
CS 335: Type Systems
Swarnendu Biswas

Semester 2022-2023-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Type Error in Python

def add(x):

return x + 1

class A(object):

pass

a = A()

add(a)

Traceback (most recent call last):

File "type-error.py", line 8, in <module>

add1(a)

File "type-error.py", line 2, in add1

return x + 1

TypeError: unsupported operand type(s) for +:
'A' and 'int'

CS 335 Swarnendu Biswas

It is great that compilers
help detect such errors

What is Gradual Typing

https://wphomes.soic.indiana.edu/jsiek/what-is-gradual-typing/

What is a Type?

Set of values and operations allowed on those values

• Integer is any whole number in the range −231 ≤ 𝑖 < 231 and examples of
allowed operations are +, -, *, and /

• Booleans have true and false values and examples operations are &&, ||, and !

Few types are predefined by the programming language

Additional types can be defined by a programmer

• E.g., declaration of a structure in C

CS 335 Swarnendu Biswas

What is a Type?

• If both operands of the arithmetic operators of addition, subtraction,
and multiplication are of type integer, then the result is of type
integer

Pascal

• The result of the unary & operator is a pointer to the object referred to by the
operand. If the type of operand is X, the type of the result is a pointer to X.

C

CS 335 Swarnendu Biswas

Each expression has a type associated with it

The Meaning of Type

• A type is a set of values

• A value has a given type if it belongs to the setDenotational

• A type is either from a collection of built-in types or a
composite type created by applying a type constructor
to built-in types

Structural

• A type is an interface consisting of a set of operations
with well-defined and mutually consistent semantics

Abstraction-
based

CS 335 Swarnendu Biswas

Type System

• The type of a language construct is denoted by a type expression
(e.g., basic types like int and float)

• The set of types and rules to associate type expressions to different
parts of a program (e.g., variables, expressions, and functions) are
collectively called a type system
• Type systems include rules for type equivalence, type compatibility, and type

inference
• Goal is to reduce sources of bugs due to type errors

• Different type systems may be used by different compilers for the
same language
• Pascal includes the index set of arrays in the type information of a function
• Compiler implementations allow the index set to be unspecified

CS 335 Swarnendu Biswas

Type Checking

• Ensure that valid operations are invoked on variables and expressions
• E.g., && operator in Java expects two operands of type boolean

• Includes both type inferencing and identifying type-related errors
• A type error or type clash is an error that occurs when we attempt an

operation on a value for which that operation is not defined

• Can catch errors, so needs to have a notion for error recovery

• Errors like arithmetic overflow (is a run time error, not a type clash) is outside
the scope of type systems

• A type checker implements a type system

CS 335 Swarnendu Biswas

Type Safety

• A program is type-safe if it is known to be free of type errors

• A language is type-safe if the only operations that can be performed
on data in the language are those allowed by the type of the data
• All legal programs in that language are type safe

• Type-safe languages do not allow operations or conversions that
violate the rules of the type system

• Java, Smalltalk, Scheme, Haskell, Ruby, and Ada are examples of type-
safe languages, while Fortran and C are not type-safe

CS 335 Swarnendu Biswas

Catching Type Errors

• Can a type checker predict that a
type error will occur when a
particular program is run?
• Impossible to build a type checker

that can predict which programs
will result in type errors

• Type checkers make a
conservative approximation of
what will happen during
execution
• Raises error for anything

that might cause a type error

class A {
int add(int x) {

return x + 1;
}
public static void main(

String args[]) {
A a = new A();
if (false) { add(a); }

}
}

CS 335 Swarnendu Biswas

TypeError.java:9: error: incompatible
types: A cannot be converted to int

add(a);

^
What is Gradual Typing

https://wphomes.soic.indiana.edu/jsiek/what-is-gradual-typing/

Categories of Type Systems
• Strongly typed – every expression can be assigned an unambiguous

type

• Weakly typed – Allows a value of one type to be treated as another
• Errors may go undetected at compile time and even at run time

• Untyped – Allows any operation to be performed on any data
• No type checking is done (e.g., assembly, Tcl, BCPL)

CS 335 Swarnendu Biswas

Manifest Typing
What is the difference between a strongly typed language and a statically typed language?

https://en.wikipedia.org/wiki/Manifest_typing
https://stackoverflow.com/questions/2690544/what-is-the-difference-between-a-strongly-typed-language-and-a-statically-typed?noredirect=1&lq=1

Categories of Type Systems

• Statically typed – every expression can be typed during compilation
(e.g., C, C++, Java, and Rust)

CS 335 Swarnendu Biswas

Manifest Typing
What is the difference between statically typed and dynamically typed languages?

• Dynamically typed – Types are
associated with run-time values
rather than expressions (e.g.,
Lisp, Perl, Python, Javascript,
and Ruby)
• Type errors cannot be detected

until the code is executed

https://en.wikipedia.org/wiki/Manifest_typing
https://stackoverflow.com/questions/1517582/what-is-the-difference-between-statically-typed-and-dynamically-typed-languages

Static vs Dynamic Typing

Static

• Can find errors at compile time

• Low cost of fixing bugs

• Improved reliability and
performance of compiled code

• Effectiveness depends on the
strength of the type system

Dynamic

• Allows fast compilation

• Type of a variable can depend on
runtime information

• Can load new code dynamically

• Allows constructs that static
checkers would reject

CS 335 Swarnendu Biswas

What is Gradual Typing

https://wphomes.soic.indiana.edu/jsiek/what-is-gradual-typing/

Categories of Type Systems

• Manifest (or explicit) typing
requires explicitly identifying the
type of a variable during
declaration (e.g., Pascal and Java)

• Type is deduced from context in
latent (or implicit) typing (e.g.,
Standard ML and OCaml)

CS 335 Swarnendu Biswas

int main() {
float x = 0.0;
int y = 0;
…

}

let val s = “Test”
val x = 0.0
val y = 0

…

Manifest Typing
Type systems: nominal vs. structural, explicit vs. implicit

https://en.wikipedia.org/wiki/Manifest_typing
https://softwareengineering.stackexchange.com/questions/181154/type-systems-nominal-vs-structural-explicit-vs-implicit

Categorization of Programming Languages

Statically Typed Dynamically Typed

Strongly Typed ML, Haskell, Java, Pascal Lisp, Scheme

Weakly Typed C, C++ Perl, PHP

CS 335 Swarnendu Biswas

• C is weakly and statically typed
• C++ is statically typed with optional dynamic type casting
• Some languages allow both static and dynamic typing

• Java is both statically and dynamically typed (allows downcasting to subtypes)

• Python is strongly and dynamically typed

Is Python strongly typed?

https://stackoverflow.com/questions/11328920/is-python-strongly-typed

CS 335 Swarnendu Biswas

Magic lies here - Statically vs Dynamically Typed Languages
Comparison of programming languages by type system

https://android.jlelse.eu/magic-lies-here-statically-typed-vs-dynamically-typed-languages-d151c7f95e2b
https://en.wikipedia.org/wiki/Comparison_of_programming_languages_by_type_system

Type Checking

CS 335 Swarnendu Biswas

• All checking can be implemented dynamically
• A sound type system ensures that the type of the value computed

from an expression matches the expression’s static type, and thus
avoids the need for dynamic checking

• A compiler can implement a statically typed language with
dynamic checking

Gradual Typing

• Allows parts of a program to be either
dynamically typed or statically typed

• Programmer controls the typing with
annotations
• Unannotated variables have unknown

type, check type at run time

• Static type checker considers every type
to be compatible with unknown

• E.g., Typescript and cperl

CS 335 Swarnendu Biswas

What is Gradual Typing
Gradual typing

def sum(num1: int, num2: int)

-> int:

return num1 + num2

print(sum(2, 3))

print(sum(1, “Hello World!”))

No type checking will
happen at run time

Type Hints in Python
v3.5+ (PEP 484)

https://wphomes.soic.indiana.edu/jsiek/what-is-gradual-typing/
https://en.wikipedia.org/wiki/Gradual_typing

Are these types same?

CS 335 Swarnendu Biswas

struct Tree {
struct Tree* left;
struct Tree* right;
int value;

}

struct STree {
struct STree* left;
struct STree* right;
int value;

}

Nominal and Structural Typing

• Nominal typing requires that
object is exactly of the given type
(by name) or is a subtype of that
type (e.g., C++, Java, and Swift)

• Structural typing requires that an
object supports a given set of
operations even if some of them
may not be used (e.g, Ocaml,
Haxe, and Haskell)

CS 335 Swarnendu Biswas

Type Systems: Structural vs. Nominal typing explained
Duck Typing vs Structural Typing vs Nominal Typing

https://medium.com/@thejameskyle/type-systems-structural-vs-nominal-typing-explained-56511dd969f4
https://medium.com/higher-order-functions/duck-typing-vs-structural-typing-vs-nominal-typing-e0881860bf10

Nominal and Structural Typing

Nominal

function greet(person) {

if (!(person instanceof Person))

throw TypeError

alert("Hello, " + person.Name);

}

Structural

function greet(person) {

if (!(typeof(person.Name) == string

&& typeof(person.Age) == number))

throw TypeError;

alert("Hello, " + person.Name);

}

CS 335 Swarnendu Biswas

Is it possible to have a dynamically typed language without duck typing?

https://softwareengineering.stackexchange.com/questions/259941/is-it-possible-to-have-a-dynamically-typed-language-without-duck-typing

Duck Typing

CS 335 Swarnendu Biswas

class Duck:
def fly(self):

print(“Duck flying”)

class Sparrow:
def fly(self):

print(“Sparrow flying”)

class Whale:
def swim(self):

print(“Whale swimming”)

for animal in Duck(), Sparrow(), Whale():
animal.fly()

If it walks like a duck and it quacks like a duck, then
it must be a duck

Duck Typing vs Structural Typing vs Nominal Typing
Duck typing

• An object’s validity is determined by the presence of certain methods
and properties, rather than the type of the object itself

https://medium.com/higher-order-functions/duck-typing-vs-structural-typing-vs-nominal-typing-e0881860bf10
https://en.wikipedia.org/wiki/Duck_typing

TypeScript Example
interface Person {

Name : string;

Age : number;

}

function greet(person : Person) {

console.log("Hello, " +

person.Name);

}

greet({ Name: "svick" });

• Compilation error implies
TypeScript uses static structural
typing

• Code still compiles to JavaScript
• Makes use of dynamic duck typing

CS 335 Swarnendu Biswas

Is it possible to have a dynamically typed language without duck typing?

no Age
property

function greet(person : Person) {
console.log("Hello, " +

person.Name);
}
greet({ Name: "svick" });

https://softwareengineering.stackexchange.com/questions/259941/is-it-possible-to-have-a-dynamically-typed-language-without-duck-typing

Benefits with Types

CS 335 Swarnendu Biswas

Usefulness of Types
• Type systems help specify precise program behavior

• Hardware does not distinguish interpretation of a sequence of bits

• Assigning type to a data variable, called typing, gives meaning to a sequence
of bits

CS 335 Swarnendu Biswas

Abstraction – Enables thinking in terms of primitive or composite data structures

Safety – Disallows meaningless computations, limits the set of operations in a semantically valid
program

Optimizations – Static type checking may allow a compiler to use specialized instructions for data
types

Documentation – Clarifies the intent of the programmer on the nature of the computation

Helps
reduce bugs

Ensure Runtime Safety

• Well-designed type system helps the compiler detect and avoid run-
time errors by identifying misinterpretations of data values

• Type inference – compiler infers a type for each name and expression

CS 335 Swarnendu Biswas

Result Types for Addition in Fortran 77

integer real double complex

integer integer real double complex

real real real double complex

double double double double illegal

complex complex complex illegal complex

Enhanced Expressiveness

• Strong type systems can support other features
• Operator overloading gives context-dependent meaning to an operator

• A symbol that can represent different operations in different contexts is overloaded

• Many operators are overloaded in typed languages

• In untyped languages, lexically different operators are required

• Strong type systems allow generating efficient code
• Perform compile-time optimizations, no run-time checks are required

• Otherwise, compiler needs to maintain type metadata along with value

CS 335 Swarnendu Biswas

Implementing Addition

Strongly Typed System

• integer ← integer + integer

• double ← integer + double

Weakly Typed System

if type_md(a) == integer

if type_md(b) == integer

value(c) = value(a) + value(b)

type_md(c) = integer

else if type_md(b) == float

temp = convert_to_float(a)

value(c) = temp + value(b)

type_md(c) = float

else …

else …

CS 335 Swarnendu Biswas

IADD 𝑅𝑎, 𝑅𝑏 ⇒ 𝑅𝑎+𝑏

I2D 𝑅𝑎 ⇒ 𝑅𝑎𝑑
DADD 𝑅𝑎𝑑 , 𝑅𝑏 ⇒ 𝑅𝑎𝑑+𝑏

Classification of Types

CS 335 Swarnendu Biswas

Components of a Type System

i. Basic (or built-in) types

ii. Rules for constructing new types from basic types

iii. Method for checking equivalence of two types

iv. Rules to infer the type of a source language expression

CS 335 Swarnendu Biswas

Base Types

• Modern languages include types for operating on numbers,
characters, and Booleans
• Similar to operations supported by the hardware

• Individual languages may add additional types
• Exact definitions and types vary across languages

• C does not have the string type

• There are two additional basic types
• void: no type value

• type_error: error during type checking

CS 335 Swarnendu Biswas

Constructed Types

• Programs often involve ADT concepts like graphs, trees, and stacks
• Each component of an ADT has its own type

• Constructed (also called non-scalar) types are created by applying a
type constructor to one or more base types
• Examples are arrays, strings, enums, structures, and unions

• Lists in Lisp are constructed type: A list is either nil or (cons first rest)

• Constructed types can allow high-level operations (e.g., assign one
structure variable to another variable)

CS 335 Swarnendu Biswas

Constructed Types

Structure

struct Node {

struct Node* next;

int value;

};

Type of Node may be (Node*) x int

Union

union Data {

int i;

float f;

char str[16];

};

Type of Data may be int ∪ float ∪
char[]

CS 335 Swarnendu Biswas

Type Constructors

• If 𝑇 is a type expression then 𝑎𝑟𝑟𝑎𝑦(𝐼, 𝑇) is a type expression
denoting the type of an array with elements of type 𝑇 and index set 𝐼
• 𝐼 is often a range of integers

• A can have type expression 𝑎𝑟𝑟𝑎𝑦(0 . . 9, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟)
• C uses equivalent of int* as the array type

• If 𝑇1 and 𝑇2 are type expressions, then the Cartesian product 𝑇1 × 𝑇2
is a type expression

CS 335 Swarnendu Biswas

int A[10];

Type Constructors

• Function maps domain set to a
range set denoted by type
expression 𝐷 → 𝑅
• Type of function int* f(char a,
char b) is denoted by char × char
→ int*

• Type signature is a specification of
the types of the formal parameters
and return value(s) of a function
• filter: 𝛼 → boolean × list
of 𝛼 → list of 𝛼

CS 335 Swarnendu Biswas

→

×

𝑐ℎ𝑎𝑟 𝑐ℎ𝑎𝑟

𝑝𝑜𝑖𝑛𝑡𝑒𝑟

𝑖𝑛𝑡𝑒𝑔𝑒𝑟

𝑐ℎ𝑎𝑟

→

× 𝑝𝑜𝑖𝑛𝑡𝑒𝑟

𝑖𝑛𝑡𝑒𝑔𝑒𝑟

𝑐ℎ𝑎𝑟 × 𝑐ℎ𝑎𝑟 → 𝑝𝑜𝑖𝑛𝑡𝑒𝑟(𝑖𝑛𝑡𝑒𝑔𝑒𝑟)

basic
type

type
constructor

× has higher priority than →,
and → is right associative

Pointer Types

• If 𝑇 is a type expression then 𝑝𝑜𝑖𝑛𝑡𝑒𝑟(𝑇) is a type expression
denoting type pointer to an object of type 𝑇

• Type safety with pointers assumes addresses correspond to typed
objects

• Ability to construct new pointers complicates reasoning about
pointer-based computations
• Some languages allow manipulating pointers

• Autoincrement and autodecrement constructs new pointers

CS 335 Swarnendu Biswas

Other Classifications

• Scalar and compound types
• Scalar indicates a single value, also called simple types

• Example of compound types are arrays, maps, sets, and structs

• String in Perl is scalar while it is a compound type in C

• Primitive and reference types
• Is this directly a value, or is it a reference to something that contains the real

value?

CS 335 Swarnendu Biswas

Polymorphism

CS 335 Swarnendu Biswas

Polymorphism

• Use a single interface for entities of multiple types
• Applicable to both data and functions

• A function that can operate on arguments of different types is a polymorphic
function

• Built-in operators for indexing arrays, applying functions, and manipulating
pointers are usually polymorphic

CS 335 Swarnendu Biswas

Ad hoc and Coercion Polymorphism

• Ad hoc polymorphism refers to
functions of same name whose
behavior depend on the type of
the arguments
• E.g., function and operator

overloading

• Coercion polymorphism occurs
when primitives or objects are
cast to other types

String fruits = “Apple” + “Orange”;

int a = b + c;

CS 335 Swarnendu Biswas

Explicitly specifies the set
of types at compile time

int(43.2)

double dnum = Double.valueOf(inum);

Parametric Polymorphism

• Code takes type or set of types as
parameter, either explicitly or
implicitly

• Parametric polymorphism does not
specify the exact types
• Type of the result is a function of the

argument types

• Explicit parametric polymorphism
is called generics or templates
• Used mostly in statically-typed

languages

class List<T> {

class Node<T> {

T elem;

Node<T> next;

}

Node<T> head;

...

}

List map(Func<A, B> f, List<A> x) {

...

}

CS 335 Swarnendu Biswas

Subtype Polymorphism

• Used in object-oriented
languages to access derived class
objects through base class
pointers
• Code is designed to work with

values of some specific type 𝑇

• Programmer can define extensions
of 𝑇 to work with the code

abstract class Animal {
abstract String talk();

}
class Cat extends Animal {

String talk() {
return "Meow!";

}
}
class Dog extends Animal {

String talk() {
return "Woof!";

}
}
void main(String[] args) {

(new Cat()).talk();
(new Dog()).talk();

}

CS 335 Swarnendu Biswas

Static and Dynamic Polymorphism

• Static polymorphism – which method to invoke is determined at
compile time by checking the method signatures (method
overloading)
• Usually used with ad hoc and parametric polymorphism

• Dynamic polymorphism – wait until run time to determine the type of
the object pointed to by the reference to decide the appropriate
method invocation by method overriding
• Usually used with subtype polymorphism

CS 335 Swarnendu Biswas

Type Equivalence

CS 335 Swarnendu Biswas

Are these definitions the same?

• Should the reversal of the order of the fields change type?
• Some languages (e.g., ML) say no, most languages say yes

CS 335 Swarnendu Biswas

type R2 = record
a : integer
b : integer

end;

type R1 = record
a, b : integer

end;

type R3 = record
b : integer
c : integer

end;

type str = array [1…10] of char; type str = array [0…9] of char;

Type Equivalence

• Mechanism to decide the equivalence of two types

• Two approaches
• Nominal equivalence – two type expressions are same if they have the same

name (e.g., C++, Java, and Swift)

• Structural equivalence – two type expressions are equivalent if
i. Either both are the same basic types, or

ii. Are formed by applying same type constructor to equivalent types

• E.g., OCaml and Haskell

CS 335 Swarnendu Biswas

Type Equivalence

Nominal

class Foo {

method(input: string): number {
... }

}

class Bar {

method(input: string): number {
... }

}

let foo: Foo = new Bar(); // ERROR

Structural

class Foo {

method(input: string): number {
... }

}

class Bar {

method(input: string): number {
... }

}

let foo: Foo = new Bar(); // Okay

CS 335 Swarnendu Biswas

Type Systems: Structural vs. Nominal typing explained

https://medium.com/@thejameskyle/type-systems-structural-vs-nominal-typing-explained-56511dd969f4

Type Equivalence

Nominal

• Equivalent if same name
• Identical names can be intentional

• Can avoid unintentional clashes

• Difficult to scale for large projects

Structural

• Equivalent only if same structure
• Assumes interchangeable objects

can be used in place of one other

• Problematic if values have special
meanings

CS 335 Swarnendu Biswas

Compilers build trees to represent types
• Construct a tree for each type declaration and compare tree structures to test for

equivalence

Type Graph

CS 335 Swarnendu Biswas

type link = ↑ cell;

var next : link;

last : link;

p : ↑ cell;

q, r : ↑ cell;
cell

𝑝𝑜𝑖𝑛𝑡𝑒𝑟link = 𝑝𝑜𝑖𝑛𝑡𝑒𝑟

p q rnext last

Two type expressions are equivalent if they are
represented by the same node in the type graph

• Under nominal equivalence, next and last, and p, q, and r are of same type
• Under structural equivalence, all the variables are of same type
• An alternate policy is to assign implicit type names every time a type name

appears in declarations
• Type expressions of p and q will then have different implicit names

Testing for Structural Equivalence
boolean struc_equiv(type 𝑠, type 𝑡)

if 𝑠 and 𝑡 are the same basic type then
return true

else if 𝑠 = array(𝑠1, 𝑠2) and 𝑡 = array(𝑡1, 𝑡2) then
return struc_equiv(𝑠1, 𝑡1) and struc_equiv(𝑠2, 𝑡2)

else if 𝑠 = 𝑠1 × 𝑠2 and 𝑡 = 𝑡1 × 𝑡2 then
return struc_equiv(𝑠1, 𝑡1) and struc_equiv(𝑠2, 𝑡2)

else if 𝑠 = pointer(𝑠1) and 𝑡 = pointer(𝑡1) then
return struc_equiv(𝑠1, 𝑡1)

else if 𝑠 = 𝑠1 → 𝑠2 and 𝑡 = 𝑡1 → 𝑡2 then
return struc_equiv(𝑠1, 𝑡1) and struc_equiv(𝑠2, 𝑡2)

else
return false

CS 335 Swarnendu Biswas

can also ignore
array bounds

Representing Recursively-defined Types

CS 335 Swarnendu Biswas

type link = ↑ cell;
cell = record

info : integer;
next : link

end;

next

×

link

×

info integer

cell = 𝑟𝑒𝑐𝑜𝑟𝑑

×

next

×

pointer

cell

×

info integer

cell = record

×

Cycles in Representations of Types

CS 335 Swarnendu Biswas

type link = ↑ cell;
cell = record

info : integer;
next : link

end;

next

×

pointer

×

info integer

cell = record

×

Type Equivalence

• C uses structural equivalence for
scalar types, and uses nominal
equivalence for structs

• Language in which aliased types
are distinct is said to have strict
name equivalence
• Loose name equivalence implies

aliased types are considered
equivalent

int *p, *q, *r;

typedef int * pint;

pint start, end;

CS 335 Swarnendu Biswas

Variable Type Expression

p pointer(int)

q pointer(int)

r pointer(int)

start pint

end pint

Efficient Encoding of Type Expressions

• Bit vectors can be used to encode type expressions more efficiently
than graph representations
• 𝑝𝑜𝑖𝑛𝑡𝑒𝑟(𝑡) denotes a pointer to type 𝑡

• 𝑎𝑟𝑟𝑎𝑦(𝑡) denotes an array of elements of type 𝑡

• 𝑓𝑢𝑛𝑐(𝑡) denotes a function that returns an object of type 𝑡

CS 335 Swarnendu Biswas

Type Constructor Encoding

𝑝𝑜𝑖𝑛𝑡𝑒𝑟 01

𝑎𝑟𝑟𝑎𝑦 10

𝑓𝑢𝑛𝑐 11

Basic Type Encoding

boolean 0000

char 0001

integer 0010

real 0011

Efficient Encoding of Type Expressions

Type Expression Encoding

char 000000 0001

𝑓𝑢𝑛𝑐(char) 000011 0001

𝑝𝑜𝑖𝑛𝑡𝑒𝑟(𝑓𝑢𝑛𝑐 char) 000111 0001

𝑎𝑟𝑟𝑎𝑦(𝑝𝑜𝑖𝑛𝑡𝑒𝑟(𝑓𝑢𝑛𝑐(char))) 100111 0001

CS 335 Swarnendu Biswas

Type Constructor Encoding

𝑝𝑜𝑖𝑛𝑡𝑒𝑟 01

𝑎𝑟𝑟𝑎𝑦 10

𝑓𝑢𝑛𝑐 11

Basic Type Encoding

boolean 0000

char 0001

integer 0010

real 0011

Six bits used because there
are 3 type constructors

Efficient Encoding of Type Expressions

Type Expression Encoding

char 000000 0001

𝑓𝑢𝑛𝑐(char) 000011 0001

𝑝𝑜𝑖𝑛𝑡𝑒𝑟(𝑓𝑢𝑛𝑐 char) 000111 0001

𝑎𝑟𝑟𝑎𝑦(𝑝𝑜𝑖𝑛𝑡𝑒𝑟(𝑓𝑢𝑛𝑐(char))) 100111 0001

CS 335 Swarnendu Biswas

Type Constructor Encoding

𝑝𝑜𝑖𝑛𝑡𝑒𝑟 01

𝑎𝑟𝑟𝑎𝑦 10

𝑓𝑢𝑛𝑐 11

Basic Type Encoding

boolean 0000

char 0001

integer 0010

real 0011Encoding saves space and also tracks the order of the type
constructors in type expressions

Type Compatibility

• Most languages do not require equivalence of types in every context

• Type compatibility determines when an object of a certain type can
be used in a certain context

• Definitions vary greatly from language to language

CS 335 Swarnendu Biswas

Type Inference Rules

• Specifies, for each operator, the mapping between the operand types
and the result type
• Type of the LHS of an assignment must be same as the RHS

• In Java, example, adding two integer types of different precision produces a
result of the more precise type

• Some languages require the compiler to perform implicit conversions
• Internal representations of integers and floats are different in a computer

• Recognize mixed-type expressions and insert appropriate conversions

• Implicit type conversion done by the compiler is called type coercion
• It is limited to the situations where no information is lost

CS 335 Swarnendu Biswas

Type Conversion

𝐸 → 𝐸1 + 𝐸2

{ if 𝐸1. 𝑡𝑦𝑝𝑒 == 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 and 𝐸2. 𝑡𝑦𝑝𝑒 == 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝐸. 𝑡𝑦𝑝𝑒 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟
else if 𝐸1. 𝑡𝑦𝑝𝑒 == 𝑓𝑙𝑜𝑎𝑡 and 𝐸2. 𝑡𝑦𝑝𝑒 == 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝐸. 𝑡𝑦𝑝𝑒 = 𝑓𝑙𝑜𝑎𝑡
… }

CS 335 Swarnendu Biswas

𝑑𝑜𝑢𝑏𝑙𝑒

𝑓𝑙𝑜𝑎𝑡

𝑙𝑜𝑛𝑔

𝑖𝑛𝑡

𝑏𝑦𝑡𝑒

𝑠ℎ𝑜𝑟𝑡 𝑐ℎ𝑎𝑟

w
id

en
in

g

𝑑𝑜𝑢𝑏𝑙𝑒

𝑓𝑙𝑜𝑎𝑡

𝑙𝑜𝑛𝑔

𝑖𝑛𝑡

𝑠ℎ𝑜𝑟𝑡𝑏𝑦𝑡𝑒 𝑐ℎ𝑎𝑟

n
ar

ro
w

in
g

according to precision
rules in Java

Type Conversion

𝐸 → 𝐸1 + 𝐸2

{ if 𝐸1. 𝑡𝑦𝑝𝑒 == 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 and 𝐸2. 𝑡𝑦𝑝𝑒 == 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝐸. 𝑡𝑦𝑝𝑒 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟
else if 𝐸1. 𝑡𝑦𝑝𝑒 == 𝑓𝑙𝑜𝑎𝑡 and 𝐸2. 𝑡𝑦𝑝𝑒 == 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝐸. 𝑡𝑦𝑝𝑒 = 𝑓𝑙𝑜𝑎𝑡
… }

CS 335 Swarnendu Biswas

𝑑𝑜𝑢𝑏𝑙𝑒

𝑓𝑙𝑜𝑎𝑡

𝑙𝑜𝑛𝑔

𝑖𝑛𝑡

𝑏𝑦𝑡𝑒

𝑠ℎ𝑜𝑟𝑡 𝑐ℎ𝑎𝑟

w
id

en
in

g

Assume two helper functions:
• max 𝑡1, 𝑡2 – return the maximum (or least common

ancestor) of the two types in the hierarchy
• widen(𝑎, 𝑡, 𝑤) – widen a value of type 𝑡 at address 𝑎 into a

value of type 𝑤

Addr widen(Addr a, Type t, Type w)
if (t == w) return a;
else if (t = integer and w = float) {

temp = new Temp();
gen(temp '=' '(float)' a);
return temp;

} else
error;

}

Type Conversion

𝐸 → 𝐸1 + 𝐸2

{ 𝐸. 𝑡𝑦𝑝𝑒 = max 𝐸1. 𝑡𝑦𝑝𝑒, 𝐸2. 𝑡𝑦𝑝𝑒 ; 𝑎1 = 𝑤𝑖𝑑𝑒𝑛 𝐸1. 𝑎𝑑𝑑𝑟, 𝐸1. 𝑡𝑦𝑝𝑒, 𝐸. 𝑡𝑦𝑝𝑒 ;
𝑎2 = 𝑤𝑖𝑑𝑒𝑛 𝐸2. 𝑎𝑑𝑑𝑟, 𝐸2. 𝑡𝑦𝑝𝑒, 𝐸. 𝑡𝑦𝑝𝑒 ;
𝐸. 𝑎𝑑𝑑𝑟 = 𝑛𝑒𝑤 𝑇𝑒𝑚𝑝(); 𝑔𝑒𝑛 𝐸. 𝑎𝑑𝑑𝑟 = 𝑎1 "+" 𝑎2 ; }

CS 335 Swarnendu Biswas

𝑑𝑜𝑢𝑏𝑙𝑒

𝑓𝑙𝑜𝑎𝑡

𝑙𝑜𝑛𝑔

𝑖𝑛𝑡

𝑏𝑦𝑡𝑒

𝑠ℎ𝑜𝑟𝑡 𝑐ℎ𝑎𝑟

w
id

en
in

g

Assume two helper functions:
• max 𝑡1, 𝑡2 – return the maximum (or least common

ancestor) of the two types in the hierarchy
• widen(𝑎, 𝑡, 𝑤) – widen a value of type 𝑡 at address 𝑎 into a

value of type 𝑤

Type Synthesis for Overloaded Functions

• Suppose 𝑓 is a function

• 𝑓 can have type 𝑠𝑖 → 𝑡𝑖 for 1 ≤ 𝑖 ≤ 𝑛, where 𝑠𝑖 ≠ 𝑠𝑗 for 𝑖 ≠ 𝑗

• 𝑥 has type 𝑠𝑘 for some 1 ≤ 𝑘 ≤ 𝑛

Expression 𝑓(𝑥) has type 𝑡𝑘

CS 335 Swarnendu Biswas

Type Checking

CS 335 Swarnendu Biswas

Type Checking Rules for Coercion from
Integer to Real

Production Semantic Action

𝐸 → num 𝐸. 𝑡𝑦𝑝𝑒 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

𝐸 → num . num 𝐸. 𝑡𝑦𝑝𝑒 = 𝑟𝑒𝑎𝑙

𝐸 → id 𝐸. 𝑡𝑦𝑝𝑒 = 𝑙𝑜𝑜𝑘𝑢𝑝(id. 𝑒𝑛𝑡𝑟𝑦)

𝐸 → 𝐸1 𝑜𝑝 𝐸2 if 𝐸1. 𝑡𝑦𝑝𝑒 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 and 𝐸2. 𝑡𝑦𝑝𝑒 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 then 𝐸. 𝑡𝑦𝑝𝑒 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟
else if 𝐸1. 𝑡𝑦𝑝𝑒 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 and 𝐸2. 𝑡𝑦𝑝𝑒 = 𝑟𝑒𝑎𝑙 then 𝐸. 𝑡𝑦𝑝𝑒 = 𝑟𝑒𝑎𝑙
else if 𝐸1. 𝑡𝑦𝑝𝑒 = 𝑟𝑒𝑎𝑙 and 𝐸2. 𝑡𝑦𝑝𝑒 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 then 𝐸. 𝑡𝑦𝑝𝑒 = 𝑟𝑒𝑎𝑙
else if 𝐸1. 𝑡𝑦𝑝𝑒 = 𝑟𝑒𝑎𝑙 and 𝐸1. 𝑡𝑦𝑝𝑒 = 𝑟𝑒𝑎𝑙 then 𝐸. 𝑡𝑦𝑝𝑒 = 𝑟𝑒𝑎𝑙

CS 335 Swarnendu Biswas

Implicit conversion of constants at compile time can reduce run time

Type Checking

• Some languages allow different levels of checking to apply to different
regions of code

• The use strict directive in Javascript and Perl applies stronger
checking

• Type checking has also been used for checking for system security

CS 335 Swarnendu Biswas

Type Checking of Expressions

• Idea: build a parse tree, assign a type to each leaf element, assign a
type to each internal node with a postorder walk

• Types should be matched for all function calls from within an
expression
• Possible ideas

i. Require the complete source code

ii. Make it mandatory to provide type signatures of functions as function prototype

iii. Defer type checking until linking or run-time

CS 335 Swarnendu Biswas

Specification of a Simple Type Checker

• Consider a language where each identifier must be declared before
use

• Design a type checker that can handle statements, functions, arrays,
and pointers

CS 335 Swarnendu Biswas

𝑃 → 𝐷; 𝐸
𝐷 → 𝐷;𝐷 | id ∶ 𝑇
𝑇 → char integer array num of 𝑇 | ↑ 𝑇
𝐸 → literal num id 𝐸 mod 𝐸 𝐸 𝐸 𝐸 𝐸 ↑

key: integer;
key mod 1999

SDT for Manipulating Symbol Table

CS 335 Swarnendu Biswas

Production Semantic Action

𝑃 → 𝐷; 𝐸

𝐷 → 𝐷;𝐷

𝐷 → id ∶ 𝑇 { 𝑎𝑑𝑑𝑡𝑦𝑝𝑒 id. 𝑒𝑛𝑡𝑟𝑦, 𝑇. 𝑡𝑦𝑝𝑒 }

𝑇 → char { 𝑇. 𝑡𝑦𝑝𝑒 = 𝑐ℎ𝑎𝑟 }

𝑇 → integer { 𝑇. 𝑡𝑦𝑝𝑒 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 }

𝑇 → array num of 𝑇1 { 𝑇. 𝑡𝑦𝑝𝑒 = 𝑎𝑟𝑟𝑎𝑦 1… num. 𝑣𝑎𝑙, 𝑇1. 𝑡𝑦𝑝𝑒 }

𝑇 →↑ 𝑇1 𝑇. 𝑡𝑦𝑝𝑒 = 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 𝑇1. 𝑡𝑦𝑝𝑒

Type Checking of Expressions

Production Semantic Action

𝐸 → literal { 𝐸. 𝑡𝑦𝑝𝑒 = 𝑐ℎ𝑎𝑟 }

𝐸 → num { 𝐸. 𝑡𝑦𝑝𝑒 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 }

𝐸 → id { 𝐸. 𝑡𝑦𝑝𝑒 = 𝑙𝑜𝑜𝑘𝑢𝑝(id. 𝑒𝑛𝑡𝑟𝑦) }

𝐸 → 𝐸1 mod 𝐸2 { if 𝐸1. 𝑡𝑦𝑝𝑒 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 and 𝐸2. 𝑡𝑦𝑝𝑒 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟
then 𝐸. 𝑡𝑦𝑝𝑒 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 else 𝐸. 𝑡𝑦𝑝𝑒 = 𝑡𝑦𝑝𝑒_𝑒𝑟𝑟𝑜𝑟 }

𝐸 → 𝐸1[𝐸2] { if 𝐸2. 𝑡𝑦𝑝𝑒 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 and 𝐸1. 𝑡𝑦𝑝𝑒 = 𝑎𝑟𝑟𝑎𝑦 𝑠, 𝑡
then 𝐸. 𝑡𝑦𝑝𝑒 = 𝑡 else 𝐸. 𝑡𝑦𝑝𝑒 = 𝑡𝑦𝑝𝑒_𝑒𝑟𝑟𝑜𝑟 }

𝐸 → 𝐸1 ↑ { if 𝐸1. 𝑡𝑦𝑝𝑒 = 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 𝑡 then 𝐸. 𝑡𝑦𝑝𝑒 = 𝑡
else 𝐸. 𝑡𝑦𝑝𝑒 = 𝑡𝑦𝑝𝑒_𝑒𝑟𝑟𝑜𝑟 }

CS 335 Swarnendu Biswas

Type Checking of Statements

• Statements do not have values, use the special basic type void

CS 335 Swarnendu Biswas

Production Semantic Action

𝑆 → id = 𝐸 { if id. 𝑡𝑦𝑝𝑒 = 𝐸. 𝑡𝑦𝑝𝑒 then 𝑆. 𝑡𝑦𝑝𝑒 = 𝑣𝑜𝑖𝑑 else 𝑆. 𝑡𝑦𝑝𝑒 =
𝑡𝑦𝑝𝑒_𝑒𝑟𝑟𝑜𝑟 }

𝑆 → if 𝐸 then 𝑆1 { if 𝐸. 𝑡𝑦𝑝𝑒 = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 then 𝑆. 𝑡𝑦𝑝𝑒 = 𝑆1. 𝑡𝑦𝑝𝑒 else 𝑆. 𝑡𝑦𝑝𝑒 =
𝑡𝑦𝑝𝑒_𝑒𝑟𝑟𝑜𝑟 }

𝑆 →
while 𝐸 do 𝑆1

{ if 𝐸. 𝑡𝑦𝑝𝑒 = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 then 𝑆. 𝑡𝑦𝑝𝑒 = 𝑆1. 𝑡𝑦𝑝𝑒 else 𝑆. 𝑡𝑦𝑝𝑒 =
𝑡𝑦𝑝𝑒_𝑒𝑟𝑟𝑜𝑟 }

𝑆 → 𝑆1; 𝑆2 { if 𝑆1. 𝑡𝑦𝑝𝑒 = 𝑣𝑜𝑖𝑑 and 𝑆2. 𝑡𝑦𝑝𝑒 = 𝑣𝑜𝑖𝑑 then 𝑆. 𝑡𝑦𝑝𝑒 = 𝑣𝑜𝑖𝑑
else 𝑆. 𝑡𝑦𝑝𝑒 = 𝑡𝑦𝑝𝑒_𝑒𝑟𝑟𝑜𝑟 }

Type Checking of Functions

CS 335 Swarnendu Biswas

Production Semantic Action

𝐸 → 𝐸1(𝐸2) { if 𝐸2. 𝑡𝑦𝑝𝑒 = 𝑠 and 𝐸1. 𝑡𝑦𝑝𝑒 = 𝑠 → 𝑡 then 𝐸. 𝑡𝑦𝑝𝑒 = 𝑡
else 𝐸. 𝑡𝑦𝑝𝑒 = 𝑡𝑦𝑝𝑒_𝑒𝑟𝑟𝑜𝑟 }

int f(double x, char y)

f: 𝑑𝑜𝑢𝑏𝑙𝑒 × 𝑐ℎ𝑎𝑟 → 𝑖𝑛𝑡

Storage Layout for Local Variables

CS 335 Swarnendu Biswas

Production

𝑇 → 𝐵𝐶

𝐵 → int

𝐵 → float

𝐶 → 𝜖

𝐶 → num 𝐶1

Determine amount of allocation in a
declaration

Computing Types and Their Widths

Production

𝑇 → 𝐵𝐶

𝐵 → int

𝐵 → float

𝐶 → 𝜖

𝐶 → num 𝐶1

Semantic Action

𝑇 → 𝐵 𝑡 = 𝐵. 𝑡𝑦𝑝𝑒;𝑤 = 𝐵.𝑤𝑖𝑑𝑡ℎ;
𝐶 { 𝑇. 𝑡𝑦𝑝𝑒 = 𝐶. 𝑡𝑦𝑝𝑒; 𝑇. 𝑤𝑖𝑑𝑡ℎ = 𝐶.𝑤𝑖𝑑𝑡ℎ; }

𝐵 → int { 𝐵. 𝑡𝑦𝑝𝑒 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟; 𝐵. 𝑤𝑖𝑑𝑡ℎ = 4; }

𝐵 → float { 𝐵. 𝑡𝑦𝑝𝑒 = 𝑓𝑙𝑜𝑎𝑡; 𝐵. 𝑤𝑖𝑑𝑡ℎ = 8; }

𝐶 → 𝜖 𝐶. 𝑡𝑦𝑝𝑒 = 𝑡; 𝐶. 𝑤𝑖𝑑𝑡ℎ = 𝑤;

𝐶 → num 𝐶1 { 𝐶. 𝑡𝑦𝑝𝑒 = 𝑎𝑟𝑟𝑎𝑦 num. 𝑣𝑎𝑙, 𝐶1. 𝑡𝑦𝑝𝑒 ;
𝐶. 𝑤𝑖𝑑𝑡ℎ = 𝑛𝑢𝑚. 𝑣𝑎𝑙 × 𝐶1. 𝑤𝑖𝑑𝑡ℎ; }

CS 335 Swarnendu Biswas

SDT for Array Type

CS 335 Swarnendu Biswas

𝐶

𝐶[3]

𝐶

𝑇

int

𝐵 𝑡𝑦𝑝𝑒 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟
𝑤𝑖𝑑𝑡ℎ = 4

𝑡𝑦𝑝𝑒 = 𝑎𝑟𝑟𝑎𝑦(2, 𝑎𝑟𝑟𝑎𝑦(3, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟))
𝑤𝑖𝑑𝑡ℎ = 24

𝜖

[2]

𝑡 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟
𝑤 = 4

𝑡𝑦𝑝𝑒 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟
𝑤𝑖𝑑𝑡ℎ = 4

𝑡𝑦𝑝𝑒 = 𝑎𝑟𝑟𝑎𝑦(3, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟)
𝑤𝑖𝑑𝑡ℎ = 12

𝑡𝑦𝑝𝑒 = 𝑎𝑟𝑟𝑎𝑦(2, 𝑎𝑟𝑟𝑎𝑦(3, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟))
𝑤𝑖𝑑𝑡ℎ = 24

Production

𝑇 → 𝐵𝐶

𝐵 → int

𝐵 → float

𝐶 → 𝜖

𝐶 → num 𝐶1

References

• A. Aho et al. Compilers: Principles, Techniques, and Tools, 1st edition, Chapter 6.

• A. Aho et al. Compilers: Principles, Techniques, and Tools, 2nd edition, Chapter 6.2.

• K. Cooper and L. Torczon. Engineering a Compiler, 2nd edition, Chapter 4.2.

• M. Scott. Programming Language Pragmatics, 4th edition, Chapters 7-8.

• Type system

CS 335 Swarnendu Biswas

https://en.wikipedia.org/wiki/Type_system

