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Rightmost Derivation of abbcde
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S →aABe
A →Abc | b
B →d

Input string: abbcde
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Bottom-Up Parsing

Definition
Bottom-up parsing constructs the parse tree starting from the leaves and working up
toward the root

Grammar

S →aABe
A →Abc | b
B →d

Input string: abbcde
S → aABe abbcde
→ aAde → aAbcde
→ aAbcde → aAde
→ abbcde → aABe

→ S
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Reduction

Bottom-up parsing reduces a string w to the start symbol S
At each reduction step, a chosen substring that is the RHS (or body) of a production is
replaced by the LHS (or head) nonterminal

rightmost derivation

bottom-up parser
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Handle

� Handle is a substring that matches the body of a production
� Reducing the handle is one step in the reverse of the rightmost derivation

E → E + T | T
T → T ∗ F | F
F → (E) | id

Right sentential form Handle Reducing Production
id1 ∗ id2 id1 F → id

F ∗ id2 F T → F
T ∗ id2 id2 F → id

T ∗ F T ∗ F T → T ∗ F
T T E → T
E
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Handle

� Handle is a substring that matches the body of a production
� Reducing the handle is one step in the reverse of the rightmost derivation

E → E + T | T
T → T ∗ F | F
F → (E) | id

Right sentential form Handle Reducing Production
id1 ∗ id2 id1 F → id

F ∗ id2 F T → F
T ∗ id2 id2 F → id

T ∗ F T ∗ F T → T ∗ F
T T E → T
E

Although T is the body of the production E → T , T is not a handle in the sentential
form T ∗ id2
The leftmost substring that matches the body of some production need not be a handle
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Handle

� If S
∗
==⇒
rm

𝛼Aw ==⇒
rm

𝛼𝛽w , then A → 𝛽 is a
handle of 𝛼𝛽w

� String w right of a handle must contain
only terminals

S

w

A

A handle A → 𝛽 in the parse tree for 𝛼𝛽w

� If grammar G is unambiguous, then every right sentential form has only one handle
� If G is ambiguous, then there can be more than one rightmost derivation of 𝛼𝛽w

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 8 / 84



Shift-Reduce Parsing



Shift-Reduce Parsing

� The input string being parsed consists of two parts
▶ Left part is a string of terminals and nonterminals, and is stored in a stack
▶ Right part is a string of terminals to be read from an input buffer
▶ Bottom of the stack and end of the input are represented by $

� Shift-reduce parsing is a type of bottom-up parsing with two primary actions, shift
and reduce
▶ Shift-Reduce actions

Shift Shift the next input symbol from the right string onto the top of the stack
Reduce Identify a string on top of the stack that is the body of a production and replace

the body with the head
▶ Other actions are accept and error
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Shift-Reduce Parsing

� Initial Stack Input
$ w$

ReduceShift *

� Goal Stack Input
$S $
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Example of Shift-Reduce Parsing

E → E + T | T
T → T ∗ F | F

F → (E) | id

Stack Input Action
$ id1 ∗ id2$ Shift
$id1 ∗id2$ Reduce by F → id
$F ∗id2$ Reduce by T → F
$T ∗id2$ Shift
$T∗ id2$ Shift
$T ∗ id2 $ Reduce by F → id
$T ∗ F $ Reduce by T → T ∗ F
$T $ Reduce by E → T
$E $ Accept

or report an error in
case of syntax error
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Handle on Top of Stack

Is the following scenario possible?

Stack Input Action
. . .
$𝛼𝛽𝛾 w$ Reduce by A → 𝛾

$𝛼𝛽A w$ Reduce by B → 𝛽

$𝛼BA w$ . . .
. . .
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Possible Choices in Rightmost Derivation

S

z

A

B

y

1. S ==⇒
rm

𝛼Az ==⇒
rm

𝛼𝛽Byz ==⇒
rm

𝛼𝛽𝛾yz

S

z

AB

x y

2. S ==⇒
rm

𝛼BxAz ==⇒
rm

𝛼Bxyz ==⇒
rm

𝛼𝛾xyz
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Handle on Top of Stack

Is the following scenario possible?

Stack Input Action
. . .
$𝛼𝛽𝛾 w$ Reduce by A → 𝛾

$𝛼𝛽A w$ Reduce by B → 𝛽

$𝛼BA w$ . . .
. . .

Handle will always eventually appear
on top of the stack, never inside
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Shift-Reduce Actions

Shift shift the next input symbol from the right string onto the top of the stack
Reduce identify a string on top of the stack that is the body of a production, and

replace the body with the head

How do you decide when to shift and
when to reduce?
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Steps in Shift-Reduce Parsers

General shift-reduce technique
� If there is no handle on the stack, then shift
� If there is a handle on the stack, then reduce

Bottom-up parsing is essentially the process of identifying handles and reducing
them
� Different bottom-up parsers differ in the way they detect handles

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 16 / 84



Challenges in Bottom-up Parsing

Which action do you pick when both shift and reduce are valid?
Implies a shift-reduce conflict

Which rule to use if reduction is possible by more than one rule?
Implies a reduce-reduce conflict
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Example of a Shift-Reduce Conflict
E →E + E | E ∗ E | id

id + id ∗ id

Stack Input Action
$ id + id ∗ id$ Shift
. . .
$E + E ∗id$ Reduce by E → E + E
$E ∗id$ Shift
$E∗ id$ Shift
$E ∗ id $ Reduce by E → id
$E ∗ E $ Reduce by E → E ∗ E
$E $

c + C

Stack Input Action
$ id + id ∗ id$ Shift
. . .
$E + E ∗id$ Shift
$E + E∗ id$ Shift
$E + E ∗ id $ Reduce by E → id
$E + E ∗ E $ Reduce by E → E ∗ E
$E + E $ Reduce by E → E + E
$E $
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Resolving Shift-Reduce Conflict

Stmt → if Expr then Stmt
| if Expr then Stmt else Stmt
| other

Stack Input Action
. . .
$ . . . if Expr then Stmt else . . .

What is a correct thing to do for this grammar
— shift or reduce? We can prioritize shifts.
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Reduce-Reduce Conflict
M →R + R | R + c | R
R →c

c + c

Stack Input Action
$ c + c$ Shift
$c + c$ Reduce by R → c
$R + c$ Shift
$R + c$ Shift
$R + c $ Reduce by R → c
$R + R $ Reduce by R → R + R
$M $

id + id ∗ id

Stack Input Action
$ c + c$ Shift
$c + c$ Reduce by R → c
$R + c$ Shift
$R + c$ Shift
$R + c $ Reduce by M → R + c
$M $
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LR Parsing



LR(k) Parsing

� Popular bottom-up parsing scheme
▶ L is for left-to-right scan of input, R is for reverse of rightmost derivation, k is the number

of lookahead symbols
� LR parsers are table-driven, like the non-recursive LL parser
� LR grammar is one for which we can construct an LR parsing table
� Popularity of LR Parsing

+ Most general non-backtracking shift-reduce parsing method
+ Can recognize almost all language constructs with CFGs
+ Works for a superset of grammars parsed with predictive or LL parsers

▶ LL(k) parsing predicts which production to use having seen only the first k tokens of the
right-hand side

▶ LR(k) parsing can decide after it has seen input tokens corresponding to the entire right-hand
side of the production
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Block Diagram of LR Parser

LR Parsing
Program

... ... $

...

$

Stack

Input

Output

ACTION GOTO

Parsing Tables

The LR parsing driver is the same for all LR parsers, only the parsing
tables (i.e., ACTION and GOTO) change across parser types
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Steps in LR Parsing

� Remember the basic questions: when to shift and when to reduce!
� An LR parser makes shift-reduce decisions by maintaining states
� Information is encoded in a DFA constructed using a canonical LR(0) collection

1. Augmented grammar G′ with new start symbol S′ and rule S′ → S
2. Define helper functions Closure() and Goto()
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LR(0) Item

� An LR(0) item of a grammar G is a production of G
with a dot (•) at some position in the body

� An item indicates how much of a production we have
seen
▶ Symbols on the left of “•” are already on the stack
▶ Symbols on the right of “•” are expected in the input

� A → •XYZ indicates that we expect a string derivable
from XYZ next in the input

� A → X • YZ indicates that we saw a string derivable
from X in the input, and we expect a string derivable
from YZ next in the input

� A → 𝜖 generates only one item A → •

Production Items

A → XYZ

A → •XYZ
A → X • YZ
A → XY • Z
A → XYZ•
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Closure Operation

� Let I be a set of items for a grammar G
� Closure(I) is constructed as follows

(i) Add every item in I to Closure(I)
(ii) If A → 𝛼 • B𝛽 is in Closure(I) and B → 𝛾 is a rule

in G, then add B → •𝛾 to Closure(I) if not already
added

(iii) Repeat until no more new items can be added to
Closure(I)

A substring derivable from B𝛽 will have a prefix derivable
from B by applying one the B productions

E
′ → E

E → E + T | T
T → T ∗ F | F
F → (E) | id

Suppose I = {E ′ → •E}

Closure(I) = {E ′ → •E,
E → •E + T ,
E → •T ,
T → •T ∗ F ,
T → •F ,
F → • (E) ,
F → •id}
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Goto Operation

� Suppose I is a set of items and X is a grammar
symbol

� Goto(I,X) is the closure of set all items
[A → 𝛼X • 𝛽] such that [A → 𝛼 • X 𝛽] is in I
▶ If I is a set of items for some valid prefix 𝛼, then

Goto(I,X) is the set of valid items for prefix 𝛼X

Intuitively, Goto(I,X) gives the transition of the state I
under input X in the LR(0) automaton

E
′ → E

E → E + T | T
T → T ∗ F | F
F → (E) | id

Suppose
I = {E ′ → E•,

E → E • +T }
Goto(I, +) = {E → E + •T ,

T → •T ∗ F ,
T → •F ,
F → • (E) ,
F → •id}

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 27 / 84



Algorithm to Compute LR(0) Canonical Collection

C = Closure
(
{[S′ → •S]}

)
repeat
for each set of items I ∈ C
for each grammar symbol X
if Goto(I,X) ≠ 𝜙 and Goto(I,X) ∉ C
add Goto (I,X) to C

until no new sets of items are added to C

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 28 / 84



Example Computation of LR(0) Canonical Collection

I0 = Closure(E
′
→ •E)

= {E
′
→ •E,

E → •E + T ,
E → •T ,
T → •T ∗ F ,
T → •F ,
F → • (E) ,
F → •id}

I1 = Goto(I0,E)
= {E

′
→ E•,

E → E • +T }
I2 = Goto(I0, T )

= {E → T•,
T → T • ∗F}

I3 = Goto(I0, F)
= {T → F•}

I4 = Goto(I0, ‘(’)
= {F → (•E) ,

E → •E + T ,
E → •T ,
T → •T ∗ F ,
T → •F ,
F → • (E) ,
F → •id}

I5 = Goto(I0, id)
= {F → id•}

I6 = Goto(I1, +)
= {E → E + •T ,

T → •T ∗ F ,
T → •F ,
F → •(E),
F → •id}

I7 = Goto(I2, ∗)
= {T → T ∗ •F ,

F → •(E),
F → •id}

I8 = Goto(I4,E)
= {E → E • +T ,

F → (E•)}
I9 = Goto(I6, T )

= {E → E + T•,
T → T • ∗F}

I10 = Goto(I7, F)
= {T → T ∗ F•}

I11 = Goto(I8, ‘)’)
= {F → (E)•}

I2 = Goto(I4, T )
I3 = Goto(I4, F)
I4 = Goto(I4, ‘(’)
I5 = Goto(I4, id)
I3 = Goto(I6, F)
I4 = Goto(I6, ‘(’)
I5 = Goto(I6, id)
I4 = Goto(I7, ‘(’)
I5 = Goto(I7, id)
I6 = Goto(I8, +)
I7 = Goto(I9, ∗)
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LR(0) Automaton

� Canonical LR(0) collection is used for constructing the LR(0) automaton for parsing
� States represent sets of LR(0) items in the canonical LR(0) collection

▶ Start state is Closure
(
{[S′ → •S]}

)
, where S′ is the start symbol of the augmented

grammar
▶ State j refers to the state corresponding to the set of items Ij

� By construction, all transitions to state j is for the same symbol X
▶ Each state, except the start state, has a unique grammar symbol associated with it
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LR(0) Automaton

I1 I2 I3 I5

I0 I4 I7I6

I8 I9 I11I10

accept
E T F id

(

$

+ *F

id

(E

id

F
(

T

id

F

( +

)

*
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Use of LR(0) Automaton

� How can the LR(0) automaton help with shift-reduce decisions?
� Suppose string 𝛾 of grammar symbols takes the automaton from start state S0 to state

Sj
▶ Shift on next input symbol a if Sj has a transition on a
▶ Otherwise, reduce

▶ Items in state Sj help decide which production to use
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Structure of LR Parsing Table

� Assume Si is top of the stack and ai is the current input symbol
� Parsing table consists of two parts: an ACTION and a GOTO function
� ACTION table is indexed by state and terminal symbols; ACTION[Si , ai] can have four

values
(i) Shift ai to the stack, go to state Sj
(ii) Reduce by rule k
(iii) Accept
(iv) Error (empty cell in the table)

� GOTO table is indexed by state and nonterminal symbols
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Constructing LR(0) Parsing Table

(i) Construct LR(0) canonical collection C = {I0, I1, . . . , In} for grammar G′

(ii) State i is constructed from Ii
(a) If [A → 𝛼 • A𝛽] ∈ Ii and GOTO(Ii , a) = Ij , then set ACTION[i, a] = “Shift j”

▶ sj means shift and stack state j
(b) If [A → 𝛼•] ∈ Ii , then set ACTION[i, a] = “Reduce by A → 𝛼” for all a

▶ rj means reduce by rule $j
(c) If [S′ → S•] ∈ Ii , then set ACTION[i, $] = “Accept”

(iii) If GOTO(Ii ,A) = Ij , then GOTO[i,A] = j
(iv) All entries left undefined are “errors”
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LR(0) Parsing Table

State ACTION GOTO
id + ∗ ( ) $ E T F

0 s5 s4 1 2 3
1 s6 Accept
2 r2 r2 s7, r2 r2 r2 r2
3 r4 r4 r4 r4 r4 r4
4 s5 s4 8 2 3
5 r6 r6 r6 r6 r6 r6
6 s5 s4 9 3
7 s5 s4 10
8 s6 s11
9 r1 r1 s7, r1 r1 r1 r1
10 r3 r3 r3 r3 r3 r3
11 r5 r5 r5 r5 r5 r5

Rule # Rule
0 E ′ → E
1 E → E + T
2 E → T
3 T → T ∗ F
4 T → F
5 F → (E )
6 F → id
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LR Parser Configurations

� A LR parser configuration is a pair ⟨s0s1 . . . sm, aiai+1 . . . an$⟩
▶ The left half is stack content, and the right half is the remaining input

� Configuration represents the right sentential form X1X2 . . .Xmaiai+1 . . . an
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LR Parsing Algorithm

(i) If ACTION[sm, ai] = sj, then the new configuration is ⟨s0s1 . . . smsj , ai+1 . . . an⟩
(ii) If ACTION[sm, ai] = reduce A → 𝛽, then the new configuration is

⟨s0s1 . . . sm−rs, aiai+1 . . . an⟩, where r = |𝛽 | and s = GOTO[sm−r ,A]
(iii) If ACTION[sm, ai] = Accept, then parsing is successful
(iv) If ACTION[sm, ai] = error, then parsing has discovered an error
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LR Parsing Program

Let a be the first symbol in w$
while (1)
Let s be the top of the stack
if ACTION[s, a] == shift t
push t onto the stack
let a be the next input symbol

else if ACTION[s, a] = reduce A → 𝛽

// Reduce with the production A → 𝛽

pop |𝛽 | symbols of the stack
let state t now be the top of the stack
push GOTO[t,A] onto the stack

else if ACTION[s, a] == Accept
break // parsing is complete

else
invoke error recovery
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Shift-Reduce Parser with LR(0) Automaton

Stack Input Action
$0 id ∗ id$ Shift
$0 id 5 ∗ id$ Reduce by F → id
$0 F 3 ∗ id$ Reduce by T → F
$0 T 2 ∗ id$ Shift
$0 T 2 ∗ 7 id$ Shift
$0 T 2 ∗ 7 id 5 $ Reduce by F → id
$0 T 2 ∗ 7 F 10 $ Reduce by T → T ∗ F
$0 T 2 $ Reduce by E → T
$0 E 1 $ Accept

popped 5 and pushed 3
because I3 = Goto(I0, F )

While the stack consisted of only symbols in the shift-
reduce parser, here the stack also contains states from
the LR(0) automaton
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Viable Prefix

� Consider E
rm
==⇒ T

rm
==⇒ T ∗ F

rm
==⇒ T ∗ id

rm
==⇒ F ∗ id

rm
==⇒ id ∗ id

� Not all prefixes of a right sentential form can appear on the stack
▶ id∗ is a prefix of a right sentential form but can never appear on the stack

▶ LR parser will not shift past the handle
▶ Always reduce by F → id before shifting ∗ (see previous slide)

� A viable prefix is a prefix of a right sentential form that can appear on the stack of a
shift-reduce parser
▶ If the stack contains 𝛼, then 𝛼 is a viable prefix if ∃w such that 𝛼w is a right sentential form

� There is no error as long as the parser has viable prefixes on the stack
▶ The parser has not yet read past the handle, and expects that the remaining input could

form a valid sentential form leading to a successful parse
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Example of a Viable Prefix

S →X1X2X3X4

A →X1X2

Stack Input
$ X1X2X3$
$X1 X2X3$
$X1X2 X3$
$A X3$
$AX3 $

X1X2X3 can never appear on
the stack

� Suppose there is a production A → 𝛽1𝛽2, 𝛼𝛽1 is on the stack, and there is a derivation
S′ ∗

==⇒
rm

𝛼Aw
∗
==⇒
rm

𝛼𝛽1𝛽2w
▶ 𝛽2 ≠ 𝜖 implies that the handle 𝛽1𝛽2 is not at the top of the stack yet, so shift
▶ 𝛽2 = 𝜖 implies that the LR parser can reduce by the handle A → 𝛽1
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Challenges with LR(0) Parsing

An LR(0) parser works only if each state with a reduce action has only one possible reduce
action and no shift action

Ok
{L → L,S•}

Shift-Reduce Conflict
{L →L,S• ,
L →S•, L}

Reduce-Reduce Conflict

{L →S, L• ,
L →S•}

Takes shift/reduce decisions without any lookahead token
Lacks the power to parse programming language grammars
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Canonical Collection of Sets of LR(0) Items
Consider the following grammar for adding numbers

Left associative

S →S + E | E
E →num

Right associative

S →E + S | E
E →num

Shift-Reduce Conflict

{S →E • +S,
S →E•}

FIRST (S) = {num}
FIRST (E) = {num}
FOLLOW (S) = {$}
FOLLOW (E) = {+, $}

I0 = Closure({S′ → •S})
= {S′ → •S,

S → •E + S,
S → •E,
E → •num}

I1 = Goto(I0,S)
= {S′ → S•}

I2 = Goto(I0,E)
= {S → E • +S,

S → E•}
I3 = Goto(I0, num)
= {E → num•}

I4 = Goto(I2, +)
= {S → E + •S}
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Simple LR Parsing



Block Diagram of LR Parser

LR Parsing
Program

... ... $

...

$

Stack

Input

Output

ACTION GOTO

Parsing Tables

The LR parsing driver is the same for all LR parsers, only the parsing
tables (i.e., ACTION and GOTO) change across parser types
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SLR(1) Parsing

� Uses LR(0) items and LR(0) automaton, extends LR(0) parser to eliminate a few
conflicts
▶ For each reduction A → 𝛽, look at the next symbol c
▶ Apply reduction only if c ∈ FOLLOW(A)
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Constructing SLR Parsing Table

(i) Construct LR(0) canonical collection C = {I0, I1, . . . , In} for grammar G′

(ii) State i is constructed from Ii
(a) If [A → 𝛼 • A𝛽] ∈ Ii and GOTO(Ii , a) = Ij , then set ACTION[i, a] = “Shift j”
(b) If [A → 𝛼•] ∈ Ii , then set ACTION[i, a] = “Reduce by A → 𝛼” for all a in FOLLOW(A)
(c) If [S′ → S•] ∈ Ii , then set ACTION[i, $] = “Accept”

(iii) If GOTO(Ii ,A) = Ij , then GOTO[i,A] = j
(iv) All entries left undefined are “errors”

constraints on when
reductions are applied
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SLR Parsing for Expression Grammar

Rule # Rule
1 E → E + T
2 E → T
3 T → T ∗ F
4 T → F
5 F → (E)
6 F → id

FIRST (E) = {(, id}
FIRST (T ) = {(, id}
FIRST (F) = {(, id}
FOLLOW (E) = {$, +, )}
FOLLOW (T ) = {$, +, ∗, )}
FOLLOW (F) = {$, +, ∗, )}
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Canonical Collection of Sets of LR(0) Items

I0 = Closure(E
′
→ •E)

= {E
′
→ •E,

E → •E + T ,
E → •T ,
T → •T ∗ F ,
T → •F ,
F → • (E) ,
F → •id}

I1 = Goto(I0,E)
= {E

′
→ E•,

E → E • +T }
I2 = Goto(I0, T )

= {E → T•,
T → T • ∗F}

I3 = Goto(I0, F)
= {T → F•}

I4 = Goto(I0, ‘(’)
= {F → (•E) ,

E → •E + T ,
E → •T ,
T → •T ∗ F ,
T → •F ,
F → • (E) ,
F → •id}

I5 = Goto(I0, id)
= {F → id•}

I6 = Goto(I1, +)
= {E → E + •T ,

T → •T ∗ F ,
T → •F ,
F → •(E),
F → •id}

I7 = Goto(I2, ∗)
= {T → T ∗ •F ,

F → •(E),
F → •id}

I8 = Goto(I4,E)
= {E → E • +T ,

F → (E•)}
I9 = Goto(I6, T )

= {E → E + T•,
T → T • ∗F}

I10 = Goto(I7, F)
= {T → T ∗ F•}

I11 = Goto(I8, ‘)’)
= {F → (E)•}

I2 = Goto(I4, T )
I3 = Goto(I4, F)
I4 = Goto(I4, ‘(’)
I5 = Goto(I4, id)
I3 = Goto(I6, F)
I4 = Goto(I6, ‘(’)
I5 = Goto(I6, id)
I4 = Goto(I7, ‘(’)
I5 = Goto(I7, id)
I6 = Goto(I8, +)
I7 = Goto(I9, ∗)
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LR(0) Automaton

I1 I2
I3

I5

I0 I4 I7I6

I8 I9 I11I10

accept
E

T
F

id

(

$

+ *

F id

(E

id

F
(

T

id

F

(
+

)

*
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SLR Parsing Table

State ACTION GOTO
id + ∗ ( ) $ E T F

0 s5 s4 1 2 3
1 s6 Accept
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s5 s4 8 2 3
5 r6 r6 r6 r6
6 s5 s4 9 3
7 s5 s4 10
8 s6 s11
9 r1 s7 r1 r1
10 r3 r3 r3 r3
11 r5 r5 r5 r5

Rule # Rule
0 E ′ → E
1 E → E + T
2 E → T
3 T → T ∗ F
4 T → F
5 F → (E )
6 F → id
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Moves of an LR Parser on id ∗ id + id

Stack Input Action
$0 id ∗ id + id$ Shift 5
$0 id 5 ∗ id + id$ Reduce by F → id
$0 F 3 ∗ id + id$ Reduce by T → F
$0 T 2 ∗ id + id$ Shift 7
$0 T 2 ∗ 7 id + id$ Shift 5
$0 T 2 ∗ 7 id 5 + id$ Reduce by F → id
$0 T 2 ∗ 7 F 10 + id$ Reduce by T → T ∗ F
$0 T 2 + id$ Reduce by E → T
$0 E 1 + id$ Shift 6
$0 E 1 + 6 id$ Shift 5
$0 E 1 + 6 id 5 $ Reduce by F → id
$0 E 1 + 6 F 3 $ Reduce by T → F
$0 E 1 + 6 T 9 $ Reduce by E → E + T
$0 E 1 $ Accept
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Limitations of SLR Parsing

� If an SLR parse table for a grammar does not have multiple entries in any cell, then the
grammar is unambiguous

� Every SLR(1) grammar is unambiguous, but there are unambiguous grammars that are
not SLR(1)
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Example to Highlight Limitations of SLR Parsing

Unambiguous grammar

S →L = R | R
L →∗ R | id

R → L

FIRST (S) = {∗, id}
FIRST (L) = {∗, id}
FIRST (R) = {∗, id}
FOLLOW (S) = {$, =}
FOLLOW (L) = {$, =}
FOLLOW (R) = {$,=}

Example derivation
S → L = R → ∗R = R
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Canonical LR(0) Collection

I0 = Closure(S
′
→ •S)

= {S
′
→ •S,

S → •L = R,

S → •R,

L → • ∗ R,

L → •id,
R → •L}

I1 = Goto(I0,S)
= {S

′
→ S•}

I2 = Goto(I0, L)
= {S → L• = R,

R → L•}

I3 = Goto(I0,R)
= {S → R•}

I4 = Goto(I0,R)
= {L → ∗ • R,

R → •L,
L → • ∗ R,

L → •id}
I5 = Goto(I0, id)

= {L → •id}

I6 = Goto(I2, =)
= {S → L = •R,

R → •L,
L → • ∗ R,

L → id}
I7 = Goto(I4,R)

= {L → ∗R•}

I8 = Goto(I4, L)
= {R → L•}

I9 = Goto(I6,R)
= {S → L = R•}
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SLR Parsing Table

State ACTION GOTO
= ∗ id $ S L R

0 s4 s5 1 2 3
1 Accept
2 s6, r6 r6
3
4 s4 s5 8 7
5 r5 r5
6 s4 s5 8 9
7 r4 r4
8 r6 r6
9 r2
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Shift-Reduce Conflict with SLR Parsing

I0 = Closure(S
′
→ •S)

= {S
′
→ •S,

S → •L = R,

S → •R,

L → • ∗ R,

L → •id,
R → •L}

I1 = Goto(I0,S)
= {S

′
→ S•}

I2 = Goto(I0, L)
= {S → L• = R,

R → L•}

I3 = Goto(I0,R)
= {S → R•}

I4 = Goto(I0,R)
= {L → ∗ • R,

R → •L,
L → • ∗ R,

L → •id}
I5 = Goto(I0, id)

= {L → •id}

I6 = Goto(I2, =)
= {S → L = •R,

R → •L,
L → • ∗ R,

L → id}
I7 = Goto(I4,R)

= {L → ∗R•}

I8 = Goto(I4, L)
= {R → L•}

I9 = Goto(I6,R)
= {S → L = R•}

(i) ACTION[2,=] = Shift 6, or

(ii) ACTION[2,=] = Reduce R → L because = ∈ FOLLOW(R)
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Moves of an SLR Parser on id = id

Stack Input Action
$0 id = id Shift 5
$0id5 = id Reduce by L → id
$0L2 = id Reduce by R → L
$0R3 = id Error

No right sentential form begins
with R = . . .

Stack Input Action
$0 id = id$ Shift 5
$0id5 = id$ Reduce by L → id
$0L2 = id$ Shift 6
$0L2 = 6 id$ Shift 5
$0L2 = 6id5 $ Reduce by L → id
$0L2 = 6L8 $ Reduce by R → L
$0L2 = 6R9 $ Reduce by S → L = R
$0S1 $ Accept
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Moves of an SLR Parser on id = id

Stack Input Action
$0 id = id Shift 5
$0id5 = id Reduce by L → id
$0L2 = id Reduce by R → L
$0R3 = id Error

Stack Input Action
$0 id = id$ Shift 5
$0id5 = id$ Reduce by L → id
$0L2 = id$ Shift 6
$0L2 = 6 id$ Shift 5
$0L2 = 6id5 $ Reduce by L → id
$0L2 = 6L8 $ Reduce by R → L
$0L2 = 6R9 $ Reduce by S → L = R
$0S1 $ Accept

State i calls for a reduction by A → 𝛼 if the set of items Ii con-
tains items [A → 𝛼•] and a ∈ FOLLOW(A)
� Suppose 𝛽A is a viable prefix at the top of the stack
� There may be no right sentential form where a follows 𝛽A

▶ An LR parser should not reduce by A → 𝛼 in such cases
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Moves of an SLR Parser on id = id

Stack Input Action
$0 id = id Shift 5
$0id5 = id Reduce by L → id
$0L2 = id Reduce by R → L
$0R3 = id Error

Stack Input Action
$0 id = id$ Shift 5
$0id5 = id$ Reduce by L → id
$0L2 = id$ Shift 6
$0L2 = 6 id$ Shift 5
$0L2 = 6id5 $ Reduce by L → id
$0L2 = 6L8 $ Reduce by R → L
$0L2 = 6R9 $ Reduce by S → L = R
$0S1 $ Accept

SLR parser cannot remember the left context
� SLR(1) states only tell us about the sequence on top of the

stack, not what is below on the stack
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Canonical LR Parsing



LR(1) Item

� An LR(1) item of a CFG G is a string of the form [A → 𝛼 • 𝛽, a], with a as one symbol
lookahead
▶ A → 𝛼𝛽 is a production in G, and a ∈ T ∪ {$}

� Suppose [A → 𝛼 • 𝛽, a] where 𝛽 ≠ 𝜖 , then the lookahead is not required
� If [A → 𝛼•, a], reduce only if the next input symbol is a

▶ Set of possible terminals will always be a subset of A but can be a proper subset

� An LR(1) item [A → 𝛼 • 𝛽, a] is valid for a
viable prefix 𝛾 if there is a derivation
S

∗
==⇒
rm

𝛿Aw ==⇒
rm

𝛿𝛼𝛽w , where
(i) 𝛾 = 𝛿𝛼, and
(ii) a is the first symbol in w , or w = 𝜖 and

a = $

LR Parsing
Program

Stack

Input

Output

ACTION GOTO

Parsing Tables

... ... $

...

$
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Computing Closure and Goto for LR(1) Collection

Closure(I)

repeat
for each item [A → 𝛼 • B𝛽, a] ∈ I
for each production B → 𝛾 ∈ G′

for each terminal b ∈ FIRST(𝛽a)
add [B → •𝛾, b] to set I

until no more items are added to I
return I

Goto(I,X)

J = 𝜙

for each item [A → 𝛼 • X 𝛽, a] ∈ I
add item [A → 𝛼X • 𝛽, a] to set J

return Closure(J)
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Constructing LR(1) Sets of Items

C = Closure({[S′ → •S, $]})
repeat
for each set of items I ∈ C
for each grammar symbol X
if Goto(I,X) ≠ 𝜙 and Goto(I,X) ∉ C
add Goto(I,X) to C

until no new sets of items are added to C
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Example Construction of LR(1) Items

Rule # Rule
0 S′ → S
1 S → CC
2 C → cC
3 C → d

I0 = Closure({[S
′
→ •S, $]})

= {S
′
→ •S, $,

S → •CC, $,
C → •cC, c/d,
C → •d, c/d}

I1 = Goto(I0,S)
= {S

′
→ S•, $}

I2 = Goto(I0,C)
= {S → C • C, $,

C → •cC, $,
C → •d, $}

I3 = Goto(I0, c)
= {C → c • C, c/d,

C → •cC, c/d,
C → •d, c/d}

I4 = Goto(I0, d)
= {C → d•, c/d}

I5 = Goto(I2,S)
= {S → CC•, $}

I6 = Goto(I2, c)
= {C → c • C, $,

C → •cC, $,
C → •d, $}

I7 = Goto(I2, d)
= {C → d•, $}

I8 = Goto(I3,C)
= {C → cC•, c/d}

I9 = Goto(I6,C)
= {C → cC•, $}

generates the regular language
c∗dc∗d
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LR(1) Automaton

I1 I4 I5

I0 I2 I3 I8

I7 I6 I9

accept

S d

C
c

$

c
d

C

d

C

c

d C
c
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Construction of Canonical LR(1) Parsing Tables

� Construct C′
= {I0, I1, . . . , In}

� State i of the parser is constructed from Ii
▶ If [A → 𝛼 • a𝛽, b] is in Ii and Goto(Ii , a) = Ij , then set ACTION[i, a] = “Shift j”
▶ If [A → 𝛼•, a] is in Ii and A ≠ S′ , then set ACTION[i, a] = “Reduce by A → 𝛼•”
▶ If [S′ → S•, $] is in Ii , then set ACTION[i, $] = “Accept”

� If Goto(Ii ,A) = Ij , then GOTO[i,A] = j
� Initial state of the parser is constructed from the set of items containing [S′ → •S, $]
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Canonical LR(1) Parsing Table and Moves of a CLR Parser on cdcd

State ACTION GOTO
c d $ S C

0 s3 s4 1 2
1 Accept
2 s6 s7 5
3 s3 s4 8
4 r3 r3
5 r1
6 s6 s7 9
7 r3
8 r2 r2
9 r2

Stack Input Action
$0 cdcd$ Shift 3
$0c3 dcd$ Shift 3
$0c3d4 cd$ Reduce by C → d
$0c3C8 cd$ Reduce by C → cC
$0C2 cd$ Shift 6
$0C2c6 d$ Shift 7
$0C2c6d7 $ Reduce by C → d
$0C2c6C9 $ Reduce by C → cC
$0C2C5 $ Reduce by S → CC
$0S1 $ Accept
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Canonical LR(1) Parsing

� If the parsing table has no multiply-defined cells, then the corresponding grammar G is
LR(1)

� Every SLR(1) grammar is an LR(1) grammar
▶ Canonical LR parser may have more states than SLR
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LALR Parsing



Example Construction of LR(1) Items

I0 = Closure({[S
′
→ •S, $]})

= {S
′
→ •S, $,

S → •CC, $,
C → •cC, c/d,
C → •d, c/d}
I1 = Goto(I0,S)

= {S
′
→ S•, $}

I2 = Goto(I0,C)
= {S → C • C, $,

C → •cC, $,
C → •d, $}

I3 = Goto(I0, c)
= {C → c • C, c/d,

C → •cC, c/d,
C → •d, c/d}

I4 = Goto(I0, d)
= {C → d•, c/d}

I5 = Goto(I2,S)
= {S → CC•, $}

I6 = Goto(I2, c)
= {C → c • C, $,

C → •cC, $,
C → •d, $}

I7 = Goto(I2, d)
= {C → d•, $}

I8 = Goto(I3,C)
= {C → cC•, c/d}

I9 = Goto(I6,C)
= {C → cC•, $}

I3 and I6, I4 and I7, and I8 and I9 only
differ in the second components
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Lookahead LR (LALR) Parsing

� CLR(1) parser has numerous states
� Lookahead LR (LALR) parser merges sets of LR(1) items that have the same core (set

of LR(0) items, i.e., first component)
▶ LALR parsers have fewer states, the same as SLR

� LALR parser is used in many parser generators (e.g., Bison)
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Construction of LALR Parsing Table

� Construct C = {I0, I1, . . . , In}, the collection of set of LR(1) items
� For each core present in LR(1) items, find all sets having the same core and replace

these sets with their union
� Let C′

= {J0, J1, . . . , Jn} be the resulting sets of LR(1) items (also called LALR collection)
� Construct ACTION table as was done earlier, parsing actions for state i is constructed

from Ji

� Let J = I1 ∪ I2 ∪ · · · ∪ Ik , where the cores of I1, I2, . . . , Ik are the same
▶ Cores of Goto(I1,X), Goto(I2,X), . . . ,Goto(Ik ,X) will also be the same
▶ Let K = Goto(I1,X) ∪ Goto(I2,X) ∪ . . .Goto(Ik ,X), then K = Goto(J,X)
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LALR Grammar

If there are no parsing action conflicts, then the grammar is LALR(1)

Rule # Rule
0 S′ → S
1 S → CC
2 C → cC
3 C → d

I36 = Goto(I2, c)
= {C → c • C, c/d/$,

C → •cC, c/d/$,
C → •d, c/d/$}

I47 = Goto(I0, d)
= {C → d•, c/d/$}

I89 = Goto(I3,C)
= {C → cC•, c/d/$}
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LALR Parsing Table

State ACTION GOTO
c d $ S C

0 s36 s47 1 2
1 Accept
2 s36 s47 5
36 s36 s47 89
47 r3 r3 r3
5 r1
89 r2 r2 r2

Stack Input Action
$0 cdcd$ Shift 36
$0c36 dcd$ Shift 47
$0c36d47 cd$ Reduce by C → d
$0c36C89 cd$ Reduce by C → cC
$0C2 cd$ Shift 36
$0C2c36 d$ Shift 47
$0C2c36d47 $ Reduce by C → d
$0C2c36C89 $ Reduce by C → cC
$0C2C5 $ Reduce by S → CC
$0S1 $ Accept
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Notes on LALR Parsing

� LALR parser behaves like the CLR parser except for difference in stack states

Merging LR(1) items can never produce shift/reduce conflicts
� Suppose there is a shift-reduce conflict on lookahead a due to items [B → 𝛽 • 𝛼𝛾, b]

and [A → 𝛼•, a]
� But the merged state was formed from states with same cores, which implies

[B → 𝛽 • a𝛾, c] and [A → 𝛼•, a] must have already been in the same state, for some
value of c

Merging items may produce reduce/reduce conflicts
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Reduce-Reduce Conflicts due to Merging

LR(1) grammar
S

′ →S
S → aAd | bBd | aBe | bAe
A → c
B → c

Example strings: acd, ace, bcd, bce

{[A → c•, d], [B → c•, e]} {[A → c•, e], [B → c•, d]}

{[A → c•, d/c], [B → c•, d/e]}
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Dealing with Errors with LALR Parsing

CLR Parsing Table

State ACTION GOTO
c d $ S C

0 s3 s4 1 2
1 Accept
2 s6 s7 5
3 s3 s4 8
4 r3 r3
5 r1
6 s6 s7 9
7 r3
8 r2 r2
9 r2

LALR Parsing Table

State ACTION GOTO
c d $ S C

0 s36 s47 1 2
1 Accept
2 s36 s47 5
36 s36 s47 89
47 r3 r3 r3
5 r1
89 r2 r2 r2

Rule # Rule
0 S′ → S
1 S → CC
2 C → cC
3 C → d
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Comparing Moves of CLR and LALR Parsers

Consider an erroneous input ccd

CLR Parser

Stack Input Action
$0 ccd$ Shift 3
$0c3 d$ Shift 3
$0c3c3 d$ Shift 4
$0c3c3d4 $ Error

LALR Parser

Stack Input Action
$0 ccd$ Shift 36
$0c36 cd$ Shift 36
$0c36c36 d$ Shift 47
$0c36c36d47 $ Reduce by C → d
$0c36c36C89 $ Reduce by C → cC
$0c36C89 $ Reduce by C → cC
$0C2 $ Error
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Comparing Moves of CLR and LALR Parsers

Consider an erroneous input ccd

CLR Parser

Stack Input Action
$0 ccd$ Shift 3
$0c3 d$ Shift 3
$0c3c3 d$ Shift 4
$0c3c3d4 $ Error

LALR Parser

Stack Input Action
$0 ccd$ Shift 36
$0c36 cd$ Shift 36
$0c36c36 d$ Shift 47
$0c36c36d47 $ Reduce by C → d
$0c36c36C89 $ Reduce by C → cC
$0c36C89 $ Reduce by C → cC
$0C2 $ Error

� CLR parser will not even reduce before reporting an error
� SLR and LALR parser may reduce several times before

reporting an error, but will never shift an erroneous input
symbol onto the stack
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Using Ambiguous Grammars



Dealing with Ambiguous Grammars
LR(1) grammar

E
′
→E

E →E + E | E ∗ E | (E) | id

Grammar does not distinguish between
the associativity and precedence of the
two operators

I0 = Closure({[E
′
→ •E]})

= {E
′
→ •E,

E → •E + E,
E → •E ∗ E,
E → •(E),
E → •id}

I1 = Goto(I0,E)
= {E

′
→ E•,

E → E • +E,
E → E • ∗E}

I2 = Goto(I0, ‘(’)
= {E → (•E),

E → •E + E,
E → •E ∗ E,
E → •(E),
E → •id}

I3 = Goto(I0, id)
= {E → id•}

I4 = Goto(I0, +)
= {E → E + •E,

E → •E + E,
E → •E ∗ E,
E → •(E),
E → •id}

I9 = Goto(I6, ‘)’)
= {E → (E)•}

I5 = Goto(I0, ∗)
= {E → E ∗ •E,

E → •E + E,
E → •E ∗ E,
E → •(E),
E → •id}

I6 = Goto(I2,E)
= {E → (E•),

E → E • +E,
E → E • ∗E}

I7 = Goto(I4,E)
= {E → E + E•,

E → E • +E,
E → E • ∗E}

I8 = Goto(I5,E)
= {E → E ∗ E•,

E → E • +E,
E → E • ∗E}
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SLR Parsing Table

State ACTION GOTO
id + ∗ ( ) $ E

0 s3 s2 1
1 s4 s5 Accept
2 s3 s2
3 r4 r4 r4 r4
4 s3 s2 7
5 s3 s2 8
6 s4 s5 s9
7 s4, r1 s5, r1 r1 r1
8 s4, r2 s5, r2 r2 r2
9 r3 r3 r3 r3
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Moves of an SLR Parser on id + id ∗ id

Stack Input Action
$0 id + id ∗ id$ Shift 3
$0id3 + id ∗ id$ Reduce by E → id
$0E1 + id ∗ id$ Shift 4
$0E1+4 id ∗ id$ Shift 3
$0E1+4id3 ∗ id$ Reduce by E → id 3
$0E1+4E7 ∗ id$

What can the parser do to resolve the
ambiguity?
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SLR Parsing Table

State ACTION GOTO
id + ∗ ( ) $ E

0 s3 s2 1
1 s4 s5 Accept
2 s3 s2
3 r4 r4 r4 r4
4 s3 s2 7
5 s3 s2 8
6 s4 s5 s9
7 s4, r1 s5, r1 r1 r1
8 s4, r2 s5, r2 r2 r2
9 r3 r3 r3 r3

Why did the parser make these
choices?

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 81 / 84



Comparison of Parsing Techniques



Relationship Among Grammars

LR(1)
LR(k)

LALR(1)
SLR

LR(0)
LL(0)

LL(1)

LL(k)

Unambiguous grammars

Ambiguous
grammars
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Comparison of Parsing Techniques

� Ambiguous grammars are not LR
� Among grammars,

▶ LL(0) ⊂ LL(1) ⊂ . . .⊂ LL(k)1
▶ LR(0) ⊂ SLR(1) ⊂ LALR(1) ⊂ LR(1)

▶ SLR(1) = LR(0) items + FOLLOW
▶ SLR(1) parsers can parse a larger number of grammars than LR(0)
▶ Any grammar that can be parsed by an LR(0) parser can be parsed by an SLR(1) parser

▶ SLR(k) ⊂ LALR(k) ⊂ LR(k)
▶ LL(k) ⊂ LR(k)

▶ Bottom-up parsing is a more powerful technique compared to top-down parsing
▶ LR grammars can handle left recursion
▶ Detects errors as soon as possible, and allows for better error recovery
▶ Automated parser generators such as Yacc and Bison implement LALR parsing

1D. Rosenkrantz and R. Stearns. Properties of Deterministic Top-Down Grammars.
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