
CS 335: Bottom-Up Parsing

Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2023-24-II

Rightmost Derivation of abbcde

Grammar
S →aABe
A →Abc | b
B →d

Input string: abbcde
S →aABe
→aAde
→aAbcde
→abbcde

S S

a BA e

b

S

a BA e

S

a BA e

A b bc

a

S

a BA e

A b bc

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 3 / 84

Bottom-Up Parsing

Definition
Bottom-up parsing constructs the parse tree starting from the leaves and working up
toward the root

Grammar

S →aABe
A →Abc | b
B →d

Input string: abbcde
S → aABe abbcde
→ aAde → aAbcde
→ aAbcde → aAde
→ abbcde → aABe

→ S

x

re
ve
rs
e
of

rig
ht
m
os
td

er
iv
at
io
n

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 4 / 84

Bottom-Up Parsing

Grammar
S →aABe
A →Abc | b
B →d

Input string: abbcde
S → aABe abbcde
→ aAde → aAbcde
→ aAbcde → aAde
→ abbcde → aABe

→ S

x

re
ve
rs
e
of

rig
ht
m
os
t

de
riv

at
io
n

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 5 / 84

Reduction

Bottom-up parsing reduces a string w to the start symbol S
At each reduction step, a chosen substring that is the RHS (or body) of a production is
replaced by the LHS (or head) nonterminal

rightmost derivation

bottom-up parser

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 6 / 84

Handle

� Handle is a substring that matches the body of a production
� Reducing the handle is one step in the reverse of the rightmost derivation

E → E + T | T
T → T ∗ F | F
F → (E) | id

Right sentential form Handle Reducing Production
id1 ∗ id2 id1 F → id

F ∗ id2 F T → F
T ∗ id2 id2 F → id

T ∗ F T ∗ F T → T ∗ F
T T E → T
E

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 7 / 84

Handle

� Handle is a substring that matches the body of a production
� Reducing the handle is one step in the reverse of the rightmost derivation

E → E + T | T
T → T ∗ F | F
F → (E) | id

Right sentential form Handle Reducing Production
id1 ∗ id2 id1 F → id

F ∗ id2 F T → F
T ∗ id2 id2 F → id

T ∗ F T ∗ F T → T ∗ F
T T E → T
E

Although T is the body of the production E → T , T is not a handle in the sentential
form T ∗ id2
The leftmost substring that matches the body of some production need not be a handle

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 7 / 84

Handle

� If S
∗
==⇒
rm

𝛼Aw ==⇒
rm

𝛼𝛽w , then A → 𝛽 is a
handle of 𝛼𝛽w

� String w right of a handle must contain
only terminals

S

w

A

A handle A → 𝛽 in the parse tree for 𝛼𝛽w

� If grammar G is unambiguous, then every right sentential form has only one handle
� If G is ambiguous, then there can be more than one rightmost derivation of 𝛼𝛽w

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 8 / 84

Shift-Reduce Parsing

Shift-Reduce Parsing

� The input string being parsed consists of two parts
▶ Left part is a string of terminals and nonterminals, and is stored in a stack
▶ Right part is a string of terminals to be read from an input buffer
▶ Bottom of the stack and end of the input are represented by $

� Shift-reduce parsing is a type of bottom-up parsing with two primary actions, shift
and reduce
▶ Shift-Reduce actions

Shift Shift the next input symbol from the right string onto the top of the stack
Reduce Identify a string on top of the stack that is the body of a production and replace

the body with the head
▶ Other actions are accept and error

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 9 / 84

Shift-Reduce Parsing

� Initial Stack Input
$ w$

ReduceShift *

� Goal Stack Input
$S $

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 10 / 84

Example of Shift-Reduce Parsing

E → E + T | T
T → T ∗ F | F

F → (E) | id

Stack Input Action
$ id1 ∗ id2$ Shift
$id1 ∗id2$ Reduce by F → id
$F ∗id2$ Reduce by T → F
$T ∗id2$ Shift
$T∗ id2$ Shift
$T ∗ id2 $ Reduce by F → id
$T ∗ F $ Reduce by T → T ∗ F
$T $ Reduce by E → T
$E $ Accept

or report an error in
case of syntax error

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 11 / 84

Handle on Top of Stack

Is the following scenario possible?

Stack Input Action
. . .
$𝛼𝛽𝛾 w$ Reduce by A → 𝛾

$𝛼𝛽A w$ Reduce by B → 𝛽

$𝛼BA w$. . .
. . .

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 12 / 84

Possible Choices in Rightmost Derivation

S

z

A

B

y

1. S ==⇒
rm

𝛼Az ==⇒
rm

𝛼𝛽Byz ==⇒
rm

𝛼𝛽𝛾yz

S

z

AB

x y

2. S ==⇒
rm

𝛼BxAz ==⇒
rm

𝛼Bxyz ==⇒
rm

𝛼𝛾xyz

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 13 / 84

Handle on Top of Stack

Is the following scenario possible?

Stack Input Action
. . .
$𝛼𝛽𝛾 w$ Reduce by A → 𝛾

$𝛼𝛽A w$ Reduce by B → 𝛽

$𝛼BA w$. . .
. . .

Handle will always eventually appear
on top of the stack, never inside

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 14 / 84

Shift-Reduce Actions

Shift shift the next input symbol from the right string onto the top of the stack
Reduce identify a string on top of the stack that is the body of a production, and

replace the body with the head

How do you decide when to shift and
when to reduce?

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 15 / 84

Steps in Shift-Reduce Parsers

General shift-reduce technique
� If there is no handle on the stack, then shift
� If there is a handle on the stack, then reduce

Bottom-up parsing is essentially the process of identifying handles and reducing
them
� Different bottom-up parsers differ in the way they detect handles

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 16 / 84

Challenges in Bottom-up Parsing

Which action do you pick when both shift and reduce are valid?
Implies a shift-reduce conflict

Which rule to use if reduction is possible by more than one rule?
Implies a reduce-reduce conflict

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 17 / 84

Example of a Shift-Reduce Conflict
E →E + E | E ∗ E | id

id + id ∗ id

Stack Input Action
$ id + id ∗ id$ Shift
. . .
$E + E ∗id$ Reduce by E → E + E
$E ∗id$ Shift
$E∗ id$ Shift
$E ∗ id $ Reduce by E → id
$E ∗ E $ Reduce by E → E ∗ E
$E $

c + C

Stack Input Action
$ id + id ∗ id$ Shift
. . .
$E + E ∗id$ Shift
$E + E∗ id$ Shift
$E + E ∗ id $ Reduce by E → id
$E + E ∗ E $ Reduce by E → E ∗ E
$E + E $ Reduce by E → E + E
$E $

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 18 / 84

Resolving Shift-Reduce Conflict

Stmt → if Expr then Stmt
| if Expr then Stmt else Stmt
| other

Stack Input Action
. . .
$. . . if Expr then Stmt else . . .

What is a correct thing to do for this grammar
— shift or reduce? We can prioritize shifts.

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 19 / 84

Reduce-Reduce Conflict
M →R + R | R + c | R
R →c

c + c

Stack Input Action
$ c + c$ Shift
$c + c$ Reduce by R → c
$R + c$ Shift
$R + c$ Shift
$R + c $ Reduce by R → c
$R + R $ Reduce by R → R + R
$M $

id + id ∗ id

Stack Input Action
$ c + c$ Shift
$c + c$ Reduce by R → c
$R + c$ Shift
$R + c$ Shift
$R + c $ Reduce by M → R + c
$M $

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 20 / 84

LR Parsing

LR(k) Parsing

� Popular bottom-up parsing scheme
▶ L is for left-to-right scan of input, R is for reverse of rightmost derivation, k is the number

of lookahead symbols
� LR parsers are table-driven, like the non-recursive LL parser
� LR grammar is one for which we can construct an LR parsing table
� Popularity of LR Parsing

+ Most general non-backtracking shift-reduce parsing method
+ Can recognize almost all language constructs with CFGs
+ Works for a superset of grammars parsed with predictive or LL parsers

▶ LL(k) parsing predicts which production to use having seen only the first k tokens of the
right-hand side

▶ LR(k) parsing can decide after it has seen input tokens corresponding to the entire right-hand
side of the production

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 21 / 84

LR(k) Parsing

� Popular bottom-up parsing scheme
▶ L is for left-to-right scan of input, R is for reverse of rightmost derivation, k is the number

of lookahead symbols
� LR parsers are table-driven, like the non-recursive LL parser
� LR grammar is one for which we can construct an LR parsing table
� Popularity of LR Parsing

+ Most general non-backtracking shift-reduce parsing method
+ Can recognize almost all language constructs with CFGs
+ Works for a superset of grammars parsed with predictive or LL parsers

▶ LL(k) parsing predicts which production to use having seen only the first k tokens of the
right-hand side

▶ LR(k) parsing can decide after it has seen input tokens corresponding to the entire right-hand
side of the production

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 21 / 84

Block Diagram of LR Parser

LR Parsing
Program

... ... $

...

$

Stack

Input

Output

ACTION GOTO

Parsing Tables

The LR parsing driver is the same for all LR parsers, only the parsing
tables (i.e., ACTION and GOTO) change across parser types

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 22 / 84

Steps in LR Parsing

� Remember the basic questions: when to shift and when to reduce!
� An LR parser makes shift-reduce decisions by maintaining states
� Information is encoded in a DFA constructed using a canonical LR(0) collection

1. Augmented grammar G′ with new start symbol S′ and rule S′ → S
2. Define helper functions Closure() and Goto()

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 23 / 84

LR(0) Item

� An LR(0) item of a grammar G is a production of G
with a dot (•) at some position in the body

� An item indicates how much of a production we have
seen
▶ Symbols on the left of “•” are already on the stack
▶ Symbols on the right of “•” are expected in the input

� A → •XYZ indicates that we expect a string derivable
from XYZ next in the input

� A → X • YZ indicates that we saw a string derivable
from X in the input, and we expect a string derivable
from YZ next in the input

� A → 𝜖 generates only one item A → •

Production Items

A → XYZ

A → •XYZ
A → X • YZ
A → XY • Z
A → XYZ•

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 24 / 84

Closure Operation

� Let I be a set of items for a grammar G
� Closure(I) is constructed as follows

(i) Add every item in I to Closure(I)
(ii) If A → 𝛼 • B𝛽 is in Closure(I) and B → 𝛾 is a rule

in G, then add B → •𝛾 to Closure(I) if not already
added

(iii) Repeat until no more new items can be added to
Closure(I)

A substring derivable from B𝛽 will have a prefix derivable
from B by applying one the B productions

E
′ → E

E → E + T | T
T → T ∗ F | F
F → (E) | id

Suppose I = {E ′ → •E}

Closure(I) = {E ′ → •E,
E → •E + T ,
E → •T ,
T → •T ∗ F ,
T → •F ,
F → • (E) ,
F → •id}

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 25 / 84

Goto Operation

� Suppose I is a set of items and X is a grammar
symbol

� Goto(I,X) is the closure of set all items
[A → 𝛼X • 𝛽] such that [A → 𝛼 • X 𝛽] is in I
▶ If I is a set of items for some valid prefix 𝛼, then

Goto(I,X) is the set of valid items for prefix 𝛼X

Intuitively, Goto(I,X) gives the transition of the state I
under input X in the LR(0) automaton

E
′ → E

E → E + T | T
T → T ∗ F | F
F → (E) | id

Suppose
I = {E ′ → E•,

E → E • +T }
Goto(I, +) = {E → E + •T ,

T → •T ∗ F ,
T → •F ,
F → • (E) ,
F → •id}

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 27 / 84

Algorithm to Compute LR(0) Canonical Collection

C = Closure
(
{[S′ → •S]}

)
repeat
for each set of items I ∈ C
for each grammar symbol X
if Goto(I,X) ≠ 𝜙 and Goto(I,X) ∉ C
add Goto (I,X) to C

until no new sets of items are added to C

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 28 / 84

Example Computation of LR(0) Canonical Collection

I0 = Closure(E
′
→ •E)

= {E
′
→ •E,

E → •E + T ,
E → •T ,
T → •T ∗ F ,
T → •F ,
F → • (E) ,
F → •id}

I1 = Goto(I0,E)
= {E

′
→ E•,

E → E • +T }
I2 = Goto(I0, T)

= {E → T•,
T → T • ∗F}

I3 = Goto(I0, F)
= {T → F•}

I4 = Goto(I0, ‘(’)
= {F → (•E) ,

E → •E + T ,
E → •T ,
T → •T ∗ F ,
T → •F ,
F → • (E) ,
F → •id}

I5 = Goto(I0, id)
= {F → id•}

I6 = Goto(I1, +)
= {E → E + •T ,

T → •T ∗ F ,
T → •F ,
F → •(E),
F → •id}

I7 = Goto(I2, ∗)
= {T → T ∗ •F ,

F → •(E),
F → •id}

I8 = Goto(I4,E)
= {E → E • +T ,

F → (E•)}
I9 = Goto(I6, T)

= {E → E + T•,
T → T • ∗F}

I10 = Goto(I7, F)
= {T → T ∗ F•}

I11 = Goto(I8, ‘)’)
= {F → (E)•}

I2 = Goto(I4, T)
I3 = Goto(I4, F)
I4 = Goto(I4, ‘(’)
I5 = Goto(I4, id)
I3 = Goto(I6, F)
I4 = Goto(I6, ‘(’)
I5 = Goto(I6, id)
I4 = Goto(I7, ‘(’)
I5 = Goto(I7, id)
I6 = Goto(I8, +)
I7 = Goto(I9, ∗)

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 30 / 84

LR(0) Automaton

� Canonical LR(0) collection is used for constructing the LR(0) automaton for parsing
� States represent sets of LR(0) items in the canonical LR(0) collection

▶ Start state is Closure
(
{[S′ → •S]}

)
, where S′ is the start symbol of the augmented

grammar
▶ State j refers to the state corresponding to the set of items Ij

� By construction, all transitions to state j is for the same symbol X
▶ Each state, except the start state, has a unique grammar symbol associated with it

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 31 / 84

LR(0) Automaton

I1 I2 I3 I5

I0 I4 I7I6

I8 I9 I11I10

accept
E T F id

(

$

+ *F

id

(E

id

F
(

T

id

F

(+

)

*

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 32 / 84

Use of LR(0) Automaton

� How can the LR(0) automaton help with shift-reduce decisions?
� Suppose string 𝛾 of grammar symbols takes the automaton from start state S0 to state

Sj
▶ Shift on next input symbol a if Sj has a transition on a
▶ Otherwise, reduce

▶ Items in state Sj help decide which production to use

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 33 / 84

Structure of LR Parsing Table

� Assume Si is top of the stack and ai is the current input symbol
� Parsing table consists of two parts: an ACTION and a GOTO function
� ACTION table is indexed by state and terminal symbols; ACTION[Si , ai] can have four

values
(i) Shift ai to the stack, go to state Sj
(ii) Reduce by rule k
(iii) Accept
(iv) Error (empty cell in the table)

� GOTO table is indexed by state and nonterminal symbols

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 34 / 84

Constructing LR(0) Parsing Table

(i) Construct LR(0) canonical collection C = {I0, I1, . . . , In} for grammar G′

(ii) State i is constructed from Ii
(a) If [A → 𝛼 • A𝛽] ∈ Ii and GOTO(Ii , a) = Ij , then set ACTION[i, a] = “Shift j”

▶ sj means shift and stack state j
(b) If [A → 𝛼•] ∈ Ii , then set ACTION[i, a] = “Reduce by A → 𝛼” for all a

▶ rj means reduce by rule $j
(c) If [S′ → S•] ∈ Ii , then set ACTION[i, $] = “Accept”

(iii) If GOTO(Ii ,A) = Ij , then GOTO[i,A] = j
(iv) All entries left undefined are “errors”

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 35 / 84

LR(0) Parsing Table

State ACTION GOTO
id + ∗ () $ E T F

0 s5 s4 1 2 3
1 s6 Accept
2 r2 r2 s7, r2 r2 r2 r2
3 r4 r4 r4 r4 r4 r4
4 s5 s4 8 2 3
5 r6 r6 r6 r6 r6 r6
6 s5 s4 9 3
7 s5 s4 10
8 s6 s11
9 r1 r1 s7, r1 r1 r1 r1
10 r3 r3 r3 r3 r3 r3
11 r5 r5 r5 r5 r5 r5

Rule # Rule
0 E ′ → E
1 E → E + T
2 E → T
3 T → T ∗ F
4 T → F
5 F → (E)
6 F → id

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 36 / 84

LR Parser Configurations

� A LR parser configuration is a pair ⟨s0s1 . . . sm, aiai+1 . . . an$⟩
▶ The left half is stack content, and the right half is the remaining input

� Configuration represents the right sentential form X1X2 . . .Xmaiai+1 . . . an

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 37 / 84

LR Parsing Algorithm

(i) If ACTION[sm, ai] = sj, then the new configuration is ⟨s0s1 . . . smsj , ai+1 . . . an⟩
(ii) If ACTION[sm, ai] = reduce A → 𝛽, then the new configuration is

⟨s0s1 . . . sm−rs, aiai+1 . . . an⟩, where r = |𝛽 | and s = GOTO[sm−r ,A]
(iii) If ACTION[sm, ai] = Accept, then parsing is successful
(iv) If ACTION[sm, ai] = error, then parsing has discovered an error

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 38 / 84

LR Parsing Program

Let a be the first symbol in w$
while (1)
Let s be the top of the stack
if ACTION[s, a] == shift t
push t onto the stack
let a be the next input symbol

else if ACTION[s, a] = reduce A → 𝛽

// Reduce with the production A → 𝛽

pop |𝛽 | symbols of the stack
let state t now be the top of the stack
push GOTO[t,A] onto the stack

else if ACTION[s, a] == Accept
break // parsing is complete

else
invoke error recovery

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 39 / 84

Shift-Reduce Parser with LR(0) Automaton

Stack Input Action
$0 id ∗ id$ Shift
$0 id 5 ∗ id$ Reduce by F → id
$0 F 3 ∗ id$ Reduce by T → F
$0 T 2 ∗ id$ Shift
$0 T 2 ∗ 7 id$ Shift
$0 T 2 ∗ 7 id 5 $ Reduce by F → id
$0 T 2 ∗ 7 F 10 $ Reduce by T → T ∗ F
$0 T 2 $ Reduce by E → T
$0 E 1 $ Accept

popped 5 and pushed 3
because I3 = Goto(I0, F)

While the stack consisted of only symbols in the shift-
reduce parser, here the stack also contains states from
the LR(0) automaton

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 40 / 84

Viable Prefix

� Consider E
rm
==⇒ T

rm
==⇒ T ∗ F

rm
==⇒ T ∗ id

rm
==⇒ F ∗ id

rm
==⇒ id ∗ id

� Not all prefixes of a right sentential form can appear on the stack
▶ id∗ is a prefix of a right sentential form but can never appear on the stack

▶ LR parser will not shift past the handle
▶ Always reduce by F → id before shifting ∗ (see previous slide)

� A viable prefix is a prefix of a right sentential form that can appear on the stack of a
shift-reduce parser
▶ If the stack contains 𝛼, then 𝛼 is a viable prefix if ∃w such that 𝛼w is a right sentential form

� There is no error as long as the parser has viable prefixes on the stack
▶ The parser has not yet read past the handle, and expects that the remaining input could

form a valid sentential form leading to a successful parse

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 41 / 84

Example of a Viable Prefix

S →X1X2X3X4

A →X1X2

Stack Input
$ X1X2X3$
$X1 X2X3$
$X1X2 X3$
$A X3$
$AX3 $

X1X2X3 can never appear on
the stack

� Suppose there is a production A → 𝛽1𝛽2, 𝛼𝛽1 is on the stack, and there is a derivation
S′ ∗

==⇒
rm

𝛼Aw
∗
==⇒
rm

𝛼𝛽1𝛽2w
▶ 𝛽2 ≠ 𝜖 implies that the handle 𝛽1𝛽2 is not at the top of the stack yet, so shift
▶ 𝛽2 = 𝜖 implies that the LR parser can reduce by the handle A → 𝛽1

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 42 / 84

Challenges with LR(0) Parsing

An LR(0) parser works only if each state with a reduce action has only one possible reduce
action and no shift action

Ok
{L → L,S•}

Shift-Reduce Conflict
{L →L,S• ,
L →S•, L}

Reduce-Reduce Conflict

{L →S, L• ,
L →S•}

Takes shift/reduce decisions without any lookahead token
Lacks the power to parse programming language grammars

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 43 / 84

Canonical Collection of Sets of LR(0) Items
Consider the following grammar for adding numbers

Left associative

S →S + E | E
E →num

Right associative

S →E + S | E
E →num

Shift-Reduce Conflict

{S →E • +S,
S →E•}

FIRST (S) = {num}
FIRST (E) = {num}
FOLLOW (S) = {$}
FOLLOW (E) = {+, $}

I0 = Closure({S′ → •S})
= {S′ → •S,

S → •E + S,
S → •E,
E → •num}

I1 = Goto(I0,S)
= {S′ → S•}

I2 = Goto(I0,E)
= {S → E • +S,

S → E•}
I3 = Goto(I0, num)
= {E → num•}

I4 = Goto(I2, +)
= {S → E + •S}

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 44 / 84

Simple LR Parsing

Block Diagram of LR Parser

LR Parsing
Program

... ... $

...

$

Stack

Input

Output

ACTION GOTO

Parsing Tables

The LR parsing driver is the same for all LR parsers, only the parsing
tables (i.e., ACTION and GOTO) change across parser types

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 45 / 84

SLR(1) Parsing

� Uses LR(0) items and LR(0) automaton, extends LR(0) parser to eliminate a few
conflicts
▶ For each reduction A → 𝛽, look at the next symbol c
▶ Apply reduction only if c ∈ FOLLOW(A)

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 46 / 84

Constructing SLR Parsing Table

(i) Construct LR(0) canonical collection C = {I0, I1, . . . , In} for grammar G′

(ii) State i is constructed from Ii
(a) If [A → 𝛼 • A𝛽] ∈ Ii and GOTO(Ii , a) = Ij , then set ACTION[i, a] = “Shift j”
(b) If [A → 𝛼•] ∈ Ii , then set ACTION[i, a] = “Reduce by A → 𝛼” for all a in FOLLOW(A)
(c) If [S′ → S•] ∈ Ii , then set ACTION[i, $] = “Accept”

(iii) If GOTO(Ii ,A) = Ij , then GOTO[i,A] = j
(iv) All entries left undefined are “errors”

constraints on when
reductions are applied

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 47 / 84

SLR Parsing for Expression Grammar

Rule # Rule
1 E → E + T
2 E → T
3 T → T ∗ F
4 T → F
5 F → (E)
6 F → id

FIRST (E) = {(, id}
FIRST (T) = {(, id}
FIRST (F) = {(, id}
FOLLOW (E) = {$, +,)}
FOLLOW (T) = {$, +, ∗,)}
FOLLOW (F) = {$, +, ∗,)}

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 48 / 84

Canonical Collection of Sets of LR(0) Items

I0 = Closure(E
′
→ •E)

= {E
′
→ •E,

E → •E + T ,
E → •T ,
T → •T ∗ F ,
T → •F ,
F → • (E) ,
F → •id}

I1 = Goto(I0,E)
= {E

′
→ E•,

E → E • +T }
I2 = Goto(I0, T)

= {E → T•,
T → T • ∗F}

I3 = Goto(I0, F)
= {T → F•}

I4 = Goto(I0, ‘(’)
= {F → (•E) ,

E → •E + T ,
E → •T ,
T → •T ∗ F ,
T → •F ,
F → • (E) ,
F → •id}

I5 = Goto(I0, id)
= {F → id•}

I6 = Goto(I1, +)
= {E → E + •T ,

T → •T ∗ F ,
T → •F ,
F → •(E),
F → •id}

I7 = Goto(I2, ∗)
= {T → T ∗ •F ,

F → •(E),
F → •id}

I8 = Goto(I4,E)
= {E → E • +T ,

F → (E•)}
I9 = Goto(I6, T)

= {E → E + T•,
T → T • ∗F}

I10 = Goto(I7, F)
= {T → T ∗ F•}

I11 = Goto(I8, ‘)’)
= {F → (E)•}

I2 = Goto(I4, T)
I3 = Goto(I4, F)
I4 = Goto(I4, ‘(’)
I5 = Goto(I4, id)
I3 = Goto(I6, F)
I4 = Goto(I6, ‘(’)
I5 = Goto(I6, id)
I4 = Goto(I7, ‘(’)
I5 = Goto(I7, id)
I6 = Goto(I8, +)
I7 = Goto(I9, ∗)

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 49 / 84

LR(0) Automaton

I1 I2
I3

I5

I0 I4 I7I6

I8 I9 I11I10

accept
E

T
F

id

(

$

+ *

F id

(E

id

F
(

T

id

F

(
+

)

*

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 50 / 84

SLR Parsing Table

State ACTION GOTO
id + ∗ () $ E T F

0 s5 s4 1 2 3
1 s6 Accept
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s5 s4 8 2 3
5 r6 r6 r6 r6
6 s5 s4 9 3
7 s5 s4 10
8 s6 s11
9 r1 s7 r1 r1
10 r3 r3 r3 r3
11 r5 r5 r5 r5

Rule # Rule
0 E ′ → E
1 E → E + T
2 E → T
3 T → T ∗ F
4 T → F
5 F → (E)
6 F → id

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 51 / 84

Moves of an LR Parser on id ∗ id + id

Stack Input Action
$0 id ∗ id + id$ Shift 5
$0 id 5 ∗ id + id$ Reduce by F → id
$0 F 3 ∗ id + id$ Reduce by T → F
$0 T 2 ∗ id + id$ Shift 7
$0 T 2 ∗ 7 id + id$ Shift 5
$0 T 2 ∗ 7 id 5 + id$ Reduce by F → id
$0 T 2 ∗ 7 F 10 + id$ Reduce by T → T ∗ F
$0 T 2 + id$ Reduce by E → T
$0 E 1 + id$ Shift 6
$0 E 1 + 6 id$ Shift 5
$0 E 1 + 6 id 5 $ Reduce by F → id
$0 E 1 + 6 F 3 $ Reduce by T → F
$0 E 1 + 6 T 9 $ Reduce by E → E + T
$0 E 1 $ Accept

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 52 / 84

Limitations of SLR Parsing

� If an SLR parse table for a grammar does not have multiple entries in any cell, then the
grammar is unambiguous

� Every SLR(1) grammar is unambiguous, but there are unambiguous grammars that are
not SLR(1)

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 53 / 84

Example to Highlight Limitations of SLR Parsing

Unambiguous grammar

S →L = R | R
L →∗ R | id

R → L

FIRST (S) = {∗, id}
FIRST (L) = {∗, id}
FIRST (R) = {∗, id}
FOLLOW (S) = {$, =}
FOLLOW (L) = {$, =}
FOLLOW (R) = {$,=}

Example derivation
S → L = R → ∗R = R

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 54 / 84

Canonical LR(0) Collection

I0 = Closure(S
′
→ •S)

= {S
′
→ •S,

S → •L = R,

S → •R,

L → • ∗ R,

L → •id,
R → •L}

I1 = Goto(I0,S)
= {S

′
→ S•}

I2 = Goto(I0, L)
= {S → L• = R,

R → L•}

I3 = Goto(I0,R)
= {S → R•}

I4 = Goto(I0,R)
= {L → ∗ • R,

R → •L,
L → • ∗ R,

L → •id}
I5 = Goto(I0, id)

= {L → •id}

I6 = Goto(I2, =)
= {S → L = •R,

R → •L,
L → • ∗ R,

L → id}
I7 = Goto(I4,R)

= {L → ∗R•}

I8 = Goto(I4, L)
= {R → L•}

I9 = Goto(I6,R)
= {S → L = R•}

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 55 / 84

SLR Parsing Table

State ACTION GOTO
= ∗ id $ S L R

0 s4 s5 1 2 3
1 Accept
2 s6, r6 r6
3
4 s4 s5 8 7
5 r5 r5
6 s4 s5 8 9
7 r4 r4
8 r6 r6
9 r2

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 56 / 84

Shift-Reduce Conflict with SLR Parsing

I0 = Closure(S
′
→ •S)

= {S
′
→ •S,

S → •L = R,

S → •R,

L → • ∗ R,

L → •id,
R → •L}

I1 = Goto(I0,S)
= {S

′
→ S•}

I2 = Goto(I0, L)
= {S → L• = R,

R → L•}

I3 = Goto(I0,R)
= {S → R•}

I4 = Goto(I0,R)
= {L → ∗ • R,

R → •L,
L → • ∗ R,

L → •id}
I5 = Goto(I0, id)

= {L → •id}

I6 = Goto(I2, =)
= {S → L = •R,

R → •L,
L → • ∗ R,

L → id}
I7 = Goto(I4,R)

= {L → ∗R•}

I8 = Goto(I4, L)
= {R → L•}

I9 = Goto(I6,R)
= {S → L = R•}

(i) ACTION[2,=] = Shift 6, or

(ii) ACTION[2,=] = Reduce R → L because = ∈ FOLLOW(R)

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 57 / 84

Moves of an SLR Parser on id = id

Stack Input Action
$0 id = id Shift 5
$0id5 = id Reduce by L → id
$0L2 = id Reduce by R → L
$0R3 = id Error

No right sentential form begins
with R = . . .

Stack Input Action
$0 id = id$ Shift 5
$0id5 = id$ Reduce by L → id
$0L2 = id$ Shift 6
$0L2 = 6 id$ Shift 5
$0L2 = 6id5 $ Reduce by L → id
$0L2 = 6L8 $ Reduce by R → L
$0L2 = 6R9 $ Reduce by S → L = R
$0S1 $ Accept

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 58 / 84

Moves of an SLR Parser on id = id

Stack Input Action
$0 id = id Shift 5
$0id5 = id Reduce by L → id
$0L2 = id Reduce by R → L
$0R3 = id Error

Stack Input Action
$0 id = id$ Shift 5
$0id5 = id$ Reduce by L → id
$0L2 = id$ Shift 6
$0L2 = 6 id$ Shift 5
$0L2 = 6id5 $ Reduce by L → id
$0L2 = 6L8 $ Reduce by R → L
$0L2 = 6R9 $ Reduce by S → L = R
$0S1 $ Accept

State i calls for a reduction by A → 𝛼 if the set of items Ii con-
tains items [A → 𝛼•] and a ∈ FOLLOW(A)
� Suppose 𝛽A is a viable prefix at the top of the stack
� There may be no right sentential form where a follows 𝛽A

▶ An LR parser should not reduce by A → 𝛼 in such cases

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 59 / 84

Moves of an SLR Parser on id = id

Stack Input Action
$0 id = id Shift 5
$0id5 = id Reduce by L → id
$0L2 = id Reduce by R → L
$0R3 = id Error

Stack Input Action
$0 id = id$ Shift 5
$0id5 = id$ Reduce by L → id
$0L2 = id$ Shift 6
$0L2 = 6 id$ Shift 5
$0L2 = 6id5 $ Reduce by L → id
$0L2 = 6L8 $ Reduce by R → L
$0L2 = 6R9 $ Reduce by S → L = R
$0S1 $ Accept

SLR parser cannot remember the left context
� SLR(1) states only tell us about the sequence on top of the

stack, not what is below on the stack

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 59 / 84

Canonical LR Parsing

LR(1) Item

� An LR(1) item of a CFG G is a string of the form [A → 𝛼 • 𝛽, a], with a as one symbol
lookahead
▶ A → 𝛼𝛽 is a production in G, and a ∈ T ∪ {$}

� Suppose [A → 𝛼 • 𝛽, a] where 𝛽 ≠ 𝜖 , then the lookahead is not required
� If [A → 𝛼•, a], reduce only if the next input symbol is a

▶ Set of possible terminals will always be a subset of A but can be a proper subset

� An LR(1) item [A → 𝛼 • 𝛽, a] is valid for a
viable prefix 𝛾 if there is a derivation
S

∗
==⇒
rm

𝛿Aw ==⇒
rm

𝛿𝛼𝛽w , where
(i) 𝛾 = 𝛿𝛼, and
(ii) a is the first symbol in w , or w = 𝜖 and

a = $

LR Parsing
Program

Stack

Input

Output

ACTION GOTO

Parsing Tables

... ... $

...

$

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 60 / 84

Computing Closure and Goto for LR(1) Collection

Closure(I)

repeat
for each item [A → 𝛼 • B𝛽, a] ∈ I
for each production B → 𝛾 ∈ G′

for each terminal b ∈ FIRST(𝛽a)
add [B → •𝛾, b] to set I

until no more items are added to I
return I

Goto(I,X)

J = 𝜙

for each item [A → 𝛼 • X 𝛽, a] ∈ I
add item [A → 𝛼X • 𝛽, a] to set J

return Closure(J)

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 61 / 84

Constructing LR(1) Sets of Items

C = Closure({[S′ → •S, $]})
repeat
for each set of items I ∈ C
for each grammar symbol X
if Goto(I,X) ≠ 𝜙 and Goto(I,X) ∉ C
add Goto(I,X) to C

until no new sets of items are added to C

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 62 / 84

Example Construction of LR(1) Items

Rule # Rule
0 S′ → S
1 S → CC
2 C → cC
3 C → d

I0 = Closure({[S
′
→ •S, $]})

= {S
′
→ •S, $,

S → •CC, $,
C → •cC, c/d,
C → •d, c/d}

I1 = Goto(I0,S)
= {S

′
→ S•, $}

I2 = Goto(I0,C)
= {S → C • C, $,

C → •cC, $,
C → •d, $}

I3 = Goto(I0, c)
= {C → c • C, c/d,

C → •cC, c/d,
C → •d, c/d}

I4 = Goto(I0, d)
= {C → d•, c/d}

I5 = Goto(I2,S)
= {S → CC•, $}

I6 = Goto(I2, c)
= {C → c • C, $,

C → •cC, $,
C → •d, $}

I7 = Goto(I2, d)
= {C → d•, $}

I8 = Goto(I3,C)
= {C → cC•, c/d}

I9 = Goto(I6,C)
= {C → cC•, $}

generates the regular language
c∗dc∗d

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 63 / 84

LR(1) Automaton

I1 I4 I5

I0 I2 I3 I8

I7 I6 I9

accept

S d

C
c

$

c
d

C

d

C

c

d C
c

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 64 / 84

Construction of Canonical LR(1) Parsing Tables

� Construct C′
= {I0, I1, . . . , In}

� State i of the parser is constructed from Ii
▶ If [A → 𝛼 • a𝛽, b] is in Ii and Goto(Ii , a) = Ij , then set ACTION[i, a] = “Shift j”
▶ If [A → 𝛼•, a] is in Ii and A ≠ S′ , then set ACTION[i, a] = “Reduce by A → 𝛼•”
▶ If [S′ → S•, $] is in Ii , then set ACTION[i, $] = “Accept”

� If Goto(Ii ,A) = Ij , then GOTO[i,A] = j
� Initial state of the parser is constructed from the set of items containing [S′ → •S, $]

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 65 / 84

Canonical LR(1) Parsing Table and Moves of a CLR Parser on cdcd

State ACTION GOTO
c d $ S C

0 s3 s4 1 2
1 Accept
2 s6 s7 5
3 s3 s4 8
4 r3 r3
5 r1
6 s6 s7 9
7 r3
8 r2 r2
9 r2

Stack Input Action
$0 cdcd$ Shift 3
$0c3 dcd$ Shift 3
$0c3d4 cd$ Reduce by C → d
$0c3C8 cd$ Reduce by C → cC
$0C2 cd$ Shift 6
$0C2c6 d$ Shift 7
$0C2c6d7 $ Reduce by C → d
$0C2c6C9 $ Reduce by C → cC
$0C2C5 $ Reduce by S → CC
$0S1 $ Accept

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 66 / 84

Canonical LR(1) Parsing

� If the parsing table has no multiply-defined cells, then the corresponding grammar G is
LR(1)

� Every SLR(1) grammar is an LR(1) grammar
▶ Canonical LR parser may have more states than SLR

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 67 / 84

LALR Parsing

Example Construction of LR(1) Items

I0 = Closure({[S
′
→ •S, $]})

= {S
′
→ •S, $,

S → •CC, $,
C → •cC, c/d,
C → •d, c/d}
I1 = Goto(I0,S)

= {S
′
→ S•, $}

I2 = Goto(I0,C)
= {S → C • C, $,

C → •cC, $,
C → •d, $}

I3 = Goto(I0, c)
= {C → c • C, c/d,

C → •cC, c/d,
C → •d, c/d}

I4 = Goto(I0, d)
= {C → d•, c/d}

I5 = Goto(I2,S)
= {S → CC•, $}

I6 = Goto(I2, c)
= {C → c • C, $,

C → •cC, $,
C → •d, $}

I7 = Goto(I2, d)
= {C → d•, $}

I8 = Goto(I3,C)
= {C → cC•, c/d}

I9 = Goto(I6,C)
= {C → cC•, $}

I3 and I6, I4 and I7, and I8 and I9 only
differ in the second components

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 68 / 84

Lookahead LR (LALR) Parsing

� CLR(1) parser has numerous states
� Lookahead LR (LALR) parser merges sets of LR(1) items that have the same core (set

of LR(0) items, i.e., first component)
▶ LALR parsers have fewer states, the same as SLR

� LALR parser is used in many parser generators (e.g., Bison)

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 69 / 84

Construction of LALR Parsing Table

� Construct C = {I0, I1, . . . , In}, the collection of set of LR(1) items
� For each core present in LR(1) items, find all sets having the same core and replace

these sets with their union
� Let C′

= {J0, J1, . . . , Jn} be the resulting sets of LR(1) items (also called LALR collection)
� Construct ACTION table as was done earlier, parsing actions for state i is constructed

from Ji

� Let J = I1 ∪ I2 ∪ · · · ∪ Ik , where the cores of I1, I2, . . . , Ik are the same
▶ Cores of Goto(I1,X), Goto(I2,X), . . . ,Goto(Ik ,X) will also be the same
▶ Let K = Goto(I1,X) ∪ Goto(I2,X) ∪ . . .Goto(Ik ,X), then K = Goto(J,X)

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 70 / 84

LALR Grammar

If there are no parsing action conflicts, then the grammar is LALR(1)

Rule # Rule
0 S′ → S
1 S → CC
2 C → cC
3 C → d

I36 = Goto(I2, c)
= {C → c • C, c/d/$,

C → •cC, c/d/$,
C → •d, c/d/$}

I47 = Goto(I0, d)
= {C → d•, c/d/$}

I89 = Goto(I3,C)
= {C → cC•, c/d/$}

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 71 / 84

LALR Parsing Table

State ACTION GOTO
c d $ S C

0 s36 s47 1 2
1 Accept
2 s36 s47 5
36 s36 s47 89
47 r3 r3 r3
5 r1
89 r2 r2 r2

Stack Input Action
$0 cdcd$ Shift 36
$0c36 dcd$ Shift 47
$0c36d47 cd$ Reduce by C → d
$0c36C89 cd$ Reduce by C → cC
$0C2 cd$ Shift 36
$0C2c36 d$ Shift 47
$0C2c36d47 $ Reduce by C → d
$0C2c36C89 $ Reduce by C → cC
$0C2C5 $ Reduce by S → CC
$0S1 $ Accept

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 72 / 84

Notes on LALR Parsing

� LALR parser behaves like the CLR parser except for difference in stack states

Merging LR(1) items can never produce shift/reduce conflicts
� Suppose there is a shift-reduce conflict on lookahead a due to items [B → 𝛽 • 𝛼𝛾, b]

and [A → 𝛼•, a]
� But the merged state was formed from states with same cores, which implies

[B → 𝛽 • a𝛾, c] and [A → 𝛼•, a] must have already been in the same state, for some
value of c

Merging items may produce reduce/reduce conflicts

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 73 / 84

Reduce-Reduce Conflicts due to Merging

LR(1) grammar
S

′ →S
S → aAd | bBd | aBe | bAe
A → c
B → c

Example strings: acd, ace, bcd, bce

{[A → c•, d], [B → c•, e]} {[A → c•, e], [B → c•, d]}

{[A → c•, d/c], [B → c•, d/e]}

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 74 / 84

Dealing with Errors with LALR Parsing

CLR Parsing Table

State ACTION GOTO
c d $ S C

0 s3 s4 1 2
1 Accept
2 s6 s7 5
3 s3 s4 8
4 r3 r3
5 r1
6 s6 s7 9
7 r3
8 r2 r2
9 r2

LALR Parsing Table

State ACTION GOTO
c d $ S C

0 s36 s47 1 2
1 Accept
2 s36 s47 5
36 s36 s47 89
47 r3 r3 r3
5 r1
89 r2 r2 r2

Rule # Rule
0 S′ → S
1 S → CC
2 C → cC
3 C → d

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 75 / 84

Comparing Moves of CLR and LALR Parsers

Consider an erroneous input ccd

CLR Parser

Stack Input Action
$0 ccd$ Shift 3
$0c3 d$ Shift 3
$0c3c3 d$ Shift 4
$0c3c3d4 $ Error

LALR Parser

Stack Input Action
$0 ccd$ Shift 36
$0c36 cd$ Shift 36
$0c36c36 d$ Shift 47
$0c36c36d47 $ Reduce by C → d
$0c36c36C89 $ Reduce by C → cC
$0c36C89 $ Reduce by C → cC
$0C2 $ Error

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 76 / 84

Comparing Moves of CLR and LALR Parsers

Consider an erroneous input ccd

CLR Parser

Stack Input Action
$0 ccd$ Shift 3
$0c3 d$ Shift 3
$0c3c3 d$ Shift 4
$0c3c3d4 $ Error

LALR Parser

Stack Input Action
$0 ccd$ Shift 36
$0c36 cd$ Shift 36
$0c36c36 d$ Shift 47
$0c36c36d47 $ Reduce by C → d
$0c36c36C89 $ Reduce by C → cC
$0c36C89 $ Reduce by C → cC
$0C2 $ Error

� CLR parser will not even reduce before reporting an error
� SLR and LALR parser may reduce several times before

reporting an error, but will never shift an erroneous input
symbol onto the stack

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 77 / 84

Using Ambiguous Grammars

Dealing with Ambiguous Grammars
LR(1) grammar

E
′
→E

E →E + E | E ∗ E | (E) | id

Grammar does not distinguish between
the associativity and precedence of the
two operators

I0 = Closure({[E
′
→ •E]})

= {E
′
→ •E,

E → •E + E,
E → •E ∗ E,
E → •(E),
E → •id}

I1 = Goto(I0,E)
= {E

′
→ E•,

E → E • +E,
E → E • ∗E}

I2 = Goto(I0, ‘(’)
= {E → (•E),

E → •E + E,
E → •E ∗ E,
E → •(E),
E → •id}

I3 = Goto(I0, id)
= {E → id•}

I4 = Goto(I0, +)
= {E → E + •E,

E → •E + E,
E → •E ∗ E,
E → •(E),
E → •id}

I9 = Goto(I6, ‘)’)
= {E → (E)•}

I5 = Goto(I0, ∗)
= {E → E ∗ •E,

E → •E + E,
E → •E ∗ E,
E → •(E),
E → •id}

I6 = Goto(I2,E)
= {E → (E•),

E → E • +E,
E → E • ∗E}

I7 = Goto(I4,E)
= {E → E + E•,

E → E • +E,
E → E • ∗E}

I8 = Goto(I5,E)
= {E → E ∗ E•,

E → E • +E,
E → E • ∗E}

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 78 / 84

SLR Parsing Table

State ACTION GOTO
id + ∗ () $ E

0 s3 s2 1
1 s4 s5 Accept
2 s3 s2
3 r4 r4 r4 r4
4 s3 s2 7
5 s3 s2 8
6 s4 s5 s9
7 s4, r1 s5, r1 r1 r1
8 s4, r2 s5, r2 r2 r2
9 r3 r3 r3 r3

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 79 / 84

Moves of an SLR Parser on id + id ∗ id

Stack Input Action
$0 id + id ∗ id$ Shift 3
$0id3 + id ∗ id$ Reduce by E → id
$0E1 + id ∗ id$ Shift 4
$0E1+4 id ∗ id$ Shift 3
$0E1+4id3 ∗ id$ Reduce by E → id 3
$0E1+4E7 ∗ id$

What can the parser do to resolve the
ambiguity?

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 80 / 84

SLR Parsing Table

State ACTION GOTO
id + ∗ () $ E

0 s3 s2 1
1 s4 s5 Accept
2 s3 s2
3 r4 r4 r4 r4
4 s3 s2 7
5 s3 s2 8
6 s4 s5 s9
7 s4, r1 s5, r1 r1 r1
8 s4, r2 s5, r2 r2 r2
9 r3 r3 r3 r3

Why did the parser make these
choices?

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 81 / 84

Comparison of Parsing Techniques

Relationship Among Grammars

LR(1)
LR(k)

LALR(1)
SLR

LR(0)
LL(0)

LL(1)

LL(k)

Unambiguous grammars

Ambiguous
grammars

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 82 / 84

Comparison of Parsing Techniques

� Ambiguous grammars are not LR
� Among grammars,

▶ LL(0) ⊂ LL(1) ⊂ . . .⊂ LL(k)1
▶ LR(0) ⊂ SLR(1) ⊂ LALR(1) ⊂ LR(1)

▶ SLR(1) = LR(0) items + FOLLOW
▶ SLR(1) parsers can parse a larger number of grammars than LR(0)
▶ Any grammar that can be parsed by an LR(0) parser can be parsed by an SLR(1) parser

▶ SLR(k) ⊂ LALR(k) ⊂ LR(k)
▶ LL(k) ⊂ LR(k)

▶ Bottom-up parsing is a more powerful technique compared to top-down parsing
▶ LR grammars can handle left recursion
▶ Detects errors as soon as possible, and allows for better error recovery
▶ Automated parser generators such as Yacc and Bison implement LALR parsing

1D. Rosenkrantz and R. Stearns. Properties of Deterministic Top-Down Grammars.

Swarnendu Biswas (IIT Kanpur) CS 335: Bottom-Up Parsing Sem 2023-24-II 83 / 84

References

A. Aho et al. Compilers: Principles, Techniques, and Tools. Sections 4.5–4.8, 2nd edition,
Pearson Education.

K. Cooper and L. Torczon. Engineering a Compiler. Sections 3.4–3.6, 2nd edition, Morgan
Kaufmann.

	Bottom-Up Parsing
	Shift-Reduce Parsing
	LR Parsing
	Simple LR Parsing
	Canonical LR Parsing
	LALR Parsing
	Using Ambiguous Grammars
	Comparison of Parsing Techniques

