
CS 335: Code Generation
Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2023-24-II

An Overview of Compilation

lexical
analyzer

syntax
analyzer

semantic
analyzer

intermediate
code

generator

code
optimizer

code
generator

symbol
table

error
handler

source
program

target
program

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 3 / 90

Code Generation

Source
Program

Target
ProgramFront end Code

generator
Code

optimizer
IR intermediate

code

Symbol Table

(i) Generated output code must be correct
(ii) Generated code must be of “good” quality

▶ Notion of good can vary
▶ Should make efficient use of resources on the target machine

(iii) Code generation should be efficient

Generating optimal code is undecidable, compilers make use of well-designed
heuristics

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 4 / 90

Code Generation

Input
� Intermediate representation (IR) generated by the front end

▶ Linear IRs like 3AC or stack machine representations, or graphical IRs
� Symbol table information

Assumptions
� Code generation does not bother with error checking
� Code generation assumes that types in the IR can be operated on by target machine

instructions
▶ For example, bits, integers, and floats

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 5 / 90

Code Generation

Output
� Absolute machine code

▶ Generated addresses are fixed and work when loaded at fixed locations in memory
▶ Efficient to execute, now primarily used in embedded systems

� Relocatable machine code
▶ Code can be broken down into separate sections and loaded anywhere in memory that

meets size requirements
▶ Allows for separate compilation but requires a separate linking and loading phase

� Assembly language
▶ Simplifies code generation, but requires assembling the generated code

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 6 / 90

Steps in Code Generation

� Compiler back end performs three steps to translate IR to executable code
Instruction selection Choose appropriate target machine instructions while

generating code
Register allocation Decide what values to keep in which registers

Instruction scheduling Decide in what order to schedule the execution of instructions

� Need to also emit code to manage memory during execution

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 7 / 90

Instruction Selection

� Possible idea: Match patterns and
replace them with a pre-decided
template
(i) Devise a target code skeleton for

every 3AC IR instruction
(ii) Replace every 3AC instruction with

the skeleton

x = y + z
 LD R0, y
 ADD R0, R0, z
 ST x, R0

x = y + z
w = x + v

 LD R0, y
 ADD R0, R0, z
 ST x, R0
 LD R0, x
 ADD R0, R0, v
 ST w, R0

redundant

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 8 / 90

Instruction Selection
� Each IR instruction can be translated in several ways, the challenge is to pick an

efficient variant

a = a + 1

 LD R0, a
 ADD R0, R0, #1
 ST a, R0

 INC a

� Need a cost model and heuristics for instruction selection
▶ Influential factors are the level of abstraction of the IR, speed of instructions, energy

consumption, and space overhead
� Target ISA also influences instruction selection

Scalar RISC machine simple mapping from IR to assembly
CISC machine may need to fuse multiple IR operations for effectively using

CISC instructions
Stack machine needs to translate implicit names and destructive instructions to

assembly
Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 9 / 90

Register Allocation

� Instructions operating on register operands are
more efficient
Register allocation Choose which variables

will reside in registers
Register assignment Choose which registers to

assign to each variable

� Architectures may impose restrictions on the
usage of registers

� Finding an optimal assignment of registers to
variables is NP-complete

Architectures such as IBM 370 may require
register pairs to be used for some
instructions

MUL x, y
x is in the even register, y is
in the odd register
Product occupies the
entire even/odd register pair

DIV x, y

64-bit dividend occupies the
even/odd register pair
Even register holds the
remainder, odd register the
quotient

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 10 / 90

Instruction Scheduling

� Order of evaluating the instructions also affects the efficiency of the target code
� Instruction scheduling reorders instructions to maximize utilization of hardware

resources and minimize cycles
� Selecting the best order across inputs is an NP-complete problem

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 11 / 90

Target Machine for Code Generation

� Efficient code generation requires a good understanding of the target ISA
� Assumptions

▶ Three-address machine, byte-addressable with four-byte words
▶ n general-purpose registers
▶ Limited instruction set

▶ OP dst, src1, src2
▶ LD dst, addr
▶ ST dst, src
▶ BR L
▶ Bcond r, L

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 12 / 90

Addressing Modes

Specifies how to interpret the operands of an instruction

Mode Form Address Example

absolute M M LD R0, M

register R contents(R) ADD R0, R1, R2

indexed c(R) contents(c + contents(R)) LD R1, 4(R0)

indirect register *R contents(contents(R)) LD R1, *R0

indirect indexed *c(R) contents(contents(c + contents(R))) LD R1, *100(R0)

immediate #c c LD R1, #1

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 13 / 90

Examples of Code Generation

x = y - z

 LD R1, y
 LD R2, z
 SUB R1, R1, R2
 ST x, R1

 // R1 = y
 // R2 = z
 // R1 = R1 - R2
 // x = R1

b = a[i]

 LD R1, i
 MUL R1, R1, 8
 LD R2, a(R1)
 ST b, R2

 // R1 = i
 // R1 = R1 * 8
 // R2 = c(a+c(R1))
 // b = R2

 if x < y
 goto L

 LD R1, x
 LD R2, y
 SUB R1, R1, R2
 BLTZ R1, M

 // R1 = x
 // R2 = y
 // R1 = R1 - R2
 // if R1 < 0 JMP M

a[j] = c

 LD R1, c
 LD R2, j
 MUL R2, R2, 8
 ST a(R2), R1

 // R1 = c
 // R2 = j
 // R2 = R2 * 8
 // c(a+c(R2)) = R1

x = *p
 LD R1, p
 LD R2, 0(R1)
 ST x, R2

 // R1 = p
 // R2 = c(0+c(R1))
 // x = R2

*p = y
 LD R1, p
 LD R2, y
 ST 0(R1), R2

 // R1 = p
 // R2 = y
 // c(0+c(R1)) = R2

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 14 / 90

Runtime Storage Management

Assume that the first location in the activation record (given by staticArea) of the callee
stores the return address of the caller

 ST callee.staticArea, #here+20
Store return address in the first slot in the
callee’s activation record, assume 2
opcodes and 3 constants are each of 4
bytes

 BR callee.codeArea Transfer control to callee code

Static Allocation

 ...

 BR *callee.staticArea Transfer control to caller

 ...

return
address

 ... Callee's code area

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 15 / 90

Determine Addresses in Target Code

Need to generate code to manage activation records at runtime

 // code for func c
 action1
 call p
 action2
 halt // return to OS

 // code for func p
 action3
 return

3AC Activation record for c
(64 bytes)

Activation record for p
(88 bytes)

return address

arr

i

j

0:

4:

56:

60:

return address

buf

n

0:

4:

84:

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 16 / 90

Target Code for Static Allocation

 // code for c
 100: ACTION1 // assume takes 20 bytes

 120: ST 364, #140 // save return address 140

 132: BR 200 // call p

 140: ACTION2

 160: HALT // terminate, return to OS

 // code for p
 200: ACTION3

 220: BR *364 // return to address saved
 // in location 364

 // 300-363 hold the activation
 // record for c

 300: // return address

 304: // local data for c

 // 364-451 hold the activation
 // record for p

 364: 140 // return address

 368: // local data for p

text area
stack area with

activation records

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 17 / 90

Stack Allocation

 LD SP, #stackStart
 code
 HALT

 // initialize the stack

 // terminate execution

Code for the caller

 ADD SP, SP, #caller.ARSize
 ST *SP, #here + 20

 BR callee.codeArea

 // increment stack pointer
 // save return address in
 // callee's frame
 // jump to caller

Code for procedure call

Code for return sequence in the callee
 BR *0(SP) // return to caller

Code for return sequence in the caller
 SUB SP, SP, #caller.ARSize // decrement stack pointer

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 18 / 90

Target Code for Stack Allocation

 // code for s
 action1
 call q
 action2
 halt

3AC

 // code for p
 action3
 return

 // code for q
 action4
 call p
 action5
 call q
 action6
 call q
 return

 // code for s
 100: LD SP, #600 // initialize the stack

 108: ACTION1 // code for action1

 128: ADD SP, SP, #ssize // call sequence begins

 136: ST 0(SP), #152 // push return address

 144: BR 300 // call q

 152: SUB SP, SP, #ssize // restore SP

 160: ACTION2

 180: HALT

 // code for p
 200: ACTION3

 220: BR *0(SP) // return to caller

 // code for q
 300: ACTION4 // conditional jump to 456

 320: ADD SP, SP, #qsize

 328: ST 0(SP), #344 // push return address

 336: BR 200 // call p

 344: SUB SP, SP, #qsize // restore SP

 352: ACTION5

 372: ADD SP, SP, #qsize

 380: ST 0(SP), #396 // push return address

 388: BR 300 // call q

 396: SUB SP, SP, #qsize // restore SP

 404: ACTION6

 424: ADD SP, SP, #qsize

 432: ST 0(SP), #448 // push return address

 440: BR 300 // call q

 448: SUB SP, SP, #qsize // restore SP

 456: BR *0(SP) // return to caller

 600: // stack starts

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 19 / 90

Basic Blocks and Control Flow Graphs

Basic Block (BB)

Definition
A BB is a maximal sequence of instructions with only one entry and one exit point
� Entry is at the start of the BB, and exit is from the end of the BB
� Only the start/leader instruction can be the target of a JUMP instruction
� There are no jumps in or out of the middle of a BB

� Identifying BBs
(i) The first instruction of the input code is a leader
(ii) Instructions that are targets of conditional/unconditional jumps are leaders
(iii) Instructions that immediately follow conditional/unconditional jumps are leaders

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 20 / 90

Identifying BBs

(1) i = 1
(2) j = 1
(3) t1 = 10 × i
(4) t2 = t1 + j
(5) t3 = 8 × t2
(6) t4 = t3 − 88
(7) a[t4] = 0.0
(8) j = j + 1
(9) if j ≤ 10 goto (3)

(10) i = i + 1
(11) if i ≤ 10 goto (2)
(12) i = 1
(13) t5 = i − 1
(14) t6 = 88 × t5
(15) a[t6] = 1.0
(16) i = i + 1
(17) if i ≤ 10 goto (13)

� Statements (1), (2), (3), (10), (12), and (13) are
leaders

� There are six BBs: (1), (2), (3)–(9), (10)–(11), (12),
(13)–(17)target

follows a

conditional

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 21 / 90

Control Flow Graph (CFG)

� Graphical representation of control flow
during execution of a program
▶ Each node represents a statement or a

BB
▶ An entry and an exit node are often

added to a CFG for a function
▶ An edge represents the possible

transfer of control between nodes
� Used for static program analysis (e.g.,

compiler optimizations like instruction
scheduling and global register
allocation)

whileif

True FalseTr
ue

False

straight-line code predicated code loop-based code

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 22 / 90

Example of BBs and a CFG

int main() {
int marks = 63, grade = 0;
if (marks >= 80)
grade = 10;

else if (marks >= 60)
grade = 8;

else if (marks >= 40)
grade = 6;

else
grade = 4;

printf("Grade \%d", grade);
return 0;

}

Entry

int marks = 63,
grade = 0;
if (i >= 80)

grade = 10;

else if
(marks >= 60)

grade = 8;

else if
(marks >= 40) grade = 6;

grade = 4;

printf("Grade
%d", grade);
return 0;

Exit

TrueFalse

True
False

True

False

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 23 / 90

Example CFG Generated with LLVM

int main() {
int marks = 63, grade = 0;
if (marks >= 80)
grade = 10;

else if (marks >= 60)
grade = 8;

else if (marks >= 40)
grade = 6;

else
grade = 4;

printf("Grade \%d", grade);
return 0;

}

$ clang++ -S -emit-llvm ctrl-flow.cpp -o ctrl-flow.ll
$ opt -analyze -enable-new-pm=0 -dot-cfg ctrl-flow.ll

$ dot -Tpdf -o ctrl-flow.pdf .main.dot

CFG for 'main' function

%0:
 %1 = alloca i32, align 4
 %2 = alloca i32, align 4
 %3 = alloca i32, align 4
 store i32 0, i32* %1, align 4
 store i32 63, i32* %2, align 4
 store i32 0, i32* %3, align 4
 %4 = load i32, i32* %2, align 4
 %5 = icmp sge i32 %4, 80
 br i1 %5, label %6, label %7

T F

%6:
6:
 store i32 10, i32* %3, align 4
 br label %18

%7:
7:
 %8 = load i32, i32* %2, align 4
 %9 = icmp sge i32 %8, 60
 br i1 %9, label %10, label %11

T F

%18:
18:
 %19 = load i32, i32* %3, align 4
 %20 = call i32 (i8*, ...) @printf(i8* noundef getelementptr inbounds ([9 x
... i8], [9 x i8]* @.str, i64 0, i64 0), i32 noundef %19)
 ret i32 0

%10:
10:
 store i32 8, i32* %3, align 4
 br label %17

%11:
11:
 %12 = load i32, i32* %2, align 4
 %13 = icmp sge i32 %12, 40
 br i1 %13, label %14, label %15

T F

%17:
17:
 br label %18

%14:
14:
 store i32 6, i32* %3, align 4
 br label %16

%15:
15:
 store i32 4, i32* %3, align 4
 br label %16

%16:
16:
 br label %17

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 24 / 90

Loops in a CFG

� A set of CFG nodes L form a loop if L
contains a unique loop entry node e
such that
▶ e is not the Entry node,
▶ No node in L besides e has a

predecessor outside L,
▶ Only way to reach a node in L from

outside the loop is through e
▶ Every node in L has a nonempty path

to e that is completely within L
▶ All nodes in the group are strongly

connected

 prod = 0
 i = 1

 t1 = 4 * i
 t2 = a[t1]
 t3 = 4 * i
 t4 = b[t3]
 t5 = t2 * t4
 t6 = prod + t5
 prod = t6
 t7 = i + 1
 i = t7
 if i <= 20 goto B2

B1

B2

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 25 / 90

Example CFG
1 i = 1
2 j= 1
3 t1 = 10 * i
4 t2 = t1 + j
5 t3 = 8 * t2
6 t4 = t3 - 88
7 a[t4] = 0.0
8 j = j + 1
9 if j <= 10 goto (3)

10 i = i + 1
11 if i <= 10 goto (2)
12 i = 1
13 t5 = i - 1
14 t6 = 88 * t5
15 a[t6] = 1.0
16 i = i + 1
17 if i <= 10 goto (13)

 i = 1

 j = 1

 t1 = 10*j
 t2 = t1 + j
 t3 = 8 * t2
 t4 = t3 - 88
 a[t4] = 0.0
 j = j + 1
 if j <= 10 goto (3)

 i = i + 1
 if i <= 10 goto (2)

 i = 1

 t5 = i - 1
 t6 = 88 * t5
 a[t6] = 1.0
 i = i + 1
 if i <= 10 goto (13)

B1

B2

B3

B4

B5

B6

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 26 / 90

Optimizing BBs

Local Optimizations

Optimization of BBs

� Code optimizations can lead to substantial improvement in running time and/or
energy consumption

� Global optimization analyzes control flow, data flow, and data dependence among BBs
� Local (i.e., intra-BB) optimizations can also provide significant improvements in code

quality
▶ Local transformations should not change the set of expressions computed by a block
▶ Two BBs are equivalent if they compute the same set of expressions
▶ Expressions are values of names that are live on exit from a BB

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 27 / 90

Next Use and Liveness
� Knowing when the value of a variable will be

used next is important for generating good code
▶ For example, can remove variables from

registers if not used
� Consider the 3AC instruction I: x = y + z

▶ We say I defines x and uses y and z

� If a statement J uses x and control can flow from
I to J along a path where x is not redefined, then
J uses the value of x defined at I

Definition
A name in a BB is live at a given point if its value is
used after that point
� Given I and J, we say x is live at statement I

 (5) X = ...

 (no redefinition of X)

 (15) ... = ... X ...

 (no use of X)

 (25) X = ...

X is dead at (15) because
there is no further use

X is live at (5), X's next
use at (5) is (15)

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 28 / 90

Example of Next Use and Liveness

Intermediate Code Live Next Use
x y z x y z

(1) x = y + z T F F (2) - -

(2) z = x * 5 F T - (3)

(3) y = z - 7 T T (4) (4)

(4) x = z + y F F F - - -

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 29 / 90

Determining Next Use and Liveness Information

Input � A BB (say B) of 3AC
� Assume symbol table shows all non-temporary variables in B as live on exit

and all temporaries are dead on exit
Output � Liveness and next use information for each instruction I: x = y op z in B

Algorithm (i) Scan forward over B to initialize liveness and next use information for (i)
each used variable in B, and (ii) each instruction I in B

(ii) Scan backward over B. For each instruction I: x = y op z in B, do
▶ Copy the liveness and next use information for x, y, and z from the symbol

table to tuple I
▶ Update x, y, and z’s symbol table entries
▶ Set x.live = FALSE and x.next_use = NONE
▶ Set y .live = z.live = TRUE and y .next_use = z.next_use = I

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 30 / 90

Example Computation of Next Use and Liveness Information

Intermediate Code
Symbol Table Information Instruction Information
Live Next Use Live Next Use

x y z x y z x y z x y z

(1) x = y + z F F F - - - F F F - - -

(2) z = x * 5 F F F - - F F F - -

(3) y = z - 7 F F F - - F F F - -

(4) x = z + y F F F - - - F F F - - -

after the
forward pass

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 31 / 90

Example Computation of Next Use and Liveness Information

Intermediate Code
Symbol Table Information Instruction Information
Live Next Use Live Next Use

x y z x y z x y z x y z

(4) x = z + y F T T - (4) (4) F F F - - -

(3) y = z - 7 F F T - - (3) F T T - (4) (4)

(2) z = x * 5 T F F (2) - - F F T - - (3)

(1) x = y + z F T T - (1) (1) T F F (2) - -

after the
backward pass

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 32 / 90

Structure-Preserving Transformations

� Common subexpression elimination
▶ Instructions compute a value that has been computed

� Dead code elimination
▶ Remove instructions that define variables that are

never used
� Renaming temporary variables

▶ Can always transform a BB into an equivalent block
where each statement that defines a temporary uses
a new name

▶ Such a BB is called a normal-form block
� Reordering of dependence-free statements

▶ Normal-form blocks permit statement interchanges
without affecting the value of the block

▶ May improve latency of accesses and register usage

 a = b + c
 b = a - d
 c = b + c
 d = a - d

 a = b + c
 b = a - d
 c = b + c
 d = b

 t1 = b + c
 t2 = x + y

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 33 / 90

Algebraic Transformations

� Apply algebraic laws to simplify computation

Strength Reduction

Expensive Cheaper

x2 x * x

2 * x x + x

x / 2 x >> 1

 x + 0 = 0 + x = x
 x * 1 = 1 * x = x
 x - 0 = x
 x / 1 = x

� Constant folding evaluates constants during compilation (e.g., i = 2 ∗ 3.14 ∗ 300 ∗ 300;)
� Relational operators can generate common sub-expressions (e.g., x > y and x − y)

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 34 / 90

DAG Representation of BBs

Many optimizations are easier to perform on a DAG representation of BBs

1 t1 = 4 * i
2 t2 = a[t1]
3 t3 = 4 * i
4 t4 = b[t3]
5 t5 = t2 * t4
6 t6 = prod + t5
7 prod = t6
8 t7 = i + 1
9 i = t7

10 if i <= 20 goto (1)

t2 t4

+ t6, prod

* t5

(1)

+ t7, i* t1, t3

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 35 / 90

Representing BBs with DAGs

� Rules on the DAG structure
▶ Leaf nodes are labeled with variable names or constants
▶ Initial values for each variable are represented by a node
▶ A node N is associated with each statement s in a BB
▶ Children of N correspond to statements that last define the operands used in s
▶ Inner nodes are labeled by an operator symbol
▶ Node N is labeled by the operator applied at s
▶ Nodes optionally have a sequence of identifiers for labels
▶ Output nodes are those variables that are live on exit

� Each BB node in a CFG can be represented with a DAG

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 36 / 90

Constructing a DAG
Input � A basic block (BB)

Output � A DAG for the BB with the following information
▶ a label for each node (ID for leaf nodes and operator symbols for interior

nodes)
▶ a list of identifiers (not constants) for each node

Assumptions � Three kinds of 3AC: (i) x = y op z, (ii) x = op y, and (iii) x = y
� Relational statements like if i ≤ 20 goto (1) are treated like case (i)

Steps � For each statement in the BB,
(i) If node(y) is undefined, create a leaf labeled y and set node(y) to the new

node
(ii) For case (i), check if there is a node in the DAG labeled op with left child

node(y) and right child node(z). If not, then create a node (denoted by n).
(iii) For case (ii), check if there is a node labeled op with node(y) as the only

child. If not, then create a node (denoted by n).
(iv) Delete x from the list of identifiers for node(x). Append x to the list of

identifiers for the node and set node(x) to n.
Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 37 / 90

Local Common Subexpressions

c

 a = b + c
 b = a - d
 c = b + c
 d = a - d

a

 a = b + c
 b = b - d
 c = c + d
 e = b + c

+ e

a + c

b, d

- b

DAG fails to capture that the 1st and 4th
statements compute the same values

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 39 / 90

Dead Code Elimination

� Delete a root node from the DAG if it has no live variables
▶ Repeat till there are no such nodes

 a = b + c
 b = b - d
 c = c + d
 e = b + c

b + ca

+ e

Assume only a and
b are live on exit

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 40 / 90

Representing Array References

 x = a[i]
 a[j] = y
 z = a[i]

x, z x

z

?

kills all nodes whose
value depends on a0

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 41 / 90

Consider Other Sources of Possible Aliasing

 b = a + 12
 x = b[i]
 b[j] = y

// Use of every possible variable
x = *p
// Possible assignment to every variable
*q = y

� =* must include all nodes for optimization
analysis

� *= kills all other nodes
� Possible to use more precise pointer analysis

� Suppose there is a variable x defined at a
node n that is in the scope of a procedure P

� We will conservatively assume that P uses x
attached to n and kills node n

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 42 / 90

Code Generation Algorithm

Single Basic Blocks

Code Generation Strategy

Goal � Generate target code for a sequence of 3AC within a BB
Assumption � Every 3AC operator has an equivalent operator in the target language

� Computed values can reside in registers and only need to be saved when
(i) the register is required for another computation, or
(ii) just before a procedure call, jump, or a labeled statement

� Implies every register must be saved before the end of a BB
Steps � For each 3AC,

▶ Identify variables that need to be loaded into registers,
▶ Load the variables into registers,
▶ Generate code for the instruction,
▶ Generate a store if the result needs to be saved in memory.

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 43 / 90

Challenges in Code Generation

 ADD Ri, Ri, Rj

 ADD Ri,Ri,c

 MOV Rj,c
 ADD Ri, Ri, Rj

a = b + c

 b is in Ri, c is in Rj, b is
no longer live on exit

 b is in Ri, b is no longer
 live on exit

 b is in Ri, b is no longer
 live on exit

Different Possibilities

Usually there will be numerous cases to consider
� An efficient choice depends on several factors (e.g., frequency of use of b and c later)
� Properties of the operator (e.g., commutativity) can add to the complexity

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 44 / 90

A Simple Code Generator

� Treat each IR quadruple as a “macro”
� Replace the macro with pre-existing code templates

Simple to implement but makes inefficient use of registers

Goal: Track values in registers and reuse them

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 45 / 90

Register and Address Descriptors

Register Descriptor
� Keeps track of what name is stored in each register, consulted whenever a new

register is needed
� Each register holds the value of zero or more names at any time during an execution

Address Descriptor
� Keeps track of the location(s) where the current value of a name can be found at

runtime
▶ Location can be a register, a stack location, a memory address, or some combination of

these (data can get copied)
� Information can be stored in the symbol table

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 46 / 90

Code Generation Algorithm

� For each 3AC instruction I of the form x = y op z,
▶ Invoke function getreg(I) to select registers Rx , Ry , and Rz
▶ If y is not in Ry according to the address descriptor, then generate instruction LD Ry, y ′

▶ y ′ is one of the memory locations for y
▶ Perform the same steps for z
▶ Generate the instruction OP Rx ,Ry ,Rz

� For a 3AC copy instruction x = y,
▶ If y is not in Ry according to the address descriptor, then generate instruction LD Ry, y ′

▶ Adjust the register descriptor for Ry to include x

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 47 / 90

Managing Register and Address Descriptors
� For an instruction LD R, x,

▶ Change the register descriptor for R so it holds only x
▶ Change the address descriptor for x by adding register R as an additional location
▶ Remove R from the address descriptors of variables other than x

� For instruction ST x, R, change the address descriptor for x to include its own
memory location

� For an instruction such as ADD Rx ,Ry ,Rz , implementing a 3AC x = y + z,
▶ Change the register descriptor for Rx so that it holds only x
▶ Change the address descriptor for x so that its only location is Rx
▶ The memory location for x is no longer in the address descriptor for x
▶ Remove Rx from the address descriptor of any variable other than x

� For a copy instruction x = y,
▶ Process the load from y into a register, if needed
▶ Add x to the register descriptor for Ry
▶ Change the address descriptor for x so that its only location is Ry

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 48 / 90

Usage of Registers

� Leave the computed result in a register for as long as possible
� Store the result only at the end of a BB or when the register is needed for another

computation
▶ A variable is live at a point if it is used (possibly in later BBs) later, requires global dataflow

analysis
▶ On exit from a BB, store only live variables which are not already in their memory

locations (use address descriptors to identify)
▶ If liveness information is not available, then assume that all variables are live at all times

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 49 / 90

Defining Function getreg()

Input 3AC I: x = y op z
Output Returns registers to hold the value of x, y, and z

Assumption There is no global register allocation

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 50 / 90

getreg(): Choosing Ry for y

1. If y is in a register, then return the register containing y as Ry

2. If y is not in a register, but there is an empty register available, then pick one such
register as Ry

3. If y is not in a register and there are no empty registers, then
▶ Let R be a candidate register and suppose v is one of the variables stored in R

▶ Heuristic for candidate selection can be based on farthest references or fewest next use
▶ If the address descriptor for v says that v is somewhere else beside R, then choose R
▶ If v is x, and x is not an operand of I (i.e., x ≠ z), then choose R
▶ If v is not used later, then choose R
▶ Else, generate ST v, R (called a register spill)

▶ R may hold several variables, so we need to repeat the previous steps for each variable
▶ Compute the number of store instructions generated for R (i.e., score) for each variable
▶ Pick the register with the lowest score

� Selecting Rz for z is similar

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 51 / 90

getreg(): Choosing Rx for x

� In addition to the previous checks, try the following,
▶ A register that holds only x is always an acceptable choice for Rx
▶ If y is not used after instruction I, and Ry holds only y after being loaded, then Ry can also

be used for Rx
▶ Perform similar checks with Rz if required

� If I is a copy instruction, then always choose Ry

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 52 / 90

Code Generation Example
3AC Generated Code Register

Descriptor
Address Descriptor

R1 R2 R3 a b c d t u v

a b c d

t = a - b
LD R1, a
LD R2, b
SUB R2, R1, R2

a t a,R1 b c d R2

u = a - c
LD R3, c
SUB R1, R1, R3

u t c a b c,R3 d R2 R1

v = t + u ADD R3, R2, R1

u t v a b c d R2 R1 R3

. .

in memory, live at
the end of the BB

temporaries, not live
at the end of the BB

R2 is reused because
there is no next use of b

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 53 / 90

Code Generation Example
3AC Generated Code Register Descriptor Address Descriptor

R1 R2 R3 a b c d t u v

. .
u t v a b c d R2 R1 R3

a = d LD R2, d

u a,d v R2 b c d,R2 R1 R3

d = v + u ADD R1, R3, R1

d a v R2 b c R1 R3

exit
ST a, R2
ST d, R1

d a v R2 b c R1 R3

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 54 / 90

Code Sequences for Indexed and Pointer Assignments
3AC i in Register Ri i in Memory Mi i in Stack

a = b[i] MOV b(Ri), R
MOV Mi, R
MOV b(R), R

MOV Si(A), R
MOV b(R), R

a[i] = b MOV b, a(Ri)
MOV Mi, R
MOV b, a(R)

MOV Si(A), R
MOV b, a(R)

3AC p in Register Rp p in Memory Mp p in Stack

a = *p MOV *Rp, a
MOV Mp, R
MOV *R, R

MOV Sp(A), R
MOV *R, R

*p = b MOV a, *Rp
MOV Mp, R
MOV a, *R

MOV a, R
MOV R, *Sp(A)

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 55 / 90

Code Generation with Tree Rewriting

Tree Representation

� Consider the statement a[i] = b + 1
▶ Assume b is in memory location Mb
▶ Array of chars a is a local variable and

is stored on the stack
▶ SP points to the beginning of the

current activation record
▶ Addresses of locals a and i are given

as constant offsets Ca and Ci from the
SP

=

ind +

Mb C1+

+ ind

Ca RSP
+

Ci RSP

Operator ind denotes indirection

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 56 / 90

Tree Rewriting

� Target code can be generated by applying a sequence of tree-rewriting rules to reduce
the input tree to a single node

� Each rewrite rule is of the form replacement ← template { action }, where replacement is
a single node, template is a tree, and action is a code fragment like in a SDT

� A set of tree rewriting rules is called a tree-translation scheme

Ri +

Ri Rj

{ ADD Ri, Ri, Rj }

tiling of the
subtree

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 57 / 90

Tree Rewriting Rules

3 M = { ST x, Ri }

Mx Ri

1 Ri Ca { LD Ri, #a }

2 Ri Mx { LD Ri, x }

4 M = { ST *Ri, Ri }

ind Rj

Ri

7 Ri + { ADD Ri, Ri, Rj }

RjRi

5 Ri ind { LD Ri, a(Rj) }

+

Ca Rj

6 Ri + { ADD Ri, a(Rj) }

Ri

Rj

ind

+

Ca

8 Ri + { INC Ri }

C1Ri

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 58 / 90

Code Generation by Tiling an Input Tree

� High-level steps in a tree-translation scheme
▶ Given an input tree, the templates in the tree-rewriting rules are applied to tile its

subtrees
▶ Tiling implies reducing a subtree with the replacement node

▶ If a template matches, replace the matching subtree with the replacement node of the
rule
▶ Execute the action associated with the rule
▶ If the action contains a sequence of instructions, the instructions are emitted

▶ Repeat the above steps until the tree is reduced to a single node, or until no more
templates match

� Output of the tree-translation scheme is the instruction sequence generated as the
input tree is reduced to a single node

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 59 / 90

Example of Code Generation with Tree Rewriting

=

ind

C1

+

Mb+

+ ind

+

RSPCi

RSPCa

???

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 60 / 90

Example of Code Generation with Tree Rewriting

=

ind

C1

+

Mb+

+ ind

+

RSPCi

RSPCa

=

ind +

Mb+

+ ind

+

RSPCi

RSPR0

C1

Rule 1

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 61 / 90

Example of Code Generation with Tree Rewriting

=

ind

C1

+

Mb+

+ ind

+

RSPCi

RSPR0

=

ind +

Mb+

ind

+

RSPCi

R0

C1

Rule 7

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 62 / 90

Example of Code Generation with Tree Rewriting

=

ind

C1

+
Mb

+

R0 ind

+

RSPCi

Rule 6

Rule 5
or 6?

=

ind +

R1R0 C1

=

ind +

MbR0 C1

Rule 2

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 63 / 90

Example of Code Generation with Tree Rewriting

Rule 8

=

ind +

R1R0 C1

Rule 4

=

ind R1

R0

M

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 64 / 90

Example of Code Generation with Tree Rewriting

=

ind

C1

+

Mb+

+ ind

+

RSPCi

RSPCa

 LD R0, #a
 ADD R0, R0, SP
 ADD R0, R0, i(SP)
 LD R1, b
 INC R1
 ST *R0, R1

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 65 / 90

Considerations during Tree Reduction

� Performance of tree matching impacts the efficiency of code generation at compile
time

� Multiple templates may match during code generation
� Different match sequences of templates will lead to different code being generated

which can also impact efficiency
� If no template matches, then the code-generation process blocks

▶ Assume each operator in the intermediate code can be implemented by one or more
target-machine instructions

▶ Assume there are sufficient registers to compute each tree node by itself

� How can you match tree patterns?
▶ Represent each template as a set of strings, where a string represents a path from the

root to a leaf in the template
▶ Perform depth-first traversal to match a subtree to a template

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 66 / 90

Pattern Matching with LR Parsing

� Convert the input tree to a string using
prefix (or postfix) form for comparison

� Use a parsing mechanism for pattern
matching

� Come up with a syntax-directed
translation (SDT) as an alternate for
tree rewriting rules

=

ind

C1

+

Mb+

+ ind

+

RSPCi

RSPCa
Prefix representation =

= ind + + CaRSP ind + CiRSP + MbC1

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 67 / 90

SDT for Tree Rewriting
� Terminal m represents a memory

location
� Terminal sp represents register SP
� Terminal c represents a constant

� Design a code generator for a different
architecture by rewriting the grammar

� Resolve conflicts using estimates of
instruction costs, favoring larger
reductions, and favoring shifts over
reductions

Production Semantic Action
Ri → ca LD Ri, #a

Ri → Mx LD Ri, x

M →= MxRi ST x, Ri

M →= ind RiRj ST *Ri, Rj

Ri → ind + caRj LD Ri, a(Rj)

Ri → +Ri ind + caRj ADD Ri, Ri, a(Rj)

Ri → +RiRj ADD Ri, Ri, Rj

Ri → +Ric1 INC Ri

R→ sp

M → m

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 68 / 90

Dynamic Programming Based Optimal
Code Generation

Expression Trees

Definition
An expression tree is a syntax tree for an expression

(a-b)+e*(c/d)
t1 = a – b
t2 = c / d
t3 = e * t2
t4 = t1 + t3

+

-

a b

c d

/

*

e

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 70 / 90

Generating Code for Expression Trees

Expression tree

+

- *

a b c /

d e

Assume only two registers R0 and R1
are available

1 LD R0, a
2 SUB R0, R0, b
3 LD R1, d
4 DIV R1, R1, e
5 ST t1, R0
6 LD R0, c
7 MUL R0, R0, R1
8 ADD R0, R0, t1

Is the generated code optimal?

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 71 / 90

Dynamic Programming Based Optimal Code Generation

� Generates optimal code from an expression tree
� Algorithm partitions the problem of generating optimal code for an expression into

sub-problems of generating optimal code for sub-expressions
▶ To generate optimal code for an expression E = E1 opE2, generate optimal code for E1,

E2, and the operator op in order, or E2,E1 and then op
� Models register machines with complex instruction sets

▶ Assume there are r interchangeable registers R0, . . . ,Rr−1
▶ Instructions are of the following form

▶ Ri = Mj , Ri = Ri opRj , Ri = Ri opMj , Ri = Rj , and Mi = Rj

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 72 / 90

Contiguous Evaluation

� The optimality criterion requires contiguous
evaluation of an expression tree
▶ The optimal program has less or the same

cost and uses no more registers
� A program P evaluates a tree T contiguously

if
▶ it first evaluates those subtrees of T that

need to be computed into memory,
▶ it then evaluates T1, T2, and then root, in

order, or T2, T1, and then root, in order
� Evaluating part of T1 leaving the result in a

register, evaluating T2, and then evaluating
rest of T1 is not contiguous evaluation

op

T2T1

syntax tree T for E

tree for
E2

Assume E is E1 op E2

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 73 / 90

Judicious Use of Registers

Given an expression tree for E = E1 opE2 and a target with r registers

op

T2T1

syntax tree T for E

tree for
E2

Assume E is E1 op E2 Suppose evaluating T1 and T2 require r1 and r2
registers, respectively

r ≥ r1 > r2 � r1 − 1 registers are freed after
evaluation of T1, one register holds
the result

� T2 can be evaluated in r1 − 1
registers

� T can be evaluated in r1 registers
r1 > r or r2 > r � Require register spills

r1 == r2 � Need r1 + 1 registers to evaluate T

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 74 / 90

Dynamic Programming Algorithm

Assumption The target has r registers
Steps 1. Compute bottom-up for each node n of the expression tree T an array C

of costs
▶ C[i] is the minimum cost of computing the subtree S rooted at n into a

register, assuming i registers are available for the computation, for 1 < i < r
▶ The cost of computing a node n includes the count of loads and stores

necessary to evaluate S in the given number of registers plus the cost of
computing the operator at the root of S

2. Traverse T , using the cost vectors to determine which subtrees of T must
be computed into memory

3. Traverse each tree using the cost vectors and associated instructions to
generate the final target code
▶ Code for the subtrees computed into memory locations is generated first,

then code for other subtrees, and then code for the root

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 75 / 90

Example
� Consider a target machine having two

registers R0 and R1

� Assume that the list of available instructions
is as follows

LD Ri , Mj
op Ri , Ri , Rj
op Ri , Ri , Mj
LD Ri , Rj
ST Mi , Rj

� Furthermore, assume all instructions are of
unit cost
▶ Algorithm can be extended to cases where

instructions have varying costs

Expression tree

+

- *

a b c /

d e

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 76 / 90

Expression Tree with Cost Vectors

Ca [0] = 0 Cost of computing a in memory
Ca [1] = 1 Cost of computing a in a register
Ca [2] = 1 Cost of computing a in a register,

with 2 registers available

C− [1] = Ca [1] + Cb [0] + 1 = 1 + 0 + 1 = 2

C− [2] = min

©«

Ca [2] + Cb [1] + 1,
Ca [2] + Cb [0] + 1,
Ca [1] + Cb [2] + 1,
Ca [1] + Cb [1] + 1,
Ca [1] + Cb [0] + 1

ª®®®®®®®¬
= min(3, 2, 3, 3, 2) = 2

C− [0] = C− [2] + 1 = 3

+

- *

a b c /

d e

(0,1,1)(0,1,1)

(3,2,2)

(3,2,2)

(0,1,1) (0,1,1)

cost vector
= (0,1,1)

op R0, R0, R1
op R1, R1, R0
op R0, R0, M
op R1, R1, M

LD R0, a
ADD R0, R0, b

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 77 / 90

Expression Tree with Cost Vectors
C∗ [1] = Cc [1] + C/ [0] + 1 = 1 + 3 + 1 = 5

C∗ [2] = min

©«

Cc [2] + C/ [1] + 1,
Cc [2] + C/ [0] + 1,
Cc [1] + C/ [2] + 1,
Cc [1] + C/ [1] + 1,
Cc [1] + C/ [0] + 1

ª®®®®®®®¬
= min(4, 5, 4, 4, 5) = 4

C∗ [0] = C∗ [2] + 1 = 5

C+ [1] = C− [1] + C∗ [0] + 1 = 2 + 5 + 1 = 8

C∗ [2] = min

©«

C− [2] + C∗ [1] + 1,
C− [2] + C∗ [0] + 1,
C− [1] + C∗ [2] + 1,
C− [1] + C∗ [1] + 1,
C− [1] + C∗ [0] + 1

ª®®®®®®®¬
= min(8, 8, 7, 8, 8) = 7

C+ [0] = C+ [2] + 1 = 8

(0,1,1) (0,1,1)

+

- *

a b c /

d e

(0,1,1)(0,1,1)

(3,2,2)

(3,2,2)

(5,5,4)

(8,8,7)

(0,1,1)

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 78 / 90

Tree Traversal to Generate Code
� Minimum cost at node + is 7, which

implies right subtree (RST) is computed
with 2 registers in R0 and left subtree (LST)
is computed with 1 register into R1

� For node ∗, compute RST with one register
in R1 and LST in R0

� For node c, emit LD R0, c
� For node /, compute RST in memory and

compute LST in R1

� For node d, emit LD R1, d
� For node −, compute RST in memory and

compute LST in R1

� For node a, emit LD R1, a

(0,1,1) (0,1,1)

+

- *

a b c /

d e

(0,1,1)(0,1,1)

(3,2,2)

(3,2,2)

(5,5,4)

(8,8,7)

(0,1,1)

 ADD R1, R1, R0

 SUB R1, R1, b MUL R0, R0, R1

 DIV R1, R1, e

LD R0, c
LD R1, d
DIV R1,R1, e
MUL R0,R0,R1
LD R1, a
SUB R1,R1, b
ADD R1,R1,R0

evaluate RST
first, why?

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 79 / 90

Code Generation via Peephole
Optimization

Peephole Optimization

� Insight: Find local optimizations by examining short sequences of nearby operations
▶ The sliding window, or the peephole, moves over code
▶ Code in a peephole need not be contiguous
▶ Goal is to identify code patterns that can be improved
▶ Rewrite code patterns with improved sequence

 LD a, R0
 ST R0, a

 ST a, R0
 LD R3, a

 ADD R7, R0, 0
 MUL R10, R4, R7

 LD a, R0

 ST a, R0
 MOV R3, R0

1

2

3 MUL R10, R4, R0

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 80 / 90

Examples of Peephole Optimizations
� Eliminate redundant

instructions
� Eliminate unreachable code
� Eliminate jump over jumps
� Algebraic simplification
� Strength reduction
� Use of machine idioms

 ...
 LD R0, x
 {no modifications
 to x or R0}
 ST R0, a
 ...

BB

 ...
 if print == 1
 goto L1
 goto L2
L1: print ...
L2: ...

 ...
 if print != 1
 goto L2
 print ...
L2: ...

 ...
 goto L1
 ...
L1: goto L2
 ...

 ...
 goto L2
 ...
L1: goto L2
 ...

 ...
 goto L2
 ...
 ...
 ...

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 81 / 90

Peephole Optimization-based Code Generation
� A naïve optimization strategy can use exhaustive search to match the patterns and

rewrite code
▶ Can work if number of patterns and the window size are small
▶ Does not work for modern complex ISAs

� Workflow in a modern peephole optimizer
▶ Expander rewrites the IR to represent all the direct effects of an operation

▶ If OP R0, R1, R2 sets a condition code, then the LLIR should include an explicit operation to
set the code

▶ Simplifier performs limited local optimization on the LLIR in the window
▶ Matcher compares the simplified LLIR against the pattern library

Expander
IR -> LLIR

Simplifier
LLIR -> LLIR

Matcher
LLIR -> ASM

ASMLLIRIR LLIR

� In an optimizer, the input and output languages are the same
� With a different output language (e.g., ASM), the optimizer can be used for code

generation
Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 82 / 90

Example

� AST computes a = b − 2 × c
▶ a is stored at offset 4 in the local AR
▶ b stored as a call-by-reference

parameter whose pointer is stored at
offset – 16 from the ARP

▶ c is at offset 12 from the label @G

Op Arg1 Arg2 Result
× 2 c t1
− b t1 a

RARP 4

+ -

ind *

ind2

+

4@G

ind

+

-16RARP

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 83 / 90

Example

Op Arg1 Arg2 Result
× 2 c t1
− b t1 a

RARP 4

+ -

ind *

ind2

+

4@G

ind

+

-16RARP

Expand
=====⇒

1 R10 = 2
2 R11 = @G
3 R12 = 12
4 R13 = R11 + R12
5 R14 = M(R13)
6 R15 = R10 × R14
7 R16 = -16
8 R17 = RARP + R16
9 R18 = M(R17)

10 R19 = M(R18)
11 R20 = R19 - R15
12 R21 = 4
13 R22 = RARP + R21
14 M(R22) = R20

Simplify
=====⇒

1 R10 = 2
2 R11 = @G
3 R14 = M(R11 + 12)
4 R15 = R10 × R14
5 R18 = M(RARP - 16)
6 R19 = M(R18)
7 R20 = R19 - R15
8 M(RARP+4) = R20

assume a sliding
window of size 3

fewer instruc-
tions and registers

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 84 / 90

Sequences Produced by the Simplifier

1 R10 = 2
2 R11 = @G
3 R12 = 12
4 R13 = R11 + R12
5 R14 = M(R13)
6 R15 = R10 × R14
7 R16 = -16
8 R17 = RARP + R16
9 R18 = M(R17)

10 R19 = M(R18)
11 R20 = R19 - R15
12 R21 = 4
13 R22 = RARP + R21
14 M(R22) = R20

Sequence 1
R10 = 2
R11 = @G
R12 = 12

Sequence 2
R11 = @G
R12 = 12
R13 = R11 + R12

Sequence 3
R11 = @G
R13 = R11 + 12
R14 = M(R13)

Sequence 4
R11 = @G
R14 = M(R11 + 12)
R15 = R10 × R14

Sequence 5
R14 = M(R11 + 12)
R15 = R10 × R14
R16 = -16

Sequence 6
R15 = R10 × R14
R16 = -16
R17 = RARP + R16

Sequence 7
R15 = R10 × R14
R17 = RARP − 16
R18 = M(R17)

Sequence 8
R15 = R10 × R14
R18 = M(RARP − 16)
R19 = M(R18)

Sequence 9
R18 = M(RARP − 16)
R19 = M(R18)
R20 = R19 − R15

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 85 / 90

Sequences Produced by the Simplifier

1 R10 = 2
2 R11 = @G
3 R12 = 12
4 R13 = R11 + R12
5 R14 = M(R13)
6 R15 = R10 × R14
7 R16 = -16
8 R17 = RARP + R16
9 R18 = M(R17)

10 R19 = M(R18)
11 R20 = R19 - R15
12 R21 = 4
13 R22 = RARP + R21
14 M(R22) = R20

Sequence 10
R19 = M(R18)
R20 = R19 − R15
R21 = 4

Sequence 11
R20 = R19 − R15
R21 = 4
R22 = RARP + R21

Sequence 12
R20 = R19 − R15
R22 = RARP + 4
M(R22) = R20

Sequence 13
R20 = R19 − R15
M(RARP + 4) = R20

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 86 / 90

Example

1 R10 = 2
2 R11 = @G
3 R12 = 12
4 R13 = R11 + R12
5 R14 = M(R13)
6 R15 = R10 × R14
7 R16 = -16
8 R17 = RARP + R16
9 R18 = M(R17)

10 R19 = M(R18)
11 R20 = R19 - R15
12 R21 = 4
13 R22 = RARP + R21
14 M(R22) = R20

Simplify
=====⇒

1 R10 = 2
2 R11 = @G
3 R14 = M(R11 + 12)
4 R15 = R10 × R14
5 R18 = M(RARP - 16)
6 R19 = M(R18)
7 R20 = R19 - R15
8 M(RARP+4) = R20

Match
====⇒

1 LD R10, 2
2 LD R11, @G
3 LD R14, 12(R11)
4 MUL R15, R10, R14
5 LD R18, -16(RARP)
6 LD R19, R18
7 SUB R20, R19, R15
8 ST 4(RARP), R20

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 87 / 90

Example

1 R10 = 2
2 R11 = @G
3 R12 = 12
4 R13 = R11 + R12
5 R14 = M(R13)
6 R15 = R10 × R14
7 R16 = -16
8 R17 = RARP + R16
9 R18 = M(R17)

10 R19 = M(R18)
11 R20 = R19 - R15
12 R21 = 4
13 R22 = RARP + R21
14 M(R22) = R20

Simplify
=====⇒

1 R10 = 2
2 R11 = @G
3 R14 = M(R11 + 12)
4 R15 = R10 × R14
5 R18 = M(RARP - 16)
6 R19 = M(R18)
7 R20 = R19 - R15
8 M(RARP+4) = R20

Match
====⇒

1 LD R10, 2
2 LD R11, @G
3 LD R14, 12(R11)
4 MUL R15, R10, R14
5 LD R18, -16(RARP)
6 LD R19, R18
7 SUB R20, R19, R15
8 ST 4(RARP), R20

� Correctly identifying dead values, presence of control flow, and
window size limit the effectiveness of peephole optimizations

� Can use logical windows based on data flow instead of physical
windows

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 88 / 90

Current State in Code Generation

� Modern peephole systems automatically generates a matcher from a description of a
target machine’s instruction set

� Eases the work in retargeting the backend
(i) Provide a new appropriate machine description to the pattern generator to produce a

new instruction selector
(ii) Change the LLIR sequences to match the new ISA
(iii) Modify the instruction scheduler and register allocator to reflect the characteristics of

the new ISA
� GCC uses a low-level IR Register-Transfer Language (RTL) for optimization and for

code generation
▶ The backend uses a peephole scheme to convert RTL into assembly code

Swarnendu Biswas (IIT Kanpur) CS 335: Code Generation Sem 2023-24-II 89 / 90

References

A. Aho et al. Compilers: Principles, Techniques, and Tools. Sections 8.1–8.6, 8.9, 8.10, 2nd
edition, Pearson Education.

K. Cooper and L. Torczon. Engineering a Compiler. Chapter 11, 2nd edition, Morgan Kaufmann.

	Code Generation
	Basic Blocks and Control Flow Graphs
	Optimizing BBs
	Code Generation Algorithm
	Code Generation with Tree Rewriting
	Dynamic Programming Based Optimal Code Generation
	Code Generation via Peephole Optimization

