CS 335: Bottom-Up Parsing

Swarnendu Biswas

Department of Computer Science and Engineering, Indian Institute of Technology Kanpur

Sem 2023-24-II

Rightmost Derivation of abbcde

Bottom-Up Parsing

Definition

Bottom-up parsing constructs the parse tree starting from the leaves and working up toward the root

Grammar

$$S \rightarrow aABe$$

 $A \rightarrow Abc \mid b$
 $B \rightarrow d$

Bottom-Up Parsing

Grammar

Reduction

Bottom-up parsing reduces a string w to the start symbol S

At each reduction step, a chosen substring that is the RHS (or body) of a production is replaced by the LHS (or head) nonterminal

bottom-up parser

Handle

- Handle is a substring that matches the body of a production
- Reducing the handle is one step in the reverse of the rightmost derivation

$E \rightarrow E + T \mid T$	Right sentential form	Handle	Reducing Production
·	id ₁ * id ₂	id ₁	$F \rightarrow id$
$T \rightarrow T * F \mid F$	$F * id_2$	F	$T \rightarrow F$
$F \rightarrow (E) \mid id$	$T * id_2$	id ₂	F ightarrow id
	T * F	T * F	$T \rightarrow T * F$
	Т	Т	$E \rightarrow T$
	E		

Handle

- Handle is a substring that matches the body of a production
- Reducing the handle is one step in the reverse of the rightmost derivation

$E \rightarrow E + T \mid T$	Right sentential form	Handle	Reducing Production
•	id ₁ * id ₂		
$T \rightarrow T * F F$	F ∗ id₂	F	$T \rightarrow F$
$F \rightarrow (E) \mid id$			$F \rightarrow id$
	<i>T</i> * <i>F</i>	T * F	$T \rightarrow T * F$
	Т	Т	$E \rightarrow T$
	E		

Although T is the body of the production $E \rightarrow T$, T is not a handle in the sentential form $T * id_2$

The leftmost substring that matches the body of some production need not be a handle

Swarnendu Biswas (IIT Kanpur)

CS 335: Bottom-Up Parsing

Handle

- If $S \xrightarrow{*}_{rm} \alpha Aw \xrightarrow{}_{rm} \alpha \beta w$, then $A \rightarrow \beta$ is a handle of $\alpha \beta w$
- String *w* right of a handle must contain only terminals

A handle $A \rightarrow \beta$ in the parse tree for $\alpha \beta w$

- If grammar G is unambiguous, then every right sentential form has only one handle
- If G is ambiguous, then there can be more than one rightmost derivation of $\alpha\beta w$

Shift-Reduce Parsing

Shift-Reduce Parsing

- The input string being parsed consists of two parts
 - ► Left part is a string of terminals and nonterminals, and is stored in a stack
 - ► Right part is a string of terminals to be read from an input buffer
 - ► Bottom of the stack and end of the input are represented by \$
- Shift-reduce parsing is a type of bottom-up parsing with **two primary actions**, shift and reduce
 - ► Shift-Reduce actions

Shift Shift the next input symbol from the right string onto the top of the stack Reduce Identify a string on top of the stack that is the body of a production and replace the body with the head

Other actions are accept and error

Shift-Reduce Parsing

Initial

Stack	Input
\$	w\$

Goal

Stack	Input
\$ <i>S</i>	\$

Example of Shift-Reduce Parsing

 $E \rightarrow E + T \mid T$ $T \rightarrow T * F \mid F$ $F \rightarrow (E) \mid \mathbf{id}$

Stack	Input	Action
\$	$id_1 * id_2$ \$	Shift
\$id ₁	∗id₂\$	Reduce by $F \rightarrow id$
\$ <i>F</i>	∗id₂\$	Reduce by $T \rightarrow F$
\$ <i>T</i>	∗id₂\$	Shift
\$ 7 *	id ₂ \$	Shift
\$ <i>T</i> * id ₂	\$	Reduce by $F \rightarrow id$
\$T * F	\$	Reduce by $T \rightarrow T * F$
\$ <i>T</i>	\$	Reduce by $E \rightarrow T$
\$ <i>E</i>	\$	Accept
		or report an error in case of syntax error
		case of syntax endi

Handle on Top of Stack

Is the following scenario possible?

Stack	Input	Action
$\alpha\beta\gamma$	w\$	Reduce by $A \rightarrow \gamma$
\$αβ Α	w\$	Reduce by $B \rightarrow \beta$
αBA	w\$	•••

Possible Choices in Rightmost Derivation

Handle on Top of Stack

Is the following scenario possible?

Shift-Reduce Actions

Shift shift the next input symbol from the right string onto the top of the stack Reduce identify a string on top of the stack that is the body of a production, and replace the body with the head

How do you decide when to shift and when to reduce?

Steps in Shift-Reduce Parsers

General shift-reduce technique

- If there is no handle on the stack, then shift
- If there is a handle on the stack, then reduce

Bottom-up parsing is essentially the process of identifying handles and reducing them

• Different bottom-up parsers differ in the way they **detect** handles

Challenges in Bottom-up Parsing

Which action do you pick when both shift and reduce are valid?

Implies a shift-reduce conflict

Which rule to use if reduction is possible by more than one rule?

Implies a reduce-reduce conflict

Example of a Shift-Reduce Conflict

 $E \rightarrow E + E \mid E * E \mid id$

id + id * id

c + C

Stack	Input	Action	Stack	Input	Action
\$	id + id * id\$	Shift	\$	id + id * id\$	Shift
\$E + E	*id\$	Reduce by $E \rightarrow E + E$	\$E + E	*id\$	Shift
\$ <i>E</i>	*id\$	Shift	\$ <i>E</i> + <i>E</i> *	id\$	Shift
\$ <i>E</i> *	id\$	Shift	\$ <i>E</i> + <i>E</i> * id	\$	Reduce by $E \rightarrow \mathbf{id}$
\$ <i>E</i> * id	\$	Reduce by $E \rightarrow \mathbf{id}$	\$E + E * E	\$	Reduce by $E \rightarrow E * E$
\$ <i>E</i> * E	\$	Reduce by $E \rightarrow E * E$	\$E + E	\$	Reduce by $E \rightarrow E + E$
\$ <i>E</i>	\$		\$ <i>E</i>	\$	

Resolving Shift-Reduce Conflict

Stmt \rightarrow if Expr then Stmt | if Expr then Stmt else Stmt | other

Reduce-Reduce Conflict

 $M \to R + R | R + c | R$ $R \to c$

C + C

id + id * id

Stack	Input	Action	Stack	Input	Action
\$	c + c\$	Shift	\$	c + c\$	Shift
\$ <i>c</i>	+ c\$	Reduce by $R \rightarrow c$	\$ <i>c</i>	+ c\$	Reduce by $R \rightarrow c$
\$ <i>R</i>	+ c\$	Shift	\$ <i>R</i>	+ c\$	Shift
\$ <i>R</i> +	c\$	Shift	\$ <i>R</i> +	<i>c</i> \$	Shift
\$R + c	\$	Reduce by $R \rightarrow c$	R + c	\$	Reduce by $M \rightarrow R + c$
R + R	\$	Reduce by $R \rightarrow R + R$	\$ <i>M</i>	\$	
\$ <i>M</i>	\$				

LR Parsing

LR(k) Parsing

- Popular bottom-up parsing scheme
 - L is for left-to-right scan of input, R is for reverse of rightmost derivation, k is the number of lookahead symbols
- LR parsers are table-driven, like the non-recursive LL parser
- LR grammar is one for which we can construct an LR parsing table
- Popularity of LR Parsing
 - + Most general non-backtracking shift-reduce parsing method
 - + Can recognize almost all language constructs with CFGs
 - + Works for a superset of grammars parsed with predictive or LL parsers

LR(k) Parsing

- Popular bottom-up parsing scheme
 - L is for left-to-right scan of input, R is for reverse of rightmost derivation, k is the number of lookahead symbols
- LR parsers are table-driven, like the non-recursive LL parser
- LR grammar is one for which we can construct an LR parsing table
- Popularity of LR Parsing
 - + Most general non-backtracking shift-reduce parsing method
 - + Can recognize almost all language constructs with CFGs
 - + Works for a superset of grammars parsed with predictive or LL parsers
 - LL(k) parsing predicts which production to use having seen only the first k tokens of the right-hand side
 - LR(k) parsing can decide after it has seen input tokens corresponding to the entire right-hand side of the production

Block Diagram of LR Parser

The LR parsing driver is the same for all LR parsers, only the parsing tables (i.e., ACTION and GOTO) change across parser types

Steps in LR Parsing

- Remember the basic questions: when to shift and when to reduce!
- An LR parser makes shift-reduce decisions by maintaining states
- Information is encoded in a DFA constructed using a canonical LR(0) collection
 - 1. Augmented grammar $G^{'}$ with new start symbol $S^{'}$ and rule $S^{'} \rightarrow S$
 - 2. Define helper functions Closure() and Goto()

LR(0) Item

- An LR(0) item of a grammar G is a production of G with a dot (•) at some position in the body
- An item indicates how much of a production we have seen
 - ► Symbols on the left of "•" are already on the stack
 - ► Symbols on the right of "•" are expected in the input
- A → •XYZ indicates that we expect a string derivable from XYZ next in the input
- A → X YZ indicates that we saw a string derivable from X in the input, and we expect a string derivable from YZ next in the input
- $A \rightarrow \epsilon$ generates only one item $A \rightarrow \bullet$

Production	Items
$A \rightarrow XYZ$	$A \to \bullet XYZ$ $A \to X \bullet YZ$ $A \to XY \bullet Z$ $A \to XYZ \bullet$

Closure Operation

- Let I be a set of items for a grammar G
- Closure(*I*) is constructed as follows
 - (i) Add every item in *I* to Closure(*I*)
 - (ii) If A → α Bβ is in Closure(I) and B → γ is a rule in G, then add B → •γ to Closure(I) if not already added
 - (iii) Repeat until no more new items can be added to Closure(*I*)

A substring derivable from $B\beta$ will have a prefix derivable from B by applying one the B productions

 $E' \rightarrow E$ $E \rightarrow E + T \mid T$ $T \rightarrow T * F \mid F$ $F \rightarrow (E) \mid id$

Suppose $I = \{E' \rightarrow \bullet E\}$

С

$$losure(I) = \{E' \rightarrow \bullet E, \\ E \rightarrow \bullet E + T, \\ E \rightarrow \bullet T, \\ T \rightarrow \bullet T * F, \\ T \rightarrow \bullet F, \\ F \rightarrow \bullet (E), \\ F \rightarrow \bullet id\}$$

Goto Operation

- Suppose *l* is a set of items and *X* is a grammar symbol
- Goto(*I*, *X*) is the closure of set all items $[A \rightarrow \alpha X \bullet \beta]$ such that $[A \rightarrow \alpha \bullet X\beta]$ is in *I*
 - If *I* is a set of items for some valid prefix α, then Goto(*I*, X) is the set of valid items for prefix αX

Intuitively, Goto(I, X) gives the transition of the state *I* under input *X* in the LR(0) automaton

 $F' \rightarrow F$ $E \rightarrow E + T \mid T$ $T \rightarrow T * F | F$ $F \rightarrow (E) \mid \mathbf{id}$ Suppose $I = \{E' \to E \bullet, \}$ $E \rightarrow E \bullet +T$ $Goto(I, +) = \{E \rightarrow E + \bullet T,$ $T \rightarrow \bullet T * F$ $T \rightarrow \bullet F$ $F \rightarrow \bullet (E)$. $F \rightarrow \bullet id$

Algorithm to Compute LR(0) Canonical Collection

```
C = \text{Closure}\left(\{[S' \to \bullet S]\}\right)
repeat
for each set of items l \in C
for each grammar symbol X
if \text{Goto}(l, X) \neq \phi and \text{Goto}(l, X) \notin C
add \text{Goto}(l, X) to C
until no new sets of items are added to C
```

Example Computation of LR(0) Canonical Collection

$I_0 = \text{Closure}(E' \to \bullet E)$ $= \{E' \to \bullet E, \}$	$I_4 = \operatorname{Goto}(I_0, `('))$ $= \{F \to (\bullet E), $
$E \rightarrow \bullet E + T, \\ E \rightarrow \bullet T, \\ T \rightarrow \bullet T * F,$	$E \rightarrow \bullet E + T, E \rightarrow \bullet T, T \rightarrow \bullet T * F,$
$egin{array}{ll} T ightarrow egin{array}{ll} m{ au} ightarro$	$egin{array}{ll} T ightarrow egin{array}{ll} F ightarrow egin{array}{ll} \bullet (E) \ F \ F ightarrow egin{array}{ll} \bullet (E) \ F \ F \ F \ F \ F \ F \ F \ F \ F \ $
$I_1 = \operatorname{Goto}(I_0, E)$ = {E' \rightarrow E \circ, E \rightarrow E \circ +T}	$I_5 = \text{Goto}(I_0, \text{id})$ $= \{F \to \text{id} \bullet\}$
$I_{2} = \text{Goto}(I_{0}, T)$ $= \{E \to T \bullet, T \to T \bullet *F\}$	$\begin{split} I_6 &= \operatorname{Goto}(I_1, +) \\ &= \{ E \rightarrow E + \bullet T, \\ T \rightarrow \bullet T * F, \\ T \rightarrow \bullet F, \end{split}$
$l_3 = \text{Goto}(l_0, F)$ $= \{T \to F \bullet\}$	$F \rightarrow \bullet(E), F \rightarrow \bullet id$

$$I_{7} = \operatorname{Goto}(I_{2}, *)$$

$$= \{T \rightarrow T * \bullet F, F \rightarrow \bullet(E), F \rightarrow \bullet \operatorname{id}\}$$

$$I_{8} = \operatorname{Goto}(I_{4}, E)$$

$$= \{E \rightarrow E \bullet +T, F \rightarrow (E \bullet)\}$$

$$I_{9} = \operatorname{Goto}(I_{6}, T)$$

$$= \{E \rightarrow E + T \bullet, T \rightarrow T \bullet *F\}$$

$$I_{10} = \operatorname{Goto}(I_{7}, F)$$

$$= \{T \rightarrow T * F \bullet\}$$

$$I_{11} = \operatorname{Goto}(I_{8}, ')')$$

$$= \{F \rightarrow (E) \bullet\}$$

$$\begin{array}{l} I_2 = \operatorname{Goto}(I_4, T) \\ I_3 = \operatorname{Goto}(I_4, F) \\ I_4 = \operatorname{Goto}(I_4, id) \\ I_5 = \operatorname{Goto}(I_6, id) \\ I_3 = \operatorname{Goto}(I_6, i') \\ I_5 = \operatorname{Goto}(I_6, id) \\ I_4 = \operatorname{Goto}(I_7, i') \\ I_5 = \operatorname{Goto}(I_7, id) \\ I_6 = \operatorname{Goto}(I_8, +) \\ I_7 = \operatorname{Goto}(I_9, *) \end{array}$$

LR(0) Automaton

- Canonical LR(0) collection is used for constructing the LR(0) automaton for parsing
- States represent sets of LR(0) items in the canonical LR(0) collection
 - ► Start state is $Closure(\{[S' \rightarrow \bullet S]\})$, where S' is the start symbol of the augmented grammar
 - ► State *j* refers to the state corresponding to the set of items *l_j*
- By construction, all transitions to state *j* is for the same symbol *X*
 - ► Each state, except the start state, has a unique grammar symbol associated with it

LR(0) Automaton

Use of LR(0) Automaton

- How can the LR(0) automaton help with shift-reduce decisions?
- Suppose string γ of grammar symbols takes the automaton from start state S₀ to state S_i
 - ▶ Shift on next input symbol *a* if *S_j* has a transition on *a*
 - Otherwise, reduce
 - Items in state S_j help decide which production to use

Structure of LR Parsing Table

- Assume S_i is top of the stack and a_i is the current input symbol
- Parsing table consists of two parts: an ACTION and a GOTO function
- ACTION table is indexed by state and terminal symbols; ACTION[*S_i*, *a_i*] can have four values
 - (i) Shift a_i to the stack, go to state S_i
 - (ii) Reduce by rule k
 - (iii) Accept
 - (iv) Error (empty cell in the table)
- GOTO table is indexed by state and nonterminal symbols

Constructing LR(0) Parsing Table

(i) Construct LR(0) canonical collection $C = \{I_0, I_1, \dots, I_n\}$ for grammar G'

(ii) State *i* is constructed from I_i

(a) If $[A \rightarrow \alpha \bullet A\beta] \in I_i$ and $GOTO(I_i, a) = I_j$, then set ACTION[i, a] = "Shift j"

sj means shift and stack state j

(b) If $[A \to \alpha \bullet] \in I_i$, then set ACTION[i, a] = "Reduce by $A \to \alpha$ " for all a

rj means reduce by rule \$j

(c) If $[S' \rightarrow S \bullet] \in I_i$, then set ACTION[i, \$] = "Accept"

(iii) If $GOTO(I_i, A) = I_j$, then GOTO[i, A] = j

(iv) All entries left undefined are "errors"

LR(0) Parsing Table

State			ACTION					GOT	0	
State	id	+	*	()	\$	Ε	Т	F	
0	<i>s</i> 5			<i>s</i> 4			1	2	3	
1		<i>s</i> 6				Accept				
2	r2	r2	s7, r2	r2	r2	r2				
3	r4	r4	r4	r4	r4	r4				
4	<i>s</i> 5			<i>s</i> 4			8	2	3	
5	<i>r</i> 6	<i>r</i> 6	<i>r</i> 6	<i>r</i> 6	<i>r</i> 6	<i>r</i> 6				
6	<i>s</i> 5			<i>s</i> 4				9	3	
7	<i>s</i> 5			<i>s</i> 4					10	
8		<i>s</i> 6				<i>s</i> 11				-
9	<i>r</i> 1	<i>r</i> 1	<i>s</i> 7, <i>r</i> 1	<i>r</i> 1	<i>r</i> 1	<i>r</i> 1				
10	<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	<i>r</i> 3				
11	<i>r</i> 5	<i>r</i> 5	<i>r</i> 5	<i>r</i> 5	<i>r</i> 5	<i>r</i> 5				

Swarnendu Biswas (IIT Kanpur)

LR Parser Configurations

- A LR parser configuration is a pair $\langle s_0 s_1 \dots s_m, a_i a_{i+1} \dots a_n \rangle$
 - ► The left half is stack content, and the right half is the remaining input
- Configuration represents the right sentential form $X_1X_2...X_ma_ia_{i+1}...a_n$

LR Parsing Algorithm

- (i) If ACTION $[s_m, a_i] = sj$, then the new configuration is $\langle s_0 s_1 \dots s_m s_j, a_{i+1} \dots a_n \rangle$
- (ii) If ACTION[s_m, a_i] = reduce $A \rightarrow \beta$, then the new configuration is

 $\langle s_0 s_1 \dots s_{m-r} s, a_i a_{i+1} \dots a_n \rangle$, where $r = |\beta|$ and $s = \text{GOTO}[s_{m-r}, A]$

- (iii) If ACTION[s_m, a_i] = Accept, then parsing is successful
- (iv) If ACTION $[s_m, a_i]$ = error, then parsing has discovered an error

LR Parsing Program

```
Let a be the first symbol in w$
while (1)
  Let s be the top of the stack
  if ACTION[s, a] == shift t
    push t onto the stack
    let a be the next input symbol
  else if ACTION[s, a] = reduce A \rightarrow \beta
    // Reduce with the production A \rightarrow \beta
    pop |\beta| symbols of the stack
    let state t now be the top of the stack
    push GOTO[t, A] onto the stack
  else if ACTION[s, a] == Accept
    break // parsing is complete
  else
    invoke error recovery
```

Shift-Reduce Parser with LR(0) Automaton

Viable Prefix

• Consider $E \xrightarrow{m} T \xrightarrow{m} T * F \xrightarrow{m} T * \mathbf{id} \xrightarrow{m} F * \mathbf{id} \xrightarrow{m} \mathbf{id} * \mathbf{id}$

- Not all prefixes of a right sentential form can appear on the stack
 - ► id* is a prefix of a right sentential form but can never appear on the stack
 - LR parser will not shift past the handle
 - Always reduce by $F \rightarrow id$ before shifting * (see previous slide)
- A viable prefix is a prefix of a right sentential form that can appear on the stack of a shift-reduce parser
 - If the stack contains α , then α is a viable prefix if $\exists w$ such that αw is a right sentential form
- There is no error as long as the parser has viable prefixes on the stack
 - ► The parser has not yet read past the handle, and expects that the remaining input could form a valid sentential form leading to a successful parse

Example of a Viable Prefix

• Suppose there is a production $A \to \beta_1 \beta_2$, $\alpha \beta_1$ is on the stack, and there is a derivation $S' \stackrel{*}{\longrightarrow} \alpha A w \stackrel{*}{\longrightarrow} \alpha \beta_1 \beta_2 w$

- $\beta_2 \neq \epsilon$ implies that the handle $\beta_1\beta_2$ is not at the top of the stack yet, so shift
- $\beta_2 = \epsilon$ implies that the LR parser can reduce by the handle $A \rightarrow \beta_1$

Challenges with LR(0) Parsing

An LR(0) parser works only if each state with a reduce action has only one possible reduce action and no shift action

OkShift-Reduce ConflictReduce-Reduce Conflict
$$\{L \rightarrow L, S \bullet, L, S \bullet, L \rightarrow S \bullet, L\}$$
 $\{L \rightarrow S, L \bullet, L \rightarrow S \bullet\}$

Takes shift/reduce decisions without any lookahead token

Lacks the power to parse programming language grammars

Canonical Collection of Sets of LR(0) Items

Consider the following grammar for adding numbers

FIRST $(S) = \{$ **num** $\}$ FIRST $(E) = \{$ **num** $\}$ FOLLOW $(S) = \{$ \$ $\}$ FOLLOW $(E) = \{+,$ \$ $\}$

$$I_{0} = \text{Closure}(\{S' \rightarrow \bullet S\})$$
$$= \{S' \rightarrow \bullet S, S \rightarrow \bullet E + S, S \rightarrow \bullet E, E \rightarrow \bullet \text{num}\}$$
$$I_{1} = \text{Goto}(I_{0}, S)$$
$$= \{S' \rightarrow S \bullet\}$$

$$l_2 = \operatorname{Goto}(I_0, E)$$
$$= \{S \to E \bullet + S, S \to E \bullet\}$$

$$I_3 = \text{Goto}(I_0, \text{num})$$
$$= \{E \rightarrow \text{num} \bullet\}$$

$$I_4 = \text{Goto}(I_2, +)$$
$$= \{S \to E + \bullet S\}$$

Simple LR Parsing

Block Diagram of LR Parser

The LR parsing driver is the same for all LR parsers, only the parsing tables (i.e., ACTION and GOTO) change across parser types

SLR(1) Parsing

- Uses LR(0) items and LR(0) automaton, extends LR(0) parser to eliminate **a few** conflicts
 - For each reduction $A \rightarrow \beta$, look at the next symbol *c*
 - Apply reduction only if $c \in FOLLOW(A)$

Constructing SLR Parsing Table

(i) Construct LR(0) canonical collection $C = \{I_0, I_1, \dots, I_n\}$ for grammar G'

(ii) State *i* is constructed from I_i

(a) If [A → α • Aβ] ∈ I_i and GOTO(I_i, a) = I_j, then set ACTION[i, a] = "Shift j"
(b) If [A → α•] ∈ I_i, then set ACTION[i, a] = "Reduce by A → α" for all a in FOLLOW(A)
(c) If [S' → S•] ∈ I_i, then set ACTION[i, \$] = "Accept"

(iii) If $GOTO(I_i, A) = I_j$, then GOTO[i, A] = j

(iv) All entries left undefined are "errors"

constraints on when reductions are applied

SLR Parsing for Expression Grammar

FIRST (*E*) = {(, id} FIRST (*T*) = {(, id} FIRST (*F*) = {(, id} FOLLOW (*E*) = {\$, +,)} FOLLOW (*T*) = {\$, +, *,)} FOLLOW (*F*) = {\$, +, *,)}

Canonical Collection of Sets of LR(0) Items

$$\begin{split} & l_0 = \text{Closure}(E' \rightarrow \bullet E) \\ &= \{E' \rightarrow \bullet E, \\ E \rightarrow \bullet E + T, \\ E \rightarrow \bullet T, \\ T \rightarrow \bullet T, \\ T \rightarrow \bullet F, \\ F \rightarrow \bullet (E), \\ F \rightarrow \bullet \text{id} \} \end{split} \qquad \begin{aligned} & l_4 = \text{Goto}(l_0, `(`) \\ &= \{F \rightarrow (\bullet E), \\ E \rightarrow \bullet E + T, \\ E \rightarrow \bullet T, \\ T \rightarrow \bullet F, \\ F \rightarrow \bullet (E), \\ F \rightarrow \bullet \text{id} \} \end{aligned} \qquad \begin{aligned} & l_5 = \text{Goto}(l_0, \text{id}) \\ &= \{F \rightarrow \text{id} \} \\ l_1 = \text{Goto}(l_0, E) \\ &= \{E \rightarrow E \bullet, \\ E \rightarrow E \bullet + T \} \end{aligned} \qquad \begin{aligned} & l_6 = \text{Goto}(l_1, +) \\ &= \{E \rightarrow E + \bullet T, \\ T \rightarrow \bullet T * F, \\ T \rightarrow \bullet T * F, \\ T \rightarrow \bullet F, \\ l_3 = \text{Goto}(l_0, F) \\ &= \{T \rightarrow F \bullet \} \end{aligned} \qquad \begin{aligned} & l_4 = \text{Goto}(l_0, `t') \\ &= \{F \rightarrow (eE), \\ F \rightarrow \bullet (eE), \end{aligned}$$

$$I_7 = \operatorname{Goto}(I_2, *)$$

$$= \{T \to T * \bullet F, F \to \bullet(E), F \to \bullet \mathsf{id}\}$$

$$I_8 = \operatorname{Goto}(I_4, E)$$

$$= \{E \to E \bullet + T, F \to (E \bullet)\}$$

$$I_9 = \operatorname{Goto}(I_6, T)$$

$$= \{E \to E + T \bullet, T \to T \bullet *F\}$$

$$I_{10} = \operatorname{Goto}(I_7, F)$$

$$= \{T \to T * F \bullet\}$$

$$I_{11} = \operatorname{Goto}(I_8, ')')$$

$$= \{F \to (E) \bullet\}$$

$$\begin{array}{l} I_2 = \operatorname{Goto}(I_4, T) \\ I_3 = \operatorname{Goto}(I_4, F) \\ I_4 = \operatorname{Goto}(I_4, \mathsf{id}) \\ I_5 = \operatorname{Goto}(I_4, \mathsf{id}) \\ I_3 = \operatorname{Goto}(I_6, F) \\ I_4 = \operatorname{Goto}(I_6, \mathsf{id}) \\ I_5 = \operatorname{Goto}(I_6, \mathsf{id}) \\ I_4 = \operatorname{Goto}(I_7, \mathsf{id}) \\ I_5 = \operatorname{Goto}(I_8, +) \\ I_7 = \operatorname{Goto}(I_9, *) \end{array}$$

Swarnendu Biswas (IIT Kanpur)

•*T*,

LR(0) Automaton

SLR Parsing Table

State		ACTION					(GOT	0
State	id	+	*	()	\$	Ε	Т	F
0	<i>s</i> 5			<i>s</i> 4			1	2	3
1		<i>s</i> 6				Accept			
2		r2	<i>s</i> 7		r2	r2			
3		r4	r4		r4	r4			
4	<i>s</i> 5			<i>s</i> 4			8	2	3
5		<i>r</i> 6	<i>r</i> 6		<i>r</i> 6	<i>r</i> 6			
6	<i>s</i> 5			<i>s</i> 4				9	3
7	<i>s</i> 5			<i>s</i> 4					10
8		<i>s</i> 6				<i>s</i> 11			
9		<i>r</i> 1	<i>s</i> 7		<i>r</i> 1	<i>r</i> 1			
10		<i>r</i> 3	<i>r</i> 3		<i>r</i> 3	<i>r</i> 3			
11		<i>r</i> 5	<i>r</i> 5		<i>r</i> 5	<i>r</i> 5			

Rule #	Rule
0	$E^{'} \rightarrow E$
1	$E \rightarrow E + T$
2	$E \rightarrow T$
3	$T \rightarrow T * F$
4	$T \rightarrow F$
5	$F \rightarrow (E)$
6	$F \rightarrow id$
	/

Moves of an LR Parser on id * id + id

Input	Action
id * id + id\$	Shift 5
* id + id\$	Reduce by $F \rightarrow id$
* id + id\$	Reduce by $T \rightarrow F$
* id + id\$	Shift 7
id + id\$	Shift 5
+ id\$	Reduce by $F \rightarrow id$
+ id\$	Reduce by $T \to T * F$
+ id\$	Reduce by $E \rightarrow T$
+ id\$	Shift 6
id\$	Shift 5
\$	Reduce by $F \rightarrow \mathbf{id}$
\$	Reduce by $T \rightarrow F$
\$	Reduce by $E \rightarrow E + T$
\$	Accept
	id * id + id\$ * id + id\$ * id + id\$ * id + id\$ id + id\$ + id\$ + id\$ + id\$ + id\$ 5 5 5

Limitations of SLR Parsing

- If an SLR parse table for a grammar does not have multiple entries in any cell, then the grammar is unambiguous
- Every SLR(1) grammar is unambiguous, but there are unambiguous grammars that are not SLR(1)

Example to Highlight Limitations of SLR Parsing

Unambiguous grammar

$$S \rightarrow L = R \mid R$$

 $L \rightarrow * R \mid id$
 $R \rightarrow L$

FIRST (S) =
$$\{*, id\}$$

FIRST (L) = $\{*, id\}$
FIRST (R) = $\{*, id\}$
FOLLOW (S) = $\{\$, =\}$
FOLLOW (L) = $\{\$, =\}$
FOLLOW (R) = $\{\$, =\}$

Example derivation

$$S \rightarrow L = R \rightarrow *R = R$$

Canonical LR(0) Collection

$$I_{0} = \text{Closure}(S' \to \bullet S)$$

$$= \{S' \to \bullet S, S \to \bullet L = R, S \to \bullet R, L \to \bullet * R, L \to \bullet * R, L \to \bullet \bullet \mathsf{id}, R \to \bullet L\}$$

$$I_{1} = \text{Goto}(I_{0}, S)$$

$$= \{S' \to S \bullet\}$$

$$I_2 = \text{Goto}(I_0, L)$$

= {S \rightarrow L• = R,
R \rightarrow L•}

$$\begin{split} I_3 &= \operatorname{Goto}(I_0, R) \\ &= \{S \to R \bullet\} \\ I_4 &= \operatorname{Goto}(I_0, R) \\ &= \{L \to * \bullet R, \\ L \to \bullet * R, \\ R \to L \bullet \} \end{split}$$

$$I_9 = \text{Goto}(I_6, R)$$
$$= \{S \to L = R \bullet\}$$

SLR Parsing Table

State		AC	ΓΙΟΝ		GOTO		
State	=	*	id	\$	S	L	R
0		<i>s</i> 4	<i>s</i> 5		1	2	3
1				Accept			
2 3 4 5 6	<i>s</i> 6, <i>r</i> 6			<i>r</i> 6			
3							
4		<i>s</i> 4	<i>s</i> 5			8	7
5	<i>r</i> 5			<i>r</i> 5			
6		<i>s</i> 4	<i>s</i> 5			8	9
7	r4			r4			
8	<i>r</i> 6			<i>r</i> 6			
9				r2			

Shift-Reduce Conflict with SLR Parsing

Moves of an SLR Parser on **id** = **id**

Stack	Input	Action			
\$0	$\mathbf{id} = \mathbf{id}$	Shift 5			
\$0 id 5	= id	Reduce by $L \rightarrow \mathbf{id}$			
\$0L2	= id	Reduce by $R \rightarrow L$			
\$0 <i>R</i> 3	= id	Error			
No right sentential form begins with $R = \dots$					

Stack	Input	Action
\$0	id = id\$	Shift 5
\$0 id 5	= id\$	Reduce by $L \rightarrow \mathbf{id}$
\$0L2	= id\$	Shift 6
0L2 = 6	id\$	Shift 5
\$0 <i>L</i> 2 = 6 id 5	\$	Reduce by $L \rightarrow \mathbf{id}$
0L2 = 6L8	\$	Reduce by $R \rightarrow L$
\$0 <i>L</i> 2 = 6 <i>R</i> 9	\$	Reduce by $S \rightarrow L = R$
\$0 <i>S</i> 1	\$	Accept

Moves of an SLR Parser on **id** = **id**

Stack	Input	Action	_	Stack	Input	Action	
\$0	id = id	Shift 5	-	\$0	id = id\$	Shift 5	
\$0 id 5	= id	Reduce by $L \rightarrow \mathbf{id}$		\$0 id 5	= id\$	Reduce by L	\rightarrow id
\$0L2	= id	Reduce by $R \rightarrow L$		\$0 <i>L</i> 2	= id\$	Shift 6	
\$0 <i>R</i> 3	= id	Frror		\$0/2=6	id\$	Shift 5	
State <i>i</i> calls for a reduction by $A \rightarrow \alpha$ if the set of items I_i con-						→ id	
	tains items $[A \rightarrow \alpha \bullet]$ and $a \in FOLLOW(A)$						$\rightarrow L$
							$\rightarrow L = R$
	• Suppose βA is a viable prefix at the top of the stack						
	• There may be no right sentential form where a follows βA						
	• An LR parser should not reduce by $A \rightarrow \alpha$ in such cases						

Moves of an SLR Parser on **id** = **id**

Stack	Input	Action	_	Stack	Input	Action
\$0	id = id	Shift 5	-	\$0	id = id\$	Shift 5
\$0 id 5	= id	Reduce by $L \rightarrow id$		\$0 id 5	= id\$	Reduce by $L \rightarrow id$
\$0L2	= id	Reduce by $R \rightarrow L$		\$0 <i>L</i> 2	= id\$	Shift 6
\$0 <i>R</i> 3	= id	Error		0L2 = 6	id\$	Shift 5
				\$0 <i>L</i> 2 = 6 id 5	\$	Reduce by $L \rightarrow id$
	SLR parser cannot remember the left context					
	• SLR(1) states only tell us about the sequence on top of the stack, not what is below on the stack					

Canonical LR Parsing

LR(1) Item

- An LR(1) item of a CFG G is a string of the form [A → α β, a], with a as one symbol lookahead
 - $A \rightarrow \alpha \beta$ is a production in *G*, and $a \in T \cup \{\}\}$
- Suppose $[A \rightarrow \alpha \bullet \beta, a]$ where $\beta \neq \epsilon$, then the lookahead is not required
- If $[A \rightarrow \alpha \bullet, a]$, reduce **only** if the next input symbol is *a*
 - ► Set of possible terminals will always be a subset of A but can be a proper subset

Computing Closure and Goto for LR(1) Collection

Closure(*I*)

```
repeat
for each item [A \rightarrow \alpha \bullet B\beta, a] \in I
for each production B \rightarrow \gamma \in G'
for each terminal b \in \mathsf{FIRST}(\beta a)
add [B \rightarrow \bullet \gamma, b] to set I
until no more items are added to I
return I
```

```
Goto(I, X)
```

```
J = \phi
for each item [A \to \alpha \bullet X\beta, a] \in I
add item [A \to \alpha X \bullet \beta, a] to set J
return Closure(J)
```

Constructing LR(1) Sets of Items

```
\begin{split} C &= \text{Closure}(\{[S' \to \bullet S, \$]\}) \\ \text{repeat} \\ \text{for each set of items } I \in C \\ \text{for each grammar symbol } X \\ & \text{if Goto}(I, X) \neq \phi \text{ and Goto}(I, X) \notin C \\ & \text{add Goto}(I, X) \text{ to } C \\ \text{until no new sets of items are added to } C \end{split}
```

Example Construction of LR(1) Items

LR(1) Automaton

Construction of Canonical LR(1) Parsing Tables

- Construct $C' = \{I_0, I_1, ..., I_n\}$
- State *i* of the parser is constructed from *I_i*
 - ► If $[A \rightarrow \alpha \bullet a\beta, b]$ is in I_i and $Goto(I_i, a) = I_j$, then set ACTION[i, a] = "Shift j"
 - ▶ If $[A \to \alpha \bullet, a]$ is in I_i and $A \neq S'$, then set ACTION[i, a] = "Reduce by $A \to \alpha \bullet$ "
 - ▶ If $[S' \rightarrow S \bullet, \$]$ is in I_i , then set ACTION[i, \$] = "Accept"
- If $Goto(I_i, A) = I_j$, then GOTO[i, A] = j
- Initial state of the parser is constructed from the set of items containing $[S' \rightarrow \bullet S, \$]$

Canonical LR(1) Parsing Table and Moves of a CLR Parser on cdcd

State		ACT	GOTO		
JIALE	С	cd\$		S	С
0	<i>s</i> 3	<i>s</i> 4		1	2
1			Accept		
2	<i>s</i> 6	<i>s</i> 7			5
3	<i>s</i> 3	<i>s</i> 4			8
4	<i>r</i> 3	<i>r</i> 3			
5			<i>r</i> 1		
6	<i>s</i> 6	<i>s</i> 7			9
7			<i>r</i> 3		
8	r2	r2			
9			r2		

Stack	Input	Action
\$0	cdcd\$	Shift 3
\$0 c 3	dcd\$	Shift 3
\$0 c 3 d 4	cd\$	Reduce by $C \rightarrow \mathbf{d}$
\$0 c 3C8	cd\$	Reduce by $C \rightarrow \mathbf{c}C$
\$0 <i>C</i> 2	cd\$	Shift 6
\$0 <i>C</i> 2 c 6	d \$	Shift 7
\$0 <i>C</i> 2 c 6 d 7	\$	Reduce by $C \rightarrow \mathbf{d}$
\$0C2 c 6C9	\$	Reduce by $C \rightarrow \mathbf{c}C$
\$0 <i>C</i> 2 <i>C</i> 5	\$	Reduce by $S \rightarrow CC$
\$0 <i>S</i> 1	\$	Accept

Canonical LR(1) Parsing

- If the parsing table has no multiply-defined cells, then the corresponding grammar *G* is LR(1)
- Every SLR(1) grammar is an LR(1) grammar
 - ► Canonical LR parser may have more states than SLR

LALR Parsing

Example Construction of LR(1) Items

$$I_{0} = \text{Closure}(\{[S' \rightarrow \bullet S, \$]\})$$

$$= \{S' \rightarrow \bullet S, \$, S \rightarrow \bullet CC, \$, C \rightarrow \bullet cC, c/d, C \rightarrow \bullet d, c/d\}$$

$$I_{1} = \text{Goto}(I_{0}, S)$$

$$= \{S' \rightarrow S \bullet, \$\}$$

$$I_{2} = \text{Goto}(I_{0}, C)$$

$$= \{S \rightarrow C \bullet C, \$, C \rightarrow \bullet cC, \$, C \rightarrow \bullet d, \$\}$$

$$I_{3} = \text{Goto}(I_{0}, c)$$

$$= \{C \rightarrow c \bullet C, c/d, C \rightarrow \bullet cC, c/d\}$$

 $I_4 = \operatorname{Goto}(I_0, \mathbf{d})$ $= \{C \to \mathbf{d} \bullet, \mathbf{c}/\mathbf{d}\}$

- $I_5 = \text{Goto}(I_2, S)$ $= \{S \to CC\bullet, \$\}$
 - $I_{6} = \text{Goto}(I_{2}, \mathbf{c})$ $= \{C \rightarrow \mathbf{c} \bullet C, \$,$ $C \rightarrow \bullet \mathbf{c}C, \$,$ $C \rightarrow \bullet \mathbf{d}, \$\}$

 $I_7 = \operatorname{Goto}(I_2, \mathbf{d})$ $= \{C \to \mathbf{d} \bullet, \$\}$ $I_8 = \operatorname{Goto}(I_3, C)$ $= \{C \to \mathbf{c} C \bullet, \mathbf{c} / \mathbf{d}\}$ $I_9 = \operatorname{Goto}(I_6, C)$ $= \{C \to \mathbf{c} C \bullet, \$\}$

 I_3 and I_6 , I_4 and I_7 , and I_8 and I_9 only differ in the second components

Lookahead LR (LALR) Parsing

- CLR(1) parser has numerous states
- Lookahead LR (LALR) parser **merges sets** of LR(1) items that have the **same core** (set of LR(0) items, i.e., first component)
 - ► LALR parsers have fewer states, the same as SLR
- LALR parser is used in many parser generators (e.g., Bison)

Construction of LALR Parsing Table

- Construct $C = \{I_0, I_1, \dots, I_n\}$, the collection of set of LR(1) items
- For each core present in LR(1) items, find all sets having the same core and replace these sets with their union
- Let $C' = \{J_0, J_1, \dots, J_n\}$ be the resulting sets of LR(1) items (also called LALR collection)
- Construct ACTION table as was done earlier, parsing actions for state *i* is constructed from *J_i*
- Let $J = I_1 \cup I_2 \cup \cdots \cup I_k$, where the cores of I_1, I_2, \ldots, I_k are the same
 - ► Cores of $Goto(I_1, X)$, $Goto(I_2, X)$, ..., $Goto(I_k, X)$ will also be the same
 - ► Let $K = \text{Goto}(I_1, X) \cup \text{Goto}(I_2, X) \cup \dots \text{Goto}(I_k, X)$, then K = Goto(J, X)

LALR Grammar

If there are no parsing action conflicts, then the grammar is LALR(1)

Rule #	Rule
0	$S^{'} ightarrow S$
1	$S \rightarrow CC$
2	$C \rightarrow \mathbf{c}C$
3	$C \rightarrow \mathbf{d}$

$$I_{36} = \operatorname{Goto}(I_2, \mathbf{c})$$

$$= \{C \to \mathbf{c} \bullet C, \mathbf{c}/\mathbf{d}/\$, C \to \mathbf{e}C, \mathbf{c}/\mathbf{d}/\$, C \to \mathbf{e}C, \mathbf{c}/\mathbf{d}/\$, C \to \mathbf{e}\mathbf{d}, \mathbf{c}/\mathbf{d}/\$\}$$

$$I_{47} = \operatorname{Goto}(I_0, \mathbf{d})$$

$$= \{C \to \mathbf{d} \bullet, \mathbf{c}/\mathbf{d}/\$\}$$

$$I_{89} = \operatorname{Goto}(I_3, C)$$

$$= \{C \to \mathbf{c}C \bullet, \mathbf{c}/\mathbf{d}/\$\}$$

LALR Parsing Table

State		GOTO			
Slale	С	d	\$	S	С
0	<i>s</i> 36	<i>s</i> 47		1	2
1			Accept		
2	<i>s</i> 36	<i>s</i> 47			5
36	<i>s</i> 36	<i>s</i> 47			89
47	<i>r</i> 3	<i>r</i> 3	<i>r</i> 3		
5			<i>r</i> 1		
89	r2	r2	r2		

Stack	Input	Action
\$0	cdcd\$	Shift 36
\$0 c 36	dcd\$	Shift 47
\$0 c 36 d 47	cd\$	Reduce by $C \rightarrow \mathbf{d}$
\$0 c 36C89	cd\$	Reduce by $C \rightarrow \mathbf{c}C$
\$0 <i>C</i> 2	cd\$	Shift 36
\$0 <i>C</i> 2 c 36	d \$	Shift 47
\$0C2 c 36 d 47	\$	Reduce by $C \rightarrow \mathbf{d}$
\$0C2 c 36C89	\$	Reduce by $C \rightarrow \mathbf{c}C$
\$0 <i>C</i> 2 <i>C</i> 5	\$	Reduce by $S \rightarrow CC$
\$0 <i>S</i> 1	\$	Accept

Notes on LALR Parsing

• LALR parser behaves like the CLR parser except for difference in stack states

Merging LR(1) items can **never produce** shift/reduce conflicts

- Suppose there is a shift-reduce conflict on lookahead *a* due to items [B → β αγ, b] and [A → α •, a]
- But the merged state was formed from states with same cores, which implies
 [B → β aγ, c] and [A → α•, a] must have already been in the same state, for some
 value of c

Merging items may produce reduce/reduce conflicts

Reduce-Reduce Conflicts due to Merging

$$\{[A \to \mathbf{c} \bullet, \mathbf{d}], [B \to \mathbf{c} \bullet, \mathbf{e}]\}$$
 $\{[A \to \mathbf{c} \bullet, \mathbf{e}], [B \to \mathbf{c} \bullet, \mathbf{d}]\}$
 $\{[A \to \mathbf{c} \bullet, \mathbf{d}/\mathbf{c}], [B \to \mathbf{c} \bullet, \mathbf{d}/\mathbf{e}]\}$

Dealing with Errors with LALR Parsing

CLR Parsing Table

State		ACT	GC	то	
State	С	d	\$	S	С
0	<i>s</i> 3	<i>s</i> 4		1	2
1			Accept		
1 2 3	<i>s</i> 6	<i>s</i> 7			5
	<i>s</i> 3	<i>s</i> 4			8
4	r3	<i>r</i> 3			
4 5 6			<i>r</i> 1		
	<i>s</i> 6	<i>s</i> 7			9
7			<i>r</i> 3		
8	r2	r2			
9			r2		

LALR Parsing Table

State		GOTO			
State	С	cd\$		S	С
0	<i>s</i> 36	<i>s</i> 47		1	2
1			Accept		
2	<i>s</i> 36	<i>s</i> 47			5
36	<i>s</i> 36	<i>s</i> 47			89
47	rЗ	<i>r</i> 3	<i>r</i> 3		
5			<i>r</i> 1		
89	r2	r2	r2		

Rule #	Rule
0	$S^{'} \rightarrow S$
1	$S \rightarrow CC$
2	$C \rightarrow \mathbf{c}C$
3	$C \rightarrow \mathbf{d}$

Comparing Moves of CLR and LALR Parsers

Cons	sider an erroi	neous in	put ccd				
CLR	Parser			LÆ	ALR Parser		
	Stack	Input	Action		Stack	Input	Action
	\$0	ccd\$	Shift 3		\$0	ccd\$	Shift 36
	\$0 c 3	d\$	Shift 3		\$0 c 36	cd\$	Shift 36
	\$0 c 3 c 3	d\$	Shift 4		\$0 c 36 c 36	d\$	Shift 47
	\$0 c 3 c 3 d 4	\$	Error		\$0 c 36 c 36 d 47	\$	Reduce by $C \rightarrow \mathbf{d}$
					\$0 c 36 c 36 <i>C</i> 89	\$	Reduce by $C \rightarrow \mathbf{c}C$
					\$0 c 36C89	\$	Reduce by $C \rightarrow \mathbf{c}C$
					\$0 <i>C</i> 2	\$	Error

Comparing Moves of CLR and LALR Parsers

Using Ambiguous Grammars

Dealing with Ambiguous Grammars

$$\begin{aligned} & H_0 = \text{Closure}(\{[E' \rightarrow \bullet E]\} \\ &= \{E' \rightarrow \bullet E, \\ & E \rightarrow \bullet E + E, \\ & E \rightarrow \bullet E + E, \\ & E \rightarrow \bullet (E), \\ & E \rightarrow E \bullet (E), \\ & E \rightarrow E \bullet + E, \\ & E \rightarrow E \bullet + E, \\ & E \rightarrow E \bullet * E \} \end{aligned}$$

$\begin{split} I_2 &= \operatorname{Goto}(I_0, {}^{\prime}({}^{\prime})) \\ &= \{E \rightarrow (\bullet E), \\ E \rightarrow \bullet E + E, \\ E \rightarrow \bullet E * E, \\ E \rightarrow \bullet (E), \\ E \rightarrow \bullet (E), \\ E \rightarrow \bullet \operatorname{id}\} \end{split}$
$I_3 = \operatorname{Goto}(I_0, \operatorname{id})$ $= \{E \to \operatorname{id} \bullet\}$
$I_4 = \operatorname{Goto}(I_0, +)$ = {E \rightarrow E + \vee E, E \rightarrow \vee E + E, E \rightarrow \vee E * E, E \rightarrow \vee (E), E \rightarrow \vee id}
$I_9 = \text{Goto}(I_6, `)`)$ $= \{E \to (E) \bullet\}$

$$I_{5} = \operatorname{Goto}(I_{0}, *)$$

$$= \{E \rightarrow E * \bullet E, E + E, E \rightarrow \bullet E + E, E \rightarrow \bullet E * E, E \rightarrow \bullet (E), E \rightarrow \bullet (E), E \rightarrow \bullet (E), E \rightarrow \bullet (E), E \rightarrow E \bullet (E \bullet), E \rightarrow E \bullet + E, E \rightarrow E \bullet * E\}$$

$$I_{7} = \operatorname{Goto}(I_{2}, E)$$

$$= \{E \rightarrow E \bullet + E, E \rightarrow E \bullet * E\}$$

$$I_{8} = \operatorname{Goto}(I_{5}, E)$$

$$= \{E \rightarrow E * E \bullet, E \rightarrow E \bullet * E\}$$

$$I_{8} = \operatorname{Goto}(I_{5}, E)$$

$$= \{E \rightarrow E * E \bullet, E \rightarrow E \bullet * E\}$$

Swarnendu Biswas (IIT Kanpur)

Sem 2023-24-II

78/84

SLR Parsing Table

State			ACTI	ON			GOTO
State	id	+	*	()	\$	E
0	<i>s</i> 3			<i>s</i> 2			1
1		<i>s</i> 4	<i>s</i> 5			Accept	
2	<i>s</i> 3			<i>s</i> 2			
3		r4	r4		r4	r4	
4	<i>s</i> 3			<i>s</i> 2			7
5	<i>s</i> 3			<i>s</i> 2			8
6		<i>s</i> 4	<i>s</i> 5		<i>s</i> 9		
7		<i>s</i> 4, <i>r</i> 1	<i>s</i> 5, <i>r</i> 1		<i>r</i> 1	<i>r</i> 1	
8		<i>s</i> 4, <i>r</i> 2	<i>s</i> 5, <i>r</i> 2		r2	r2	
9		r3	r3		<i>r</i> 3	r3	

Moves of an SLR Parser on id + id * id

_

Stack	Input	Action	
\$0	id + id * id\$	Shift 3	-
\$0 id 3	+ id * id\$	Reduce by $E \rightarrow \mathbf{id}$	
\$0 <i>E</i> 1	+ id * id\$	Shift 4	
\$0 <i>E</i> 1+4	id * id\$	Shift 3	
\$0 <i>E</i> 1+4 id 3	* id\$	Reduce by $E \rightarrow id 3$	
\$0 <i>E</i> 1+4 <i>E</i> 7	* id \$	N	
	_		
		Vhat can the parser do t	o resolve the
	a	mbiguity?	

SLR Parsing Table

Stata			ACTIO	NC			GOTO
State	id	+	*	()	\$	E
0	<i>s</i> 3			<i>s</i> 2			1
1		<i>s</i> 4	<i>s</i> 5			Accept	
2	<i>s</i> 3			<i>s</i> 2			
3		r4	r4		r4	r4	
4	<i>s</i> 3			<i>s</i> 2			7
5	<i>s</i> 3			<i>s</i> 2			8
6		<i>s</i> 4	<i>s</i> 5		<i>s</i> 9		
7		s4, r1	s5 , r1		<i>r</i> 1	<i>r</i> 1	
8		s4, r2	<i>s</i> 5, r2		r2	r2	
9		<i>r</i> 3	r3		<i>r</i> 3	<i>r</i> 3	
Why did the parser make these choices?							

Swarnendu Biswas (IIT Kanpur)

CS 335: Bottom-Up Parsing

Sem 2023-24-II

81/84

Comparison of Parsing Techniques

Relationship Among Grammars

Swarnendu Biswas (IIT Kanpur)

Comparison of Parsing Techniques

- Ambiguous grammars are not LR
- Among grammars,
 - ▶ LL(0) ⊂ LL(1) ⊂ ... ⊂ LL(k)¹
 - ▶ $LR(0) \subset SLR(1) \subset LALR(1) \subset LR(1)$
 - SLR(1) = LR(0) items + FOLLOW
 - SLR(1) parsers can parse a larger number of grammars than LR(0)
 - Any grammar that can be parsed by an LR(0) parser can be parsed by an SLR(1) parser
 - ▶ $SLR(k) \subset LALR(k) \subset LR(k)$
 - ► LL(k) ⊂ LR(k)
 - Bottom-up parsing is a more powerful technique compared to top-down parsing
 - LR grammars can handle left recursion
 - Detects errors as soon as possible, and allows for better error recovery
 - Automated parser generators such as Yacc and Bison implement LALR parsing

¹D. Rosenkrantz and R. Stearns. Properties of Deterministic Top-Down Grammars.

References

- A. Aho et al. Compilers: Principles, Techniques, and Tools. Sections 4.5–4.8, 2nd edition, Pearson Education.
- K. Cooper and L. Torczon. Engineering a Compiler. Sections 3.4–3.6, 2nd edition, Morgan Kaufmann.