
CS 335: An Overview of Compilation
Swarnendu Biswas

Department of Computer Science and Engineering,Indian Institute of Technology Kanpur
Sem 2023-24-II

Executing Programs
Programming languages are an abstraction for describing computations
Control flow constructs and data abstraction
Advantages of high-level programming language abstractions
Fast prototyping, improved productivity, readability, maintainability, and debugging
The abstraction needs to be transferred to machine-executable form to be executed

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 3 / 38

A Bit of History
In the early 1950s, most programming was with assembly language
� Programmers were reluctant to use high-level programming languages for fear of lackof performance
− Led to low programmer productivity and high cost of software development

In 1954, John Backus proposed a program that translated high-level expressionsinto native machine code for IBM 704 mainframe
� Fortran (Formula Translator) I project (1954-1957): The first optimizing compiler wasreleased
� The Fortran compiler has had a huge impact on the field of Programming Languagesand Computer Science

▶ Many advances in compilers were motivated by the need to generate efficient Fortrancode
▶ Modern compilers preserve the basic structure of the Fortran I compiler!

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 4 / 38

What is a Compiler?
Definition
A compiler is a system software that translates a program in a source language to an
equivalent program in a target language
� System software (e.g., OS and compilers) helps application software (e.g., browser) torun
� Typical “source” languages might be C, C++, or Java
� The “target” language is usually the instruction set of some processor

Compilersource
program

target
program

Typesetting LATEX source to generate PDF is an example of compilation
Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 5 / 38

Important Goals of a Compiler
Generate correct code
� A compiler must preserve the meaning of the program being compiled
� Proving a compiler correct is a challenging problem and an active area of research

Must improve the code according to some metric
Performance or code size or energy consumption
Provide feedback to the user
Point out errors and potential mistakes in the program
Other concerns
� Compilation time and space required must be reasonable
� The engineering effort in building a compiler should be manageable

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 6 / 38

Automated Parallelization with Compiler Support
// Disable optimizations
void serial(const float *A, const float *B, float *C) {
for (int i = 0; i < N; i++) {
C[i] = A[i] + B[i];
C[i] = C[i] + C[i];

}
}

void omp_parallel(const float * A, const float * B, float * C) {
// Enable auto-parallelization with threads with OpenMP
#pragma omp parallel for num_threads(omp_get_num_procs())
for (int i = 0; i < N; i++) {
C[i] = A[i] + B[i];
C[i] = C[i] + C[i];

}
}

Input file
Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 7 / 38

https://cse.iitk.ac.in/users/swarnendu/courses/spring2024-cs335/omp-parallelization.cpp

Automated Parallelization with Compiler Support
// Disable optimizations
void serial(const float *A, const float *B, float *C) {
for (int i = 0; i < N; i++) {
C[i] = A[i] + B[i];
C[i] = C[i] + C[i];

}
}

void omp_parallel(const float * A, const float * B, float * C) {
// Enable auto-parallelization with threads with OpenMP
#pragma omp parallel for num_threads(omp_get_num_procs())
for (int i = 0; i < N; i++) {
C[i] = A[i] + B[i];
C[i] = C[i] + C[i];

}
}

Input file
Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 7 / 38

https://cse.iitk.ac.in/users/swarnendu/courses/spring2024-cs335/omp-parallelization.cpp

Loop Transformations to Enable Parallelization
Thread Parallelism
// N and M are very large values

// Parallelize loop j with threads
for (int j = 1; j < N; j++) {
for (int i = 1; i < M; i++) {
A[i][j] = A[i-1][j] + B;

}
}

Data Parallelism
// N and M are very large values

for (int i = 1; i < M; i++) {
// Parallelize loop j with SIMD
// instructions
for (int j = 1; j < N; j++) {
A[i][j] = A[i-1][j] + B;

}
}

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 8 / 38

Source-to-Source Compiler
Produces a target program in another programming language rather than the assemblylanguage of some processor
� Also known as transcompiler or transpiler
� TypeScript and CoffeeScript transpile to JavaScript, and many research compilersgenerate C programs
� The output programs require further translation before they can be executed

Compiler
� A traditional compiler translates ahigher-level programming language to alower-level language

Transpiler
� Converts between programminglanguages at approximately the same levelof abstraction

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 9 / 38

Interpreter
Definition
An interpreter takes as input an executable specification and produces as output the resultof executing the specification

Interpreter
source
program output
input

Scripting languages are often interpreted (e.g., Bash)

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 10 / 38

Compiler vs Interpreter
Compiler
� Translates the whole program at once

� Memory requirement during compilationis more
� Error reports are congregated
� On an error, compilers try to fix the errorand proceed past
� Examples: C, C++, and Java

Interpreter
� Executes the program one line at a time

▶ Compilation and execution happen atthe same time
� Memory requirement is less because thereis less state to maintain
� Error reports are per line, easier to reportprecise locations
� Stops translation on an error
� Examples: Bash and Python

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 11 / 38

More about Interpreters and Compilers
� Whether a language is interpreted or compiled is an implementation-level detail

▶ If all implementations are interpreters, we say the language is interpreted
� Python is compiled to bytecode, and the bytecode is interpreted (CPython is thereference implementation)

▶ Interpreting bytecode is faster than interpreting a higher-level representation
▶ PyPy both interprets and just-in-time (JIT) compiles the bytecode to optimized machinecode at run time

Is Python interpreted, or compiled, or both?
Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 12 / 38

https://stackoverflow.com/questions/6889747/is-python-interpreted-or-compiled-or-both

Hybrid Translation Schemes
� Translation process for a few languages includes both compilation and interpretation(e.g., Lisp)
� Java is compiled from source code into bytecode (.class files)
� Java virtual machines (JVMs) start execution by interpreting the bytecode
� JVMs include a just-in-time (JIT) compiler that compiles frequently-used bytecodesequences into native code

▶ JIT compilation happens at run time and is driven by profiling
▶ Important to keep the JIT compilation time low

How the JIT compiler boosts Java performance in OpenJDK
Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 13 / 38

https://developers.redhat.com/articles/2021/06/23/how-jit-compiler-boosts-java-performance-openjdk

Compilation Flow in Java with Hotspot JVM

javac
compiler

.java
program

.class
bytecode

Template
Interpreter

C1+C2
Compiler

Hotspot
JVM output

Demystifying the JVM: JVM Variants, Cppinterpreter and TemplateInterpreter
Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 14 / 38

https://metebalci.com/blog/demystifying-the-jvm-jvm-variants-cppinterpreter-and-templateinterpreter/

Structure of a Compiler

Compiler Structure
A compiler interfaces with both the source language and the target architecture

Front endsource
program

target
programBack end

intermediate
representation

Compiler

� Front end consists of two or three passes that handle the details of the inputsource-language program
� The back end passes lower the intermediate representation closer to the targetmachine’s instruction set

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 15 / 38

Intermediate Representation
An intermediate representation (IR) is a data structure that encodes information about theinput program
� E.g., graphs, three address code and LLVM IR
� Different IRs may be used during different phases of compilation

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 16 / 38

LLVM IR
clang -O0 -S -emit-llvm <file>.c

int f(int a, int b) {
return a + 2*b;

}

int main() {
return f(10, 20);

}

Truncated
=========⇒LLVM IR ; Function Attrs: noinline nounwind optnone uwtable

define dso_local i32 @f(i32 noundef %0, i32 noundef %1) #0 {
% 3 = alloca i32, align 4
% 4 = alloca i32, align 4
store i32 %0, i32* %3, align 4
store i32 %1, i32* %4, align 4
% 5 = load i32, i32* %3, align 4
% 6 = load i32, i32* %4, align 4
% 7 = mul nsw i32 2, %6
% 8 = add nsw i32 %5, %7
ret i32 %8

}
; Function Attrs: noinline nounwind optnone uwtable
define dso_local i32 @main() #0 {
%1 = alloca i32, align 4
store i32 0, i32* %1, align 4
%2 = call i32 @f(i32 noundef 10, i32 noundef 20)
ret i32 %2

}

A Journey to understand LLVM-IR!
Learning LLVM

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 17 / 38

https://un-devs.github.io/low-level-exploration/journey-to-understanding-llvm-ir/
https://github.com/danbev/learning-llvm

Advantages of Two-Phased Compiler Structure
Simplifies the process of writing or retargeting a compiler
Retargeting is the task of adapting the compiler to generate code for a new processor

Front end 1

Front end m

Back end 1

Back end n

intermediate
representation

source
language 1

source
language m

target 1

target n

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 18 / 38

Three-Phased View of a Compiler
IR makes it possible to add more phases to compilation

Front end Back endsource
program

target
programOptimizer

IR IR

Compiler

Optimizer is an IR→IR transformer that tries to improve the IR program in someway
Optimization phase contains many passes to perform different optimizations

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 19 / 38

Visualizing the LLVM Compiler System

LLVM IR and Go
Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 20 / 38

https://blog.gopheracademy.com/advent-2018/llvm-ir-and-go

Implementing a Compiler
� A compiler is one of the most intricate software systems

▶ General-purpose compilers often involve more than a hundred thousand LoC
� Very practical demonstration of the integration of theory and engineering

Idea Implementation
Finite and push-down automata Lexical and syntax analysisGreedy algorithms Register allocationFixed-point algorithms Dataflow analysis.

� Other practical issues such as ensuring concurrency, managing synchronization, andoptimizing for the memory hierarchy and target processor complicate theimplementation

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 21 / 38

Implementation Choices
Monolithic Design
� Potentially more efficient but is lessflexible

Multipass Design
� Less complex and easier to debugcompiler bugs
� Can suffer from higher compilation times

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 22 / 38

Phases in a Compiler

Compiler Toolchain
preprocessorsource

program compiler
preprocessed

source
program

target
assembly
program

assembler
relocatable

machine
code

linker/loader
absolute
machine

code

other libraries,
relocatable object files

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 23 / 38

Different Compilation Stages with gcc

Preprocess, do not compile: gcc -E <file>.c -o <file>.i
Invoke the C preprocessor directly: cpp <file>.c -o <file>.i
Compile, do not assemble: gcc -S <file>.i -o <file>.s
Invoke the compiler directly: cc -S <file>.i -o <file>.s
Compile to relocatable object file, do not link: gcc -c <file>.s -o <file>.o
Invoke the assembler directly: as <file.s> -o <file.o>
Link object file(s) to create executable: gcc <file1>.o <file2>.o -o <file>
Invoke the linker directly: ld <file1>.o <file2.o> -o <file>

Save intermediate files during compilation: gcc –save-temps <file>.c -o <file>
See commands invoked: gcc -v <file>.c -o <file>.o

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 24 / 38

Translation in a Compiler
Direct translation from a high-level language to machine code is difficult
� Mismatch in the abstraction level between source code and machine code

▶ Abstract data types and variables vs memory locations and registers
▶ Control flow constructs vs jump and returns

� Some languages are farther from machine code than others (e.g., object-orientedlanguages)
Translate in small steps, where each step handles a reasonably simple, logical, andwell-defined task
� Design a series of IRs to encode information across steps

▶ IR should be amenable to program manipulation of various kinds (e.g., type checking,optimization, and code generation)
� IR becomes more machine-specific and less language-specific as translation proceeds

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 25 / 38

Different Phases in a Compiler

lexical
analyzer

syntax
analyzer

semantic
analyzer

intermediate
code

generator

code
optimizer

code
generator

symbol
table

error
handler

source
program

target
program

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 26 / 38

Front End
� The first step in translation is to compare the input program structure with thelanguage definition
� Requires a formal definition of the language, in the form of regular expressions and

context-free grammar

� Two separate passes in the front end, often called the scanner and the parser,determine whether the input code is a valid program defined by the grammar

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 27 / 38

Lexical Analysis
Reads characters in the source program and groups them into a stream of tokens (or words)
� Tokens represent a syntactic category (e.g., keywords) and can be augmented with thelexical value

Example: position = initial + rate * 60
� Tokens are ID, “=”, ID, “+”, ID, “*”, and CONSTANT
� Character sequence forming a token is called a lexeme (e.g., position and initial)

Challenge is to identify word separators
� The language must define rules for breaking a sentence into a sequence of tokens

▶ Normally, white spaces and punctuations are token separators in languages
▶ In programming languages, a character from a different class may also be treated as atoken separator

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 28 / 38

Challenges with Natural Languages
Meaning of words in natural languages is often context-sensitive
� An English word can be a noun or a verb (e.g., “stress”)
� “are” is a verb, “art” is a noun, but “arz” is undefined

Interpretation of words or phrases evolves
“awful” meant worthy of awe and “bachelor” meant an young knight
Allows ambiguous interpretations
� “I saw someone on the hill with a telescope.” or “I went to the bank.”
� “Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo.” is grammaticallycorrect1

1Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo
Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 29 / 38

https://en.wikipedia.org/wiki/Buffalo_buffalo_Buffalo_buffalo_buffalo_buffalo_Buffalo_buffalo

Rigor in Interpretation of Programs
Programming languages have well-defined structures and interpretations anddisallow ambiguity
� System software and application programs require structured input

▶ Command line interface in Operating Systems, query language processing in Databases,and typesetting systems like LATEX
Grammars are rigorously specified to provide meaning
� Words in a programming language are always lexically specified
� Any string in (1. . .9)(0. . .9)* is always a positive integer

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 30 / 38

Syntax Analysis
Once tokens are formed, the next logical step is to understand the structure of the
sentence via syntax analysis (or parsing)
� Syntax analysis imposes a hierarchical structure on the token stream

position = initial + rate * 60 =

ID1 +

*ID2

ID3 60

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 31 / 38

Semantic Analysis
Once a sentence is constructed, semantic analysis interprets the meaning of the sentence
� Very challenging task for a compiler
X saw someone on the hill with a telescope.

JJ said JJ left JJ’s assignment at home.

� Programming languages define very strict rules to avoid ambiguities (e.g., scope ofvariable JJ)
� Compilers perform other checks like type checking and matching formal and actualarguments of functions
position = initial + "rate" * 60

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 32 / 38

Intermediate Representation
� Once all checks pass, the front end generates an IR form of the code
� IR is a program for an abstract machine
id1 = id2 + id3 * 60 =⇒ t1 = inttofloat(60)

t2 = id3 * t1
t3 = t2 + id2
id1 = t3

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 33 / 38

Code Optimization
� Attempts to improve the IR code according to some metric

▶ Reduce the execution time, code size, or resource usage
� “Optimizing” compilers spend a significant amount of compilation time in this phase
� Most optimizations consist of an analysis and a transformation

▶ Analysis determines where the compiler can safely and profitably apply the technique
▶ Data flow analysis tries to statically trace the flow of values at run time
▶ Dependence analysis tries to estimate the possible values of array subscript expressions

� Example optimizations: Common sub-expression elimination, dead code elimination,loop invariant code motion, and constant folding
t1 = inttofloat(60)
t2 = id3 * t1
t3 = t2 + id2
id1 = t3

=⇒ t1 = id3 * 60.0
id1 = t1 + id2

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 34 / 38

Challenges with Code Optimization
� The same strategy may not work for all applications

▶ Choice and order of optimizations
▶ Parameters that control decisions and transformations

� Compiler may need to adapt its strategies to fit specific programs
� Active research on “autotuning” and “adaptive” runtimes

▶ Compiler writer cannot predict a single answer for all possible programs
▶ Use learning, models, or search to find good strategies

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 35 / 38

Code Generation
� Back end traverses the IR and emits code for the target machine
� The first stage is instruction selection

▶ Translates IR operations into target machine instructions
▶ Can take advantage of the feature set of the target machine
▶ Assumes an infinite number of registers via virtual registers

� Register allocation decides which values should occupy the limited set of architecturalregisters
� Instruction scheduling reorders instructions to maximize utilization of hardwareresources and minimize cycles
t1 = id3 * 60.0
id1 = t1 + id2

=⇒ MOVSS id3, %XMM2 # load 32 bits
MULSS $60, %XMM2 # floating point
MOVSS id2, %XMM1
ADDSS %XMM2, %XMM1
MOVSS %XMM1, id1

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 36 / 38

Importance of Instruction Scheduling
Assume that MOV (i.e., memory access) takes 3 cycles, MUL takes 2 cycles, and ADD takes 1cycle.

Naïve
MOVL off1(addr1), %R1
ADDL %R1, %R1
MOVL off2(addr2), %R2
MULL %R2, %R1
MOVL off3(addr3), %R3
MULL %R3, %R1
MOVL %R1, off1(addr1)

Improved
MOVL off1(addr1), %R1
MOVL off2(addr2), %R2
MOVL off3(addr3), %R3
ADDL %R1, %R1
MULL %R2, %R1
MULL %R3, %R1
MOVL %R1, off1(addr1)

Swarnendu Biswas (IIT Kanpur) CS 335: An Overview of Compilation Sem 2023-24-II 37 / 38

References
A. Aho et al. Compilers: Principles, Techniques, and Tools. Chapter 1, 2nd edition, PearsonEducation.
K. Cooper and L. Torczon. Engineering a Compiler. Chapter 1, 2nd edition, Morgan Kaufmann.

	What is a compiler?
	Structure of a Compiler
	Phases in a Compiler

