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An Overview of Compilation
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Beyond Scanning and Parsing

std::string x; 

int y;

y = x + 3;

int dot_prod(int x[], int y[]) {

int d, i; 

d = 0;

for (i=0; i<10; i++) 

d += x[i]*y[i];

return d;

}

int main() {

int p, a[10], b[10];

p = dot_prod(a, b);

return 0;

}
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int a, b;

a = b + c;

Example static semantic checks that a compiler can perform:
• p, a, and b are declared before use
• Number and type of the parameters of dot_prod() are 

the same in its declaration and use
• Types of p and return type of dot_prod() match



Beyond Scanning and Parsing

• A compiler must do more than just recognize whether a sentence 
belongs to a programming language grammar
• An input program can be grammatically correct but may contain other errors 

that prevent compilation

• Lexer and parser cannot catch all program errors

• Some language features cannot be modeled using context-free 
grammar (CFG)
• Whether a variable has been declared before use?

• Parameter types and numbers match in the declaration and use of a function

• Types match on both sides of an assignment
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Limitations with CFGs

• CFGs only deal with syntactic categories and structure

• Enforcing the “declare before use” rule requires knowledge that cannot be 
encoded in a CFG

• Grammar can specify the positions in an expression where a variable name 
may occur, but can enforce the “declare before use” rule
• CFG cannot match one instance of a variable name with another
• Programming languages also allow to include declarations within executable 

statements
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𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒𝐵𝑜𝑑𝑦 → 𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝐸𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒𝑠

Ensures variable declarations go 
before their uses



Questions That Compiler Needs to Answer

Questions

• Has a variable been declared?

• What is the type and size of a variable?

• Is the variable a scalar or an array?

• Is an array access A[i][j][k] consistent with the declaration?

• Does the name “x” correspond to a variable or a function?

• If x is a function, how many arguments does it take? 

• What kind of value, if any, does a function x return?

• Are all invocations of a function consistent with the declaration?

• Track inheritance relationship

• Ensure that classes and its methods are not multiply defined
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Questions That Compiler Needs to Answer
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𝑥 ← 𝑦 + 𝑧 𝑥 ← 𝑎 + 𝑏

Compilers need to understand the structure of the computation to 
translate the input program

𝑦, 𝑧, 𝑎, and 𝑏 can have different types, so code 
generation may need to be different



Semantic Analysis

• Finding answers to these questions is part of the semantic analysis 
phase 

• Static semantics of languages can be checked at compile time
• For example, ensure variable are declared before their uses, check that each 

expression has a correct type, and programs must have valid locations to 
transfer the control flow.
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Checking Dynamic Semantics

• Dynamic semantics of languages 
need to be checked at run time
• Whether an overflow will occur 

during an arithmetic operation?
• Whether array bounds will be 

exceeded during execution?
• Whether recursion will exceed 

stack limits?

• Compilers can generate code to 
check dynamic semantics

int dot_prod(int x[], int y[]) {
int d, i; 
d = 0;
for (i=0; i<10; i++) 

d += x[i]*y[i];
return d;

}
int main() {

int p; int a[10], b[10];
p = dot_prod(a, b);
return 0;

}
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How does a compiler answer these 
questions?
• Compilers track additional information for semantic analysis

• For example, types of variables, function parameters, and array dimensions

• Type information is stored in the symbol table or the syntax tree

• Used not only for semantic validation but also for subsequent phases of 
compilation

• The information required may be non-local in some cases

• Semantic analysis can be performed during parsing or in another pass 
that traverses the IR produced by the parser
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How does a compiler answer these 
questions?
• Use formal methods like context-sensitive grammars

• Building efficient parsers is challenging

• Use ad-hoc techniques using symbol table

• Static semantics of PL can be specified using attribute grammars
• Attribute grammars are extensions of context-free grammars
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Attribute Grammar Framework
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Syntax-Directed Definition

• A syntax-directed definition (SDD) is a context-free grammar with 
attributes and semantic rules to evaluate the attributes
• Attributes may be of any type: numbers, strings, pointers to structures

• Attributes are associated with nodes in the parse tree, and each instance of a 
grammar symbol in the parse tree has an associated attribute

• Attribute grammars are SDDs with no side effects
• Help track context-sensitive information via attributes
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Production Semantic Rule

𝐸 → 𝐸1 + 𝑇 𝐸. 𝑐𝑜𝑑𝑒 = 𝐸1. 𝑐𝑜𝑑𝑒||𝑇. 𝑐𝑜𝑑𝑒||" + "



Syntax-Directed Definition

• Generalization of CFG where each grammar symbol has an associated 
set of attributes
• Let 𝐺 = (𝑇,𝑁𝑇, 𝑆, 𝑃) be a CFG and let 𝑉 = 𝑇 ∪ 𝑁𝑇

• Every symbol 𝑋 ∈ 𝑉 is associated with a set of attributes (e.g., 𝑋. 𝑎 and 𝑋. 𝑏)

• Each attribute takes values from a specified domain (finite or infinite), which 
is its type
• Typical domains of attributes are, integers, reals, characters, strings, booleans, and 

structures

• New domains can be constructed from given domains by mathematical 
operations such as cross product and map

• Values of attributes are computed by semantic rules
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Attribute Grammar for Signed Binary 
Numbers
Consider a grammar for signed 
binary numbers

Build an attribute grammar that 
annotates 𝑛𝑢𝑚𝑏𝑒𝑟 with the value 
it represents

Associate attributes with grammar 
symbols
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𝑛𝑢𝑚𝑏𝑒𝑟 → 𝑠𝑖𝑔𝑛 𝑙𝑖𝑠𝑡
𝑠𝑖𝑔𝑛 → +| −
𝑙𝑖𝑠𝑡 → 𝑙𝑖𝑠𝑡 𝑏𝑖𝑡 | 𝑏𝑖𝑡
𝑏𝑖𝑡 → 0 | 1

Symbol Attributes

𝑛𝑢𝑚𝑏𝑒𝑟 𝑣𝑎𝑙

𝑠𝑖𝑔𝑛 𝑛𝑒𝑔

𝑙𝑖𝑠𝑡 𝑝𝑜𝑠, 𝑣𝑎𝑙

𝑏𝑖𝑡 𝑝𝑜𝑠, 𝑣𝑎𝑙



Attribute Grammar for Signed Binary Numbers

Production Attribute Rule

𝑛𝑢𝑚𝑏𝑒𝑟 → 𝑠𝑖𝑔𝑛 𝑙𝑖𝑠𝑡 𝑙𝑖𝑠𝑡. 𝑝𝑜𝑠 = 0
if 𝑠𝑖𝑔𝑛. 𝑛𝑒𝑔:
𝑛𝑢𝑚𝑏𝑒𝑟. 𝑣𝑎𝑙 = −𝑙𝑖𝑠𝑡. 𝑣𝑎𝑙

else:
𝑛𝑢𝑚𝑏𝑒𝑟. 𝑣𝑎𝑙 = −𝑙𝑖𝑠𝑡. 𝑣𝑎𝑙

𝑠𝑖𝑔𝑛 → + 𝑠𝑖𝑔𝑛. 𝑛𝑒𝑔 = false

𝑠𝑖𝑔𝑛 → − 𝑠𝑖𝑔𝑛. 𝑛𝑒𝑔 = true

𝑙𝑖𝑠𝑡 → 𝑏𝑖𝑡 𝑏𝑖𝑡. 𝑝𝑜𝑠 = 𝑙𝑖𝑠𝑡. 𝑝𝑜𝑠
𝑙𝑖𝑠𝑡. 𝑣𝑎𝑙 = 𝑏𝑖𝑡. 𝑣𝑎𝑙

𝑙𝑖𝑠𝑡0 → 𝑙𝑖𝑠𝑡1𝑏𝑖𝑡 𝑙𝑖𝑠𝑡1. 𝑝𝑜𝑠 = 𝑙𝑖𝑠𝑡0. 𝑝𝑜𝑠 + 1
𝑏𝑖𝑡. 𝑝𝑜𝑠 = 𝑙𝑖𝑠𝑡0. 𝑝𝑜𝑠
𝑙𝑖𝑠𝑡0. 𝑣𝑎𝑙 = 𝑙𝑖𝑠𝑡1. 𝑣𝑎𝑙 + 𝑏𝑖𝑡. 𝑣𝑎𝑙

𝑏𝑖𝑡 → 0 𝑏𝑖𝑡. 𝑣𝑎𝑙 = 0

𝑏𝑖𝑡 → 1 𝑏𝑖𝑡. 𝑣𝑎𝑙 = 2𝑏𝑖𝑡.𝑝𝑜𝑠
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Parse Tree for -101 
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1 0 1

𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑠𝑖𝑔𝑛 𝑙𝑖𝑠𝑡

𝑛𝑢𝑚𝑏𝑒𝑟

−



Annotated Parse Tree for -101

• A parse tree showing 
the value(s) of its 
attribute(s) is called 
an annotated parse 
tree
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1 0 1

𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑠𝑖𝑔𝑛 𝑙𝑖𝑠𝑡

𝑛𝑢𝑚𝑏𝑒𝑟

−

𝑝𝑜𝑠 = 0

𝑝𝑜𝑠 =1 𝑝𝑜𝑠 = 0

𝑝𝑜𝑠 = 2 𝑝𝑜𝑠 =1

𝑝𝑜𝑠 = 2

1

2

3

2

3

4

information 
flow



Annotated Parse Tree for -101

• A parse tree showing 
the value(s) of its 
attribute(s) is called 
an annotated parse 
tree
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1

𝑏𝑖𝑡

𝑠𝑖𝑔𝑛

𝑛𝑢𝑚𝑏𝑒𝑟

−

1 0

𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑙𝑖𝑠𝑡

𝑙𝑖𝑠𝑡 𝑝𝑜𝑠 = 0

𝑝𝑜𝑠 =1 𝑝𝑜𝑠 = 0

𝑝𝑜𝑠 = 2 𝑝𝑜𝑠 =1

𝑝𝑜𝑠 = 2

𝑛𝑒𝑔 = 𝑡𝑟𝑢𝑒

𝑛𝑒𝑔 = 𝑡𝑟𝑢𝑒

𝑣𝑎𝑙 =?



Annotated Parse Tree for -101

• A parse tree showing 
the value(s) of its 
attribute(s) is called 
an annotated parse 
tree
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𝑠𝑖𝑔𝑛

−

𝑣𝑎𝑙 = 1

𝑝𝑜𝑠 = 2

𝑝𝑜𝑠 = 2

𝑛𝑒𝑔 = 𝑡𝑟𝑢𝑒

𝑛𝑒𝑔 = 𝑡𝑟𝑢𝑒

1 0 1

𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑙𝑖𝑠𝑡

𝑛𝑢𝑚𝑏𝑒𝑟

𝑝𝑜𝑠 = 0

𝑝𝑜𝑠 =1 𝑝𝑜𝑠 = 0

𝑝𝑜𝑠 =1

𝑣𝑎𝑙 = 4

𝑣𝑎𝑙 = 0
𝑣𝑎𝑙 = 4

𝑣𝑎𝑙 = 4

𝑣𝑎𝑙 = 5

𝑣𝑎𝑙 = −5



Types of Nonterminal Attributes

Synthesized

• Value of a synthesized attribute for a nonterminal 𝐴 at a node 𝑁 is computed from 
the values of children nodes and 𝑵 itself (e.g., 𝑣𝑎𝑙 and 𝑛𝑒𝑔)

• Defined by a semantic rule associated with a production at 𝑁 such that the 
production has 𝐴 as its head 

Inherited

• Value of an inherited attribute for a nonterminal 𝐵 at a node 𝑁 is computed from 
the values at 𝑵’s parent, 𝑵 itself, and 𝑵’s siblings (e.g., 𝑝𝑜𝑠) 

• Defined by a semantic rule associated with the production at the parent of 𝑁 such 
that the production has 𝐵 in its body
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Syntax-Directed Definition

• A grammar production 𝐴 → 𝛼 has an associated semantic rule 𝑏 =
𝑓(𝑐1, 𝑐2, … , 𝑐𝑘)
• 𝑏 is a synthesized attribute of 𝐴 and 𝑐1, 𝑐2, …, 𝑐𝑘 are attributes of symbols in the 

production

• 𝑏 is an inherited attribute of a symbol in the body, and 𝑐1, 𝑐2, …, 𝑐𝑘 are attributes of 
symbols in the production

• Start symbol cannot have inherited attributes

• Terminals can have synthesized attributes, but not inherited attributes
• Attributes for terminals have lexical values that are supplied by the lexical analyzer
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Dependency Graph

• If an attribute 𝑏 depends on an attribute 𝑐 then the semantic rule for 
𝑏 must be evaluated after the semantic rule for 𝑐

• The dependencies among the nodes are depicted by a directed graph 
called dependency graph

• Annotated parse tree shows the values at attributes, while the 
dependency graph shows how the values need to be computed
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Dependency Graph

• Suppose 𝐴. 𝑎 = 𝑓 𝑋. 𝑥, 𝑌. 𝑦 is a semantic rule for 𝐴 → 𝑋𝑌

• Suppose 𝑋. 𝑥 = 𝑓(𝐴. 𝑎, 𝑌. 𝑦) is a semantic rule for 𝐴 → 𝑋𝑌
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𝐴

𝑋 𝑌 𝑌. 𝑦

𝐴. 𝑎

𝑋. 𝑥

𝐴

𝑋 𝑌 𝑌. 𝑦

𝐴. 𝑎

𝑋. 𝑥

Parse tree Dependency 
graph



Construct Dependency Graph

for each node 𝑛 in the parse tree do

for each attribute 𝑎 of the grammar symbol do

construct a node in the dependency graph for 𝑎

for each node 𝑛 in the parse tree do

for each semantic rule 𝑏 = 𝑓(𝑐1, 𝑐2, … , 𝑐𝑘) do        // Associated with production at node 𝑛

for 𝑖 = 1 to 𝑘 do

construct an edge from 𝑐𝑖 to 𝑏
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Example of a Dependence Graph 
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𝑠𝑖𝑔𝑛

−

𝑣𝑎𝑙 = 1

𝑝𝑜𝑠 = 2

𝑝𝑜𝑠 = 2

𝑛𝑒𝑔 = 𝑡𝑟𝑢𝑒

𝑛𝑒𝑔 = 𝑡𝑟𝑢𝑒

1 0 1

𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑙𝑖𝑠𝑡

𝑛𝑢𝑚𝑏𝑒𝑟

𝑝𝑜𝑠 = 0

𝑝𝑜𝑠 =1 𝑝𝑜𝑠 = 0

𝑝𝑜𝑠 =1

𝑣𝑎𝑙 = 4

𝑣𝑎𝑙 = 0
𝑣𝑎𝑙 = 4

𝑣𝑎𝑙 = 4

𝑣𝑎𝑙 = 5

𝑣𝑎𝑙 = −5

nodes are 
attributes



Evaluating an SDD

• In what order do we evaluate attributes in an implementation? 
• SDDs do not specify any order of evaluation 

• We must evaluate all the attributes upon which the attribute of a node 
depends

• For SDD’s with both synthesized and inherited attributes, there is no 
guarantee of an order of evaluation existing
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Circular Dependency of Attributes

Production Semantic Rules

𝐴 → 𝐵 𝐴. 𝑠 = 𝐵. 𝑖
𝐵. 𝑖 = 𝐴. 𝑠 + 1
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A

B

𝐴. 𝑠

𝐵. 𝑖
A compiler must deal with circularity appropriately 
for attribute grammars 



Evaluating an SDD

• Parse tree method
• In the absence of cycles, use topological sort of the dependency graph to find the 

evaluation order
• Any topological sort of dependency graph gives a valid partial order in which 

semantic rules must be evaluated
• Each rule executes as soon as all its input operands are available

• Rule-based method
• Semantic rules are analyzed and order of evaluation is predetermined
• E.g., evaluate 𝑙𝑖𝑠𝑡. 𝑝𝑜𝑠 first and 𝑙𝑖𝑠𝑡. 𝑣𝑎𝑙 later

• Oblivious method
• Evaluation order ignores the semantic rules, makes repeated left-to-right and right-

to-left passes until all attributes have values
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Postfix Notation

• Postfix notation for an expression 𝐸 is defined inductively
• If 𝐸 is a variable or constant, then postfix notation is 𝐸

• If 𝐸 = 𝐸1op𝐸2 where op is any binary operator, then the postfix notation is 
𝐸1
′𝐸2

′op, where 𝐸1
′ and 𝐸2

′ are postfix notations for 𝐸1 and 𝐸2 respectively

• If 𝐸 = (𝐸1), then postfix notation for 𝐸1 is the notation for 𝐸

CS 335 Swarnendu Biswas



SDD for Infix to Postfix Translation

Production Semantic Rules

𝑒𝑥𝑝𝑟 → 𝑒𝑥𝑝𝑟1 + 𝑡𝑒𝑟𝑚 𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 = 𝑒𝑥𝑝𝑟1. 𝑐𝑜𝑑𝑒||𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒||"+"

𝑒𝑥𝑝𝑟 → 𝑒𝑥𝑝𝑟1 − 𝑡𝑒𝑟𝑚 𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 = 𝑒𝑥𝑝𝑟1. 𝑐𝑜𝑑𝑒||𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒||" − "

𝑒𝑥𝑝𝑟 → 𝑡𝑒𝑟𝑚 𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 = 𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒

𝑡𝑒𝑟𝑚 → 0 1 … | 9

𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "0"
𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "1"
…
𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "9"
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Annotated Parse Tree

CS 335 Swarnendu Biswas

𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 = "95 − 2 + "

𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 = "95 − " 𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "2"

𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 = "9" 𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "5"

𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "9"

"9"

" − "

"5"

" + "

"2"



Types of SDDs

• Cycles need to be avoided since the compiler can no longer 
meaningfully proceed with evaluation

• Expensive to identify whether an arbitrary SDD will have cycles

• S-attributed and L-attributed SDDs guarantee no cycles
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S-Attributed Definition

• An SDD that involves only synthesized attributes is called S-attributed 
definition
• Each rule computes an attribute for the head nonterminal from attributes 

taken from the body of the production

• Semantic rules in a S-attributed definition can be evaluated by a 
bottom-up or postorder traversal of the parse tree

• An S-attributed SDD can be implemented naturally in conjunction with an LR
parser
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postorder(𝑁) {
for (each child 𝐶 of 𝑁, from left to right) 

postorder(𝐶)
evaluate the attributes associated with node 𝑁

}



Example of S-Attributed Definition

Production Semantic Rules

𝐿 → 𝐸 $ 𝐿. 𝑣𝑎𝑙 = 𝐸. 𝑣𝑎𝑙

𝐸 → 𝐸1 + 𝑇 𝐸. 𝑣𝑎𝑙 = 𝐸1. 𝑣𝑎𝑙 + 𝑇. 𝑣𝑎𝑙

𝐸 → 𝑇 𝐸. 𝑣𝑎𝑙 = 𝑇. 𝑣𝑎𝑙

𝑇 → 𝑇1 ∗ 𝐹 𝑇. 𝑣𝑎𝑙 = 𝑇1. 𝑣𝑎𝑙 × 𝐹. 𝑣𝑎𝑙

𝑇 → 𝐹 𝑇. 𝑣𝑎𝑙 = 𝐹. 𝑣𝑎𝑙

𝐹 → (𝐸) 𝐹. 𝑣𝑎𝑙 = 𝐸. 𝑣𝑎𝑙

𝐹 → digit 𝐹. 𝑣𝑎𝑙 = digit. 𝑙𝑒𝑥𝑣𝑎𝑙
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all attributes are 
synthesized



Annotated Parse Tree for 3 ∗ 5 + 4 $
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𝑇. 𝑣𝑎𝑙 = 4

𝐹. 𝑣𝑎𝑙 = 4

digit. 𝑙𝑒𝑥𝑣𝑎𝑙 = 4

𝐸. 𝑣𝑎𝑙 = 15

𝑇. 𝑣𝑎𝑙 = 15

𝑇. 𝑣𝑎𝑙 = 3

𝐹. 𝑣𝑎𝑙 = 3

digit. 𝑙𝑒𝑥𝑣𝑎𝑙 = 3

𝐹. 𝑣𝑎𝑙 = 5

digit. 𝑙𝑒𝑥𝑣𝑎𝑙 = 5

𝐿. 𝑣𝑎𝑙 = 19

𝐸. 𝑣𝑎𝑙 = 19 $

+

∗



Abstract Syntax Tree (AST)

• Condensed form of a parse tree used for representing language 
constructs 
• Each leaf is an operand and non-leaf nodes represent operators
• ASTs do not check for string membership in the language for a grammar
• ASTs represent relationships between language constructs, do not bother 

with derivations

• Parse trees are also called concrete syntax trees
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𝑆 → if 𝑃 then 𝑆1else 𝑆2

if−then−else

𝑃 𝑆1 𝑆2



Parse Tree vs Abstract Syntax Tree

Parse Tree Abstract Syntax Tree
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𝐸𝑥𝑝𝑟

name

𝐸𝑥𝑝𝑟

𝐸𝑥𝑝𝑟 + 𝑇𝑒𝑟𝑚

− 𝑇𝑒𝑟𝑚 𝐹𝑎𝑐𝑡𝑜𝑟

name𝐹𝑎𝑐𝑡𝑜𝑟

name

𝑇𝑒𝑟𝑚

𝐹𝑎𝑐𝑡𝑜𝑟

+

name−

name name



Inherited Attributes

• Useful when the structure of the parse tree does not match the 
abstract syntax of the source code
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Production Semantic Rules

𝑇 → 𝐹𝑇′ 𝑇′. 𝑖𝑛ℎ = 𝐹. 𝑣𝑎𝑙
𝑇. 𝑣𝑎𝑙 = 𝑇′. 𝑠𝑦𝑛

𝑇′ →∗ 𝐹𝑇1
′ 𝑇1

′. 𝑖𝑛ℎ = 𝑇′. 𝑖𝑛ℎ × 𝐹. 𝑣𝑎𝑙
𝑇′. 𝑠𝑦𝑛 = 𝑇1

′. 𝑠𝑦𝑛

𝑇′ → 𝜖 𝑇′. 𝑠𝑦𝑛 = 𝑇′. 𝑖𝑛ℎ

𝐹 → digit 𝐹. 𝑣𝑎𝑙 = digit. 𝑙𝑒𝑥𝑣𝑎𝑙



Parse Tree and Annotated Parse Tree for 3 ∗ 5
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𝑇. 𝑣𝑎𝑙 = 15

∗ 𝐹. 𝑣𝑎𝑙 = 5

𝑇′. 𝑖𝑛ℎ = 3
𝑇′. 𝑠𝑦𝑛 = 15

𝐹. 𝑣𝑎𝑙 = 3

digit. 𝑙𝑒𝑥𝑣𝑎𝑙 = 3

digit. 𝑙𝑒𝑥𝑣𝑎𝑙 = 5

𝑇1
′. 𝑖𝑛ℎ = 15

𝑇1
′. 𝑠𝑦𝑛 = 15

𝑇

∗ 𝐹

𝑇′𝐹

digit

digit

𝑇1
′

𝜖
𝜖



Parse Tree and Annotated Parse Tree for 3 ∗ 5
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𝑇. 𝑣𝑎𝑙 = 15

∗ 𝐹. 𝑣𝑎𝑙 = 5

𝑇′. 𝑖𝑛ℎ = 3
𝑇′. 𝑠𝑦𝑛 = 15

𝐹. 𝑣𝑎𝑙 = 3

digit. 𝑙𝑒𝑥𝑣𝑎𝑙 = 3

digit. 𝑙𝑒𝑥𝑣𝑎𝑙 = 5

𝑇1
′. 𝑖𝑛ℎ = 15

𝑇1
′. 𝑠𝑦𝑛 = 15

𝑇

∗ 𝐹

𝑇′𝐹

digit

digit

𝑇1
′

𝜖
𝜖



Another Example
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Production Semantic Rules

𝐷 → 𝑇𝐿 𝐿. 𝑖𝑛 = 𝑇. 𝑡𝑦𝑝𝑒

𝑇 → float 𝑇. 𝑡𝑦𝑝𝑒 = float

𝑇 → int 𝑇. 𝑡𝑦𝑝𝑒 = int

𝐿 → 𝐿1, id 𝐿1. 𝑖𝑛 = 𝐿. 𝑖𝑛; 𝑎𝑑𝑑𝑡𝑦𝑝𝑒(id. 𝑒𝑛𝑡𝑟𝑦, 𝐿. 𝑖𝑛)

𝐿 → id 𝑎𝑑𝑑𝑡𝑦𝑝𝑒(id. 𝑒𝑛𝑡𝑟𝑦, 𝐿. 𝑖𝑛)

Parse Tree for “float 𝑥, 𝑦, 𝑧”

𝐷

𝑇 𝐿

float 𝐿 id,

𝐿 id,

id

𝑎𝑑𝑑𝑡𝑦𝑝𝑒() installs 𝐿. 𝑖𝑛 as the type of the symbol table object 
pointed to by id. 𝑒𝑛𝑡𝑟𝑦 (implies a side effect)



Dependency Graph for float 𝑥, 𝑦, 𝑧

CS 335 Swarnendu Biswas

𝐷

𝑇

float

𝐿

𝐿 , id

𝐿 , id

id

𝑡𝑦𝑝𝑒 𝑖𝑛ℎ 𝑒𝑛𝑡𝑟𝑦

𝑒𝑛𝑡𝑟𝑦

𝑒𝑛𝑡𝑟𝑦

𝑒𝑛𝑡𝑟𝑦

𝑖𝑛ℎ 𝑒𝑛𝑡𝑟𝑦

𝑖𝑛ℎ 𝑒𝑛𝑡𝑟𝑦



Notes about Inherited Attributes

• Always possible to rewrite a SDD to use only synthesized attributes 
• Inherited attributes can be simulated with synthesized attributes and helper 

functions

• May be more logical to use both synthesized and inherited attributes

• Inherited attributes usually cannot be evaluated by a simple preorder 
traversal of the parse tree 
• Attributes may depend on both left and right siblings!

• Attributes that do not depend on right children can be evaluated by a 
preorder traversal
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How can an inherited attribute be simulated using a synthesized attribute?

https://cstheory.stackexchange.com/questions/21064/how-can-an-inherited-attribute-be-simulated-using-a-synthesized-attribute


Bottom-up Evaluation of S-Attributed
Definitions

• Suppose 𝐴 → 𝑋𝑌𝑍, and 
semantic rule is 𝐴. 𝑎 =
𝑓(𝑋. 𝑥, 𝑌. 𝑦, 𝑍. 𝑧)

• Attributes can be computed 
during bottom-up parsing 
• Extend the stack to hold values
• On reduction, value of new 

synthesized attribute 𝐴. 𝑎 is 
computed from the attributes 
on the stack
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… … 𝑤 $

LR Parsing 
Program

Input

𝑍. 𝑧

𝑌. 𝑦

𝑋. 𝑥

$

𝑍

𝑌

𝑋

$

State 
stack

Value 
stack



Example S-Attributed Definition

Production Semantic Rules

𝐿 → 𝐸 $ 𝐿. 𝑣𝑎𝑙 = 𝐸. 𝑣𝑎𝑙

𝐸 → 𝐸1 + 𝑇 𝐸. 𝑣𝑎𝑙 = 𝐸1. 𝑣𝑎𝑙 + 𝑇. 𝑣𝑎𝑙

𝐸 → 𝑇 𝐸. 𝑣𝑎𝑙 = 𝑇. 𝑣𝑎𝑙

𝑇 → 𝑇1 ∗ 𝐹 𝑇. 𝑣𝑎𝑙 = 𝑇1. 𝑣𝑎𝑙 × 𝐹. 𝑣𝑎𝑙

𝑇 → 𝐹 𝑇. 𝑣𝑎𝑙 = 𝐹. 𝑣𝑎𝑙

𝐹 → (𝐸) 𝐹. 𝑣𝑎𝑙 = 𝐸. 𝑣𝑎𝑙

𝐹 → digit 𝐹. 𝑣𝑎𝑙 = digit. 𝑙𝑒𝑥𝑣𝑎𝑙
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Bottom-up Evaluation of S-Attributed Definitions
Value Symbols Input Action

$ $ 3 ∗ 5 + 4$ Shift

$3 $digit ∗ 5 + 4$ Reduce by 𝐹 → digit

$3 $𝐹 ∗ 5 + 4$ Reduce by 𝑇 → 𝐹

$3 $𝑇 ∗ 5 + 4$ Shift

$3 $𝑇 ∗ 5 + 4$ Shift

$3 5 $𝑇 ∗ digit +4$ Reduce by 𝐹 → digit

$3 5 $𝑇 ∗ 𝐹 +4$ Reduce by 𝑇 → 𝑇 ∗ 𝐹

$15 $𝑇 +4$ Reduce by 𝐸 → 𝑇

$15 $𝐸 +4$ Shift

$15 $𝐸 + 4$ Shift

$15 4 $𝐸 + digit $ Reduce by 𝐹 → digit

$15 4 $𝐸 + 𝐹 $ Reduce by 𝑇 → 𝐹

$15 4 $𝐸 + 𝑇 $ Reduce by 𝐸 → 𝐸 + 𝑇

$19 $𝐸 $ …
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L-Attributed Definitions

• Each attribute must be either 
i. Synthesized, or

ii. Suppose 𝐴 → 𝑋1𝑋2…𝑋𝑛 and 
𝑋𝑖 . 𝑎 is an inherited attribute. 
𝑋𝑖 . 𝑎 can be computed using
a) Only inherited attributes from 𝐴, 

or 

b) Either inherited or synthesized 
attributes associated with 
𝑋1, … , 𝑋𝑖−1, or 

c) Inherited or synthesized attributes 
associated with 𝑋𝑖.
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Production Semantic Rules

𝑇 → 𝐹𝑇′ 𝑇′. 𝑖𝑛ℎ = 𝐹. 𝑣𝑎𝑙
𝑇. 𝑣𝑎𝑙 = 𝑇′. 𝑠𝑦𝑛

𝑇′ →∗ 𝐹𝑇1
′ 𝑇1

′. 𝑖𝑛ℎ = 𝑇′. 𝑖𝑛ℎ × 𝐹. 𝑣𝑎𝑙
𝑇′. 𝑠𝑦𝑛 = 𝑇1

′. 𝑠𝑦𝑛

𝑇′ → 𝜖 𝑇′. 𝑠𝑦𝑛 = 𝑇′. 𝑖𝑛ℎ

𝐹 → digit 𝐹. 𝑣𝑎𝑙 = digit. 𝑙𝑒𝑥𝑣𝑎𝑙



Are these SDDs S- or L-attributed?

Production Semantic Rules

𝐴 → 𝐵𝐶
𝐴. 𝑎 = 𝐵. 𝑏1
𝐵. 𝑏2 = 𝑓(𝐴. 𝑎, 𝐶. 𝑐)
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Production Semantic Rules

𝐴 → 𝐵𝐶
𝐵. 𝑖 = 𝑓1(𝐴. 𝑖)
𝐶. 𝑖 = 𝑓2(𝐵. 𝑠)
𝐴. 𝑠 = 𝑓3(𝐶. 𝑠)

Production Semantic Rules

𝐴 → 𝐵𝐶
𝐶. 𝑖 = 𝑓4(𝐴. 𝑖)
𝐵. 𝑖 = 𝑓5(𝐶. 𝑠)
𝐴. 𝑠 = 𝑓6(𝐵. 𝑠)



S-Attributed and L-Attributed Definitions

Every S-attributed grammar is also a L-attributed 
grammar

All L-attributed grammars are not S-attributed
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Challenges with Attribute Grammars

i. Rules only involve local information (i.e., attributes pertaining to 
symbols in the production)
• Needs additional attributes and copy rules to use non-local information, 

which increases memory and run-time overhead

ii. Results can be scattered across attributes in the parse tree

iii. Works in conjunction with a parse tree or an AST
• A compiler implementation may not build either
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Syntax-Directed Translation
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Recap SDDs

• Syntax-directed definition (SDD)
• Defines a set of attributes and translations at every node of the parse tree, 

output is available at the root

• Functional style which hides implementation details
• Evaluation order is not specified among multiple attributes for a production

• Only requirement is there should not be any circularity
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Associating Semantic Rules with Productions

• Syntax-directed translation (SDT)
• Program fragments are embedded as semantic actions in production body

• Generates code while parsing

• Indicates order in which semantic actions are to be evaluated

• Executable specification of an SDD, easier to implement, and can be more 
efficient since the compiler can avoid constructing a parse tree and a 
dependency graph

• Yacc/Bison uses translation schemes
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𝑟𝑒𝑠𝑡 → +𝑡𝑒𝑟𝑚 { 𝑝𝑟𝑖𝑛𝑡("+") } 𝑟𝑒𝑠𝑡1



SDT for Infix to Postfix Translation

SDD

Production Semantic Rule

𝑒𝑥𝑝𝑟
→ 𝑒𝑥𝑝𝑟1 + 𝑡𝑒𝑟𝑚

𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 =
𝑒𝑥𝑝𝑟1. 𝑐𝑜𝑑𝑒||𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒||" + "

𝑒𝑥𝑝𝑟
→ 𝑒𝑥𝑝𝑟1 − 𝑡𝑒𝑟𝑚

𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 =
𝑒𝑥𝑝𝑟1. 𝑐𝑜𝑑𝑒||𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒||" − "

𝑒𝑥𝑝𝑟 → 𝑡𝑒𝑟𝑚 𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 = 𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒

𝑡𝑒𝑟𝑚 → 0 1 … | 9

𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "0"
𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "1"
…
𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "9"

SDT

Production Semantic Action

𝑒𝑥𝑝𝑟 → 𝑒𝑥𝑝𝑟1 + 𝑡𝑒𝑟𝑚 { 𝑝𝑟𝑖𝑛𝑡 " + " }

𝑒𝑥𝑝𝑟 → 𝑒𝑥𝑝𝑟1 − 𝑡𝑒𝑟𝑚 { 𝑝𝑟𝑖𝑛𝑡 " − " }

𝑒𝑥𝑝𝑟 → 𝑡𝑒𝑟𝑚

𝑡𝑒𝑟𝑚 → 0 1 … | 9

{ 𝑝𝑟𝑖𝑛𝑡("0") }
{ 𝑝𝑟𝑖𝑛𝑡("1") }
…
{ 𝑝𝑟𝑖𝑛𝑡("9") }

CS 335 Swarnendu Biswas



SDT Actions
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𝑒𝑥𝑝𝑟

𝑒𝑥𝑝𝑟 𝑡𝑒𝑟𝑚

𝑒𝑥𝑝𝑟 𝑡𝑒𝑟𝑚

𝑡𝑒𝑟𝑚

"9"

" − "

"5"

" + "

"2"{ 𝑝𝑟𝑖𝑛𝑡 " − " }

{ 𝑝𝑟𝑖𝑛𝑡 "5" }

{ 𝑝𝑟𝑖𝑛𝑡 "2" }

{ 𝑝𝑟𝑖𝑛𝑡 "9" }

{ 𝑝𝑟𝑖𝑛𝑡 "+" }



SDDs and SDTs

• Evaluation of the semantic rules may
• Generate code

• Save information in the symbol table

• Issue error messages

• Perform any other activity
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input 
string

parse 
tree

dependency 
graph

evaluation order 
for semantic rules

parse input

token stream



Construction of AST for Expressions

• Idea: Construct subtrees for subexpressions by creating an operator 
and operand nodes

• Internal node: 𝑁𝑜𝑑𝑒(𝑜𝑝, 𝑐1, 𝑐2, … , 𝑐𝑘)

• Create a node with label 𝑜𝑝, and 𝑘 fields for 𝑘 children

• Leaf node: 𝐿𝑒𝑎𝑓(𝑜𝑝, 𝑣𝑎𝑙)
• Create a node with label 𝑜𝑝, and 𝑣𝑎𝑙 is the lexical value
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Creating an AST

Following sequence of function calls create an AST for 𝑎 − 4 + 𝑐

1. 𝑝1 = new 𝐿𝑒𝑎𝑓(id, 𝑒𝑛𝑡𝑟𝑦𝑎)

2. 𝑝2 = new 𝐿𝑒𝑎𝑓(num, 4)

3. 𝑝3 = new𝑁𝑜𝑑𝑒(“ − ”, 𝑝1, 𝑝2)

4. 𝑝4 = new 𝐿𝑒𝑎𝑓(id, 𝑒𝑛𝑡𝑟𝑦𝑐)

5. 𝑝5 = new𝑁𝑜𝑑𝑒(“ + ”, 𝑝3, 𝑝4)
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id

entry for 𝑐

+

id

entry for 𝑎

num 4

−



S-Attributed Definition for Constructing 
Syntax Trees 

Production Semantic Action

𝐸 → 𝐸1 + 𝑇 𝐸. 𝑛𝑜𝑑𝑒 = 𝐧𝐞𝐰 𝑁𝑜𝑑𝑒(" + ", 𝐸1. 𝑛𝑜𝑑𝑒, 𝑇. 𝑛𝑜𝑑𝑒)

𝐸 → 𝐸1 − 𝑇 𝐸. 𝑛𝑜𝑑𝑒 = 𝐧𝐞𝐰 𝑁𝑜𝑑𝑒(" − ", 𝐸1. 𝑛𝑜𝑑𝑒, 𝑇. 𝑛𝑜𝑑𝑒)

𝐸 → 𝑇 𝐸. 𝑛𝑜𝑑𝑒 = 𝑇. 𝑛𝑜𝑑𝑒

𝑇 → (𝐸) 𝑇. 𝑛𝑜𝑑𝑒 = 𝐸. 𝑛𝑜𝑑𝑒

𝑇 → id 𝑇. 𝑛𝑜𝑑𝑒 = 𝐧𝐞𝐰 𝐿𝑒𝑎𝑓(id, id. 𝑒𝑛𝑡𝑟𝑦)

𝑇 → num 𝑇. 𝑛𝑜𝑑𝑒 = 𝐧𝐞𝐰 𝐿𝑒𝑎𝑓(num, num. 𝑣𝑎𝑙)
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Construction of AST for 𝑎 − 4 + 𝑐
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𝐸

𝐸

𝐸

𝑇

id

−

+ 𝑇

id𝑇

id

num

num 4

id
−

+

entry for 𝑎

entry for 𝑐

id

AST edge

Parse Tree edge



Construction of AST for 𝑎 − 4 + 𝑐
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𝐸

𝐸

𝐸

𝑇

id

−

+ 𝑇

id𝑇

𝑛𝑜𝑑𝑒

𝑛𝑜𝑑𝑒 𝑛𝑜𝑑𝑒

𝑛𝑜𝑑𝑒

𝑛𝑜𝑑𝑒

id

num

num 4

id
−

+

entry for 𝑎

entry for 𝑐

id

𝑛𝑜𝑑𝑒

AST edge

Parse Tree edge



L-Attributed Definition for Constructing 
Syntax Trees 

Production Semantic Action

𝐸 → 𝑇𝐸′ 𝐸. 𝑛𝑜𝑑𝑒 = 𝐸′. 𝑠𝑦𝑛
𝐸′. 𝑖𝑛ℎ = 𝑇. 𝑛𝑜𝑑𝑒

𝐸′ → +𝑇𝐸1
′ 𝐸1

′ . 𝑖𝑛ℎ = 𝑛𝑒𝑤 𝑁𝑜𝑑𝑒(" + ", 𝐸′. 𝑖𝑛ℎ, 𝑇. 𝑛𝑜𝑑𝑒)
𝐸′. 𝑠𝑦𝑛 = 𝐸1

′ . 𝑠𝑦𝑛

𝐸′ → −𝑇𝐸1
′ 𝐸1

′ . 𝑖𝑛ℎ = 𝑛𝑒𝑤 𝑁𝑜𝑑𝑒(" − ", 𝐸′. 𝑖𝑛ℎ, 𝑇. 𝑛𝑜𝑑𝑒)
𝐸′. 𝑠𝑦𝑛 = 𝐸1

′ . 𝑠𝑦𝑛

𝐸′ → 𝜖 𝐸′. 𝑠𝑦𝑛 = 𝐸′. 𝑖𝑛ℎ

𝑇 → (𝐸) 𝑇. 𝑛𝑜𝑑𝑒 = 𝐸. 𝑛𝑜𝑑𝑒

𝑇 → id 𝑇. 𝑛𝑜𝑑𝑒 = 𝐧𝐞𝐰 𝐿𝑒𝑎𝑓(id, id. 𝑒𝑛𝑡𝑟𝑦)

𝑇 → num 𝑇. 𝑛𝑜𝑑𝑒 = 𝐧𝐞𝐰 𝐿𝑒𝑎𝑓(num, num. 𝑣𝑎𝑙)

CS 335 Swarnendu Biswas



Dependency Graph for 𝑎 − 4 + 𝑐
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𝐸

𝑇

id

𝑛𝑜𝑑𝑒

𝐸′

𝑇

num

𝐸′

𝑇 𝐸′

id 𝜖

−

+

𝑛𝑜𝑑𝑒

𝑒𝑛𝑡𝑟𝑦

𝑠𝑦𝑛𝑖𝑛ℎ

𝑣𝑎𝑙

𝑛𝑜𝑑𝑒

𝑠𝑦𝑛𝑖𝑛ℎ𝑛𝑜𝑑𝑒

𝑠𝑦𝑛𝑖𝑛ℎ

𝑒𝑛𝑡𝑟𝑦



Implementing SDTs

• Any SDT can be implemented by 
1. building a parse tree 

2. performing the actions in a left-to-right depth-first order, i.e., preorder 
traversal

• SDTs are often implemented during parsing, possibly without a parse 
tree, provided
• Underlying grammar is LR and the SDD is S-attributed, or

• Underlying grammar is LL and the SDD is L-attributed
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Design of Translation Schemes

• Make all attribute values available when the semantic action is 
executed 

• When semantic action involves only synthesized attributes, the action 
can be put at the end of the production
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Postfix SDT for the Desk Calculator
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• Consider S-attributed SDD for a 
bottom-up grammar
• We can construct an SDT with 

actions at the end of each 
production

• SDT with all actions at the right-
end of a production is called 
postfix SDT

𝐿 → 𝐸$ { 𝑝𝑟𝑖𝑛𝑡 𝐸. 𝑣𝑎𝑙 }

𝐸 → 𝐸1 + 𝑇 { 𝐸. 𝑣𝑎𝑙 = 𝐸1. 𝑣𝑎𝑙 + 𝑇. 𝑣𝑎𝑙 }

𝐸 → 𝑇 { 𝐸. 𝑣𝑎𝑙 = 𝑇. 𝑣𝑎𝑙 }

𝑇 → 𝑇1 ∗ 𝐹 { 𝑇. 𝑣𝑎𝑙 = 𝑇1. 𝑣𝑎𝑙 × 𝐹. 𝑣𝑎𝑙 }

𝑇 → 𝐹 𝑇. 𝑣𝑎𝑙 = 𝐹. 𝑣𝑎𝑙

𝐹 → 𝐸 { 𝐹. 𝑣𝑎𝑙 = 𝐸. 𝑣𝑎𝑙 }

𝐹 → digit { 𝐹. 𝑣𝑎𝑙 = digit. 𝑙𝑒𝑥𝑣𝑎𝑙 }

action is executed when the body is 
reduced to the head of the production



Implementing Postfix SDTs During LR Parsing
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… … 𝑤 $

LR Parsing 
Program

Input

𝑍. 𝑧

𝑌. 𝑦

𝑋. 𝑥

$

𝑍

𝑌

𝑋

$

Symbol 
stack

Value 
stack

• Use a value stack to maintain attributes along 
with the states (grammar symbols)

• Execute actions when reductions take place
• Manipulating the stack is done by the LR parser

SDD attributes are stored in 
the nodes of the parse tree



Implementing Postfix SDTs with Bottom-up Parsing
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Production Semantic Action

𝐿 → 𝐸$ { 𝑝𝑟𝑖𝑛𝑡 𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 − 1 . 𝑣𝑎𝑙 ; 𝑡𝑜𝑝 = 𝑡𝑜𝑝 − 1 }

𝐸 → 𝐸1 + 𝑇 { 𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 − 2 . 𝑣𝑎𝑙 = 𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 − 2 . 𝑣𝑎𝑙 +
𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 . 𝑣𝑎𝑙; 𝑡𝑜𝑝 = 𝑡𝑜𝑝 − 2; }

𝐸 → 𝑇

𝑇 → 𝑇1 ∗ 𝐹 { 𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 − 2 . 𝑣𝑎𝑙 = 𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 − 2 . 𝑣𝑎𝑙 ×
𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 . 𝑣𝑎𝑙; 𝑡𝑜𝑝 = 𝑡𝑜𝑝 − 2; }

𝑇 → 𝐹

𝐹 → 𝐸 { 𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 − 2 . 𝑣𝑎𝑙 = 𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 − 1 . 𝑣𝑎𝑙; 𝑡𝑜𝑝 =
𝑡𝑜𝑝 − 2; }

𝐹 → digit Yacc uses $$, $1, $2, … to refer to the 
semantic values in the current production



SDT with Actions Inside Productions

• For bottom-up parsing, execute action 𝑎 as soon as 𝑋 occurs on top of 
the stack

• For top-down parsing, execute action 𝑎 just before expanding 
nonterminal 𝑌 or checking for terminal 𝑌 in the input
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𝐵 → 𝑋 𝑎 𝑌



Example of an SDT Problematic for Parsing

𝐿 → 𝐸 $

𝐸 → { 𝑝𝑟𝑖𝑛𝑡("+"); } 𝐸1 + 𝑇

𝐸 → 𝑇

𝑇 → 𝑝𝑟𝑖𝑛𝑡 " ∗ " ; 𝑇1 ∗ 𝐹

𝑇 → 𝐹

𝐹 → 𝐸

𝐹 → digit { 𝑝𝑟𝑖𝑛𝑡 digit. 𝑙𝑒𝑥𝑣𝑎𝑙 ; }
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Needs to print even before seeing 
what is there next on the input



Parse Tree with Embedded Actions

• Parse the input and produce a 
parse tree

• Examine each interior node 𝑁
for production 𝐴 → 𝛼
• Add additional children to 𝑁 for 

the actions in 𝛼, in left-to-right 
order

• Perform a preorder traversal of 
the tree and execute the action 
as a node labeled by an action is 
visited
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$

𝐹

digit

digit { 𝑝𝑟𝑖𝑛𝑡 5 ; }

{ 𝑝𝑟𝑖𝑛𝑡 3 ; }

𝑇 𝐹∗{ 𝑝𝑟𝑖𝑛𝑡 ′ ∗′ ; }

𝐹
𝑇

digit { 𝑝𝑟𝑖𝑛𝑡 4 ; }

𝐸 + 𝑇{ 𝑝𝑟𝑖𝑛𝑡 ′ +′ ; }

𝐿

𝐸

Parse tree for 3*5+4

Traversing the tree in preorder 
generates the prefix +*354



Design Rules for L-attributed SDDs

• An inherited attribute for a 
symbol in the body of a 
production must be computed in 
an action before the symbol

• A synthesized attribute for the 
nonterminal on the LHS can only 
be computed when all the 
attributes it references have 
been computed 
• The action is usually put at the 

end of the production

𝑆 → 𝐴1𝐴2 { 𝐴1. 𝑖𝑛 = 1, 𝐴2. 𝑖𝑛 = 2 }

𝐴 → 𝑎 { 𝑝𝑟𝑖𝑛𝑡 𝐴. 𝑖𝑛 }
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𝑆

𝐴2

𝑎 𝑝𝑟𝑖𝑛𝑡(𝐴2. 𝑖𝑛)

𝐴1

𝑎 𝑝𝑟𝑖𝑛𝑡(𝐴1. 𝑖𝑛)

𝐴1. 𝑖𝑛 = 1
𝐴2. 𝑖𝑛 = 2

What will happen on a DFS?
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