
First Course Handout

Course Title: Compiler Design
Course No: CS 335
Credits: 3-0-3-12

Prerequisite:
● ESC101, ESO207/CS210, CS220, CS340

Lecture Hours: MWF 9-10:00 AM in RM 101
Office Hours: F 10-10:50 PM in KD 302

Course Objective: The objective of the course is to learn useful concepts to
understand, design, and modify compilers for programming languages.

This course will involve both pen-paper and programming assignments.

The course project will require you to apply the concepts learned in the class to build a
prototype compiler. You will be required to implement various phases of a compiler and
perform an experimental evaluation of your implementation. The project will be done in
groups.

Course Contents: The following is a tentative list of topics that we will cover during the
course.

● Overview of Compilation: analysis-synthesis model of compilation, various
phases of a compiler, tool-based approach to compiler construction.

● Lexical Analysis: interface with input, parser and symbol table, token, lexeme
and patterns, difficulties in lexical analysis, error reporting, implementation,
regular definition, transition diagrams, Lex/Flex.

● Syntax Analysis: CFGs, ambiguity, associativity, precedence, top-down parsing,
recursive descent parsing, transformation on the grammars, predictive parsing,
bottom-up parsing, operator precedence grammars, LR parsers (SLR, LALR,
LR), Yacc/Bison/ANTLR.

● Syntax-directed Definitions: inherited and synthesized attributes, dependency
graph, evaluation order, bottom-up and top-down evaluation of attributes, L- and
S-attributed definitions.

● Type Checking: type system, type expressions, structural and name equivalence
of types, type conversion, overloaded functions and operators, polymorphic
functions.



● Runtime Systems: storage organization, activation tree, activation record,
parameter passing, symbol table, dynamic storage allocation.

● Intermediate code generation: intermediate representations, translation of
declarations, assignments, control flow, Boolean expressions and procedure
calls, implementation issues.

● Code generation and instruction selection: issues, basic blocks, flow graphs,
register allocation, code generation, DAG representation of programs, code
generation from DAGs, peephole optimization, code generator generators, and
specifications of the machine.

Evaluation:

Assignments 12%

Quizzes 8%

Midsem 20%

Term Project 35%

Endsem 25%

● This is a tentative allocation and might change slightly

References:
1. A. Aho, M. Lam, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and

Tools, 2nd edition.
2. K. Cooper and L. Torczon. Engineering a Compiler, 2nd edition.
3. A. Appel. Modern Compiler Implementation in Java, 2nd edition.
4. M. Scott. Programming Language Pragmatics, 4th edition.


