CS 335: Bottom-Up Parsing

Swarnendu Biswas

Department of Computer Science and Engineering, Indian Institute of Technology Kanpur

Sem 2023-24-II

Rightmost Derivation of abbcde

Grammar

Input string: abbcde

$$
\begin{aligned}
& S \rightarrow a A B e \\
& A \rightarrow A b c \mid b \\
& B \rightarrow d
\end{aligned}
$$

$$
\begin{aligned}
S & \rightarrow a A B e \\
& \rightarrow \text { aAde } \\
& \rightarrow a A b c d e \\
& \rightarrow a b b c d e
\end{aligned}
$$

Bottom-Up Parsing

Definition

Bottom-up parsing constructs the parse tree starting from the leaves and working up toward the root

$$
\begin{aligned}
& \text { Grammar } \\
& \qquad \begin{aligned}
S & \rightarrow a A B e \\
A & \rightarrow A b c \mid b \\
B & \rightarrow d
\end{aligned}
\end{aligned}
$$

Input string: abbcde	
$S \rightarrow$ aABe	abbcde
\rightarrow aAde	\rightarrow aAbcde
\rightarrow aAbcde	\rightarrow aAde
\rightarrow abbcde	$\rightarrow \mathrm{aABe}$
	$\rightarrow S$

Bottom-Up Parsing

Grammar

$$
\begin{aligned}
& S \rightarrow a A B e \\
& A \rightarrow A b c \mid b \\
& B \rightarrow d
\end{aligned}
$$

Reduction

Bottom-up parsing reduces a string w to the start symbol S

At each reduction step, a chosen substring that is the RHS (or body) of a production is replaced by the LHS (or head) nonterminal

Handle

- Handle is a substring that matches the body of a production
- Reducing the handle is one step in the reverse of the rightmost derivation

$$
\begin{aligned}
E & \rightarrow E+T \mid T \\
T & \rightarrow T * F \mid F \\
F & \rightarrow(E) \mid \text { id }
\end{aligned}
$$

Right sentential form	Handle	Reducing Production
$\mathbf{i d}_{\mathbf{1}} * \mathbf{i d}_{\mathbf{2}}$	$\mathbf{i d}_{\mathbf{1}}$	$F \rightarrow \mathbf{i d}$
$F * \mathbf{i d}_{\mathbf{2}}$	F	$T \rightarrow F$
$T * \mathbf{i d}_{\mathbf{2}}$	$\mathbf{i d}_{\mathbf{2}}$	$F \rightarrow \mathbf{i d}$
$T * F$	$T * F$	$T \rightarrow T * F$
T	T	$E \rightarrow T$
E		

Handle

- Handle is a substring that matches the body of a production
- Reducing the handle is one step in the reverse of the rightmost derivation

$$
\begin{array}{crcl}
E \rightarrow E+T \mid T & \text { Right sentential form } & \text { Handle } & \text { Reducing Production } \\
\cline { 2 - 4 } T \rightarrow T * F \mid F & \mathbf{i d}_{\mathbf{1}} * \mathbf{i d}_{\mathbf{2}} & \mathbf{i d}_{\mathbf{1}} & F \rightarrow \mathbf{i d} \\
F \rightarrow(E) \mid \mathbf{i d} & F * \mathbf{i d}_{\mathbf{2}} & F & T \rightarrow F \\
& T * \mathbf{i d}_{\mathbf{2}} & \mathbf{i d}_{\mathbf{2}} & F \rightarrow \mathbf{i d} \\
& T * F & T * F & T \rightarrow T * F \\
& T & T & E \rightarrow T \\
& E & & \\
\hline
\end{array}
$$

Although T is the body of the production $E \rightarrow T, T$ is not a handle in the sentential form $T * \mathrm{id}_{2}$
The leftmost substring that matches the body of some production need not be a handle

Handle

- If $S \underset{\mathrm{rm}}{\stackrel{*}{\Longrightarrow}} \alpha A w \underset{\mathrm{rm}}{\Longrightarrow} \alpha \beta w$, then $A \rightarrow \beta$ is a handle of $\alpha \beta w$
- String w right of a handle must contain only terminals

A handle $A \rightarrow \beta$ in the parse tree for $\alpha \beta w$

- If grammar G is unambiguous, then every right sentential form has only one handle
- If \mathcal{G} is ambiguous, then there can be more than one rightmost derivation of $\alpha \beta w$

Shift-Reduce Parsing

Shift-Reduce Parsing

- The input string being parsed consists of two parts
- Left part is a string of terminals and nonterminals, and is stored in a stack
- Right part is a string of terminals to be read from an input buffer
- Bottom of the stack and end of the input are represented by \$
- Shift-reduce parsing is a type of bottom-up parsing with two primary actions, shift and reduce
- Shift-Reduce actions

Shift Shift the next input symbol from the right string onto the top of the stack
Reduce Identify a string on top of the stack that is the body of a production and replace the body with the head

- Other actions are accept and error

Shift-Reduce Parsing

- Initial

Stack	Input
$\$$	$w \$$

- Goal

Stack	Input
$\$ S$	$\$$

Example of Shift-Reduce Parsing

$$
\begin{aligned}
E & \rightarrow E+T \mid T \\
T & \rightarrow T * F \mid F \\
F & \rightarrow(E) \mid \text { id }
\end{aligned}
$$

Stack	Input	Action
$\$$	$\mathbf{i d}_{\mathbf{1}} * \mathbf{i d}_{\mathbf{2}} \$$	Shift
$* \mathbf{i d}_{\mathbf{2}} \$$	Reduce by $F \rightarrow \mathbf{i d}$	
$\$$ id $_{\mathbf{1}}$	$* * \mathbf{i d}_{\mathbf{2}} \$$	Reduce by $T \rightarrow F$
$\$ F$	$* \mathbf{i d}_{2} \$$	Shift
$\$ T$	$\mathbf{i d}_{\mathbf{2}} \$$	Shift
$\$ T *$	$\$$	Reduce by $F \rightarrow \mathbf{i d}$
$\$ T * \mathbf{i d}_{\mathbf{2}}$	$\$$	Reduce by $T \rightarrow T * F$
$\$ T * F$	$\$$	Reduce by $E \rightarrow T$
$\$ T$	$\$$	Accept
$\$ E$		
		or report an error in

Handle on Top of Stack

Is the following scenario possible?

Stack	Input	Action
\ldots		
$\$ \alpha \beta \gamma$	$w \$$	Reduce by $A \rightarrow \gamma$
$\$ \alpha \beta A$	$w \$$	Reduce by $B \rightarrow \beta$
$\$ \alpha B A$	$w \$$	\ldots
\ldots		

Possible Choices in Rightmost Derivation

1. $S \underset{r m}{\Longrightarrow} \alpha A z \underset{r m}{\Longrightarrow} \alpha \beta B y z \underset{r m}{\Longrightarrow} \alpha \beta \gamma y z$
2. $S \underset{r m}{\Longrightarrow} \alpha B x A z \underset{r m}{\Longrightarrow} \alpha B x y z \underset{r m}{\Longrightarrow} \alpha \gamma x y z$

Handle on Top of Stack

Is the following scenario possible?
Stack Input Action
$\$ \alpha \beta \gamma \quad w \$$ Reduce by $A \rightarrow \gamma$
Handle will always eventually appear on top of the stack, never inside

Shift-Reduce Actions

Shift shift the next input symbol from the right string onto the top of the stack Reduce identify a string on top of the stack that is the body of a production, and replace the body with the head

How do you decide when to shift and when to reduce?

Steps in Shift-Reduce Parsers

General shift-reduce technique

- If there is no handle on the stack, then shift
- If there is a handle on the stack, then reduce

```
Bottom-up parsing is essentially the process of identifying handles and reducing
them
- Different bottom-up parsers differ in the way they detect handles
```


Challenges in Bottom-up Parsing

Which action do you pick when both shift and reduce are valid?
Implies a shift-reduce conflict
Which rule to use if reduction is possible by more than one rule?
Implies a reduce-reduce conflict

Example of a Shift-Reduce Conflict

id + id * id			$c+C$		
Stack	Input	Action	Stack	Input	Action
\$	id + id * id\$	Shift	\$	id + id * id\$	Shift
\ldots			\cdots		
$\$ E+E$	*id\$	Reduce by $E \rightarrow E+E$	\$ $E+E$	*id\$	Shift
\$E	*id\$	Shift	\$ $E+E *$	id\$	Shift
\$E*	id\$	Shift	$\$ E+E * \mathbf{i d}$	\$	Reduce by $E \rightarrow$ id
\$ E * id	\$	Reduce by $E \rightarrow$ id	$\$ E+E * E$	\$	Reduce by $E \rightarrow E * E$
\$ $E * E$	\$	Reduce by $E \rightarrow E * E$	$\$ E+E$	\$	Reduce by $E \rightarrow E+E$
\$E	\$		\$E	\$	

Resolving Shift-Reduce Conflict

$$
\begin{aligned}
\text { Stmt } & \rightarrow \text { if Expr then Stmt } \\
& \mid \text { if Expr then Stmt else Stmt } \\
& \mid \text { other }
\end{aligned}
$$

Stack \quad Input Action
\$. . . if Expr then Stmt else . . .

What is a correct thing to do for this grammar - shift or reduce? We can prioritize shifts.

Reduce-Reduce Conflict

$$
\begin{aligned}
M & \rightarrow R+R|R+c| R \\
R & \rightarrow c
\end{aligned}
$$

Stack	Input	Action
$\$$	$c+c \$$	Shift
$\$ c$	$+c \$$	Reduce by $R \rightarrow c$
$\$ R$	$+c \$$	Shift
$\$ R+$	$c \$$	Shift
$\$ R+c$	$\$$	Reduce by $R \rightarrow c$
$\$ R+R$	$\$$	Reduce by $R \rightarrow R+R$
$\$ M$	$\$$	

Stack	Input	Action
$\$$	$c+c \$$	Shift
$\$ c$	$+c \$$	Reduce by $R \rightarrow c$
$\$ R$	$+c \$$	Shift
$\$ R+$	$c \$$	Shift
$\$ R+c$	$\$$	Reduce by $M \rightarrow R+c$
$\$ M$	$\$$	

LR Parsing

LR(k) Parsing

- Popular bottom-up parsing scheme
- L is for left-to-right scan of input, R is for reverse of rightmost derivation, k is the number of lookahead symbols
- LR parsers are table-driven, like the non-recursive LL parser
- LR grammar is one for which we can construct an LR parsing table
- Popularity of LR Parsing
+ Most general non-backtracking shift-reduce parsing method
+ Can recognize almost all language constructs with CFGs
+ Works for a superset of grammars parsed with predictive or LL parsers

LR(k) Parsing

- Popular bottom-up parsing scheme
- L is for left-to-right scan of input, R is for reverse of rightmost derivation, k is the number of lookahead symbols
- LR parsers are table-driven, like the non-recursive LL parser
- LR grammar is one for which we can construct an LR parsing table
- Popularity of LR Parsing
+ Most general non-backtracking shift-reduce parsing method
+ Can recognize almost all language constructs with CFGs
+ Works for a superset of grammars parsed with predictive or LL parsers
- LL(k) parsing predicts which production to use having seen only the first k tokens of the right-hand side
- LR(k) parsing can decide after it has seen input tokens corresponding to the entire right-hand side of the production

Block Diagram of LR Parser

The LR parsing driver is the same for all LR parsers, only the parsing tables (i.e., ACTION and GOTO) change across parser types

Steps in LR Parsing

- Remember the basic questions: when to shift and when to reduce!
- An LR parser makes shift-reduce decisions by maintaining states
- Information is encoded in a DFA constructed using a canonical LR(0) collection

1. Augmented grammar G^{\prime} with new start symbol S^{\prime} and rule $S^{\prime} \rightarrow S$
2. Define helper functions Closure() and Goto()

LR(0) Item

- An $\operatorname{LR}(0)$ item of a grammar G is a production of G with a dot (•) at some position in the body
- An item indicates how much of a production we have seen
- Symbols on the left of "•" are already on the stack
- Symbols on the right of "•" are expected in the input

Production Items

$$
\begin{array}{ll}
& A \rightarrow \bullet X Y Z \\
A \rightarrow X Y Z & A \rightarrow X \bullet Y Z \\
& A \rightarrow X Y \bullet Z \\
& A \rightarrow X Y Z \bullet
\end{array}
$$

- $A \rightarrow \bullet X Y Z$ indicates that we expect a string derivable from $X Y Z$ next in the input
- $A \rightarrow X \bullet Y Z$ indicates that we saw a string derivable from X in the input, and we expect a string derivable from $Y Z$ next in the input
- $A \rightarrow \epsilon$ generates only one item $A \rightarrow \bullet$

Closure Operation

- Let I be a set of items for a grammar G
- Closure (I) is constructed as follows

$$
\begin{aligned}
& E^{\prime} \rightarrow E \\
& E \rightarrow E+T \mid T \\
& T \rightarrow T * F \mid F
\end{aligned}
$$

(i) Add every item in / to Closure(I)
(ii) If $A \rightarrow \alpha \bullet B \beta$ is in Closure (I) and $B \rightarrow \gamma$ is a rule in G, then add $B \rightarrow \bullet \gamma$ to Closure(I) if not already added
(iii) Repeat until no more new items can be added to Closure(I)

$$
\begin{aligned}
\text { Closure }(I)=\left\{E^{\prime}\right. & \rightarrow \bullet E, \\
E & \rightarrow \bullet E+T, \\
E & \rightarrow \bullet T, \\
T & \rightarrow \bullet T * F, \\
& \rightarrow \bullet F, \\
F & \rightarrow \bullet(E), \\
F & \rightarrow \bullet i d\}
\end{aligned}
$$

Goto Operation

- Suppose I is a set of items and X is a grammar symbol
- Goto (I, X) is the closure of set all items [$A \rightarrow \alpha X \bullet \beta$] such that $[A \rightarrow \alpha \bullet X \beta$] is in /
- If I is a set of items for some valid prefix α, then Goto (I, X) is the set of valid items for prefix αX

Intuitively, Goto (I, X) gives the transition of the state I under input X in the $\operatorname{LR}(0)$ automaton

$$
\begin{aligned}
& E^{\prime} \rightarrow E \\
& E \rightarrow E+T \mid T \\
& T \rightarrow T * F \mid F \\
& F \rightarrow(E) \mid \text { id }
\end{aligned}
$$

Suppose

$$
\begin{aligned}
I=\left\{E^{\prime}\right. & \rightarrow E \bullet, \\
E & \rightarrow E \bullet+T\} \\
\operatorname{Goto}(I,+)=\{E & \rightarrow E+\bullet T, \\
& T \rightarrow \bullet T * F, \\
& T \rightarrow \bullet F, \\
& F \rightarrow \bullet(E), \\
& F \rightarrow \bullet i d\}
\end{aligned}
$$

Algorithm to Compute LR(0) Canonical Collection

```
C=Closure ({[\mp@subsup{S}{}{\prime}->\bulletS]})
repeat
        for each set of items I\inC
            for each grammar symbol }
            if Goto(I,X)\not=\phi and Goto(I,X)\not\inC
            add Goto (I,X) to C
until no new sets of items are added to C
```


Example Computation of LR(0) Canonical Collection

$$
\begin{aligned}
& I_{0}= \text { Closure }\left(E^{\prime} \rightarrow \bullet E\right) \\
&=\left\{E^{\prime} \rightarrow \bullet E,\right. \\
& E \rightarrow \bullet E+T, \\
& E \rightarrow \bullet T, \\
& T \rightarrow \bullet T * F, \\
& T \rightarrow \bullet F, \\
& F \rightarrow \bullet(E), \\
&F \rightarrow \bullet i d\} \\
& I_{1}= \operatorname{Goto}\left(I_{0}, E\right) \\
&=\left\{E^{\prime} \rightarrow E \bullet,\right. \\
&E \rightarrow E \bullet+T\} \\
& I_{2}= G o t o\left(I_{0}, T\right) \\
&=\{E \rightarrow T \bullet, \\
&T \rightarrow T \bullet * F\} \\
& I_{3}= G o t o\left(I_{0}, F\right)
\end{aligned}
$$

$$
\begin{aligned}
& I_{4}= \operatorname{Goto}\left(I_{0}, ‘(’)\right. \\
&=\{F \rightarrow(\bullet E), \\
& E \rightarrow \bullet E+T, \\
& E \rightarrow \bullet T, \\
& T \rightarrow \bullet T * F, \\
& T \rightarrow \bullet F, \\
& F \rightarrow \bullet(E), \\
&F \rightarrow \bullet i d\} \\
& I_{5}= G o t o\left(I_{0}, \text { id }\right) \\
&=\{F \rightarrow \text { id• }\} \\
& I_{6}= \text { Goto }\left(I_{1},+\right) \\
&=\{E \rightarrow E+\bullet T, \\
& T \rightarrow \bullet T * F, \\
& T \rightarrow \bullet F, \\
& F \rightarrow \bullet(E), \\
&F \rightarrow \bullet i d\}
\end{aligned}
$$

LR(0) Automaton

- Canonical $\operatorname{LR}(0)$ collection is used for constructing the $\operatorname{LR}(0)$ automaton for parsing
- States represent sets of $\operatorname{LR}(0)$ items in the canonical $\operatorname{LR}(0)$ collection
- Start state is Closure $\left(\left\{\left[S^{\prime} \rightarrow \bullet S\right]\right\}\right)$, where S^{\prime} is the start symbol of the augmented grammar
- State j refers to the state corresponding to the set of items I_{j}
- By construction, all transitions to state j is for the same symbol X
- Each state, except the start state, has a unique grammar symbol associated with it

LR(0) Automaton

Use of LR(0) Automaton

- How can the $\operatorname{LR}(0)$ automaton help with shift-reduce decisions?
- Suppose string γ of grammar symbols takes the automaton from start state S_{0} to state S_{j}
- Shift on next input symbol a if S_{j} has a transition on a
- Otherwise, reduce
- Items in state S_{j} help decide which production to use

Structure of LR Parsing Table

- Assume S_{i} is top of the stack and a_{i} is the current input symbol
- Parsing table consists of two parts: an ACTION and a GOTO function
- ACTION table is indexed by state and terminal symbols; ACTION[$\left.S_{i}, a_{i}\right]$ can have four values
(i) Shift a_{i} to the stack, go to state S_{j}
(ii) Reduce by rule k
(iii) Accept
(iv) Error (empty cell in the table)
- GOTO table is indexed by state and nonterminal symbols

Constructing LR(0) Parsing Table

(i) Construct $\operatorname{LR}(0)$ canonical collection $C=\left\{I_{0}, I_{1}, \ldots, I_{n}\right\}$ for grammar G^{\prime}
(ii) State i is constructed from I_{i}
(a) If $[A \rightarrow \alpha \bullet A \beta] \in I_{i}$ and $\operatorname{GOTO}\left(I_{i}, a\right)=I_{j}$, then set ACTION $[i, a]=$ "Shift j " - sj means shift and stack state j
(b) If $[A \rightarrow \alpha \bullet] \in I_{i}$, then set ACTION $[i, a]=$ "Reduce by $A \rightarrow \alpha$ " for all a $-\quad$ rj means reduce by rule $\$ j$
(c) If $\left[S^{\prime} \rightarrow S_{\bullet}\right] \in I_{i}$, then set ACTION $[i, \$]=$ "Accept"
(iii) If $\operatorname{GOTO}\left(I_{i}, A\right)=l_{j}$, then GOTO $[i, A]=j$
(iv) All entries left undefined are "errors"

LR(0) Parsing Table

State	ACTION						GOTO				
	id	$+$	*	$($)	\$	E	T	F		
0	s5			$s 4$			1	2	3		
1		s6				Accept					
2	$r 2$	$r 2$	$s 7, r 2$	$r 2$	$r 2$	$r 2$					
3	$r 4$	$r 4$	r4	$r 4$	$r 4$	r4					
4	s5			$s 4$			8	2	3		
5	r6	$r 6$	r6	r6	$r 6$	r6					
6	s5			$s 4$				9	3		
7	s5			$s 4$					10		
8		s6				s11				Rule \#	Rule
9	r1	$r 1$	$s 7, r 1$	$r 1$	$r 1$	r1				R1 1 1 1	$E^{\prime} \rightarrow E$ $E \rightarrow E+T$ $E \rightarrow T$
10	r3	r3	r3	r3	r3	r3				1 3 4 4	
11	r5	r5	r5	r5	r5	r5				1 5 5	

LR Parser Configurations

- A LR parser configuration is a pair $\left\langle s_{0} s_{1} \ldots s_{m}, a_{i} a_{i+1} \ldots a_{n} \$\right\rangle$
- The left half is stack content, and the right half is the remaining input
- Configuration represents the right sentential form $X_{1} X_{2} \ldots X_{m} a_{i} a_{i+1} \ldots a_{n}$

LR Parsing Algorithm

(i) If ACTION $\left[s_{m}, a_{i}\right]=s j$, then the new configuration is $\left\langle s_{0} s_{1} \ldots s_{m} s_{j}, a_{i+1} \ldots a_{n}\right\rangle$
(ii) If $\operatorname{ACTION}\left[s_{m}, a_{i}\right]=$ reduce $A \rightarrow \beta$, then the new configuration is $\left\langle s_{0} s_{1} \ldots s_{m-r} s, a_{i} a_{i+1} \ldots a_{n}\right\rangle$, where $r=|\beta|$ and $s=$ GOTO $\left[s_{m-r}, A\right]$
(iii) If ACTION $\left[s_{m}, a_{i}\right]=$ Accept, then parsing is successful
(iv) If ACTION $\left[s_{m}, a_{i}\right]=$ error, then parsing has discovered an error

LR Parsing Program

```
Let a be the first symbol in w$
while (1)
    Let s be the top of the stack
    if ACTION[s,a]== shift t
        push t onto the stack
        let a be the next input symbol
    else if ACTION[s,a] = reduce A->\beta
        // Reduce with the production A}->
        pop |\beta| symbols of the stack
        let state t now be the top of the stack
        push GOTO[t,A] onto the stack
    else if ACTION[s,a] == Accept
        break // parsing is complete
    else
        invoke error recovery
```


Shift-Reduce Parser with LR(0) Automaton

	Stack	Input	Action
	$\$ 0$	id $*$ id $\$$	Shift
	$\$ 0$ id 5	$*$ id $\$$	Reduce by $F \rightarrow \mathbf{i d}$
$\$ 0 F 3$	$*$ id $\$$	Reduce by $T \rightarrow F$	
	$\$ 0 T 2$	$*$ id $\$$	Shift
popped 5 and pushed 3			
because $I_{3}=$ Goto $\left(I_{0}, F\right)$	$\$ 0 T 2 * 7$	id $\$$	Shift
	$\$ 0 T 2 * 7$ id 5	$\$$	Reduce by $F \rightarrow$ id
	$\$ 0 T 2 * 7 F 10$	$\$$	Reduce by $T \rightarrow T * F$
$\$ 0 T 2$	$\$$	Reduce by $E \rightarrow T$	
	$\$ 0 E 1$	$\$$	Accept

While the stack consisted of only symbols in the shiftreduce parser, here the stack also contains states from the $\operatorname{LR}(0)$ automaton

Viable Prefix

- Consider $E \xrightarrow{r m} T \xrightarrow{r m} T * F \xrightarrow{r m} T * \mathbf{i d} \xrightarrow{r m} F * \mathbf{i d} \xrightarrow{r m} \mathbf{i d} * \mathbf{i d}$
- Not all prefixes of a right sentential form can appear on the stack
- id* is a prefix of a right sentential form but can never appear on the stack
- LR parser will not shift past the handle
- Always reduce by $F \rightarrow$ id before shifting * (see previous slide)
- A viable prefix is a prefix of a right sentential form that can appear on the stack of a shift-reduce parser
- If the stack contains α, then α is a viable prefix if $\exists w$ such that αw is a right sentential form
- There is no error as long as the parser has viable prefixes on the stack
- The parser has not yet read past the handle, and expects that the remaining input could form a valid sentential form leading to a successful parse

Example of a Viable Prefix

$$
\begin{aligned}
& S \rightarrow X_{1} X_{2} X_{3} X_{4} \\
& A \rightarrow X_{1} X_{2}
\end{aligned}
$$

- Suppose there is a production $A \rightarrow \beta_{1} \beta_{2}, \alpha \beta_{1}$ is on the stack, and there is a derivation $S^{\prime} \underset{r m}{*} \alpha A w \underset{r m}{*} \alpha \beta_{1} \beta_{2} w$
- $\beta_{2} \neq \epsilon$ implies that the handle $\beta_{1} \beta_{2}$ is not at the top of the stack yet, so shift
- $\beta_{2}=\epsilon$ implies that the LR parser can reduce by the handle $A \rightarrow \beta_{1}$

Challenges with LR(0) Parsing

An $L R(0)$ parser works only if each state with a reduce action has only one possible reduce action and no shift action

Ok
$\{L \rightarrow L, S \bullet\}$

Shift-Reduce Conflict
$\left\{L \rightarrow L, S_{\bullet}\right.$,
$\left.L \rightarrow S_{\bullet}, L\right\}$

Reduce-Reduce Conflict
$\{L \rightarrow S, L \bullet$,
$L \rightarrow S \bullet\}$

Takes shift/reduce decisions without any lookahead token

Lacks the power to parse programming language grammars

Canonical Collection of Sets of $\operatorname{LR}(0)$ Items

Consider the following grammar for adding numbers

Left associative
$S \rightarrow S+E \mid E$
$E \rightarrow$ num

Right associative
$S \rightarrow E+S \mid E$
$E \rightarrow$ num

Shift-Reduce Conflict

$$
\begin{aligned}
\{S & \rightarrow E \bullet+S, \\
S & \rightarrow E \bullet\}
\end{aligned}
$$

$\operatorname{FIRST}(S)=\{$ num $\}$
$\operatorname{FIRST}(E)=\{$ num $\}$

$$
\begin{aligned}
& I_{0}= \text { Closure }\left(\left\{S^{\prime} \rightarrow \bullet S\right\}\right) \\
&=\left\{S^{\prime} \rightarrow \bullet S,\right. \\
& S \rightarrow \bullet E+S, \\
& S \rightarrow \bullet E, \\
&E \rightarrow \bullet \text { num }\}
\end{aligned}
$$

$$
I_{1}=\operatorname{Goto}\left(I_{0}, S\right)
$$

$$
=\left\{S^{\prime} \rightarrow S \bullet\right\}
$$

$$
\begin{aligned}
I_{2}= & \operatorname{Goto}\left(I_{0}, E\right) \\
= & \{S \rightarrow E \bullet+S, \\
& S \rightarrow E \bullet\} \\
I_{3}= & \operatorname{Goto}\left(I_{0}, \text { num }\right) \\
= & \{E \rightarrow \text { num }\} \\
I_{4}= & G o t o\left(I_{2},+\right) \\
= & \{S \rightarrow E+\bullet S\}
\end{aligned}
$$

Simple LR Parsing

Block Diagram of LR Parser

The LR parsing driver is the same for all LR parsers, only the parsing tables (i.e., ACTION and GOTO) change across parser types

SLR(1) Parsing

- Uses $\operatorname{LR}(0)$ items and $\operatorname{LR}(0)$ automaton, extends $\operatorname{LR}(0)$ parser to eliminate a few conflicts
- For each reduction $A \rightarrow \beta$, look at the next symbol c
- Apply reduction only if $c \in \operatorname{FOLLOW}(A)$

Constructing SLR Parsing Table

(i) Construct $\operatorname{LR}(0)$ canonical collection $C=\left\{I_{0}, I_{1}, \ldots, I_{n}\right\}$ for grammar G^{\prime}
(ii) State i is constructed from I_{i}
(a) If $[A \rightarrow \alpha \bullet A \beta] \in I_{i}$ and $\operatorname{GOTO}\left(I_{i}, a\right)=I_{j}$, then set ACTION $[i, a]=$ "Shift j "
(b) If $[A \rightarrow \alpha \bullet] \in I_{i}$, then set ACTION $[i, a]=$ "Reduce by $A \rightarrow \alpha$ " for all a in $\operatorname{FOLLOW}(\mathrm{A})$
(c) If $\left[S^{\prime} \rightarrow S_{\bullet}\right] \in I_{i}$, then set ACTION $[i, \$]=$ "Accept"
(iii) If $\operatorname{GOTO}\left(I_{i}, A\right)=l_{j}$, then GOTO $[i, A]=j$
(iv) All entries left undefined are "errors"
constraints on when reductions are applied

SLR Parsing for Expression Grammar

Rule \#	Rule
1	$E \rightarrow E+T$
2	$E \rightarrow T$
3	$T \rightarrow T * F$
4	$T \rightarrow F$
5	$F \rightarrow(E)$
6	$F \rightarrow$ id

$\operatorname{FIRST}(E)=\{(, \mathbf{i d}\}$
$\operatorname{FIRST}(T)=\{(, \mathbf{i d}\}$
$\operatorname{FIRST}(F)=\{(, \mathbf{i d}\}$
FOLLOW $(E)=\{\$,+)$,
FOLLOW $(T)=\{\$,+, *)$,
FOLLOW $(F)=\{\$,+, *)$,

Canonical Collection of Sets of $\mathrm{LR}(0)$ Items

$$
\begin{aligned}
I_{0}= & \text { Closure }\left(E^{\prime} \rightarrow \bullet E\right) \\
= & \left\{E^{\prime} \rightarrow \bullet E,\right. \\
& E \rightarrow \bullet E+T, \\
& E \rightarrow \bullet T, \\
& T \rightarrow \bullet T * F, \\
& T \rightarrow \bullet F, \\
& F \rightarrow \bullet(E), \\
& F \rightarrow \bullet i d\} \\
I_{1}= & \operatorname{Goto}\left(I_{0}, E\right) \\
= & \left\{E^{\prime} \rightarrow E \bullet,\right. \\
& E \rightarrow E \bullet+T\} \\
I_{2}= & G o t o\left(I_{0}, T\right) \\
= & \{E \rightarrow T \bullet, \\
& T \rightarrow T \bullet * F\} \\
I_{3}= & G o t o\left(I_{0}, F\right) \\
= & \{T \rightarrow F \bullet\}
\end{aligned}
$$

$$
\begin{aligned}
& I_{7}=\operatorname{Goto}\left(I_{2}, *\right) \\
& I_{2}=\operatorname{Goto}\left(I_{4}, T\right) \\
& =\left\{T \rightarrow T * \bullet F, \quad I_{3}=\operatorname{Goto}\left(I_{4}, F\right)\right. \\
& F \rightarrow \bullet(E) \text {, } \\
& F \rightarrow \bullet \mathbf{i d}\} \\
& I_{8}=\operatorname{Goto}\left(I_{4}, E\right) \\
& =\{E \rightarrow E \bullet+T \text {, } \\
& F \rightarrow(E \bullet)\} \\
& I_{9}=\operatorname{Goto}\left(I_{6}, T\right) \\
& =\{E \rightarrow E+T \bullet \text {, } \\
& T \rightarrow T \bullet * F\} \\
& I_{10}=\operatorname{Goto}\left(I_{7}, F\right) \\
& =\{T \rightarrow T * F \bullet\} \\
& \left.I_{11}=\operatorname{Goto}\left(I_{8},{ }^{\prime}\right)^{\prime}\right) \\
& =\{F \rightarrow(E) \bullet\} \\
& I_{2}=\operatorname{Goto}\left(I_{4}, T\right) \\
& I_{3}=\operatorname{Goto}\left(I_{4}, F\right) \\
& I_{4}=\operatorname{Goto}\left(I_{4},{ }^{\prime}\left({ }^{\prime}\right)\right. \\
& I_{5}=\operatorname{Goto}\left(I_{4}, \text { id }\right) \\
& I_{3}=\operatorname{Goto}\left(I_{6}, F\right) \\
& I_{4}=\operatorname{Goto}\left(I_{6},{ }^{\prime}\left({ }^{\prime}\right)\right. \\
& I_{5}=\operatorname{Goto}\left(I_{6}, \text { id }\right) \\
& I_{4}=\operatorname{Goto}\left(I_{1},\right. \text { '(') } \\
& I_{5}=\operatorname{Goto}\left(I_{7}, \text { id }\right) \\
& I_{6}=\operatorname{Goto}\left(I_{8},+\right) \\
& I_{7}=\operatorname{Goto}\left(I_{9}, *\right)
\end{aligned}
$$

$$
\begin{aligned}
& I_{6}=\operatorname{Goto}\left(I_{1},+\right) \\
& =\{E \rightarrow E+\bullet T \text {, } \\
& T \rightarrow \bullet T * F, \\
& T \rightarrow \bullet F \text {, } \\
& F \rightarrow \bullet(E) \text {, } \\
& F \rightarrow \bullet \text { ©id }\} \\
& I_{4}=\operatorname{Goto}\left(I_{0}, '(')\right. \\
& E \rightarrow \bullet T \text {, } \\
& T \rightarrow \bullet T * F, \\
& T \rightarrow \bullet F \text {, } \\
& F \rightarrow \bullet(E) \text {, } \\
& F \rightarrow \bullet \text { id }\} \\
& I_{5}=\operatorname{Goto}\left(I_{0}, \mathbf{i d}\right) \\
& =\{F \rightarrow \mathrm{id} \bullet\}
\end{aligned}
$$

LR(0) Automaton

SLR Parsing Table

State	ACTION						GOTO		
	id	$+$	*	1)	\$	E	T	F
0	s5			s4			1	2	3
1		$s 6$				Accept			
2		r2	s7		$r 2$	r2			
3		r4	$r 4$		r4	r4			
4	s5			s4			8	2	3
5		$r 6$	$r 6$		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6				s11			
9		$r 1$	s7		$r 1$	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

Rule \#	Rule
0	$E^{\prime} \rightarrow E$
1	$E \rightarrow E+T$
2	$E \rightarrow T$
3	$T \rightarrow T * F$
4	$T \rightarrow F$
5	$F \rightarrow(E)$
6	$F \rightarrow$ id

Moves of an LR Parser on id $* \mathbf{i d}+\mathbf{i d}$

Stack	Input	Action
$\$ 0$	$\mathbf{i d} * \mathbf{i d}+\mathbf{i d} \$$	Shift 5
$\$ 0 \mathbf{i d} 5$	$* \mathbf{i d}+\mathbf{i d} \$$	Reduce by $F \rightarrow \mathbf{i d}$
$\$ 0 F 3$	$* \mathbf{i d}+\mathbf{i d} \$$	Reduce by $T \rightarrow F$
$\$ 0 T 2$	$* \mathbf{i d}+\mathbf{i d} \$$	Shift 7
$\$ 0 T 2 * 7$	$\mathbf{i d}+\mathbf{i d} \$$	Shift 5
$\$ 0 T 2 * 7$ id 5	$+\mathbf{i d} \$$	Reduce by $F \rightarrow \mathbf{i d}$
$\$ 0 T 2 * 7 F 10$	$+\mathbf{i d} \$$	Reduce by $T \rightarrow T * F$
$\$ 0 T 2$	$+\mathbf{i d \$}$	Reduce by $E \rightarrow T$
$\$ 0 E 1$	$+i \mathbf{i d \$}$	Shift 6
$\$ 0 E 1+6$	id $\$$	Shift 5
$\$ 0 E 1+6 \mathbf{i d} 5$	$\$ \$$	Reduce by $F \rightarrow \mathbf{i d}$
$\$ 0 E 1+6 F 3$	$\$ \$$	Reduce by $T \rightarrow F$
$\$ 0 E 1+6 T 9$	$\$ \$$	Reduce by $E \rightarrow E+T$
$\$ 0 E 1$	$\$$	Accept

Limitations of SLR Parsing

- If an SLR parse table for a grammar does not have multiple entries in any cell, then the grammar is unambiguous
- Every $\operatorname{SLR}(1)$ grammar is unambiguous, but there are unambiguous grammars that are not SLR(1)

Example to Highlight Limitations of SLR Parsing

Unambiguous grammar
$S \rightarrow L=R \mid R$
$L \rightarrow * R \mid$ id
$R \rightarrow L$

$$
\begin{aligned}
& \operatorname{FIRST}(S)=\{*, \mathbf{i d}\} \\
& \operatorname{FIRST}(L)=\{*, \mathbf{i d}\} \\
& \operatorname{FIRST}(R)=\{*, \mathbf{i d}\} \\
& \operatorname{FOLLOW}(S)=\{\$,=\} \\
& \operatorname{FOLLOW}(L)=\{\$,=\} \\
& \operatorname{FOLLOW}(R)=\{\$,=\}
\end{aligned}
$$

Example derivation	
$S \rightarrow L=R \rightarrow * R=R$	

Canonical LR(0) Collection

$$
\begin{aligned}
& I_{0}= \text { Closure }\left(S^{\prime} \rightarrow \bullet S\right) \\
&=\left\{S^{\prime} \rightarrow \bullet S,\right. \\
& S \rightarrow \bullet L=R, \\
& S \rightarrow \bullet R, \\
& L \rightarrow \bullet * R, \\
& L \rightarrow \bullet i d, \\
&R \rightarrow \bullet L\} \\
& I_{1}= G o t o\left(I_{0}, S\right) \\
&=\left\{S^{\prime} \rightarrow S \bullet\right\} \\
& I_{2}= \operatorname{Goto}\left(I_{0}, L\right) \\
&=\{S \rightarrow L \bullet=R, \\
&R \rightarrow L \bullet\}
\end{aligned}
$$

$$
\begin{aligned}
I_{3}= & \operatorname{Goto}\left(I_{0}, R\right) \\
= & \{S \rightarrow R \bullet\} \\
I_{4}= & \operatorname{Goto}\left(I_{0}, R\right) \\
= & \{L \rightarrow * \bullet R, \\
& R \rightarrow \bullet L, \\
& L \rightarrow \bullet * R, \\
& L \rightarrow \bullet i d\} \\
I_{5}= & \operatorname{Goto}\left(I_{0}, \mathrm{id}\right) \\
= & \{L \rightarrow \bullet i d\}
\end{aligned}
$$

$$
\begin{aligned}
I_{6}= & \operatorname{Goto}\left(I_{2},=\right) \\
= & \{S \rightarrow L=\bullet R, \\
& R \rightarrow \bullet L, \\
& L \rightarrow \bullet * R, \\
& L \rightarrow i d\} \\
I_{7}= & G \operatorname{Goto}\left(I_{4}, R\right) \\
= & \{L \rightarrow * R \bullet\} \\
I_{8}= & G o t o\left(I_{4}, L\right) \\
= & \{R \rightarrow L \bullet\} \\
I_{9}= & G o t o\left(I_{6}, R\right) \\
= & \{S \rightarrow L=R \bullet\}
\end{aligned}
$$

SLR Parsing Table

State	ACTION					GOTO		
	$=$	$*$	id	$\$$	S	L	R	
0		$s 4$	$s 5$		1	2	3	
1				Accept				
2	$s 6, r 6$			$r 6$				
3								
4		$s 4$	$s 5$			8	7	
5	$r 5$			$r 5$				
6		$s 4$	$s 5$			8	9	
7	$r 4$			$r 4$				
8	$r 6$			$r 6$				
9				$r 2$				

Shift-Reduce Conflict with SLR Parsing

$$
\begin{aligned}
& I_{0}=\operatorname{Closure}\left(S^{\prime} \rightarrow \bullet S\right) \\
& =\left\{S^{\prime} \rightarrow \bullet S\right. \text {, } \\
& S \rightarrow \bullet L=R \text {, } \\
& S \rightarrow \bullet R \text {, } \\
& L \rightarrow \bullet * R \text {, } \\
& I_{3}=\operatorname{Goto}\left(I_{0}, R\right) \\
& =\{S \rightarrow R \bullet\} \\
& I_{4}=\operatorname{Goto}\left(I_{0}, R\right) \\
& =\{L \rightarrow * \bullet R \text {, } \\
& R \rightarrow \bullet L, \\
& I_{6}=\operatorname{Goto}\left(I_{2},=\right) \\
& =\{S \rightarrow L=\bullet R \text {, } \\
& R \rightarrow \bullet L \text {, } \\
& L \rightarrow \bullet * R \text {, } \\
& L \rightarrow \mathbf{i d}\} \\
& I_{7}=\operatorname{Goto}\left(I_{4}, R\right) \\
& =\{L \rightarrow * R \bullet\} \\
& I_{8}=\operatorname{Goto}\left(I_{4}, L\right) \\
& =\{R \rightarrow L \bullet\} \\
& I_{2}=\operatorname{Goto}\left(I_{0}, L\right) \\
& =\{S \rightarrow L \bullet=R \text {, } \\
& R \rightarrow L \bullet\} \\
& I_{9}=\operatorname{Goto}\left(I_{6}, R\right) \\
& =\{S \rightarrow L=R \bullet\}
\end{aligned}
$$

Moves of an SLR Parser on id = id

Stack	Input	Action
$\$ 0$	id $=\mathbf{i d} \$$	Shift 5
=id $\$$	Reduce by $L \rightarrow$ id	
$\$ 0$ id5	$=\mathbf{i d} \$$	Shift 6
$\$ 0 L 2$	id $\$$	Shift 5
$\$ 0 L 2=6$	$\$$	Reduce by $L \rightarrow$ id
$\$ 0 L 2=6$ id5	$\$$	Reduce by $R \rightarrow L$
$\$ 0 L 2=6 L 8$	$\$$	Reduce by $S \rightarrow L=R$
$\$ 0 L 2=6 R 9$	$\$$	Accept
$\$ 0 S 1$		

Moves of an SLR Parser on id = id

Moves of an SLR Parser on id = id

Stack	Input	Action
$\$ 0$	id $=$ id	Shift 5
$\$ 0 i d 5$	$=$ id	Reduce by $L \rightarrow$ id
$\$ 0 L 2$	$=$ id	Reduce by $R \rightarrow L$
$\$ 0 R 3$	$=$ id	Error

Stack	Input	Action
\$0	id $=$ id $\$$	Shift 5
\$0id5	$=i d \$$	Reduce by $L \rightarrow$ id
\$0L2	$=\mathrm{id}$ \$	Shift 6
\$0L2 $=6$	id\$	Shift 5
\$0L2 = 6id5	\$	Reduce by $L \rightarrow$ id
left context bout the sequence on top of the the stack		

Canonical LR Parsing

LR(1) Item

- An LR(1) item of a CFG G is a string of the form $[A \rightarrow \alpha \bullet \beta, a]$, with a as one symbol lookahead
- $A \rightarrow \alpha \beta$ is a production in G, and $a \in T \cup\{\$\}$
- Suppose $[A \rightarrow \alpha \bullet \beta, a]$ where $\beta \neq \epsilon$, then the lookahead is not required
- If $[A \rightarrow \alpha \bullet, a]$, reduce only if the next input symbol is a
- Set of possible terminals will always be a subset of A but can be a proper subset
- An $\operatorname{LR}(1)$ item $[A \rightarrow \alpha \bullet \beta, a]$ is valid for a viable prefix γ if there is a derivation
$S \underset{r m}{*} \delta A w \underset{r m}{\Longrightarrow} \delta \alpha \beta w$, where
(i) $\gamma=\delta \alpha$, and
(ii) a is the first symbol in w, or $w=\epsilon$ and $a=\$$

Computing Closure and Goto for LR(1) Collection

Closure(I)

```
repeat
        for each item [A->\alpha\bulletB\beta,a] \inI
            for each production B}->\gamma\in
            for each terminal b\in\operatorname{FIRST}(\betaa)
            add [B->\bullet\gamma,b] to set I
until no more items are added to l
return l
```

Goto(I, X)
$J=\phi$
for each item $[A \rightarrow \alpha \bullet X \beta, a] \in I$ add item $[A \rightarrow \alpha X \bullet \beta, a]$ to set J return Closure(J)

Constructing LR(1) Sets of Items

```
C=Closure({[S'}->\bulletS,$]}
repeat
for each set of items I\inC
        for each grammar symbol }
            if Goto(I,X)\not=\phi and Goto(I,X)\not\inC
            add Goto(I,X) to C
until no new sets of items are added to C
```


Example Construction of LR(1) Items

$$
\begin{aligned}
& I_{0}= C l o s u r e\left(\left\{\left[S^{\prime} \rightarrow \bullet S, \$\right]\right\}\right) \\
&=\left\{S^{\prime}\right. \rightarrow \bullet S, \$, \\
& S \rightarrow \bullet C C, \$, \\
& C \rightarrow \bullet \mathbf{c} C, \mathbf{c} / \mathbf{d}, \\
& C\rightarrow \bullet d, \mathbf{c} / \mathbf{d}\} \\
& I_{1}= \text { Goto }\left(I_{0}, S\right) \\
&=\left\{S^{\prime} \rightarrow S \bullet, \$\right\} \\
& \\
& I_{2}= G o t o\left(I_{0}, C\right) \\
&=\{S \rightarrow C \bullet C, \$, \\
& C \rightarrow \bullet \mathbf{C}, \$, \\
&C \rightarrow \bullet d, \$\} \\
& I_{3}= G o t o\left(I_{0}, \mathbf{c}\right) \\
&=\{C \rightarrow \mathbf{c} \bullet C, \mathbf{c} / \mathbf{d}, \\
& C \rightarrow \bullet \mathbf{c} C, \mathbf{c} / \mathbf{d}, \\
&C \rightarrow \bullet \mathbf{d}, \mathbf{c} / \mathbf{d}\}
\end{aligned}
$$

generates the regular language c* d^{*} d

$$
\begin{aligned}
I_{4}= & \operatorname{Goto}\left(I_{0}, \mathbf{d}\right) \\
= & \{C \rightarrow \mathbf{d} \bullet, \mathbf{c} / \mathbf{d}\} \\
I_{5}= & \operatorname{Goto}\left(I_{2}, S\right) \\
= & \{S \rightarrow C C \bullet, \$\} \\
I_{6}= & \operatorname{Goto}\left(I_{2}, \mathbf{c}\right) \\
= & \{C \rightarrow \mathbf{c} \bullet C, \$, \\
& C \rightarrow \bullet \mathbf{c} C, \$, \\
& C \rightarrow \bullet \mathbf{d}, \$\} \\
I_{7}= & G o t o\left(I_{2}, \mathbf{d}\right) \\
= & \{C \rightarrow \mathbf{d} \bullet, \$\} \\
I_{8}= & G o t o\left(I_{3}, C\right) \\
= & \{C \rightarrow \mathbf{c} C \bullet, \mathbf{c} / \mathbf{d}\} \\
I_{9}= & G o t o\left(I_{6}, C\right) \\
= & \{C \rightarrow \mathbf{c} C \bullet, \$\}
\end{aligned}
$$

Sem 2023-24-II

LR(1) Automaton

Construction of Canonical LR(1) Parsing Tables

- Construct $C^{\prime}=\left\{I_{0}, l_{1}, \ldots, I_{n}\right\}$
- State i of the parser is constructed from I_{i}
- If $[A \rightarrow \alpha \bullet a \beta, b]$ is in l_{i} and $\operatorname{Goto}\left(l_{i}, a\right)=l_{j}$, then set ACTION $[i, a]=$ "Shift j "
- If $[A \rightarrow \alpha \bullet, a]$ is in I_{i} and $A \neq S^{\prime}$, then set ACTION $[i, a]=$ "Reduce by $A \rightarrow \alpha \bullet$ "
- If $\left[S^{\prime} \rightarrow S_{\bullet}, \$\right]$ is in l_{i}, then set ACTION $[i, \$]=$ "Accept"
- If $\operatorname{Goto}\left(I_{i}, A\right)=l_{j}$, then $\operatorname{GOTO}[i, A]=j$
- Initial state of the parser is constructed from the set of items containing [$S^{\prime} \rightarrow \bullet S, \$$]

Canonical LR(1) Parsing Table and Moves of a CLR Parser on cdcd

State	ACTION			GOTO	
	c	\mathbf{d}	$\$$	S	C
0	$s 3$	$s 4$		1	2
1			Accept		
2	$s 6$	$s 7$			5
3	$s 3$	$s 4$			8
4	$r 3$	$r 3$			
5			$r 1$		
6	$s 6$	$s 7$			9
7			$r 3$		
8	$r 2$	$r 2$			
9			$r 2$		

Stack	Input	Action
$\$ 0$	$\mathbf{c d c d} \$$	Shift 3
$\$ 0 \mathbf{c} 3$	$\mathbf{d c d} \$$	Shift 3
$\$ 0 \mathbf{c} 3 \mathbf{d} 4$	$\mathbf{c d} \$$	Reduce by $C \rightarrow \mathbf{d}$
$\$ 0 \mathbf{c} 3 C 8$	$\mathbf{c d} \$$	Reduce by $C \rightarrow \mathbf{c} C$
$\$ 0 C 2$	$\mathbf{c d} \$$	Shift 6
$\$ 0 C 2 \mathbf{c} 6$	$\mathbf{d} \$$	Shift 7
$\$ 0 C 2 \mathbf{c} 6 \mathbf{d} 7$	$\$$	Reduce by $C \rightarrow \mathbf{d}$
$\$ 0 C 2 \mathbf{c} 6 C 9$	$\$$	Reduce by $C \rightarrow \mathbf{c} C$
$\$ 0 C 2 C 5$	$\$$	Reduce by $S \rightarrow C C$
$\$ 0 S 1$	$\$$	Accept

Canonical LR(1) Parsing

- If the parsing table has no multiply-defined cells, then the corresponding grammar G is LR(1)
- Every $\operatorname{SLR}(1)$ grammar is an LR(1) grammar
- Canonical LR parser may have more states than SLR

LALR Parsing

Example Construction of LR(1) Items

$$
\begin{aligned}
I_{0}= & C l o s u r e\left(\left\{\left[S^{\prime} \rightarrow \bullet S, \$\right]\right\}\right) \\
=\left\{S^{\prime}\right. & \rightarrow \bullet S, \$, \\
& S \rightarrow \bullet C C, \$, \\
C & \rightarrow \bullet \mathbf{c} C, \mathbf{c} / \mathbf{d}, \\
C & \bullet \mathbf{d}, \mathbf{c} / \mathbf{d}\} \\
I_{1} & =\text { Goto }\left(I_{0}, S\right) \\
= & \left\{S^{\prime} \rightarrow S \bullet, \$\right\} \\
I_{2}= & \operatorname{Goto}\left(I_{0}, C\right) \\
= & \{S \rightarrow C \bullet C, \$, \\
& C \rightarrow \bullet \bullet C, \$, \\
& C \rightarrow \bullet \bullet d, \$\} \\
I_{3}= & G o t o\left(I_{0}, \mathbf{c}\right) \\
= & \{C \rightarrow \mathbf{c} \bullet C, \mathbf{c} / \mathbf{d}, \\
& C \rightarrow \bullet c C, \mathbf{c} / \mathbf{d}, \\
& C \rightarrow \bullet d, \mathbf{c} / \mathbf{d}\}
\end{aligned}
$$

$$
\begin{aligned}
& I_{4}=\operatorname{Goto}\left(I_{0}, \mathrm{~d}\right) \\
& =\{C \rightarrow \mathrm{~d}, \mathrm{c} / \mathrm{d}\} \\
& I_{5}=\operatorname{Goto}\left(I_{2}, S\right) \\
& =\{S \rightarrow C C \bullet, \$\} \\
& I_{6}=\operatorname{Goto}\left(I_{2}, \mathbf{c}\right) \\
& =\{C \rightarrow \mathbf{c} \bullet C, \$ \text {, } \\
& C \rightarrow \bullet c C, \$ \text {, } \\
& C \rightarrow \bullet d, \$\} \\
& I_{7}=\operatorname{Goto}\left(I_{2}, \mathbf{d}\right) \\
& =\{C \rightarrow \mathrm{~d} \bullet, \$\} \\
& I_{8}=\operatorname{Goto}\left(I_{3}, C\right) \\
& =\{C \rightarrow \mathrm{c} \cdot \bullet, \mathrm{c} / \mathrm{d}\} \\
& I_{9}=\operatorname{Goto}\left(I_{6}, C\right) \\
& =\{C \rightarrow \mathbf{c} \subset \bullet, \$\}
\end{aligned}
$$

Lookahead LR (LALR) Parsing

- CLR(1) parser has numerous states
- Lookahead LR (LALR) parser merges sets of $\operatorname{LR}(1)$ items that have the same core (set of LR(0) items, i.e., first component)
- LALR parsers have fewer states, the same as SLR
- LALR parser is used in many parser generators (e.g., Bison)

Construction of LALR Parsing Table

- Construct $C=\left\{I_{0}, I_{1}, \ldots, I_{n}\right\}$, the collection of set of $\operatorname{LR}(1)$ items
- For each core present in $\operatorname{LR}(1)$ items, find all sets having the same core and replace these sets with their union
- Let $C^{\prime}=\left\{J_{0}, J_{1}, \ldots, J_{n}\right\}$ be the resulting sets of $\operatorname{LR}(1)$ items (also called LALR collection)
- Construct ACTION table as was done earlier, parsing actions for state i is constructed from J_{i}
- Let $J=I_{1} \cup I_{2} \cup \cdots \cup I_{k}$, where the cores of $I_{1}, I_{2}, \ldots, I_{k}$ are the same
- Cores of $\operatorname{Goto}\left(I_{1}, X\right)$, $\operatorname{Goto}\left(I_{2}, X\right), \ldots, \operatorname{Goto}\left(I_{k}, X\right)$ will also be the same
- Let $K=\operatorname{Goto}\left(I_{1}, X\right) \cup \operatorname{Goto}\left(I_{2}, X\right) \cup \ldots \operatorname{Goto}\left(l_{k}, X\right)$, then $K=\operatorname{Goto}(J, X)$

LALR Grammar

If there are no parsing action conflicts, then the grammar is LALR(1)

Rule \#	Rule
0	$S^{\prime} \rightarrow S$
1	$S \rightarrow C C$
2	$C \rightarrow \mathbf{c} C$
3	$C \rightarrow \mathbf{d}$

$$
\begin{aligned}
I_{36}= & G o t o\left(I_{2}, \mathbf{c}\right) \\
= & \{C \rightarrow \mathbf{c} \bullet C, \mathbf{c} / \mathbf{d} / \$, \\
& C \rightarrow \bullet c C, \mathbf{c} / \mathbf{d} / \$, \\
& C \rightarrow \bullet d, \mathbf{c} / \mathbf{d} / \$\} \\
I_{47}= & G o t o\left(I_{0}, \mathbf{d}\right) \\
= & \{C \rightarrow \mathbf{d} \bullet, \mathbf{c} / \mathbf{d} / \$\} \\
I_{89}= & G o t o\left(I_{3}, C\right) \\
= & \{C \rightarrow \mathbf{c} C \bullet, \mathbf{c} / \mathbf{d} / \$\}
\end{aligned}
$$

LALR Parsing Table

	ACTION				GOTO	
State	c	d	$\$$	S	C	
0	$s 36$	$s 47$		1	2	
1			Accept			
2	$s 36$	$s 47$			5	
36	$s 36$	$s 47$			89	
47	$r 3$	$r 3$	$r 3$			
5			$r 1$			
89	$r 2$	$r 2$	$r 2$			

Stack	Input	Action
$\$ 0$	$\mathbf{c d c d} \$$	Shift 36
$\$ 0 \mathbf{c} 36$	$\mathbf{d c d} \$$	Shift 47
$\$ 0 \mathbf{c} 36 \mathbf{d} 47$	$\mathbf{c d} \$$	Reduce by $C \rightarrow \mathbf{d}$
$\$ 0 \mathbf{c} 36 C 89$	$\mathbf{c d} \$$	Reduce by $C \rightarrow \mathbf{c} C$
$\$ 0 C 2$	$\mathbf{c d} \$$	Shift 36
$\$ 0 C 2 \mathbf{c} 36$	$\mathbf{d} \$$	Shift 47
$\$ 0 C 2 \mathbf{c} 36 \mathbf{d 4 7}$	$\$$	Reduce by $C \rightarrow \mathbf{d}$
$\$ 0 C 2 \mathbf{c} 36 C 89$	$\$$	Reduce by $C \rightarrow \mathbf{c} C$
$\$ 0 C 2 C 5$	$\$$	Reduce by $S \rightarrow C C$
$\$ 0 S 1$	$\$$	Accept

Notes on LALR Parsing

- LALR parser behaves like the CLR parser except for difference in stack states

Merging LR(1) items can never produce shift/reduce conflicts

- Suppose there is a shift-reduce conflict on lookahead a due to items [$B \rightarrow \beta \bullet \alpha \gamma, b$] and $[A \rightarrow \alpha \bullet, a]$
- But the merged state was formed from states with same cores, which implies [$B \rightarrow \beta \bullet a \gamma, c$] and $[A \rightarrow \alpha \bullet a]$ must have already been in the same state, for some value of c

Merging items may produce reduce/reduce conflicts

Reduce-Reduce Conflicts due to Merging

LR(1) grammar
$S^{\prime} \rightarrow S$
$S \rightarrow \mathbf{a} A \mathbf{d}\|\mathbf{b} B \mathbf{d}\| \mathbf{a B e} \mid \mathbf{b A e}$
$A \rightarrow \mathbf{c}$
$B \rightarrow \mathbf{c}$
Example strings: $\mathbf{a c d}, \mathbf{a c e}, \mathbf{b c d}$, bce

Dealing with Errors with LALR Parsing

CLR Parsing Table

State	ACTION			GOTO	
	c	d	$\$$	S	C
0	$s 3$	$s 4$		1	2
1			Accept		
2	$s 6$	$s 7$			5
3	$s 3$	$s 4$			8
4	$r 3$	$r 3$			
5			$r 1$		
6	$s 6$	$s 7$			9
7			$r 3$		
8	$r 2$	$r 2$			
9			$r 2$		

LALR Parsing Table

Comparing Moves of CLR and LALR Parsers

Consider an erroneous input ccd

CLR Parser LALR Parser

Stack	Input	Action
$\$ 0$	ccd\$	Shift 3
$\$ 0 \mathbf{c} 3$	d\$	Shift 3
$\$ 0 c 3 c 3$	d\$	Shift 4
$\$ 0 \mathbf{c} 3 c 3 d 4$	$\$$	Error

Stack	Input	Action
$\$ 0$	$\mathbf{c c d} \$$	Shift 36
$\$ 0 \mathbf{c} 36$	$\mathbf{c d} \$$	Shift 36
$\$ 0 \mathbf{c} 36 \mathbf{c} 36$	$\mathbf{d} \$$	Shift 47
$\$ 0 \mathbf{c} 36 \mathbf{c} 36 \mathbf{d} 47$	$\$$	Reduce by $C \rightarrow \mathbf{d}$
$\$ 0 \mathbf{c} 36 \mathbf{c} 36 C 89$	$\$$	Reduce by $C \rightarrow \mathbf{c} C$
$\$ 0 \mathbf{c} 36 C 89$	$\$$	Reduce by $C \rightarrow \mathbf{c} C$
$\$ 0 C 2$	$\$$	Error

Comparing Moves of CLR and LALR Parsers

Consider an erroneous input ccd

CLR Parser

LALR Parser

Stack	- CLR parser will not even reduce before reporting an error - SLR and LALR parser may reduce several times before reporting an error, but will never shift an erroneous input symbol onto the stack		
\$0 \$0c3 \$0c3c \$0c3c			
	\$0c36c36C89		Reduce by C
	\$0c36C89		Reduce by C
	\$0C2		

Using Ambiguous Grammars

Dealing with Ambiguous Grammars

	$\mathrm{LR}(1)$ grammar
$E^{\prime} \rightarrow E$	
$E \rightarrow E+E\|E * E\|(E) \mid$ id	

Grammar does not distinguish between the associativity and precedence of the two operators

$$
\begin{aligned}
& I_{0}= \text { Closure }\left(\left\{\left[E^{\prime} \rightarrow \bullet E\right]\right\}\right) \\
&=\left\{E^{\prime} \rightarrow \bullet E,\right. \\
& E \rightarrow \bullet E+E, \\
& E \rightarrow \bullet E * E, \\
& E \rightarrow \bullet(E), \\
&E \rightarrow \bullet i d\}
\end{aligned}
$$

$$
\begin{aligned}
I_{1}= & \operatorname{Goto}\left(I_{0}, E\right) \\
= & \left\{E^{\prime} \rightarrow E \bullet,\right. \\
& E \rightarrow E \bullet+E, \\
& E \rightarrow E \bullet * E\}
\end{aligned}
$$

$$
\begin{aligned}
& I_{2}= \operatorname{Goto}\left(I_{0}, ‘(')\right. \\
&=\{E \rightarrow(\bullet E), \\
& E \rightarrow \bullet E+E, \\
& E \rightarrow \bullet E * E, \\
& E \rightarrow \bullet(E), \\
&E \rightarrow \bullet i d\} \\
& I_{3}= \operatorname{Goto}\left(I_{0}, \mathbf{i d}\right) \\
&=\{E \rightarrow \text { id }\} \\
& I_{4}= \operatorname{Goto}\left(I_{0},+\right) \\
&=\{E \rightarrow E+\bullet E, \\
& E \rightarrow \bullet E+E, \\
& E \rightarrow \bullet E * E, \\
& E \rightarrow \bullet(E), \\
&E \rightarrow \bullet i d\}
\end{aligned}
$$

$$
\begin{aligned}
I_{9} & \left.=\text { Goto }\left(I_{6}, '\right) '\right) \\
& =\{E \rightarrow(E) \bullet\}
\end{aligned}
$$

$$
\begin{aligned}
& I_{5}= G o t o\left(I_{0}, *\right) \\
&=\{E \rightarrow E * \bullet E, \\
& E \rightarrow \bullet E+E, \\
& E \rightarrow \bullet E * E, \\
&E \rightarrow \bullet \bullet E), \\
&E \rightarrow \bullet i d\} \\
& I_{6}= \text { Goto }\left(I_{2}, E\right) \\
&=\{E \rightarrow(E \bullet), \\
& E \rightarrow E \bullet+E, \\
&E \rightarrow E \bullet * E\} \\
& I_{7}= G o t o\left(I_{4}, E\right) \\
&=\{E \rightarrow E+E \bullet, \\
& E \rightarrow E \bullet+E, \\
&E \rightarrow E \bullet * E\} \\
& I_{8}= G o t o\left(I_{5}, E\right) \\
&=\{E \rightarrow E * E \bullet, \\
& E \rightarrow E \bullet+E, \\
&E \rightarrow E \bullet * E\}
\end{aligned}
$$

SLR Parsing Table

State		id	+	$*$	ACTION		GOTO
	id)	$\$$	E			
0	$s 3$			$s 2$			1
1		$s 4$	$s 5$			Accept	
2	$s 3$			$s 2$			
3		$r 4$	$r 4$		$r 4$	$r 4$	
4	$s 3$			$s 2$			7
5	$s 3$			$s 2$			8
6		$s 4$	$s 5$		$s 9$		
7		$s 4, r 1$	$s 5, r 1$	$r 1$	$r 1$		
8		$s 4, r 2$	$s 5, r 2$	$r 2$	$r 2$		
9		$r 3$	$r 3$	$r 3$	$r 3$		

Moves of an SLR Parser on id $+\mathbf{i d} * \mathbf{i d}$

Stack	Input	Action
$\$ 0$	$\mathbf{i d}+\mathbf{i d} * \mathbf{i d} \$$	Shift 3
$\$ 0 \mathbf{i d} 3$	$+\mathbf{i d} * \mathbf{i d} \$$	Reduce by $E \rightarrow \mathbf{i d}$
$\$ 0 E 1$	$+\mathbf{i d} * \mathbf{i d} \$$	Shift 4
$\$ 0 E 1+4$	$\mathbf{i d} * \mathbf{i d} \$$	Shift 3
$\$ 0 E 1+4 \mathbf{i d} 3$	$* \mathbf{i d} \$$	Reduce by $E \rightarrow \mathbf{i d} 3$
$\$ 0 E 1+4 E 7$	$* \mathbf{i d} \$$	
	What can the parser do to resolve the ambiguity?	

SLR Parsing Table

State	ACTION						GOTO
	id	+	*	$($)	\$	E
0	s3			$s 2$			1
1		$s 4$	s5			Accept	
2	s3			$s 2$			
3		r4	r4		$r 4$	r4	
4	s3			$s 2$			7
5	s3			$s 2$			8
6		$s 4$	s5		s9		
7		s4, r1	s5, $r 1$		$r 1$	$r 1$	
8		s4, r2	s5, r2		$r 2$	r2	
9			r3		r3	r3	
Why did the parser make these choices?							

Comparison of Parsing Techniques

Relationship Among Grammars

Comparison of Parsing Techniques

- Ambiguous grammars are not LR
- Among grammars,
- $\mathrm{LL}(0) \subset \mathrm{LL}(1) \subset \ldots \subset \mathrm{LL}(\mathrm{k})^{1}$
- $\operatorname{LR}(0) \subset S L R(1) \subset \operatorname{LALR}(1) \subset \operatorname{LR}(1)$
- SLR(1) = LR(0) items + FOLLOW
- SLR(1) parsers can parse a larger number of grammars than LR(0)
- Any grammar that can be parsed by an LR(0) parser can be parsed by an SLR(1) parser
- $\operatorname{SLR}(\mathrm{k}) \subset \mathrm{LALR}(\mathrm{k}) \subset \mathrm{LR}(\mathrm{k})$
- LL(k) $\subset \operatorname{LR}(k)$
- Bottom-up parsing is a more powerful technique compared to top-down parsing
- LR grammars can handle left recursion
- Detects errors as soon as possible, and allows for better error recovery
- Automated parser generators such as Yacc and Bison implement LALR parsing

[^0]
References

A. Aho et al. Compilers: Principles, Techniques, and Tools. Sections 4.5-4.8, $2^{\text {nd }}$ edition, Pearson Education.
K. Cooper and L. Torczon. Engineering a Compiler. Sections 3.4-3.6, $2^{\text {nd }}$ edition, Morgan Kaufmann.

[^0]: ${ }^{1}$ D. Rosenkrantz and R. Stearns. Properties of Deterministic Top-Down Grammars.

