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Goal of Compiler Optimizations Phase

� Intermediate code can contain many inefficiencies (e.g., repeated evaluation of
sub-expressions)

� Optimizer phase aims to improve the performance of the input code according to
some metric of interest
▶ For example, run time, code size, or energy efficiency

� Maintaining semantic equivalence is important
▶ The optimized version should not introduce a behavior that was not originally possible in

the unoptimized version
▶ Prohibits optimizations that affect behavior only in rare scenarios

� Two broad categories of optimizations
Machine independent ▶ Optimizations that are applicable irrespective of the target
Machine dependent ▶ Optimizations specific to a target
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Scope of Optimizations

Local � Analysis is restricted to a BB (control flow information is not used)
� Not all optimizations can be applied locally (e.g., loop optimizations)

Global � Scope includes multiple BBs but is restricted to within functions
▶ Could be restricted to a smaller scope, e.g. a loop

� Most compilers implement global optimizations using techniques like
dataflow analysis

Inter-procedural � Scope includes multiple functions (possibly files)
� Challenging to implement (e.g., analyze various parameter passing

mechanisms)
Whole program � All the required definitions are available to the compiler/linker

� Enables aggressive optimizations like cross-module inlining
� Also known as link-time optimizations (LTO)
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Optimizing Compiler

� An optimizing compiler focuses more on the middle-end compared to mainstream
compilers

� Most complexity in modern compilers is in the optimizer
▶ Usually contributes most to the compile time and is the largest in terms of lines of code
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Machine-Independent Optimizations



Optimizations in LLVM

LLVM’s Analysis and Transformation Passes
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Optimization Levels in LLVM

O0 no optimizations
O1 enables common optimizations (e.g., -licm and -tailcallelim)
O2 extends O1 to include additional optimizations (e.g., -gvn and
-slp-vectorization)

Os builds on O2 to reduce code size
Oz extends Os to reduce code size even further
O3 enables optimizations that may slow down compilation or increase code size
O4 enables whole program optimization at link-time
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Constant Folding and Constant Propagation

� Constant Folding
▶ Expressions with constant operands can be evaluated at compile time

� Constant Propagation
▶ If the value of a variable is known to be a constant, the compiler will replace its use with

that constant
▶ May result in the application of constant folding

int x = 8 * 10 * 8;
int z = a[x];

int z = a[640];

Constant folding
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Copy Propagation and Common Subexpression Elimination
� Copy Propagation

▶ Replace the use of a variable with another variable, if they are guaranteed to have the
same value

▶ May result in common sub-expressions and redundant stores
� Common Sub-Expression Elimination

▶ Reuse the value of a common sub-expression if it was already previously computed, and
the values of the operands have not changed since
▶ Useful in optimizing array index computations

y = x;
z = 3 + y;

i = p + q + 1;
j = p + q;

z = 3 + x;

t1 = p + q;
i = t1 + 1;
j = t1;

Copy propagation
Common subexpression elimination
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Loop-Invariant Code Motion

Move loop-invariant code out of the loop body

int i = 0;
while (i < n) {
x = y + z;
a[i] = 6 * i + x * x;
++i;

}

int i = 0;
if (i < n) {
x = y + z;
const int t1 = x * x;
while (i < n) {
a[i] = 6 * i + t1;
++i;

}
}

Loop-invariant code motion
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Dead Code Elimination

Code that is unreachable or that does not affect the program (e.g. dead stores) can be
eliminated

int global;
void f() {
int i;
i = 1; // dead store
global = 1; // dead store
global = 2;
return;
global = 3; // unreachable

}

int global;
void f() {
global = 2;
return;

}

Dead-code elimination
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Function Inlining

� Replace a function call site with the body of the called function
▶ Avoids the control transfer overhead (e.g., precall, callee prologue, callee epilogue,

postcall) for frequently-executed functions
� Enables more optimizations on a larger code snippet without the need for

inter-procedural analysis
� Too much inlining can hurt performance and increases the memory overhead (due to

code duplication)
▶ Compilers and runtimes use heuristics based on the size of the callee

Inline expansion
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Loop Transformations

� Loops are one of the most commonly used constructs in HPC program
� Compiler performs many loop optimization techniques automatically

▶ Examples: unrolling, permutation, reversal, fission, fusion, skewing, and tiling
� In some cases, source code modifications can enhance the optimizer’s ability to

transform code

D. Bacon et al. Compiler Transformations for High-Performance Computing. ACM Computing Surveys, 1994.
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Loop Permutation (or Interchange)

Switch the nesting order of loops in a perfect loop nest
� Can increase parallelism, can improve spatial locality

for (i = 0; i < N; i++) {
for (j = 0; j < M; j++) {
A[i][j+1] = A[i][j] + 100;

}
}

for (j = 0; j < M; j++) {
for (i = 0; i < N; i++) {
A[i][j+1] = A[i][j] + 100;

}
}

for (i = 1; i < N; i++) {
for (j = 1; j < N; j++) {
C[i][j] = C[i-1][j+1];

}
}

for (j = 1; j < N; j++) {
for (i = 1; i < N; i++) {
C[i][j] = C[i-1][j+1];

}
}
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Loop Distribution (or Fission)

for (i = 1; i < N; i++) {
for (j = 1; j < N; j++) {

S1: A[i][j] = B[i][j] + C[i][j];
S2: D[i][j] = A[i][j-1] * 2.0;

}
}

for (i = 1; i < N; i++) {
for (j = 1; j < N; j++) {

S1: A[i][j] = B[i][j] + C[i][j];
}

}

for (i = 1; i < N; i++) {
for (j = 1; j < N; j++) {

S2: D[i][j] = A[i][j-1] * 2.0;
}

}

eliminates loop-carried
dependences
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Challenges and Tradeoffs in
Optimizations



Challenges in Effective Compiler Optimizations

� Optimizations are generally both compute- and memory-intensive
� Tradeoff in terms of a tolerable compilation time and the extent of optimizations that a

compiler might provide
� Language features may complicate effective optimizations (e.g., memory aliasing and

procedure with side effects)
� “Premature optimization is the root of all evil”

▶ Knowing which parts of a program to optimize
▶ Need a reasonably accurate upper-bound estimate of the performance
▶ Correctness and security can be compromised if the program has undefined behavior

Compiler implementations have bugs too!

R. Hyde. The Fallacy of Premature Optimization. ACM Ubiquity, 2009.
X. Yang et al. Finding and Understanding Bugs in C Compilers. PLDI’11.
C. Sun et al. Toward Understanding Compiler Bugs in GCC and LLVM. ISSTA’16.
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Can A Compiler Do Anything Wrong?

X *x = NULL;
bool done = false;

Thread 1

1 x = new X();
2 done = true;

Thread 2

1 while (!done) {}
2 x->func();
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