CS 335: Semantic Analysis

Swarnendu Biswas

Semester 2022-2023-1|
CSE, lIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

An Overview of Compilation

source program target program

U i

, symbol table ,

4

syntax analyzer error handler

4

semantic analyzer |

code optimizer

1

> intermediate code

generator

CS 335 Swarnendu Biswas

Beyond Scanning and Parsing

int dot_prod(int x[], int y[]) {

int a, b; T T
a=b+c; d @rr
= 0;
| for (i=0; i<10; i++)
std::string x; d += x[i]*y[i];
int vy; return d;

y = X + 3; }

int main() {

Example static semantic checks that a compiler can perform: int p, a [10] , b [10] :
p,a, and b are declared before use _ .

* Number and type of the parameters of dot_prod() are P = dot_prod(a, b) /
the same in its declaration and use return 0;

* Types of p and return type of dot_prod() match) 1

o

CS 335 Swarnendu Biswas

Beyond Scanning and Parsing

* A compiler must do more than just recognize whether a sentence
belongs to a programming language grammar

* An input program can be grammatically correct but may contain other errors
that prevent compilation

* Lexer and parser cannot catch all program errors

* Some language features cannot be modeled using context-free
grammar (CFG)
 Whether a variable has been declared before use?
e Parameter types and numbers match in the declaration and use of a function
* Types match on both sides of an assignment

Limitations with CFGs

ProcedureBody — Declarations Executables

Ensures variable declarations go
before their uses

* CFGs only deal with syntactic categories and structure

* Enforcing the “declare before use” rule requires knowledge that cannot be
encoded in a CFG

 Grammar can specify the positions in an expression where a variable name
may occur, but can enforce the “declare before use” rule
* CFG cannot match one instance of a variable name with another

* Programming languages also allow to include declarations within executable
statements

Questions That Compiler Needs to Answer

Questions <

CS 335

e Has a variable been declared?

e \What is the type and size of a variable?

e |s the variable a scalar or an array?

e |[san array access A[i][j1[k] consistent with the declaration?
e Does the name “x” correspond to a variable or a function?

e If x is a function, how many arguments does it take?

e What kind of value, if any, does a function x return?

e Are all invocations of a function consistent with the declaration?
e Track inheritance relationship

e Ensure that classes and its methods are not multiply defined

Swarnendu Biswas

Questions That Compiler Needs to Answer

v, Z,a,and b can have different types, so code
generation may need to be different

-
Compilers need to understand the structure of the computation to

translate the input program
-

CS 335 Swarnendu Biswas

Semantic Analysis

* Finding answers to these questions is part of the semantic analysis
phase

e Static semantics of languages can be checked at compile time

* For example, ensure variable are declared before their uses, check that each
expression has a correct type, and programs must have valid locations to
transfer the control flow.

Checking Dynamic Semantics

* Dynamic semantics oflangqages ke el At ke)
need to be checked at run time int d. i
* Whether an overflow will occur d =o0:
during an arithmetic operation? f . .
, for (i=0; i<10; i++)
* Whether array bounds will be d += x[ilxv[i]:
exceeded during execution? = XL1lxyldd;

« Whether recursion will exceed return d;

stack limits? }
int main() {

int p; int a[10], b[10];
p = dot_prod(a, b);
return 0;

}

* Compilers can generate code to
check dynamic semantics

How does a compiler answer these
guestions?

* Compilers track additional information for semantic analysis
* For example, types of variables, function parameters, and array dimensions

* Type information is stored in the symbol table or the syntax tree
* Used not only for semantic validation but also for subsequent phases of

compilation
* The information required may be non-local in some cases

* Semantic analysis can be performed during parsing or in another pass
that traverses the IR produced by the parser

How does a compiler answer these
guestions?

e Use formal methods like context-sensitive grammars
* Building efficient parsers is challenging

e Use ad-hoc techniques using symbol table

* Static semantics of PL can be specified using attribute grammars
* Attribute grammars are extensions of context-free grammars

Attribute Grammar Framework

Syntax-Directed Definition

* A syntax-directed definition (SDD) is a context-free grammar with
attributes and semantic rules to evaluate the attributes
* Attributes may be of any type: numbers, strings, pointers to structures

e Attributes are associated with nodes in the parse tree, and each instance of a
grammar symbol in the parse tree has an associated attribute

E->E+T E.code = E;.codel||T.code||" +"

 Attribute grammars are SDDs with no side effects
* Help track context-sensitive information via attributes

Syntax-Directed Definition

* Generalization of CFG where each grammar symbol has an associated
set of attributes

* LetG = (T,NT,S,P)beaCFGandletV =T UNT
e Every symbol X € I/ is associated with a set of attributes (e.g., X.a and X. b)

e Each attribute takes values from a specified domain (finite or infinite), which
is its type

» Typical domains of attributes are, integers, reals, characters, strings, booleans, and
structures

* New domains can be constructed from given domains by mathematical
operations such as cross product and map

* Values of attributes are computed by semantic rules

Attribute Grammar for Signed Binary
Numbers

Consider a grammar for signed Associate attributes with grammar
binary numbers symbols

number — sign list

sign - +| - Symbol __|__ Attributes __

list — list bit | bit

. number val
bit - 0]1 sign neg
) i list pos, val
Build an attribute grammar that .
bit pos, val

annotates number with the value
It represents

Attribute Grammar for Signed Binary Numbers

number — sign list list.pos = 0
if sign.neg:
number.val = —list. val
else:
number.val = —list.val
sign - + sign.neg = false
sign —» — sign.neg = true
list = bit bit.pos = list.pos

list.val = bit.val

listy — list,bit list,.pos = listy.pos + 1
bit.pos = listy.pos
listy. val = listy.val + bit.val
bit - 0 bit.val =0

bit — 1 bit. val = 2bit-pos

Parse Tree for -101

number
/\
sign list
l /\
- list bit
/\
list bit
.

1

1 0 1

Annotated Parse Tree for -101

number

* A parse tree showing

list pos=
- -
the .value(s).of its © _— ’
attribute(s)iscalled | W _--72 >
an annotated parse list © ros-0 bit

tree

[information ! pos =2 list pos =1 bit
flow :
=
=2

A 4
0

bit

CS 335 Swarnendu Biswas

Annotated Parse Tree for -101

val =?
number
* A parse tree sh_owmg neq = true sign >
the value(s) of its l ~
attribute(s) is called S
an annotated parse neg =true = — pos =1 list pos =
tree /// \\
¢ \
pos =2 list pos =1 bit
|
}
pos =2 bit

Annotated Parse Tree for -101

* A parse tree showing
the value(s) of its
attribute(s) is called
an annotated parse
tree

CS 335

val = -5 «
~
~
~
number S o
~
~
A/\: val =5 4=
Ve
neg = true Sign ,/ list pos=0
I/ -
l ————— /
T T T e I I3
neg = true — pos =1 [lis¢v val =4 pos =0 Dbit
e ~ N
VI N, N ~
- ~ N -
val = 4 /\\ ~
¥ v \ val = 0
pos = list pos =1 bit [
| Mo S
b s 1
pos = bit tal ="
\\ —/
1 0 1

Swarnendu Biswas

Types of Nonterminal Attributes

Synthesized

e Value of a synthesized attribute for a nonterminal 4 at a node N is computed from
the values of children nodes and N itself (e.g., val and neg)

e Defined by a semantic rule associated with a production at N such that the
production has A as its head

e Value of an inherited attribute for a nonterminal B at a node N is computed from
the values at N’s parent, N itself, and N’s siblings (e.g., pos)

e Defined by a semantic rule associated with the production at the parent of N such
that the production has B in its body

CS 335 Swarnendu Biswas

Syntax-Directed Definition

* A grammar production A — a has an associated semantic rule b =

f(Cl, Co, v\ Ck)

* b is a synthesized attribute of A and ¢y, ¢, ..., ¢} are attributes of symbols in the
production

* b is an inherited attribute of a symbol in the body, and ¢4, ¢, ..., ¢j are attributes of
symbols in the production

 Start symbol cannot have inherited attributes

* Terminals can have synthesized attributes, but not inherited attributes
e Attributes for terminals have lexical values that are supplied by the lexical analyzer

Dependency Graph

e If an attribute b depends on an attribute ¢ then the semantic rule for
b must be evaluated after the semantic rule for ¢

* The dependencies among the nodes are depicted by a directed graph
called dependency graph

* Annotated parse tree shows the values at attributes, while the
dependency graph shows how the values need to be computed

Dependency Graph

* Suppose A.a = f(X.x,Y.y) is a semanticrule for A - XY
A

A.
/\ Parse tree /"a\ Dependency
X Y.y

raph
X Y X erap

* Suppose X.x = f(A.a,Y.y) is a semantic rule for A - XY

A A.a

PN e

X Y X.x+—Y.y

Construct Dependency Graph

for each node n in the parse tree do
for each attribute a of the grammar symbol do

construct a node in the dependency graph for a

for each node n in the parse tree do
for each semanticrule b = f(cq,cy,...,cx) do // Associated with production at node n
fori = 1tokdo

construct an edge from c; to b

Example of a Dependence Graph

val =
number
val 5

neg = true sign list pos=0

— 4 val =1

neg = true — pos =1 val 4 pos = OU
val 4
val =0

pos 2 li pos 1U

pos =2 bit val = 4
\/ nodes are
attributes
1 0 1

Evaluating an SDD

* In what order do we evaluate attributes in an implementation?
» SDDs do not specify any order of evaluation

* We must evaluate all the attributes upon which the attribute of a node
depends

* For SDD’s with both synthesized and inherited attributes, there is no
guarantee of an order of evaluation existing

Circular Dependency of Attributes

A—- B A.s = B.i
B.i=A.s+1

° A.s

A compiler must deal with circularity appropriately
for attribute grammars

Evaluating an SDD

e Parse tree method

* In the absence of cycles, use topological sort of the dependency graph to find the
evaluation order

* Any topological sort of dependency graph gives a valid partial order in which
semantic rules must be evaluated

* Each rule executes as soon as all its input operands are available

* Rule-based method
* Semantic rules are analyzed and order of evaluation is predetermined
* E.g., evaluate list.pos first and list. val later

* Oblivious method

* Evaluation order ignores the semantic rules, makes repeated left-to-right and right-
to-left passes until all attributes have values

Postfix Notation

* Postfix notation for an expression E is defined inductively
* If E is a variable or constant, then postfix notation is E

* If E = E{opE, where op is any binary operator, then the postfix notation is
E{E;op, where E{ and E; are postfix notations for E; and E, respectively

* If E = (E;), then postfix notation for E; is the notation for E

SDD for Infix to Postfix Translation

expr — expry + term expr.code = expry.code||term.code||"+"
expr — expr; — term expr.code = expr;.code| |term.code||" —"
expr — term expr.code = term.code

term.code = "0"

term—->0]|1]..]9 T EOE =T

term.code = "9"

Annotated Parse Tree

expr.code = "95 -2 +"

T N

expr.code = "95 —" "+ term.code = "2"
%\ o
expr.code = "9" =" term.code = "5"
term.code = "9" g

Types of SDDs

* Cycles need to be avoided since the compiler can no longer
meaningfully proceed with evaluation

* Expensive to identify whether an arbitrary SDD will have cycles

e S-attributed and L-attributed SDDs guarantee no cycles

S-Attributed Definition

* An SDD that involves only synthesized attributes is called S-attributed
definition
* Each rule computes an attribute for the head nonterminal from attributes
taken from the body of the production

* Semantic rules in a S-attributed definition can be evaluated by a
bottom-up or postorder traversal of the parse tree

* An S-attributed SDD can be implemented naturally in conjunction with an LR
parser

postorder(nN) {
for (each child ¢ of N, from left to right)
postorder(C)
evaluate the attributes associliated with node N

}

Example of S-Attributed Definition

L->ES$ L.val = E.val
E->E,+T E.val = E;.val + T.val
E-T E.val = T.val
T->T,*F T.val = T;.val X F.val
T - F T.val = F.val
F - (E) F.val = E.val
F — digit F.val = digit. lexval

all attributes are
synthesized

Annotated Parse Treefor3*5+4+4$%

L.val = 19
e
E.val =19 $
_— T
E.val =15 + T.val =4
T.val|= 15 F.val =4
%\ digit. lexval = 4
T.val =3 * F.val =5
F. vall =3 digit. leJ!val =5

digit. lexval = 3

Abstract Syntax Tree (AST)

* Condensed form of a parse tree used for representing language
constructs
e Each leaf is an operand and non-leaf nodes represent operators
* ASTs do not check for string membership in the language for a grammar

* ASTs represent relationships between language constructs, do not bother
with derivations

if—then—else

S — if P then S;else S, ﬂ\

P S, S,

* Parse trees are also called concrete syntax trees

Parse Tree vs Abstract Syntax Tree

Parse Tree Abstract Syntax Tree
Expr +
Expr + Term /\‘
A/I\A 1 — name
Expr — Term Factor /\
1 name name
Term Factor name

Factor name

name

Inherited Attributes

* Useful when the structure of the parse tree does not match the
abstract syntax of the source code

Semantic Rules

. T'.inh = F.val
F= T.val =T'.syn
T’ >+ FT} Tll.mhzT,.mhxF.val
T .syn =T;.syn
T' - € T'.syn=T'.inh

F — digit F.val = digit. lexval

Parse Tree and Annotated Parse Tree for 3 * 5

F
digit

T

/

*

TI

F

digit

AN

T

T.val = 15

N

F.val =3

digit. lexval = 3

T'.inh =3
T'.syn =15

IS

X

F.val =5 T{.inh = 15

T{.syn =15

digit. lexval = 5 €

Parse Tree and Annotated Parse Tree for 3 * 5

T

N

F

digit

TI

digit

T.val = 15

F.val =3

A
1
1
1
1
1
[

digit. lexval = 3

X

\
\
\
\
\
\
N
\
N\
\

| =5-+ T{inh = 15 ~

Q

e

digit. lexval = 5

N
N

T!.syn = 15 ,_,)

€

Another Example

D—-TL
T — float
T — int
L — Ly,id
L—id

addtype() installs L. in as the type of the symbol table object

L.in =T.type
T.type = float
T.type = int

Ly.in = L.in; addtype(id.entry, L.in)

addtype(id. entry, L. in)

pointed to by id. entry (implies a side effect)

Parse Tree for “float x,y, z”

D
/\
T L
| I
float L , id
/R
L , id

Dependency Graph for float x, y, z

inh L entry , id entry
5 ‘ A
id entry

CS 335 Swarnendu Biswas

Notes about Inherited Attributes

* Always possible to rewrite a SDD to use only synthesized attributes
* Inherited attributes can be simulated with synthesized attributes and helper
functions
* May be more logical to use both synthesized and inherited attributes

* Inherited attributes usually cannot be evaluated by a simple preorder
traversal of the parse tree
* Attributes may depend on both left and right siblings!

e Attributes that do not depend on right children can be evaluated by a
preorder traversal

How can an inherited attribute be simulated using a synthesized attribute?

https://cstheory.stackexchange.com/questions/21064/how-can-an-inherited-attribute-be-simulated-using-a-synthesized-attribute

Bottom-up Evaluation of S-Attributed
Definitions

|nput w $
e Suppose A — XYZ, and
semanticruleis A.a =
f(X.x,Y.y,Z.2) 1, LR Parsing
Program
* Attributes can be computed Y.y %
during bottom-up parsing
* Extend the stack to hold values £ X
* On reduction, value of new]]
synthesized attribute A. a is

computed from the attributes

Value State
on the stack

stack stack

CS 335 Swarnendu Biswas

Example S-Attributed Definition

L->ES$ L.val = E.val
E->E,+T E.val = E;.val + T.val

E-T E.val = T.val
T->T,*F T.val = T;.val X F.val

T - F T.val = F.val

F - (E) F.val = E.val

F — digit F.val = digit. lexval

Bottom-up Evaluation of S-Attributed Definitions
. vale | symbols | nput | Adion

$3
$3
$3
$3
$35
$35
$15
$15
$15
$15 4
$15 4
$15 4
$19

$d1g1t

$F

$T

$T *

$T * digit
$T = F
$T

$SE

$E +

$E + digit
$E + F
$E + T
$SE

3x5+4$
x5+ 4$
* 5+ 4%
* 5+ 4%
5+ 4%
+493

+493

+493

+493

4%

S <o N < o T <

Shift

Reduce by F — digit
Reduce by T —» F
Shift

Shift

Reduce by F — digit
ReducebyT - T x F
Reduce by E - T
Shift

Shift

Reduce by F — digit
Reduce by T - F
Reduceby E - E+T

L-Attributed Definitions

e Each attribute must be either
i. Synthesized, or

i. Suppose A = X1X; ... Xy and

X;.a is an inherited attribute. T FT" T'.inh = F.val

X;.a can be computed using T.val =T".syn

a) Only inherited attributes from 4, T' Sx FT! Ty.inh =T'.inh X F.val
or 1 T'.syn =T,.syn

b) Either inherited or synthesized T' > € T'.syn =T'.inh
attributes associated with F > digit F.val = digit. lexval
Xi,...,X;_q1,0r

c) Inherited or synthesized attributes
associated with X;.

Are these SDDs S- or L-attributed?

A.a= Bb1
A= BC B.b, = f(A.a,C.c)

B.i = f1(A.Q)
A - BC C.i = f,(B.s)
A.s = f3(C.5s)
C.i = fu(A.Q)
A - BC B.i = f:(C.s)

A.s = f¢(B.Ss)

S-Attributed and L-Attributed Definitions

Every S-attributed grammar is also a L-attributed
grammar

All L-attributed grammars are not S-attributed

Challenges with Attribute Grammars

i. Rules only involve local information (i.e., attributes pertaining to
symbols in the production)

* Needs additional attributes and copy rules to use non-local information,
which increases memory and run-time overhead

ii. Results can be scattered across attributes in the parse tree

iii. Works in conjunction with a parse tree or an AST
* A compiler implementation may not build either

Syntax-Directed Translation

Recap SDDs

 Syntax-directed definition (SDD)

* Defines a set of attributes and translations at every node of the parse tree,
output is available at the root
* Functional style which hides implementation details

* Evaluation order is not specified among multiple attributes for a production
* Only requirement is there should not be any circularity

Associating Semantic Rules with Productions

 Syntax-directed translation (SDT)

* Program fragments are embedded as semantic actions in production body
* Generates code while parsing

* Indicates order in which semantic actions are to be evaluated

rest - +term {print("+") } rest;

* Executable specification of an SDD, easier to implement, and can be more
efficient since the compiler can avoid constructing a parse tree and a
dependency graph

* Yacc/Bison uses translation schemes

SDT for Infix to Postfix Translation

SDD SDT
expr expr.code = expr — expry + term {print("+") }
— expr; + term expry.code| |term.code||" +" Y — {print(" —"))
expr expr.code =
— expr; —term expry.code||term.code||" —" expr — term
expr — term expr.code = term.code { print("0") }
term.code = "0" term - 0|1]...]9 tprint("1) }
term —0|1|..|9 Cerm-code="1" {print("9") }

term.code = "9"

SDT Actions

Do,
-,
-,
-,
-~
-,
-,
-,
-,
-,
-,
-,
-,
-,
-

{print("+") }

n n
"o .
'_\ N,
.N. \.
\. \'
N'\ N,
'~
., S,

~ ~

expr " term {print("—")} "2" {print("2") }
term "5" { print("5") }

.
\.
/ ~.
\.
\.
~

"9" { prini,;("9") }

SDDs and SDTs

input parseinput parse ~ dependency ~evaluation order
string tokenstream tree graph for semantic rules

* Evaluation of the semantic rules may
* Generate code
» Save information in the symbol table
* |ssue error messages
* Perform any other activity

Construction of AST for Expressions

* ldea: Construct subtrees for subexpressions by creating an operator
and operand nodes

* Internal node: Node(op, ¢y, ¢, ..., Ci)
* Create a node with label op, and k fields for k children

* Leaf node: Leaf (op, val)
* Create a node with label op, and val is the lexical value

Creating an AST

Following sequence of function calls create an AST fora — 4 + ¢

ok wnN e

p, = new Leaf (id, entrya)
p, = new Leaf (num, 4)

p; =new Node(" —",py, p,)
p, = new Leaf (id, entryc)
ps =new Node(“+ ", p3,0,)

AN

id

entry for a

!

num| 4

N

;

entry for c

S-Attributed Definition for Constructing
Syntax Trees

Semantic Action

E-E,+T E.node = new Node(" + ", E;.node, T.node)
E-E,—T E.node = new Node(" —", E;.node, T.node)
E->T E.node = T.node
T - (E) T.node = E.node
T —id T.node = new Leaf (id, id. entry)

T — num T.node = new Leaf (num, num. val)

Construction of ASTfora —4 + ¢ #stedee —

Parse Tree edge ==r=====see
E

E + T
E — T id
: : + \
T — T
: % S l
id entry for ¢

id | num| 4

l

entry for a

Construction of ASTfora — 4 + ¢ sstedee —

Parse Tree edge ===========-
E node
S S I
-------------- R R
.............. : !
----------- E | '---..._____."
E node + : T node
............ I
: I'I ! :
“““““““““ I "......... | I
--------- 1 | 1
I 1 [
E node - T node — id |
: I + !
: ! 1\ ;
\\ II num : J \ :
\ I / l T
\ / 1
T nolde \ v | id |
1 ! - 1
' /) AN ; l
H 1 / 1
1
d)/ ! entry for ¢
1 /’ 1
LA 4
id | num| 4

entry for a

L-Attributed Definition for Constructing
Syntax Trees

E —» TE' E.node = E'.syn
E'.inh = T.node
E' - +TE; E;.inh = new Node(" + ", E'.inh, T.node)
E'.syn = E{.syn
E' - —TE] Ei.inh = new Node(" —",E'.inh, T.node)
E'.syn = E{.syn
E' - € E'.syn = E'.inh
T - (E) T.node = E.node
T = id T.node = new Leaf (id, id. entry)

T - num T.node = new Leaf (num, num.val)

Dependency Graphfora —4 + ¢

s
.*
.
.
.
““
.
.
.
.
R

T node
fd entry

num val + T node ——inh E' syn

id entry €

Implementing SDTs

* Any SDT can be implemented by
1. building a parse tree

2. performing the actions in a left-to-right depth-first order, i.e., preorder
traversal

* SDTs are often implemented during parsing, possibly without a parse
tree, provided
* Underlying grammar is LR and the SDD is S-attributed, or
* Underlying grammar is LL and the SDD is L-attributed

Design of Translation Schemes

 Make all attribute values available when the semantic action is
executed

* When semantic action involves only synthesized attributes, the action
can be put at the end of the production

Postfix SDT for the Desk Calculator

e Consider S-attributed SDD fora L—ES$ {print(E.val) }
bottom-up grammar E—->E,+T {E.val=E;.val+T.val}
* We can construct an SDT with E->T { E.val =T.val}
actions at the end of each T->T,xF {T.val =Ty.val X F.val }
production T > F (T.val = F.val)
* SDT with all actions at the right- F - (&) {F.val = E.val }
end of a production is called F — digit { F.val = digit. lexval }
postfix SDT

action is executed when the body is
reduced to the head of the production

Implementing Postfix SDTs During LR Parsing

Input | = | |Ww | $
SDD attributes are stored in
{ the nodes of the parse tree
~ LR Parsing
Z.z Z
Program
Y.y Y
* Use a value stack to maintain attributes along
X.x X with the states (grammar symbols)
* Execute actions when reductions take place
$ $ * Manipulating the stack is done by the LR parser

Value Symbol
stack stack

CS 335 Swarnendu Biswas

Implementing Postfix SDTs with Bottom-up Parsing

L—-ES$ { print(stack|[top — 1].val); top = top — 1}
E—->FE+T { stack|top — 2].val = stack|top — 2].val +
stack|top].val; top = top — 2;}
E—->T
T—>T,*F { stack|top — 2].val = stack|top — 2].val X
stack|top].val; top = top — 2;}
T - F
F - (E) { stack[top — 2].val = stack|top — 1].val; top =

top — 2; }
F - digit Yacc uses SS, S1, S2, ... to refer to the
semantic values in the current production

SDT with Actions Inside Productions

BoX{alY

* For bottom-up parsing, execute action a as soon as X occurs on top of
the stack

* For top-down parsing, execute action a just before expanding
nonterminal Y or checking for terminal Y in the input

Example of an SDT Problematic for Parsing

L—>ES$

E - {print("+"); } E1+T
E->T

T - {print("+");} Ty *F
T—->F

F - (E)

F — digit { print(digit. lexval); }

Needs to print even before seeing
what is there next on the input

Parse Tree with Embedded Actions gj”e”‘”*s“‘}

l\
E $
 Parse the input and producea @ .----- =TT~
{print(" +');} E + T
parse tree
* Examine each interior node N . F
for production 4 — « == b
g .. e e == /\ digit {print(4);}
* Add additional children to N for (print(’+');} T * F
the actions in «, in left-to-right [~~~o_
order F digit {print(5);}
* Perform a preorder traversal of T~

| dicit { print(3)
the tree and execute the action tgit {print(3);}

as a node labeled by an action is
ViSitEd Traversing the tree in preorder

generates the prefix +*354

Design Rules for L-attributed SDDs

* An inherited attribute for a
symbol in the body of a
production must be computed in

S - A]_AZ {Alln — 1,A2.in - 2}
A - a{print(A.in) }

an action before the symbol S

* Asynthesized attribute forthe 7 N7l
nonterminal on the LHS can only Ay.in
be computed when all the Ay Ay Az.In
attributes it references have / /

been computed

* The action is usually put at the
end of the production

a print(A;.in) a print(4,.in)

What will happen on a DFS?

References

* A. Aho et al. Compilers: Principles, Techniques, and Tools, 2" edition, 2.3, 5.1-5.4.
» K. Cooper and L. Torczon. Engineering a Compiler, 2" edition, 4.1, 4.3, 4.4.

* M. Scott. Programming Language Pragmatics, 4t edition, Chapter 4.

