0−→ s1, s0

1−9−−−→ s2, s2
0−9−−−→ s2, s1

0−9−−−→ se}
s0 = s0

SF = {s1, s2}

1 ch = getNextChar()
2 state = s0
3 // se is the error state
4 while (ch != EOF and state != se)
5 state = 𝛿(state, ch)
6 ch = getNextChar()
7 if (state ∈ SF)
8 report success
9 else

10 report failure

Erroneous situations
� FSA is in state s, the next input character is c, and 𝛿(s, c) is not defined
� FSA processes the complete input and is still not in the final state

▶ Input string is a proper prefix for some word accepted by the FSA

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 10 / 59

Nondeterministic Finite Automaton (NFA)

� NFA is an FSA that (i) allows transitions on the empty string 𝜖 and (ii) can have states
that have multiple transitions on the same input character

� Ways to simulate an NFA
(i) Always make the correct nondeterministic choice to follow transitions that lead to

accepting state(s) for the input string, if such transitions exist
(ii) Try all nondeterministic choices in parallel to search the space of all possible

configurations
� Simulating a DFA is more efficient than an NFA

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 11 / 59

Regular Expressions

� The set of words accepted by an FSA F is called its language L(F)
� For any FSA F , we can also describe L(F) using a notation called Regular Expressions

(RE)
� The language described by an RE r is called a regular language (denoted by L(R))
� 𝜖 is a RE, L(𝜖) = 𝜖

� Let Σ be an alphabet. For each a ∈ Σ, a is a RE, and L(a) = a
� Let r and s be REs denoting the languages R and S respectively

Alternation (or union) (r |s) is a RE, L(r |s) = R |S = {x | x ∈ R or x ∈ S} = L(R) ∪ L(S)
Concatenation (rs) is a RE, L(rs) = RS = {xy | x ∈ R and y ∈ S}

Closure r∗ is a RE, L(r)∗ = R∗ =
⋃∞

i=0 Ri

▶ L∗ is called the Kleene closure or closure of L

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 12 / 59

Examples of Regular Expressions
L = set of all strings of 0s and 1s
r = (0 + 1)∗

L = {w ∈ {0, 1}∗ where w has two or three consecutive 1s, but the first and the second are
not consecutive
r = 0∗10∗010∗ (10∗ + 𝜖)

L = {w | w ∈ {a, b}∗ ∧ w ends with a}
r = (a + b)∗ a

Unsigned real numbers with exponents
r = (0| [1 . . . 9] [0 . . . 9]∗) (.[0 . . . 9]∗ |𝜖) E (+| − |𝜖) (0| [1 . . . 9] [0 . . . 9]∗)

L = {w ∈ {0, 1}∗ | w has no pair of consecutive zeros}
r = (1 + 01)∗ (0 + 𝜖)

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 13 / 59

More on Regular Expressions

� We can reduce the use of parentheses by introducing precedence and associativity
rules
▶ Binary operators, closure, concatenation, and alternation are left-associative
▶ Precedence rule is parentheses > closure > concatenation > alternation

� Algebraic Rules for REs

Rule Description
r |s = s|r | is commutative
r | (s|t) = (r |s) |t | is associative
r (st) = (rs) t Concatenation is commutative
r (s|t) = rs|rt; (s|t) r = sr |st Concatenation distributes over |
r𝜖 = 𝜖r = r 𝜖 is the identity of concatenation
r∗ = (r |𝜖)∗ 𝜖 is guaranteed in a closure
(r∗)∗ = r∗ * is idempotent

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 14 / 59

Regular Definitions
� Regular Definition is a sequence of definitions of the form

d1 → r1
d2 → r2
· · ·
dn → rn

where
▶ each di is a new symbol (i.e., name) not already in Σ,
▶ each ri is a RE over the symbols Σ ∪ {d1, d2, . . . di−1}

Regular definition for unsigned numbers (e.g., 5280, 0.01234, 6.336E4, or 1.89E-4)

digit = 0|1|2|3|4|5|6|7|8|9
digits = digit digit∗
opt_frac = . digits | 𝜖
opt_exp = (E(+|-|𝜖) digits)|𝜖
unsigned_num = digits opt_frac opt_exp

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 15 / 59

Extensions of Regular Expressions

� “.” is any character other than “\n”
� [xyz] is x |y |z
� [abg−pT−Y] is any character a, b, g, . . . p, T , . . . ,Y
� [^G−Q] is not any one of G,H, . . .Q
� r+ is one or more occurrences of r
� r? is zero or one r

Regular definition for unsigned numbers (e.g., 5280, 0.01234, 6.336E4, or 1.89E-4)

digit = [0-9]
digits = digit+
unsigned_num = digits (.digits)? (E [+−]?digits)?

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 16 / 59

Equivalence of RE and FSA

� There exists an NFA with 𝜖-transitions that accepts L (r), where r is a RE
� If L is accepted by a DFA, then L is generated by a RE
� . . .

RE

Kleene's
Construction

Thompson's
Construction Subset

Construction

DFA
Minimization

NFA

DFA

code for a
scanner

DFAs are easy
to simulate

Improve run time
and memory

overhead

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 17 / 59

NFA to DFA: Subset Construction

NFA
(N, Σ, 𝛿N , n0,NA)

Subset Construction

q0 = 𝜖-closure({s0})
Q = q0
Worklist = {q0}
while (Worklist ≠ 𝜙) do
remove q from Worklist
for each character c ∈ Σ do
t = 𝜖-closure(𝛿(q,c))
T[q,c] = t
if t ∉ Q then
add t to Q and Worklist

DFA
(D, Σ, 𝛿D, d0,DA)

𝜖-closure

for each state n ∈ N do
E(n) = {n}

Worklist = N
while (Worklist ≠ 𝜙) do
remove n from Worklist
t = {n}∪⋃

n
𝜖−→p∈ 𝛿N

E(p)

if t ≠ E(n)
E(n) = t

Worklist = Worklist∪{m|m 𝜖−→n∈ 𝛿N}

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 18 / 59

DFA to Minimal DFA: Hopcroft’s Algorithm

A DFA from Subset construction can have a large number of states
+ Does not increase the time needed to scan a string
− Increases the space requirement of the scanner in memory

▶ Frequent accesses to main memory will slow the scanner
▶ A smaller scanner has a better chance of fitting in the processor cache

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 19 / 59

Identifying Behavioral Equivalence

dx

dy

dz

p2

a does not split p1,
equivalent behavior

a

a

a

di

dj

dk

p1

di

dj

dk

p3

dy

dz

p5

a

a

a splits p3, different
behavior for the states

dx

p4

a

dj

dk

p7

di

p6

dy

dz

p5

dx

p4

Partitions after splitting on a

a

a

a

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 20 / 59

DFA to Minimal DFA: Hopcroft’s Algorithm

Minimization

T = {DA, {D − DA}}
P = 𝜙

while (P ≠ T) do
P = T
T = 𝜙

for each set p ∈ P do
T = T ∪ Split (p)

Split (S)

for each c ∈ Σ do
if c splits S into s1 and s2
return {s1, s2}

return S

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 21 / 59

Realizing Scanners

Tokens

Definition
Tokens are a string of characters that logically belong together in a syntactic category

� Example of tokens in programming languages: Keywords, operators, identifiers
(names), constants, literal strings, and punctuation symbols (parentheses, brackets,
commas, semicolons, and colons)

f l o a t a b s _ z e r o = - 2 7 3 ; / * K e l v i n * /

� Sentences consist of a string of tokens (e.g., float, identifier, assign, minus, intnum, and
semicolon)

� Tokens are treated as terminal symbols of the grammar specifying the source language
� Tokens may have optional attributes

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 22 / 59

Patterns and Lexemes

Pattern is the rule describing the set of strings for which the same token is produced

Lexeme is the sequence of characters matched by a pattern to form the corresponding
token

f l o a t a b s _ z e r o = - 2 7 3 ; / * K e l v i n * /

� Patterns are float, letter(letter|digit|_)*, =, -, digit+, and ;
� Lexemes are “float”, “abs_zero”, “=”, “-”, “273”, and “;”

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 23 / 59

Attributes of Tokens

Definition
An attribute of a token is a value that the scanner extracts from the corresponding lexeme
and supplies to the syntax analyzer

Example attributes for tokens
� identifier: the lexeme of the token, or a pointer into the symbol table data structure

where the lexeme is stored
� intnum: the value of the integer (similarly for floatnum)
� Type of the identifier and the location where first found

The exact set of attributes is dependent on the compiler designer

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 24 / 59

Role of a Lexical Analyzer

� Identify tokens and corresponding lexemes

� Construct constants
▶ convert a number to token intnum and pass the value as its attribute
▶ 31 becomes <intnum, 31>

� Recognize keywords and identifiers
▶ Check that the identifiers do not match keywords
▶ counter = counter + increment becomes ID = ID + ID

� Discard whatever does not contribute to parsing (e.g., white spaces (blanks, tabs,
newlines) and comments)

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 25 / 59

Why Separate Tokens and Lexemes?

� Rules to govern the lexical structure of a programming language is called its
microsyntax

� Separating microsyntax and syntax allows for a simpler parser
▶ Parser only needs to deal with syntactic categories like IDENTIFIER to check for correct

syntax

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 26 / 59

Specifying and Recognizing Patterns and Tokens

� Patterns are denoted with REs and recognized with FSAs

� Regular definitions are popular for specifying tokens

� Transition diagrams are used to implement regular definitions and to recognize tokens
▶ Usually used to model LA before translating them to executable programs

� Transition diagrams are generalized DFAs with the following differences
▶ Edges may be labeled by a symbol, a set of symbols, or a regular definition
▶ Each accepting state has an action attached to it

▶ Action is executed when the state is reached (e.g., return a token and its attribute value)
▶ Few accepting states may be indicated as retracting states

▶ Indicates that the lexeme does not include the symbol that transitions to the accepting state

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 27 / 59

Example of Transition Diagram for Identifiers and Reserved Words

letter = [a − zA − Z]
digit = [0 − 9]

identifier = letter (letter |digit)∗
0start 1 2

letter other

letter/digit

*

return(get_token_code(), name)

� get_token_code() searches the symbol table to check if the name is a reserved word
and returns its integer code if so
▶ Otherwise, it returns the integer code of the IDENTIFIER token, with name containing the

string of characters forming the token
▶ Name is not relevant for reserved words

� * indicates a retraction state

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 29 / 59

Sample Specification

Grammar Specification
stmt →if expr then stmt

| if expr then stmt else stmt
| 𝜖

expr →term relop term
| term

term →id
| number

Lexical Specification
digit → [0 − 9]

digits → digit+

number → digits(.digits)?(E [+−]?digits)?
letter → [A−Zaz]

id → letter (letter |digit)∗

if → if
then → then
else → else

relop →< | ≤ | > | ≥ | = | <>
ws → (blank|tab|newline)+

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 30 / 59

Tokens, Lexemes, and Attributes for the Sample Specification

Lexemes Token Name Attribute Value
Any ws – –

if if –
then then –
else else –

Any id id Pointer to symbol table entry
Any number number Pointer to symbol table entry

< relop LT
≤ relop LE
> relop GT
≥ relop GE
= relop ASSIGN
<> relop NE

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 31 / 59

Transition Diagram for relop

0start 1 2

3

4
5

6 7

8

< =

>

other

=
>

=
other

return(relop, LE)

return(relop, NE)

return(relop, LT)

*

return(relop, ASSIGN)

return(relop, GE)

return(relop, GT)

*

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 32 / 59

Transition Diagrams for IDs and Keywords

IDs and Keywords

9start 10 11
letter other

letter/digit

*

return(get_token_code(), name)

Whitespace

12start 13 14
delim

delim

other *

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 33 / 59

Transition Diagram for Unsigned Numbers

15start 16 17 18 19 20 21 22

23 24

digit

digit

. digit

digit

E +|- digit

digit

other *

* *

other

otherE
digit

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 34 / 59

Combining Transition Diagrams to Form a Lexical Analyzer

� Different transition diagrams (TDs) must be combined appropriately to yield a scanner
▶ Try different transition diagrams one after another
▶ For example, TDs for reserved words, constants, identifiers, and operators could be tried

in that order

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 35 / 59

Combining Transition Diagrams to Form a Lexical Analyzer

� Different transition diagrams (TDs) must be combined appropriately to yield a scanner
▶ Try different transition diagrams one after another
▶ For example, TDs for reserved words, constants, identifiers, and operators could be tried

in that order
� However, this does not utilize the “longest match” characteristic

▶ thenext should be an identifier, and not reserved word then followed by identifier ext
� To find the longest match, conceptually all TDs must be tried and the longest match

must be used

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 35 / 59

Challenges in Lexical Analysis

� Consider a fixed-format language like Fortran
▶ 80 columns per line
▶ Columns 1-5 represent the statement number/label, column 6 denotes the continuation

mark, columns 7-72 denote program statements, and columns 73-80 are ignored (used
for other purposes)

▶ Letter C in Column 1 means the current line is a comment
▶ Some keywords are context-dependent in fixed-format Fortran
▶ Blanks are not always significant in Fortran and can appear amid identifiers

▶ Variable “counter” is same as “count er”
▶ Blanks are important only in literal strings

� In the statement DO 10 I = 10.86, DO10I is an identifier, and DO is not a keyword
� But in the statement DO 10 I = 10,86, DO is a keyword
� Reading from left to right, one cannot distinguish between the two until the “,” or “.”

is reached
▶ Requires lookahead for resolution

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 36 / 59

Challenges in Lexical Analysis

− Certain languages like PL/I do not have any reserved words
▶ while, do, if, and else are reserved in C but not in PL/I
▶ Makes it difficult for the scanner to distinguish between keywords and user-defined

identifiers

1 if then then then = else else else = then
2 if if then then = then + 1

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 37 / 59

Challenges in Lexical Analysis

− Certain languages like PL/I do not have any reserved words
▶ while, do, if, and else are reserved in C but not in PL/I
▶ Makes it difficult for the scanner to distinguish between keywords and user-defined

identifiers

1 if then then then = else else else = then
2 if if then then = then + 1

� DECLARE (x, y, z) POINTER; versus DECLARE(x, y, z)
� Cannot tell whether DECLARE is a keyword with variable declarations or is a procedure

with arguments until after “)”

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 37 / 59

Challenges in Lexical Analysis

− Certain languages like PL/I do not have any reserved words
▶ while, do, if, and else are reserved in C but not in PL/I
▶ Makes it difficult for the scanner to distinguish between keywords and user-defined

identifiers

1 if then then then = else else else = then
2 if if then then = then + 1

� DECLARE (x, y, z) POINTER; versus DECLARE(x, y, z)
� Cannot tell whether DECLARE is a keyword with variable declarations or is a procedure

with arguments until after “)”

� Requires arbitrary lookahead and very large buffers
▶ Worse, the buffers may have to be reloaded in case of wrong inferences

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 37 / 59

Challenges in Lexical Analysis

fi (a == g(x)) ...

Is fi a typo or a function call?
Remember, fi is a valid lexeme for IDENTIFIER

Consider C++ syntax
� Template syntax: Foo<Bar>
� Stream syntax: cin>>var;
� Nested templates: Foo<Bar<Bazz>>

Can these challenges be resolved by lexical analyzers alone?
No, in some cases parser needs to help

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 38 / 59

Error Handling in Lexical Analysis

� LA cannot catch any other errors except for simple errors, such as illegal symbols

� In such cases, LA skips characters in the input until a well-formed token is found
▶ This is called “panic mode” recovery

� Other recovery strategies are possible
▶ Idea is to see if a single (or few) transformation(s) can repair the error
▶ Delete one character from the remaining input or insert a missing character
▶ Replace a character or transpose two adjacent characters

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 39 / 59

Interfacing with Parser

A unique integer representing the token is passed by the scanner to the parser

source
program

Lexical
Analyzer

Syntax
Analyzer

token

get next token

to semantic
analysis

symbol
table

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 40 / 59

Advantages with Lexical Analysis as a Separate Phase

+ Simplifies the compiler design: I/O issues are limited to only the lexical analyzer,
leading to better portability

+ Allows designing a more compact and faster parser
▶ Comments and whitespace need not be handled by the parser
▶ No rules for numbers, names, and comments are needed in the parser
▶ A parser is more complicated than a lexical analyzer and shrinking the grammar makes the

parser more efficient

+ Scanners based on finite automata are more efficient to implement than stack-based
pushdown automata used for parsing

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 41 / 59

Other Uses of Lexical Analysis Concepts

� UNIX command line tools like grep, awk, and sed
▶ grep is an acronym for “global regular expression print”

� Search tools in editors
� Word-processing tools

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 42 / 59

Implementing Scanners

Implementing Scanners

1. Specify REs for each syntactic category in the programming language

2. Construct an NFA for each RE

3. Join the NFAs with 𝜖-transitions

4. Create the equivalent DFA

5. Minimize the DFA

6. Generate code to implement the DFA

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 43 / 59

Implementation Considerations

High-Level Idea in a Scanner
� Read input characters one by one
� Look up the transition in the corresponding DFA based on the current state and the

input character
� Switch to the new state
� Check for termination conditions, i.e., accept and error
� Repeat

Speed is paramount for scanning
Processes every character from a possibly large input source program

Types of scanner implementations: table-driven, direct-coded, and hand-coded
Asymptotic complexity is the same but differs in run-time costs

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 44 / 59

Table-Driven Scanner

Scanner
generator Tables

FSA
Interpreter

Lexical
patterns

Consider a pattern specifying registers
(e.g., r1 and r27)

s0 s1 s2
r [0..9]

[0..9]

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 45 / 59

Table-Driven Scanner
state = s0; lexeme = "";
clear stack; push(bad);
// Model the DFA
while (state ≠ se)
ch = getNextChar()
lexeme = lexeme + ch
if state ∈ sA
clear stack

push(state)
chCat = ChCat(ch)
state = 𝛿(state, chCat)

while (state ≠ sA and state ≠ bad)
state = pop()
truncate lexeme
rollback()

if state ∈ sA
return token

else
return invalid

A single 𝛿 table mapping states in S to characters in Σ

may be too large

r 0,1,..,9 EOF Other
Register Digit EOF Other

Character Category Classifier Table

𝛿 R 0,1,..9 Other
s0 s1 se se
s1 se s2 se
s2 se s2 se
se se se se

State Transition Table

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 46 / 59

Problem of Rollbacks

A scanner aims to recognize the longest match but it can increase rollbacks
Consider the RE ab| (ab)∗c, and the input abababab

s0 s1 s2 s5

s3 s4

a b c

c

a cb

a

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 47 / 59

Addressing Excessive Rollbacks

A scanner can avoid such pathological quadratic expense by remembering failed
attempts
Such scanners are called maximal munch scanners

inputPos = 0
for each state s ∈ DFA
for i = 1:len(input stream)
// Initially , no failure with state and i
Failed[state, i] = false

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 48 / 59

Addressing Excessive Rollbacks

state = s0; lexeme = "";
clear stack; push(<bad, bad>);

while (state ≠ se)
ch = getNextChar()
lexeme = lexeme + ch
inputPos = inputPos + 1
if Failed[state, inputPos]
break

if state ∈ sA
clear stack

push(<state, inputPos >)
chCat = ChCat(ch)
state = 𝛿(state, chCat)

// Rollback
while (state ∉ sA and state ≠ bad)
Failed[state,inputPos] = true
<state,inputPos > = pop()
truncate lexeme
rollback()

if state ∈ sA
return token

else
return invalid

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 49 / 59

Overhead with Table Lookups

w

Addressi = base +
offset * w

base

i

offset

Addressij = base +
(i*c+j) * w

(i,j)

base w

c columns

The table-driven scanner performs two address computations and two load operations for
each character that it processes

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 50 / 59

Direct-Coded Scanner
lexeme = ""; clear stack;
push(bad); goto s0;

s0: ch = getNextChar()
lexeme = ch
if state ∈ sA
clear stack

push(s0)
if ch == ‘r’
goto s1

else
goto se

s1: ch = getNextChar()
lexeme = lexeme + ch
if state ∈ sA
clear stack

push(s1)
if ‘0’ ≤ ch ≤ ‘9’
goto s2

else
goto se

s2: ch = getNextChar()
lexeme = lexeme + ch
if state ∈ sA
clear stack

push(s2)
if ‘0’ ≤ ch ≤ ‘9’
goto s2

else
goto se

se: while (state ≠ sA and state ≠ bad)
state = pop()
truncate lexeme
rollback()
if state ∈ sA
return token

else
return invalid

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 51 / 59

Hand-Coded Scanner

� Many real-world compilers use hand-coded scanners for further efficiency
▶ gcc 4.0 uses hand-coded scanners in several of its front ends

(i) Fetching a character one by one from I/O is expensive; fetch many characters in one
go and store to a buffer

(ii) Use double buffering to simplify lookahead and rollback

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 52 / 59

Reading Characters from Input

� A scanner reads the input character by character
▶ Reading the input will be very inefficient if it requires a system call for every character

read
� Input buffer

▶ OS reads a block of data, supplies the scanner with the required amount, and stores the
remaining portion in its buffer cache

▶ In subsequent calls, actual I/O does not take place as long as the data is available in the
buffer cache

▶ Scanner uses its buffer since requesting OS for a single character is also costly due to
context-switching overhead

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 53 / 59

Optimizing Reads from the Buffer

E = M * C ** 2

� A buffer may contain an initial portion of a lexeme at its end

E = M * C *

� It creates a problem in refilling the buffer, so a two-buffer scheme is used where the
two buffers are filled alternatively

E = M * C * * 2 EOF

lexBegin forward

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 54 / 59

Advance Forward Pointer

� Read from the buffer
▶ (1) Check for end of buffer, and (2) test the type of the input character
▶ If end of buffer, then reload the other buffer

if (forward is at end of the first buffer) {
reload the second buffer
forward = beginning of the second buffer

} else if (forward is at end of the second buffer) {
reload the first buffer
forward = beginning of the first buffer

} else {
forward++

}

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 55 / 59

Optimizing Reads from the Buffer
� A sentinel character (say EOF) is placed at the end of the buffer to avoid two

comparisons
E = M EOF * C * * 2 EOF EOF

lexBegin forward

switch (*forward++) {
case EOF:
if (forward is at end of the first buffer) {
reload the second buffer
forward = beginning of the second buffer

} else if (forward is at end of the second buffer) {
reload the first buffer
forward = beginning of the first buffer

} else { // end of input
break

}
...

// case for other characters
}

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 56 / 59

Symbol Table

Symbol Table
Symbol Table is a data structure that stores information for subsequent phases
� Symbol table interface

▶ insert(s, t): save lexeme s, token t, and return pointer
▶ lookup(s): return index of entry for lexeme s or 0 if s is not found

32 bytes

Fixed amount of space to store
lexemes can waste space

Fixed space for
lexemes Other attributes

4 bytes

Pointer to
lexemes Other attributes

lexeme1 lexeme2 lexeme3 lexeme4

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 57 / 59

Handling Keywords

� Two choices: use separate REs or compare lexemes for ID token
� Consider token DIV and MOD with lexemes div and mod
� Initialize symbol table with insert(“div”, DIV) and insert(“mod”, MOD) before

beginning of the scanning
▶ Any subsequent insert fails and any subsequent lookup returns the keyword value
▶ These lexemes can no longer be used as an identifier

Swarnendu Biswas (IIT Kanpur) CS 335: Lexical Analysis Sem 2023-24-II 58 / 59

References

A. Aho et al. Compilers: Principles, Techniques, and Tools. Sections 2.6–2.7, 3.1–3.4, 3.6–3.8,
2nd edition, Pearson Education.

K. Cooper and L. Torczon. Engineering a Compiler. Sections 2.1–2.5, 2nd edition, Morgan
Kaufmann.

	Lexical Analysis
	Formalism for Scanners
	Realizing Scanners
	Implementing Scanners
	Symbol Table

