
CS 335: Semantic Analysis
Swarnendu Biswas

Semester 2022-2023-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.



An Overview of Compilation

CS 335 Swarnendu Biswas

lexical analyzer

semantic analyzer

source program

syntax analyzer code optimizer

code generator

intermediate code 
generator

target program

error handler

symbol table



Beyond Scanning and Parsing

std::string x; 

int y;

y = x + 3;

int dot_prod(int x[], int y[]) {

int d, i; 

d = 0;

for (i=0; i<10; i++) 

d += x[i]*y[i];

return d;

}

int main() {

int p, a[10], b[10];

p = dot_prod(a, b);

return 0;

}

CS 335 Swarnendu Biswas

int a, b;

a = b + c;

Example static semantic checks that a compiler can perform:
• p, a, and b are declared before use
• Number and type of the parameters of dot_prod() are 

the same in its declaration and use
• Types of p and return type of dot_prod() match



Beyond Scanning and Parsing

• A compiler must do more than just recognize whether a sentence 
belongs to a programming language grammar
• An input program can be grammatically correct but may contain other errors 

that prevent compilation

• Lexer and parser cannot catch all program errors

• Some language features cannot be modeled using context-free 
grammar (CFG)
• Whether a variable has been declared before use?

• Parameter types and numbers match in the declaration and use of a function

• Types match on both sides of an assignment

CS 335 Swarnendu Biswas



Limitations with CFGs

• CFGs only deal with syntactic categories and structure

• Enforcing the “declare before use” rule requires knowledge that cannot be 
encoded in a CFG

• Grammar can specify the positions in an expression where a variable name 
may occur, but can enforce the “declare before use” rule
• CFG cannot match one instance of a variable name with another
• Programming languages also allow to include declarations within executable 

statements

CS 335 Swarnendu Biswas

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒𝐵𝑜𝑑𝑦 → 𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝐸𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒𝑠

Ensures variable declarations go 
before their uses



Questions That Compiler Needs to Answer

Questions

• Has a variable been declared?

• What is the type and size of a variable?

• Is the variable a scalar or an array?

• Is an array access A[i][j][k] consistent with the declaration?

• Does the name “x” correspond to a variable or a function?

• If x is a function, how many arguments does it take? 

• What kind of value, if any, does a function x return?

• Are all invocations of a function consistent with the declaration?

• Track inheritance relationship

• Ensure that classes and its methods are not multiply defined

CS 335 Swarnendu Biswas



Questions That Compiler Needs to Answer

CS 335 Swarnendu Biswas

𝑥 ← 𝑦 + 𝑧 𝑥 ← 𝑎 + 𝑏

Compilers need to understand the structure of the computation to 
translate the input program

𝑦, 𝑧, 𝑎, and 𝑏 can have different types, so code 
generation may need to be different



Semantic Analysis

• Finding answers to these questions is part of the semantic analysis 
phase 

• Static semantics of languages can be checked at compile time
• For example, ensure variable are declared before their uses, check that each 

expression has a correct type, and programs must have valid locations to 
transfer the control flow.

CS 335 Swarnendu Biswas



Checking Dynamic Semantics

• Dynamic semantics of languages 
need to be checked at run time
• Whether an overflow will occur 

during an arithmetic operation?
• Whether array bounds will be 

exceeded during execution?
• Whether recursion will exceed 

stack limits?

• Compilers can generate code to 
check dynamic semantics

int dot_prod(int x[], int y[]) {
int d, i; 
d = 0;
for (i=0; i<10; i++) 

d += x[i]*y[i];
return d;

}
int main() {

int p; int a[10], b[10];
p = dot_prod(a, b);
return 0;

}

CS 335 Swarnendu Biswas



How does a compiler answer these 
questions?
• Compilers track additional information for semantic analysis

• For example, types of variables, function parameters, and array dimensions

• Type information is stored in the symbol table or the syntax tree

• Used not only for semantic validation but also for subsequent phases of 
compilation

• The information required may be non-local in some cases

• Semantic analysis can be performed during parsing or in another pass 
that traverses the IR produced by the parser

CS 335 Swarnendu Biswas



How does a compiler answer these 
questions?
• Use formal methods like context-sensitive grammars

• Building efficient parsers is challenging

• Use ad-hoc techniques using symbol table

• Static semantics of PL can be specified using attribute grammars
• Attribute grammars are extensions of context-free grammars

CS 335 Swarnendu Biswas



Attribute Grammar Framework

CS 335 Swarnendu Biswas



Syntax-Directed Definition

• A syntax-directed definition (SDD) is a context-free grammar with 
attributes and semantic rules to evaluate the attributes
• Attributes may be of any type: numbers, strings, pointers to structures

• Attributes are associated with nodes in the parse tree, and each instance of a 
grammar symbol in the parse tree has an associated attribute

• Attribute grammars are SDDs with no side effects
• Help track context-sensitive information via attributes

CS 335 Swarnendu Biswas

Production Semantic Rule

𝐸 → 𝐸1 + 𝑇 𝐸. 𝑐𝑜𝑑𝑒 = 𝐸1. 𝑐𝑜𝑑𝑒||𝑇. 𝑐𝑜𝑑𝑒||" + "



Syntax-Directed Definition

• Generalization of CFG where each grammar symbol has an associated 
set of attributes
• Let 𝐺 = (𝑇,𝑁𝑇, 𝑆, 𝑃) be a CFG and let 𝑉 = 𝑇 ∪ 𝑁𝑇

• Every symbol 𝑋 ∈ 𝑉 is associated with a set of attributes (e.g., 𝑋. 𝑎 and 𝑋. 𝑏)

• Each attribute takes values from a specified domain (finite or infinite), which 
is its type
• Typical domains of attributes are, integers, reals, characters, strings, booleans, and 

structures

• New domains can be constructed from given domains by mathematical 
operations such as cross product and map

• Values of attributes are computed by semantic rules

CS 335 Swarnendu Biswas



Attribute Grammar for Signed Binary 
Numbers
Consider a grammar for signed 
binary numbers

Build an attribute grammar that 
annotates 𝑛𝑢𝑚𝑏𝑒𝑟 with the value 
it represents

Associate attributes with grammar 
symbols

CS 335 Swarnendu Biswas

𝑛𝑢𝑚𝑏𝑒𝑟 → 𝑠𝑖𝑔𝑛 𝑙𝑖𝑠𝑡
𝑠𝑖𝑔𝑛 → +| −
𝑙𝑖𝑠𝑡 → 𝑙𝑖𝑠𝑡 𝑏𝑖𝑡 | 𝑏𝑖𝑡
𝑏𝑖𝑡 → 0 | 1

Symbol Attributes

𝑛𝑢𝑚𝑏𝑒𝑟 𝑣𝑎𝑙

𝑠𝑖𝑔𝑛 𝑛𝑒𝑔

𝑙𝑖𝑠𝑡 𝑝𝑜𝑠, 𝑣𝑎𝑙

𝑏𝑖𝑡 𝑝𝑜𝑠, 𝑣𝑎𝑙



Attribute Grammar for Signed Binary Numbers

Production Attribute Rule

𝑛𝑢𝑚𝑏𝑒𝑟 → 𝑠𝑖𝑔𝑛 𝑙𝑖𝑠𝑡 𝑙𝑖𝑠𝑡. 𝑝𝑜𝑠 = 0
if 𝑠𝑖𝑔𝑛. 𝑛𝑒𝑔:
𝑛𝑢𝑚𝑏𝑒𝑟. 𝑣𝑎𝑙 = −𝑙𝑖𝑠𝑡. 𝑣𝑎𝑙

else:
𝑛𝑢𝑚𝑏𝑒𝑟. 𝑣𝑎𝑙 = −𝑙𝑖𝑠𝑡. 𝑣𝑎𝑙

𝑠𝑖𝑔𝑛 → + 𝑠𝑖𝑔𝑛. 𝑛𝑒𝑔 = false

𝑠𝑖𝑔𝑛 → − 𝑠𝑖𝑔𝑛. 𝑛𝑒𝑔 = true

𝑙𝑖𝑠𝑡 → 𝑏𝑖𝑡 𝑏𝑖𝑡. 𝑝𝑜𝑠 = 𝑙𝑖𝑠𝑡. 𝑝𝑜𝑠
𝑙𝑖𝑠𝑡. 𝑣𝑎𝑙 = 𝑏𝑖𝑡. 𝑣𝑎𝑙

𝑙𝑖𝑠𝑡0 → 𝑙𝑖𝑠𝑡1𝑏𝑖𝑡 𝑙𝑖𝑠𝑡1. 𝑝𝑜𝑠 = 𝑙𝑖𝑠𝑡0. 𝑝𝑜𝑠 + 1
𝑏𝑖𝑡. 𝑝𝑜𝑠 = 𝑙𝑖𝑠𝑡0. 𝑝𝑜𝑠
𝑙𝑖𝑠𝑡0. 𝑣𝑎𝑙 = 𝑙𝑖𝑠𝑡1. 𝑣𝑎𝑙 + 𝑏𝑖𝑡. 𝑣𝑎𝑙

𝑏𝑖𝑡 → 0 𝑏𝑖𝑡. 𝑣𝑎𝑙 = 0

𝑏𝑖𝑡 → 1 𝑏𝑖𝑡. 𝑣𝑎𝑙 = 2𝑏𝑖𝑡.𝑝𝑜𝑠

CS 335 Swarnendu Biswas



Parse Tree for -101 

CS 335 Swarnendu Biswas

1 0 1

𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑠𝑖𝑔𝑛 𝑙𝑖𝑠𝑡

𝑛𝑢𝑚𝑏𝑒𝑟

−



Annotated Parse Tree for -101

• A parse tree showing 
the value(s) of its 
attribute(s) is called 
an annotated parse 
tree

CS 335 Swarnendu Biswas

1 0 1

𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑠𝑖𝑔𝑛 𝑙𝑖𝑠𝑡

𝑛𝑢𝑚𝑏𝑒𝑟

−

𝑝𝑜𝑠 = 0

𝑝𝑜𝑠 =1 𝑝𝑜𝑠 = 0

𝑝𝑜𝑠 = 2 𝑝𝑜𝑠 =1

𝑝𝑜𝑠 = 2

1

2

3

2

3

4

information 
flow



Annotated Parse Tree for -101

• A parse tree showing 
the value(s) of its 
attribute(s) is called 
an annotated parse 
tree

CS 335 Swarnendu Biswas

1

𝑏𝑖𝑡

𝑠𝑖𝑔𝑛

𝑛𝑢𝑚𝑏𝑒𝑟

−

1 0

𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑙𝑖𝑠𝑡

𝑙𝑖𝑠𝑡 𝑝𝑜𝑠 = 0

𝑝𝑜𝑠 =1 𝑝𝑜𝑠 = 0

𝑝𝑜𝑠 = 2 𝑝𝑜𝑠 =1

𝑝𝑜𝑠 = 2

𝑛𝑒𝑔 = 𝑡𝑟𝑢𝑒

𝑛𝑒𝑔 = 𝑡𝑟𝑢𝑒

𝑣𝑎𝑙 =?



Annotated Parse Tree for -101

• A parse tree showing 
the value(s) of its 
attribute(s) is called 
an annotated parse 
tree

CS 335 Swarnendu Biswas

𝑠𝑖𝑔𝑛

−

𝑣𝑎𝑙 = 1

𝑝𝑜𝑠 = 2

𝑝𝑜𝑠 = 2

𝑛𝑒𝑔 = 𝑡𝑟𝑢𝑒

𝑛𝑒𝑔 = 𝑡𝑟𝑢𝑒

1 0 1

𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑙𝑖𝑠𝑡

𝑛𝑢𝑚𝑏𝑒𝑟

𝑝𝑜𝑠 = 0

𝑝𝑜𝑠 =1 𝑝𝑜𝑠 = 0

𝑝𝑜𝑠 =1

𝑣𝑎𝑙 = 4

𝑣𝑎𝑙 = 0
𝑣𝑎𝑙 = 4

𝑣𝑎𝑙 = 4

𝑣𝑎𝑙 = 5

𝑣𝑎𝑙 = −5



Types of Nonterminal Attributes

Synthesized

• Value of a synthesized attribute for a nonterminal 𝐴 at a node 𝑁 is computed from 
the values of children nodes and 𝑵 itself (e.g., 𝑣𝑎𝑙 and 𝑛𝑒𝑔)

• Defined by a semantic rule associated with a production at 𝑁 such that the 
production has 𝐴 as its head 

Inherited

• Value of an inherited attribute for a nonterminal 𝐵 at a node 𝑁 is computed from 
the values at 𝑵’s parent, 𝑵 itself, and 𝑵’s siblings (e.g., 𝑝𝑜𝑠) 

• Defined by a semantic rule associated with the production at the parent of 𝑁 such 
that the production has 𝐵 in its body

CS 335 Swarnendu Biswas



Syntax-Directed Definition

• A grammar production 𝐴 → 𝛼 has an associated semantic rule 𝑏 =
𝑓(𝑐1, 𝑐2, … , 𝑐𝑘)
• 𝑏 is a synthesized attribute of 𝐴 and 𝑐1, 𝑐2, …, 𝑐𝑘 are attributes of symbols in the 

production

• 𝑏 is an inherited attribute of a symbol in the body, and 𝑐1, 𝑐2, …, 𝑐𝑘 are attributes of 
symbols in the production

• Start symbol cannot have inherited attributes

• Terminals can have synthesized attributes, but not inherited attributes
• Attributes for terminals have lexical values that are supplied by the lexical analyzer

CS 335 Swarnendu Biswas



Dependency Graph

• If an attribute 𝑏 depends on an attribute 𝑐 then the semantic rule for 
𝑏 must be evaluated after the semantic rule for 𝑐

• The dependencies among the nodes are depicted by a directed graph 
called dependency graph

• Annotated parse tree shows the values at attributes, while the 
dependency graph shows how the values need to be computed

CS 335 Swarnendu Biswas



Dependency Graph

• Suppose 𝐴. 𝑎 = 𝑓 𝑋. 𝑥, 𝑌. 𝑦 is a semantic rule for 𝐴 → 𝑋𝑌

• Suppose 𝑋. 𝑥 = 𝑓(𝐴. 𝑎, 𝑌. 𝑦) is a semantic rule for 𝐴 → 𝑋𝑌

CS 335 Swarnendu Biswas

𝐴

𝑋 𝑌 𝑌. 𝑦

𝐴. 𝑎

𝑋. 𝑥

𝐴

𝑋 𝑌 𝑌. 𝑦

𝐴. 𝑎

𝑋. 𝑥

Parse tree Dependency 
graph



Construct Dependency Graph

for each node 𝑛 in the parse tree do

for each attribute 𝑎 of the grammar symbol do

construct a node in the dependency graph for 𝑎

for each node 𝑛 in the parse tree do

for each semantic rule 𝑏 = 𝑓(𝑐1, 𝑐2, … , 𝑐𝑘) do        // Associated with production at node 𝑛

for 𝑖 = 1 to 𝑘 do

construct an edge from 𝑐𝑖 to 𝑏

CS 335 Swarnendu Biswas



Example of a Dependence Graph 

CS 335 Swarnendu Biswas

𝑠𝑖𝑔𝑛

−

𝑣𝑎𝑙 = 1

𝑝𝑜𝑠 = 2

𝑝𝑜𝑠 = 2

𝑛𝑒𝑔 = 𝑡𝑟𝑢𝑒

𝑛𝑒𝑔 = 𝑡𝑟𝑢𝑒

1 0 1

𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑙𝑖𝑠𝑡

𝑛𝑢𝑚𝑏𝑒𝑟

𝑝𝑜𝑠 = 0

𝑝𝑜𝑠 =1 𝑝𝑜𝑠 = 0

𝑝𝑜𝑠 =1

𝑣𝑎𝑙 = 4

𝑣𝑎𝑙 = 0
𝑣𝑎𝑙 = 4

𝑣𝑎𝑙 = 4

𝑣𝑎𝑙 = 5

𝑣𝑎𝑙 = −5

nodes are 
attributes



Evaluating an SDD

• In what order do we evaluate attributes in an implementation? 
• SDDs do not specify any order of evaluation 

• We must evaluate all the attributes upon which the attribute of a node 
depends

• For SDD’s with both synthesized and inherited attributes, there is no 
guarantee of an order of evaluation existing

CS 335 Swarnendu Biswas



Circular Dependency of Attributes

Production Semantic Rules

𝐴 → 𝐵 𝐴. 𝑠 = 𝐵. 𝑖
𝐵. 𝑖 = 𝐴. 𝑠 + 1

CS 335 Swarnendu Biswas

A

B

𝐴. 𝑠

𝐵. 𝑖
A compiler must deal with circularity appropriately 
for attribute grammars 



Evaluating an SDD

• Parse tree method
• In the absence of cycles, use topological sort of the dependency graph to find the 

evaluation order
• Any topological sort of dependency graph gives a valid partial order in which 

semantic rules must be evaluated
• Each rule executes as soon as all its input operands are available

• Rule-based method
• Semantic rules are analyzed and order of evaluation is predetermined
• E.g., evaluate 𝑙𝑖𝑠𝑡. 𝑝𝑜𝑠 first and 𝑙𝑖𝑠𝑡. 𝑣𝑎𝑙 later

• Oblivious method
• Evaluation order ignores the semantic rules, makes repeated left-to-right and right-

to-left passes until all attributes have values

CS 335 Swarnendu Biswas



Postfix Notation

• Postfix notation for an expression 𝐸 is defined inductively
• If 𝐸 is a variable or constant, then postfix notation is 𝐸

• If 𝐸 = 𝐸1op𝐸2 where op is any binary operator, then the postfix notation is 
𝐸1
′𝐸2

′op, where 𝐸1
′ and 𝐸2

′ are postfix notations for 𝐸1 and 𝐸2 respectively

• If 𝐸 = (𝐸1), then postfix notation for 𝐸1 is the notation for 𝐸

CS 335 Swarnendu Biswas



SDD for Infix to Postfix Translation

Production Semantic Rules

𝑒𝑥𝑝𝑟 → 𝑒𝑥𝑝𝑟1 + 𝑡𝑒𝑟𝑚 𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 = 𝑒𝑥𝑝𝑟1. 𝑐𝑜𝑑𝑒||𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒||"+"

𝑒𝑥𝑝𝑟 → 𝑒𝑥𝑝𝑟1 − 𝑡𝑒𝑟𝑚 𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 = 𝑒𝑥𝑝𝑟1. 𝑐𝑜𝑑𝑒||𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒||" − "

𝑒𝑥𝑝𝑟 → 𝑡𝑒𝑟𝑚 𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 = 𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒

𝑡𝑒𝑟𝑚 → 0 1 … | 9

𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "0"
𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "1"
…
𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "9"

CS 335 Swarnendu Biswas



Annotated Parse Tree

CS 335 Swarnendu Biswas

𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 = "95 − 2 + "

𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 = "95 − " 𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "2"

𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 = "9" 𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "5"

𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "9"

"9"

" − "

"5"

" + "

"2"



Types of SDDs

• Cycles need to be avoided since the compiler can no longer 
meaningfully proceed with evaluation

• Expensive to identify whether an arbitrary SDD will have cycles

• S-attributed and L-attributed SDDs guarantee no cycles

CS 335 Swarnendu Biswas



S-Attributed Definition

• An SDD that involves only synthesized attributes is called S-attributed 
definition
• Each rule computes an attribute for the head nonterminal from attributes 

taken from the body of the production

• Semantic rules in a S-attributed definition can be evaluated by a 
bottom-up or postorder traversal of the parse tree

• An S-attributed SDD can be implemented naturally in conjunction with an LR
parser

CS 335 Swarnendu Biswas

postorder(𝑁) {
for (each child 𝐶 of 𝑁, from left to right) 

postorder(𝐶)
evaluate the attributes associated with node 𝑁

}



Example of S-Attributed Definition

Production Semantic Rules

𝐿 → 𝐸 $ 𝐿. 𝑣𝑎𝑙 = 𝐸. 𝑣𝑎𝑙

𝐸 → 𝐸1 + 𝑇 𝐸. 𝑣𝑎𝑙 = 𝐸1. 𝑣𝑎𝑙 + 𝑇. 𝑣𝑎𝑙

𝐸 → 𝑇 𝐸. 𝑣𝑎𝑙 = 𝑇. 𝑣𝑎𝑙

𝑇 → 𝑇1 ∗ 𝐹 𝑇. 𝑣𝑎𝑙 = 𝑇1. 𝑣𝑎𝑙 × 𝐹. 𝑣𝑎𝑙

𝑇 → 𝐹 𝑇. 𝑣𝑎𝑙 = 𝐹. 𝑣𝑎𝑙

𝐹 → (𝐸) 𝐹. 𝑣𝑎𝑙 = 𝐸. 𝑣𝑎𝑙

𝐹 → digit 𝐹. 𝑣𝑎𝑙 = digit. 𝑙𝑒𝑥𝑣𝑎𝑙

CS 335 Swarnendu Biswas

all attributes are 
synthesized



Annotated Parse Tree for 3 ∗ 5 + 4 $

CS 335 Swarnendu Biswas

𝑇. 𝑣𝑎𝑙 = 4

𝐹. 𝑣𝑎𝑙 = 4

digit. 𝑙𝑒𝑥𝑣𝑎𝑙 = 4

𝐸. 𝑣𝑎𝑙 = 15

𝑇. 𝑣𝑎𝑙 = 15

𝑇. 𝑣𝑎𝑙 = 3

𝐹. 𝑣𝑎𝑙 = 3

digit. 𝑙𝑒𝑥𝑣𝑎𝑙 = 3

𝐹. 𝑣𝑎𝑙 = 5

digit. 𝑙𝑒𝑥𝑣𝑎𝑙 = 5

𝐿. 𝑣𝑎𝑙 = 19

𝐸. 𝑣𝑎𝑙 = 19 $

+

∗



Abstract Syntax Tree (AST)

• Condensed form of a parse tree used for representing language 
constructs 
• Each leaf is an operand and non-leaf nodes represent operators
• ASTs do not check for string membership in the language for a grammar
• ASTs represent relationships between language constructs, do not bother 

with derivations

• Parse trees are also called concrete syntax trees

CS 335 Swarnendu Biswas

𝑆 → if 𝑃 then 𝑆1else 𝑆2

if−then−else

𝑃 𝑆1 𝑆2



Parse Tree vs Abstract Syntax Tree

Parse Tree Abstract Syntax Tree

CS 335 Swarnendu Biswas

𝐸𝑥𝑝𝑟

name

𝐸𝑥𝑝𝑟

𝐸𝑥𝑝𝑟 + 𝑇𝑒𝑟𝑚

− 𝑇𝑒𝑟𝑚 𝐹𝑎𝑐𝑡𝑜𝑟

name𝐹𝑎𝑐𝑡𝑜𝑟

name

𝑇𝑒𝑟𝑚

𝐹𝑎𝑐𝑡𝑜𝑟

+

name−

name name



Inherited Attributes

• Useful when the structure of the parse tree does not match the 
abstract syntax of the source code

CS 335 Swarnendu Biswas

Production Semantic Rules

𝑇 → 𝐹𝑇′ 𝑇′. 𝑖𝑛ℎ = 𝐹. 𝑣𝑎𝑙
𝑇. 𝑣𝑎𝑙 = 𝑇′. 𝑠𝑦𝑛

𝑇′ →∗ 𝐹𝑇1
′ 𝑇1

′. 𝑖𝑛ℎ = 𝑇′. 𝑖𝑛ℎ × 𝐹. 𝑣𝑎𝑙
𝑇′. 𝑠𝑦𝑛 = 𝑇1

′. 𝑠𝑦𝑛

𝑇′ → 𝜖 𝑇′. 𝑠𝑦𝑛 = 𝑇′. 𝑖𝑛ℎ

𝐹 → digit 𝐹. 𝑣𝑎𝑙 = digit. 𝑙𝑒𝑥𝑣𝑎𝑙



Parse Tree and Annotated Parse Tree for 3 ∗ 5

CS 335 Swarnendu Biswas

𝑇. 𝑣𝑎𝑙 = 15

∗ 𝐹. 𝑣𝑎𝑙 = 5

𝑇′. 𝑖𝑛ℎ = 3
𝑇′. 𝑠𝑦𝑛 = 15

𝐹. 𝑣𝑎𝑙 = 3

digit. 𝑙𝑒𝑥𝑣𝑎𝑙 = 3

digit. 𝑙𝑒𝑥𝑣𝑎𝑙 = 5

𝑇1
′. 𝑖𝑛ℎ = 15

𝑇1
′. 𝑠𝑦𝑛 = 15

𝑇

∗ 𝐹

𝑇′𝐹

digit

digit

𝑇1
′

𝜖
𝜖



Parse Tree and Annotated Parse Tree for 3 ∗ 5

CS 335 Swarnendu Biswas

𝑇. 𝑣𝑎𝑙 = 15

∗ 𝐹. 𝑣𝑎𝑙 = 5

𝑇′. 𝑖𝑛ℎ = 3
𝑇′. 𝑠𝑦𝑛 = 15

𝐹. 𝑣𝑎𝑙 = 3

digit. 𝑙𝑒𝑥𝑣𝑎𝑙 = 3

digit. 𝑙𝑒𝑥𝑣𝑎𝑙 = 5

𝑇1
′. 𝑖𝑛ℎ = 15

𝑇1
′. 𝑠𝑦𝑛 = 15

𝑇

∗ 𝐹

𝑇′𝐹

digit

digit

𝑇1
′

𝜖
𝜖



Another Example

CS 335 Swarnendu Biswas

Production Semantic Rules

𝐷 → 𝑇𝐿 𝐿. 𝑖𝑛 = 𝑇. 𝑡𝑦𝑝𝑒

𝑇 → float 𝑇. 𝑡𝑦𝑝𝑒 = float

𝑇 → int 𝑇. 𝑡𝑦𝑝𝑒 = int

𝐿 → 𝐿1, id 𝐿1. 𝑖𝑛 = 𝐿. 𝑖𝑛; 𝑎𝑑𝑑𝑡𝑦𝑝𝑒(id. 𝑒𝑛𝑡𝑟𝑦, 𝐿. 𝑖𝑛)

𝐿 → id 𝑎𝑑𝑑𝑡𝑦𝑝𝑒(id. 𝑒𝑛𝑡𝑟𝑦, 𝐿. 𝑖𝑛)

Parse Tree for “float 𝑥, 𝑦, 𝑧”

𝐷

𝑇 𝐿

float 𝐿 id,

𝐿 id,

id

𝑎𝑑𝑑𝑡𝑦𝑝𝑒() installs 𝐿. 𝑖𝑛 as the type of the symbol table object 
pointed to by id. 𝑒𝑛𝑡𝑟𝑦 (implies a side effect)



Dependency Graph for float 𝑥, 𝑦, 𝑧

CS 335 Swarnendu Biswas

𝐷

𝑇

float

𝐿

𝐿 , id

𝐿 , id

id

𝑡𝑦𝑝𝑒 𝑖𝑛ℎ 𝑒𝑛𝑡𝑟𝑦

𝑒𝑛𝑡𝑟𝑦

𝑒𝑛𝑡𝑟𝑦

𝑒𝑛𝑡𝑟𝑦

𝑖𝑛ℎ 𝑒𝑛𝑡𝑟𝑦

𝑖𝑛ℎ 𝑒𝑛𝑡𝑟𝑦



Notes about Inherited Attributes

• Always possible to rewrite a SDD to use only synthesized attributes 
• Inherited attributes can be simulated with synthesized attributes and helper 

functions

• May be more logical to use both synthesized and inherited attributes

• Inherited attributes usually cannot be evaluated by a simple preorder 
traversal of the parse tree 
• Attributes may depend on both left and right siblings!

• Attributes that do not depend on right children can be evaluated by a 
preorder traversal

CS 335 Swarnendu Biswas

How can an inherited attribute be simulated using a synthesized attribute?

https://cstheory.stackexchange.com/questions/21064/how-can-an-inherited-attribute-be-simulated-using-a-synthesized-attribute


Bottom-up Evaluation of S-Attributed
Definitions

• Suppose 𝐴 → 𝑋𝑌𝑍, and 
semantic rule is 𝐴. 𝑎 =
𝑓(𝑋. 𝑥, 𝑌. 𝑦, 𝑍. 𝑧)

• Attributes can be computed 
during bottom-up parsing 
• Extend the stack to hold values
• On reduction, value of new 

synthesized attribute 𝐴. 𝑎 is 
computed from the attributes 
on the stack

CS 335 Swarnendu Biswas

… … 𝑤 $

LR Parsing 
Program

Input

𝑍. 𝑧

𝑌. 𝑦

𝑋. 𝑥

$

𝑍

𝑌

𝑋

$

State 
stack

Value 
stack



Example S-Attributed Definition

Production Semantic Rules

𝐿 → 𝐸 $ 𝐿. 𝑣𝑎𝑙 = 𝐸. 𝑣𝑎𝑙

𝐸 → 𝐸1 + 𝑇 𝐸. 𝑣𝑎𝑙 = 𝐸1. 𝑣𝑎𝑙 + 𝑇. 𝑣𝑎𝑙

𝐸 → 𝑇 𝐸. 𝑣𝑎𝑙 = 𝑇. 𝑣𝑎𝑙

𝑇 → 𝑇1 ∗ 𝐹 𝑇. 𝑣𝑎𝑙 = 𝑇1. 𝑣𝑎𝑙 × 𝐹. 𝑣𝑎𝑙

𝑇 → 𝐹 𝑇. 𝑣𝑎𝑙 = 𝐹. 𝑣𝑎𝑙

𝐹 → (𝐸) 𝐹. 𝑣𝑎𝑙 = 𝐸. 𝑣𝑎𝑙

𝐹 → digit 𝐹. 𝑣𝑎𝑙 = digit. 𝑙𝑒𝑥𝑣𝑎𝑙

CS 335 Swarnendu Biswas



Bottom-up Evaluation of S-Attributed Definitions
Value Symbols Input Action

$ $ 3 ∗ 5 + 4$ Shift

$3 $digit ∗ 5 + 4$ Reduce by 𝐹 → digit

$3 $𝐹 ∗ 5 + 4$ Reduce by 𝑇 → 𝐹

$3 $𝑇 ∗ 5 + 4$ Shift

$3 $𝑇 ∗ 5 + 4$ Shift

$3 5 $𝑇 ∗ digit +4$ Reduce by 𝐹 → digit

$3 5 $𝑇 ∗ 𝐹 +4$ Reduce by 𝑇 → 𝑇 ∗ 𝐹

$15 $𝑇 +4$ Reduce by 𝐸 → 𝑇

$15 $𝐸 +4$ Shift

$15 $𝐸 + 4$ Shift

$15 4 $𝐸 + digit $ Reduce by 𝐹 → digit

$15 4 $𝐸 + 𝐹 $ Reduce by 𝑇 → 𝐹

$15 4 $𝐸 + 𝑇 $ Reduce by 𝐸 → 𝐸 + 𝑇

$19 $𝐸 $ …
CS 335 Swarnendu Biswas



L-Attributed Definitions

• Each attribute must be either 
i. Synthesized, or

ii. Suppose 𝐴 → 𝑋1𝑋2…𝑋𝑛 and 
𝑋𝑖 . 𝑎 is an inherited attribute. 
𝑋𝑖 . 𝑎 can be computed using
a) Only inherited attributes from 𝐴, 

or 

b) Either inherited or synthesized 
attributes associated with 
𝑋1, … , 𝑋𝑖−1, or 

c) Inherited or synthesized attributes 
associated with 𝑋𝑖.

CS 335 Swarnendu Biswas

Production Semantic Rules

𝑇 → 𝐹𝑇′ 𝑇′. 𝑖𝑛ℎ = 𝐹. 𝑣𝑎𝑙
𝑇. 𝑣𝑎𝑙 = 𝑇′. 𝑠𝑦𝑛

𝑇′ →∗ 𝐹𝑇1
′ 𝑇1

′. 𝑖𝑛ℎ = 𝑇′. 𝑖𝑛ℎ × 𝐹. 𝑣𝑎𝑙
𝑇′. 𝑠𝑦𝑛 = 𝑇1

′. 𝑠𝑦𝑛

𝑇′ → 𝜖 𝑇′. 𝑠𝑦𝑛 = 𝑇′. 𝑖𝑛ℎ

𝐹 → digit 𝐹. 𝑣𝑎𝑙 = digit. 𝑙𝑒𝑥𝑣𝑎𝑙



Are these SDDs S- or L-attributed?

Production Semantic Rules

𝐴 → 𝐵𝐶
𝐴. 𝑎 = 𝐵. 𝑏1
𝐵. 𝑏2 = 𝑓(𝐴. 𝑎, 𝐶. 𝑐)

CS 335 Swarnendu Biswas

Production Semantic Rules

𝐴 → 𝐵𝐶
𝐵. 𝑖 = 𝑓1(𝐴. 𝑖)
𝐶. 𝑖 = 𝑓2(𝐵. 𝑠)
𝐴. 𝑠 = 𝑓3(𝐶. 𝑠)

Production Semantic Rules

𝐴 → 𝐵𝐶
𝐶. 𝑖 = 𝑓4(𝐴. 𝑖)
𝐵. 𝑖 = 𝑓5(𝐶. 𝑠)
𝐴. 𝑠 = 𝑓6(𝐵. 𝑠)



S-Attributed and L-Attributed Definitions

Every S-attributed grammar is also a L-attributed 
grammar

All L-attributed grammars are not S-attributed

CS 335 Swarnendu Biswas



Challenges with Attribute Grammars

i. Rules only involve local information (i.e., attributes pertaining to 
symbols in the production)
• Needs additional attributes and copy rules to use non-local information, 

which increases memory and run-time overhead

ii. Results can be scattered across attributes in the parse tree

iii. Works in conjunction with a parse tree or an AST
• A compiler implementation may not build either

CS 335 Swarnendu Biswas



Syntax-Directed Translation

CS 335 Swarnendu Biswas



Recap SDDs

• Syntax-directed definition (SDD)
• Defines a set of attributes and translations at every node of the parse tree, 

output is available at the root

• Functional style which hides implementation details
• Evaluation order is not specified among multiple attributes for a production

• Only requirement is there should not be any circularity

CS 335 Swarnendu Biswas



Associating Semantic Rules with Productions

• Syntax-directed translation (SDT)
• Program fragments are embedded as semantic actions in production body

• Generates code while parsing

• Indicates order in which semantic actions are to be evaluated

• Executable specification of an SDD, easier to implement, and can be more 
efficient since the compiler can avoid constructing a parse tree and a 
dependency graph

• Yacc/Bison uses translation schemes

CS 335 Swarnendu Biswas

𝑟𝑒𝑠𝑡 → +𝑡𝑒𝑟𝑚 { 𝑝𝑟𝑖𝑛𝑡("+") } 𝑟𝑒𝑠𝑡1



SDT for Infix to Postfix Translation

SDD

Production Semantic Rule

𝑒𝑥𝑝𝑟
→ 𝑒𝑥𝑝𝑟1 + 𝑡𝑒𝑟𝑚

𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 =
𝑒𝑥𝑝𝑟1. 𝑐𝑜𝑑𝑒||𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒||" + "

𝑒𝑥𝑝𝑟
→ 𝑒𝑥𝑝𝑟1 − 𝑡𝑒𝑟𝑚

𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 =
𝑒𝑥𝑝𝑟1. 𝑐𝑜𝑑𝑒||𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒||" − "

𝑒𝑥𝑝𝑟 → 𝑡𝑒𝑟𝑚 𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 = 𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒

𝑡𝑒𝑟𝑚 → 0 1 … | 9

𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "0"
𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "1"
…
𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "9"

SDT

Production Semantic Action

𝑒𝑥𝑝𝑟 → 𝑒𝑥𝑝𝑟1 + 𝑡𝑒𝑟𝑚 { 𝑝𝑟𝑖𝑛𝑡 " + " }

𝑒𝑥𝑝𝑟 → 𝑒𝑥𝑝𝑟1 − 𝑡𝑒𝑟𝑚 { 𝑝𝑟𝑖𝑛𝑡 " − " }

𝑒𝑥𝑝𝑟 → 𝑡𝑒𝑟𝑚

𝑡𝑒𝑟𝑚 → 0 1 … | 9

{ 𝑝𝑟𝑖𝑛𝑡("0") }
{ 𝑝𝑟𝑖𝑛𝑡("1") }
…
{ 𝑝𝑟𝑖𝑛𝑡("9") }

CS 335 Swarnendu Biswas



SDT Actions

CS 335 Swarnendu Biswas

𝑒𝑥𝑝𝑟

𝑒𝑥𝑝𝑟 𝑡𝑒𝑟𝑚

𝑒𝑥𝑝𝑟 𝑡𝑒𝑟𝑚

𝑡𝑒𝑟𝑚

"9"

" − "

"5"

" + "

"2"{ 𝑝𝑟𝑖𝑛𝑡 " − " }

{ 𝑝𝑟𝑖𝑛𝑡 "5" }

{ 𝑝𝑟𝑖𝑛𝑡 "2" }

{ 𝑝𝑟𝑖𝑛𝑡 "9" }

{ 𝑝𝑟𝑖𝑛𝑡 "+" }



SDDs and SDTs

• Evaluation of the semantic rules may
• Generate code

• Save information in the symbol table

• Issue error messages

• Perform any other activity

CS 335 Swarnendu Biswas

input 
string

parse 
tree

dependency 
graph

evaluation order 
for semantic rules

parse input

token stream



Construction of AST for Expressions

• Idea: Construct subtrees for subexpressions by creating an operator 
and operand nodes

• Internal node: 𝑁𝑜𝑑𝑒(𝑜𝑝, 𝑐1, 𝑐2, … , 𝑐𝑘)

• Create a node with label 𝑜𝑝, and 𝑘 fields for 𝑘 children

• Leaf node: 𝐿𝑒𝑎𝑓(𝑜𝑝, 𝑣𝑎𝑙)
• Create a node with label 𝑜𝑝, and 𝑣𝑎𝑙 is the lexical value

CS 335 Swarnendu Biswas



Creating an AST

Following sequence of function calls create an AST for 𝑎 − 4 + 𝑐

1. 𝑝1 = new 𝐿𝑒𝑎𝑓(id, 𝑒𝑛𝑡𝑟𝑦𝑎)

2. 𝑝2 = new 𝐿𝑒𝑎𝑓(num, 4)

3. 𝑝3 = new𝑁𝑜𝑑𝑒(“ − ”, 𝑝1, 𝑝2)

4. 𝑝4 = new 𝐿𝑒𝑎𝑓(id, 𝑒𝑛𝑡𝑟𝑦𝑐)

5. 𝑝5 = new𝑁𝑜𝑑𝑒(“ + ”, 𝑝3, 𝑝4)

CS 335 Swarnendu Biswas

id

entry for 𝑐

+

id

entry for 𝑎

num 4

−



S-Attributed Definition for Constructing 
Syntax Trees 

Production Semantic Action

𝐸 → 𝐸1 + 𝑇 𝐸. 𝑛𝑜𝑑𝑒 = 𝐧𝐞𝐰 𝑁𝑜𝑑𝑒(" + ", 𝐸1. 𝑛𝑜𝑑𝑒, 𝑇. 𝑛𝑜𝑑𝑒)

𝐸 → 𝐸1 − 𝑇 𝐸. 𝑛𝑜𝑑𝑒 = 𝐧𝐞𝐰 𝑁𝑜𝑑𝑒(" − ", 𝐸1. 𝑛𝑜𝑑𝑒, 𝑇. 𝑛𝑜𝑑𝑒)

𝐸 → 𝑇 𝐸. 𝑛𝑜𝑑𝑒 = 𝑇. 𝑛𝑜𝑑𝑒

𝑇 → (𝐸) 𝑇. 𝑛𝑜𝑑𝑒 = 𝐸. 𝑛𝑜𝑑𝑒

𝑇 → id 𝑇. 𝑛𝑜𝑑𝑒 = 𝐧𝐞𝐰 𝐿𝑒𝑎𝑓(id, id. 𝑒𝑛𝑡𝑟𝑦)

𝑇 → num 𝑇. 𝑛𝑜𝑑𝑒 = 𝐧𝐞𝐰 𝐿𝑒𝑎𝑓(num, num. 𝑣𝑎𝑙)

CS 335 Swarnendu Biswas



Construction of AST for 𝑎 − 4 + 𝑐

CS 335 Swarnendu Biswas

𝐸

𝐸

𝐸

𝑇

id

−

+ 𝑇

id𝑇

id

num

num 4

id
−

+

entry for 𝑎

entry for 𝑐

id

AST edge

Parse Tree edge



Construction of AST for 𝑎 − 4 + 𝑐

CS 335 Swarnendu Biswas

𝐸

𝐸

𝐸

𝑇

id

−

+ 𝑇

id𝑇

𝑛𝑜𝑑𝑒

𝑛𝑜𝑑𝑒 𝑛𝑜𝑑𝑒

𝑛𝑜𝑑𝑒

𝑛𝑜𝑑𝑒

id

num

num 4

id
−

+

entry for 𝑎

entry for 𝑐

id

𝑛𝑜𝑑𝑒

AST edge

Parse Tree edge



L-Attributed Definition for Constructing 
Syntax Trees 

Production Semantic Action

𝐸 → 𝑇𝐸′ 𝐸. 𝑛𝑜𝑑𝑒 = 𝐸′. 𝑠𝑦𝑛
𝐸′. 𝑖𝑛ℎ = 𝑇. 𝑛𝑜𝑑𝑒

𝐸′ → +𝑇𝐸1
′ 𝐸1

′ . 𝑖𝑛ℎ = 𝑛𝑒𝑤 𝑁𝑜𝑑𝑒(" + ", 𝐸′. 𝑖𝑛ℎ, 𝑇. 𝑛𝑜𝑑𝑒)
𝐸′. 𝑠𝑦𝑛 = 𝐸1

′ . 𝑠𝑦𝑛

𝐸′ → −𝑇𝐸1
′ 𝐸1

′ . 𝑖𝑛ℎ = 𝑛𝑒𝑤 𝑁𝑜𝑑𝑒(" − ", 𝐸′. 𝑖𝑛ℎ, 𝑇. 𝑛𝑜𝑑𝑒)
𝐸′. 𝑠𝑦𝑛 = 𝐸1

′ . 𝑠𝑦𝑛

𝐸′ → 𝜖 𝐸′. 𝑠𝑦𝑛 = 𝐸′. 𝑖𝑛ℎ

𝑇 → (𝐸) 𝑇. 𝑛𝑜𝑑𝑒 = 𝐸. 𝑛𝑜𝑑𝑒

𝑇 → id 𝑇. 𝑛𝑜𝑑𝑒 = 𝐧𝐞𝐰 𝐿𝑒𝑎𝑓(id, id. 𝑒𝑛𝑡𝑟𝑦)

𝑇 → num 𝑇. 𝑛𝑜𝑑𝑒 = 𝐧𝐞𝐰 𝐿𝑒𝑎𝑓(num, num. 𝑣𝑎𝑙)

CS 335 Swarnendu Biswas



Dependency Graph for 𝑎 − 4 + 𝑐

CS 335 Swarnendu Biswas

𝐸

𝑇

id

𝑛𝑜𝑑𝑒

𝐸′

𝑇

num

𝐸′

𝑇 𝐸′

id 𝜖

−

+

𝑛𝑜𝑑𝑒

𝑒𝑛𝑡𝑟𝑦

𝑠𝑦𝑛𝑖𝑛ℎ

𝑣𝑎𝑙

𝑛𝑜𝑑𝑒

𝑠𝑦𝑛𝑖𝑛ℎ𝑛𝑜𝑑𝑒

𝑠𝑦𝑛𝑖𝑛ℎ

𝑒𝑛𝑡𝑟𝑦



Implementing SDTs

• Any SDT can be implemented by 
1. building a parse tree 

2. performing the actions in a left-to-right depth-first order, i.e., preorder 
traversal

• SDTs are often implemented during parsing, possibly without a parse 
tree, provided
• Underlying grammar is LR and the SDD is S-attributed, or

• Underlying grammar is LL and the SDD is L-attributed

CS 335 Swarnendu Biswas



Design of Translation Schemes

• Make all attribute values available when the semantic action is 
executed 

• When semantic action involves only synthesized attributes, the action 
can be put at the end of the production

CS 335 Swarnendu Biswas



Postfix SDT for the Desk Calculator

CS 335 Swarnendu Biswas

• Consider S-attributed SDD for a 
bottom-up grammar
• We can construct an SDT with 

actions at the end of each 
production

• SDT with all actions at the right-
end of a production is called 
postfix SDT

𝐿 → 𝐸$ { 𝑝𝑟𝑖𝑛𝑡 𝐸. 𝑣𝑎𝑙 }

𝐸 → 𝐸1 + 𝑇 { 𝐸. 𝑣𝑎𝑙 = 𝐸1. 𝑣𝑎𝑙 + 𝑇. 𝑣𝑎𝑙 }

𝐸 → 𝑇 { 𝐸. 𝑣𝑎𝑙 = 𝑇. 𝑣𝑎𝑙 }

𝑇 → 𝑇1 ∗ 𝐹 { 𝑇. 𝑣𝑎𝑙 = 𝑇1. 𝑣𝑎𝑙 × 𝐹. 𝑣𝑎𝑙 }

𝑇 → 𝐹 𝑇. 𝑣𝑎𝑙 = 𝐹. 𝑣𝑎𝑙

𝐹 → 𝐸 { 𝐹. 𝑣𝑎𝑙 = 𝐸. 𝑣𝑎𝑙 }

𝐹 → digit { 𝐹. 𝑣𝑎𝑙 = digit. 𝑙𝑒𝑥𝑣𝑎𝑙 }

action is executed when the body is 
reduced to the head of the production



Implementing Postfix SDTs During LR Parsing

CS 335 Swarnendu Biswas

… … 𝑤 $

LR Parsing 
Program

Input

𝑍. 𝑧

𝑌. 𝑦

𝑋. 𝑥

$

𝑍

𝑌

𝑋

$

Symbol 
stack

Value 
stack

• Use a value stack to maintain attributes along 
with the states (grammar symbols)

• Execute actions when reductions take place
• Manipulating the stack is done by the LR parser

SDD attributes are stored in 
the nodes of the parse tree



Implementing Postfix SDTs with Bottom-up Parsing

CS 335 Swarnendu Biswas

Production Semantic Action

𝐿 → 𝐸$ { 𝑝𝑟𝑖𝑛𝑡 𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 − 1 . 𝑣𝑎𝑙 ; 𝑡𝑜𝑝 = 𝑡𝑜𝑝 − 1 }

𝐸 → 𝐸1 + 𝑇 { 𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 − 2 . 𝑣𝑎𝑙 = 𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 − 2 . 𝑣𝑎𝑙 +
𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 . 𝑣𝑎𝑙; 𝑡𝑜𝑝 = 𝑡𝑜𝑝 − 2; }

𝐸 → 𝑇

𝑇 → 𝑇1 ∗ 𝐹 { 𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 − 2 . 𝑣𝑎𝑙 = 𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 − 2 . 𝑣𝑎𝑙 ×
𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 . 𝑣𝑎𝑙; 𝑡𝑜𝑝 = 𝑡𝑜𝑝 − 2; }

𝑇 → 𝐹

𝐹 → 𝐸 { 𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 − 2 . 𝑣𝑎𝑙 = 𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 − 1 . 𝑣𝑎𝑙; 𝑡𝑜𝑝 =
𝑡𝑜𝑝 − 2; }

𝐹 → digit Yacc uses $$, $1, $2, … to refer to the 
semantic values in the current production



SDT with Actions Inside Productions

• For bottom-up parsing, execute action 𝑎 as soon as 𝑋 occurs on top of 
the stack

• For top-down parsing, execute action 𝑎 just before expanding 
nonterminal 𝑌 or checking for terminal 𝑌 in the input

CS 335 Swarnendu Biswas

𝐵 → 𝑋 𝑎 𝑌



Example of an SDT Problematic for Parsing

𝐿 → 𝐸 $

𝐸 → { 𝑝𝑟𝑖𝑛𝑡("+"); } 𝐸1 + 𝑇

𝐸 → 𝑇

𝑇 → 𝑝𝑟𝑖𝑛𝑡 " ∗ " ; 𝑇1 ∗ 𝐹

𝑇 → 𝐹

𝐹 → 𝐸

𝐹 → digit { 𝑝𝑟𝑖𝑛𝑡 digit. 𝑙𝑒𝑥𝑣𝑎𝑙 ; }

CS 335 Swarnendu Biswas

Needs to print even before seeing 
what is there next on the input



Parse Tree with Embedded Actions

• Parse the input and produce a 
parse tree

• Examine each interior node 𝑁
for production 𝐴 → 𝛼
• Add additional children to 𝑁 for 

the actions in 𝛼, in left-to-right 
order

• Perform a preorder traversal of 
the tree and execute the action 
as a node labeled by an action is 
visited

CS 335 Swarnendu Biswas

$

𝐹

digit

digit { 𝑝𝑟𝑖𝑛𝑡 5 ; }

{ 𝑝𝑟𝑖𝑛𝑡 3 ; }

𝑇 𝐹∗{ 𝑝𝑟𝑖𝑛𝑡 ′ ∗′ ; }

𝐹
𝑇

digit { 𝑝𝑟𝑖𝑛𝑡 4 ; }

𝐸 + 𝑇{ 𝑝𝑟𝑖𝑛𝑡 ′ +′ ; }

𝐿

𝐸

Parse tree for 3*5+4

Traversing the tree in preorder 
generates the prefix +*354



Design Rules for L-attributed SDDs

• An inherited attribute for a 
symbol in the body of a 
production must be computed in 
an action before the symbol

• A synthesized attribute for the 
nonterminal on the LHS can only 
be computed when all the 
attributes it references have 
been computed 
• The action is usually put at the 

end of the production

𝑆 → 𝐴1𝐴2 { 𝐴1. 𝑖𝑛 = 1, 𝐴2. 𝑖𝑛 = 2 }

𝐴 → 𝑎 { 𝑝𝑟𝑖𝑛𝑡 𝐴. 𝑖𝑛 }

CS 335 Swarnendu Biswas

𝑆

𝐴2

𝑎 𝑝𝑟𝑖𝑛𝑡(𝐴2. 𝑖𝑛)

𝐴1

𝑎 𝑝𝑟𝑖𝑛𝑡(𝐴1. 𝑖𝑛)

𝐴1. 𝑖𝑛 = 1
𝐴2. 𝑖𝑛 = 2

What will happen on a DFS?



References

• A. Aho et al. Compilers: Principles, Techniques, and Tools, 2nd edition, 2.3, 5.1-5.4.

• K. Cooper and L. Torczon. Engineering a Compiler, 2nd edition, 4.1, 4.3, 4.4.

• M. Scott. Programming Language Pragmatics, 4th edition, Chapter 4.

CS 335 Swarnendu Biswas


