
CS 335: Runtime
Environments

Swarnendu Biswas

Semester 2022-2023-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

An Overview of Compilation

CS 335 Swarnendu Biswas

lexical analyzer

semantic analyzer

source program

syntax analyzer code optimizer

code generator

intermediate code
generator

target program

error handler

symbol table

Abstraction Spectrum

• Translating source code requires dealing with all programming
language abstractions
• For example, names, procedures, objects, control flow, and exceptions

• Physical computer operates in terms of several primitive operations
• Arithmetic, data movement, and control jumps

• It is not enough to just translate intermediate code to machine code,
need to manage memory when a program is executing

CS 335 Swarnendu Biswas

Runtime Environment

• A runtime environment is a set of data structures maintained at run
time to implement high-level program structures
• Examples of data structures are stack, heap, and virtual function tables

• Program structures depend on the features of the source and the target
language, examples are procedures and inheritance

• Compilers create and manage the runtime environment in which the
target programs execute

• Runtime deals with the layout, allocation, and deallocation of storage
locations, linkages between procedures, and passing parameters
among other concerns

CS 335 Swarnendu Biswas

Issues Dealt with Runtime Environments

• How to pass parameters when a procedure is called?

• What happens to locals when procedures return from an activation?

• How to support recursive procedures?

• Can a procedure refer to nonlocal names? If yes, then how?

• …

CS 335 Swarnendu Biswas

Storage Organization

• Target program runs in its own logical address space

• Size of generated code is usually fixed at compile
time, unless code is loaded or produced dynamically

• Compiler can place the executable at fixed addresses

• Runtime storage can be subdivided into
• Target code

• Static data objects such as global constants

• Stack to keep track of procedure activations and local data

• Heap to keep all other information like dynamic data

CS 335 Swarnendu Biswas

Stack

Code

Static

Heap

Free memory

m
em

o
ry ad

d
ress

Virtual Address Space
#include <cstdlib>
#include <iostream>
using std::cout;
int main() {

int x = 3;
cout << "Start of code segment: "

// Note the typecast
<< (void*)&main
<< "\nStart of heap segment: "
<< new int
<< "\nStart of stack segment: "
<< &x << "\n";

return EXIT_SUCCESS;
}

❯ g++ virtual-address-space.cpp -o
virtual-address-space

❯ ./virtual-address-space

Start of code segment: 0x55da0d8df1e9

Start of heap segment: 0x55da0f8722c0

Start of stack segment: 0x7ffd7d557b44

CS 335 Swarnendu Biswas

The Abstraction: Address Spaces

https://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf

Program Segments
int gv = 2; // Initialized global in .data

float gb; // Uninitialized global in .bss

const int MAX = 10000; // .rodata

const int MIN = 100; // .rodata

int main() {

// Uninitialized static in .bss

static double s_bss;

// Initialized static in .data

static int st = 77;

static char s_str[] = "CS335!\n";

const float pi = 3.14; // local, .rodata

int l_value = 42; // local to main

return 0;

}

❯ g++ -std=c++17 --save-temps -o data-
segments cpp

❯ size data-segments.o

text data bss dec hex
filename

135 16 16 167 a7
data-segments.o

❯ objdump -CS -s -j .data data-segments

...

0000000000004010 <g_value>:

4010: 02 00 00 00
....

0000000000004014 <main::st>:

4014: 4d 00 00 00
M...

0000000000004018 <main::s_str>:

4018: 43 53 33 33 35 21 0a 00

CS 335 Swarnendu Biswas

C++ Internals :: Memory Layout

https://web.archive.org/web/20190917094831/http:/www.codingfail.com/cpp-internals-memory-layout/

Strategies for Storage Allocation

• Static allocation – Lay out storage at compile time only by studying
the program text
• Memory allocated at compile time will be in the static area

• Dynamic allocation – Storage allocation decisions are made when the
program is running
• Stack allocation – Manage run-time allocation with a stack storage

• Local data are allocated on the stack

• Heap allocation – Memory allocation and deallocation can be done at any
time
• Requires memory reclamation support

CS 335 Swarnendu Biswas

Static Allocation

• Names are bound to storage locations at compilation time
• Bindings do not change, so no run time support is required

• Names are bound to the same location on every invocation

• Values are retained across activations of a procedure

• Limitations
• Size of all data objects must be known at compile time

• Data structures cannot be created dynamically

• Recursive procedures are not allowed

CS 335 Swarnendu Biswas

Allocating Arrays Statically

#define NUM_ELEMS (1 << 30)

int main() {

int large_array[NUM_ELEMS];

cout << "Allocation successful!";

for (int i = 0; i < NUM_ELEMS; i++) {

large_array[i] = 0;

cout << "Array[i]: " <<

large_array[i] << "\n";

}

return EXIT_SUCCESS;

}

❯ g++ static-large-array.cpp -o static-large-array

❯ ./static-large-array

fish: Job 1, './static-large-array' terminated by
signal SIGSEGV (Address boundary error)

CS 335 Swarnendu Biswas

Why does a large static array give a seg-fault but dynamic doesn't? (C++)

https://stackoverflow.com/questions/16269895/why-does-a-large-static-array-give-a-seg-fault-but-dynamic-doesnt-c

Stack vs Heap Allocation

Stack

• Allocation/deallocation is
automatic

• Faster, just move the stack
pointer

• Space for allocation is limited

Heap

• Allocation/deallocation is explicit

• More expensive

• Challenge is fragmentation

CS 335 Swarnendu Biswas

Comparing the Cost of Stack and Heap Allocations
#define NUM_ITERS (1e9)
using HR =
std::chrono::high_resolution_clock;
using HRTimer = HR::time_point;
using std::chrono::duration_cast;
using std::chrono::microseconds;
void on_stack() { int i; }
void on_heap() { int* i = new int; }

int main() {
HRTimer start = HR::now();
for (int i = 0; i < NUM_ITERS; ++i) {

on_stack();
}
HRTimer end = HR::now();
auto duration =

duration_cast<microseconds>(end -
start).count();

cout << "Time for per on_stack alloc:
" << (float)duration / NUM_ITERS << "
us\n";

❯ g++ stack-heap-allocation.cpp -o
stack-heap-allocation

❯ ./stack-heap-allocation

Time for per stack alloc: 0.0017 us

Time for per heap alloc: 0.0069 us

CS 335 Swarnendu Biswas

start = HR::now();
for (int i = 0; i < NUM_ITERS; ++i) {

on_heap();
}
end = HR::now();
duration =

duration_cast<microseconds>(end -
start).count();

cout << "Time for per heap alloc: "
<< ((float)duration / NUM_ITERS) / 2 <<
" us\n";

Which is faster: Stack allocation or Heap allocation

https://stackoverflow.com/questions/161053/which-is-faster-stack-allocation-or-heap-allocation

Static vs Dynamic Allocation

Static

• Variable access is fast
• Addresses are known at compile

time

• Cannot support recursion

Dynamic

• Variable access is slow
• Accesses need redirection through

stack/heap pointer

• Supports recursion

CS 335 Swarnendu Biswas

Procedure Abstraction
Activations, calling conventions, accessing local and non-local data

CS 335 Swarnendu Biswas

Procedure Calls

• Procedure definition is a declaration that associates an identifier with
a statement (procedure body)
• Formal parameters appear in declaration while actual parameters appear

when a procedure is called

• Important abstraction in programming
• Provides control abstraction and name space

• Defines critical interfaces among large parts of a software

• Creates a controlled execution environment
• Each procedure has its own private named storage or name space

• Executing a call instantiates the callee’s name space

CS 335 Swarnendu Biswas

Control Abstraction

• Each language has rules to
• Invoke a procedure (pass control by manipulating the PC)

• Map a set of arguments from the caller’s name space to the callee’s name
space (pass data)

• Allocate space for local variables when a procedure executes

• Return control to the caller, and continue execution after the call

• Linkage convention standardizes the actions taken by the compiler
and the OS to make a procedure call

CS 335 Swarnendu Biswas

Procedure Calls

• Each execution of a procedure 𝑃 is an activation of the procedure 𝑃

• A procedure is recursive if an activation can begin before an earlier
activation of the same procedure has ended
• If procedure is recursive, several activations may be alive at the same time

• The lifetime of an activation of 𝑃 is all the steps to execute 𝑃
including all the steps in procedures that 𝑃 calls
• Given activations of two procedures, their lifetimes are either non-

overlapping or nested

CS 335 Swarnendu Biswas

Activation Tree

• Depicts the way control enters and leaves
activations
• Root represents the activation of main()

• Each node represents activation of a
procedure
• Node 𝑎 is the parent of 𝑏 if control flows from 𝑎

to 𝑏

• Node 𝑎 is to the left of 𝑏 if lifetime of 𝑎 occurs
before 𝑏

• Flow of control in a program corresponds
to depth-first traversal of activation tree

int g() { return 42; }

int f() { return g(); }

int main() {

g();

f():

}

CS 335 Swarnendu Biswas

main()

g() f()

g()

Quicksort Code

int a[11];

void readArray() {

int i;

…

}

int main() {

readArray();

a[0] = -99999;

a[10] = 99999;

quicksort(1, 9);

}

void quicksort(int m, int n) {

int i;

if (n > m) {

i = partition(m, n);

quicksort(m, i-1);

quicksort(i+1, n);

}

}

int partition(int m, int n) {

…

}

CS 335 Swarnendu Biswas

One Possible Activation Tree

CS 335 Swarnendu Biswas

qsort(2,1) qsort(3,3)partn (2,3) partn (7,9) qsort(7,7) qsort(9,9)

partn (5,9) qsort(5,5) qsort(7,9)
partn (1,3) qsort(1,0) qsort(2,3)

partn (1,9) qsort(1,3) qsort(5,9)

main()

rdArr() qsort(1,9)

Also referred to as a dynamic
call graph

Example of Procedure Activations

CS 335 Swarnendu Biswas

enter main()

enter readArray()

leave readArray()

enter quicksort(1,9)

enter partition(1,9)

leave partition(1,9)

enter quicksort(1,3)

...

leave quicksort(1,3)

enter quicksort(5,9)

...

leave quicksort(5,9)

leave quicksort(1,9)

leave main()

qsort(2,1) qsort(3,3)partn (2,3) partn (7,9)qsort(7,7)qsort(9,9)

partn (5,9) qsort(5,5) qsort(7,9)
partn (1,3) qsort(1,0) qsort(2,3)

partn (1,9) qsort(1,3) qsort(5,9)

main()

rdArr() qsort(1,9)

main()

Control Stack

• Procedure calls and returns are usually
managed by a run-time stack called the
control stack

• Each live activation has an activation record
on the control stack (also called a frame)
• Stores control information and data storage

needed to manage the activation

• Frame is pushed when activation begins and
popped when activation ends

• Suppose node 𝑛 is at the top of the stack,
then the stack contains the nodes along the
path from 𝑛 to the root

CS 335 Swarnendu Biswas

main()

qsort(2,3)

qsort(1,3)

qsort(1,9)

qsort(1,9)

qsort(1,3)

qsort(1,0) qsort(2,3)

rdArr()

main()

partn(1,3)

partn(1,9)

Is a Stack Sufficient?

When will a control stack work?

• Once a function returns, its activation record cannot be referenced again

• We do not need to store old nodes in the activation tree

• Every activation record has either finished executing or is an ancestor of
the current activation record

When will a control stack not work?

• A function’s activation record can be referenced after the function returns

• Function closures – procedure and run-time context to define free variables

CS 335 Swarnendu Biswas

Function Closure

• Function closure stores a
function together with the
environment

• Popularly used in languages
where functions are first-class
objects
• Functions can be returned as

results from higher-order
functions, or passed as arguments
to other function calls

def f(x): # returns a closure
def g(y):

return x+y
return g

def h(x): # returns a closure
return lambda y: x+y

assign closure to variable
a = f(1)
b = h(1)
use the closure stored in
variables
assert a(5) == 6
assert b(5) == 6
use closures without binding to
variables
assert f(1)(5) == 6
assert g(1)(5) == 6

CS 335 Swarnendu Biswas

Wikipedia: Closure

https://en.wikipedia.org/wiki/Closure_(computer_programming)

Environment and State

Environment

• Refers to a function that maps a
name to a storage location

• Maps a name to a l-value

State

• Refers to a function that maps a
storage location to the stored
value

• Maps the l-value to a r-value

CS 335 Swarnendu Biswas

An expression evaluated to a location is a l-value.
An expression evaluated to a value is a r-value.

name storage value

environment state

An assignment changes state, not the environment

Activation Record

• A pointer to the current activation record
is maintained in a register

• Fields in an activation record
i. Temporaries – evaluation of expressions

ii. Local data – field for local data

iii. Saved machine status – information about
the machine state before the procedure call
• Return address (value of program counter)

• Register contents

iv. Access link – access non-local data

CS 335 Swarnendu Biswas

Access link

Actual parameters

Returned values

Control link

Saved machine
status

Local data

Temporaries

Activation Record

• Fields in an activation record
v. Control link – Points to the activation

record of the caller

vi. Returned values – Space for the value to
be returned

vii. Actual parameters – Space for actual
parameters

• Contents and position of fields may vary
with language and implementations

CS 335 Swarnendu Biswas

Access link

Actual parameters

Returned values

Control link

Saved machine
status

Local data

Temporaries

Sequence of Activation Record Manipulation

CS 335 Swarnendu Biswas

Frame for main()

integer 𝑎[11]

main

main()

global
variable

rdArr() is activated

main()

rdArr()

integer 𝑎[11]

main

integer 𝑖

rdArr

local
variable

rdArr() is popped, qsort(1,9) is pushed

main()

rdArr() qsort(1,9)

local
variable

integer 𝑎[11]

main

integer 𝑚, 𝑛

qsort(1,9)

integer 𝑖

1 2

3

What is in G()’s Activation Record when F()
calls G()?
• If a procedure F calls G, then G’s activation record contains

information about both F and G

• F is suspended until G completes, at which point F resumes
• G’s activation record contains information needed to resume execution of F

• G’s activation record contains
• G’s return value (needed by F)

• Actual parameters to G (supplied by F)

• Space for G’s local variables

CS 335 Swarnendu Biswas

A Standard Procedure Linkage

• Procedure linkage is a
contract between the
compiler, the OS, and the
target machine

• Divides responsibility for
naming, allocation of
resources, addressability,
and protection

CS 335 Swarnendu Biswas

prologue

precall

epilogue

postreturn

procedure p

prologue

epilogue

procedure q

instructions at the entry
to prepare the stack and
the registers for use

instructions at the end
to restore the stack and
the registers as required
by the caller

Calling and Return Sequence

• Calling sequence allocates an activation record on the stack and
enters information into its fields
• Responsibility is shared between the caller and the callee

• Return sequence is code to restore the state of the machine so the
calling procedure can continue its execution after the call

CS 335 Swarnendu Biswas

Calling Sequence

• Policies and implementation strategies can differ
• Place values communicated between caller and callee at the beginning of the

callee’s activation record, close to the caller's activation record

• Fixed-length items are placed in the middle

• Data items whose size are not known during intermediate code generation
are placed at the end of the activation record

• Top-of-stack points to the end of the fixed-length fields
• Fixed-length data items are accessed by fixed offsets from top-of-stack pointer

• Variable-length fields records are actually "above" the top-of-stack

CS 335 Swarnendu Biswas

Division of Tasks Between Caller and Callee

CS 335 Swarnendu Biswas

C
al

le
e’

s
ac

ti
va

ti
o

n
 r

ec
o

rd

Parameters and return value

Control link
Links and saved status

Temporaries and local data

Parameters and return value

Control link
Links and saved status

Temporaries and local data

…

top_stack

C
al

le
r’

s
ac

ti
va

ti
o

n
 r

ec
o

rd

C
al

le
r’

s
re

sp
o

n
si

b
ili

ty

C
al

le
e’

s
re

sp
o

n
si

b
ili

ty

Division of Tasks Between Caller and Callee

Call sequence

a.Caller evaluates the actual parameters

b.Caller stores a return address and the old value of top_stack into
the callee's activation record

c. Caller then increments top_stack past the caller's local data and
temporaries and the callee's parameters and status fields

i. Callee saves the register values and other status information

ii.Callee initializes its local data and begins execution

CS 335 Swarnendu Biswas

Calling Conventions
• Specifies how functions calls are

set up and executed
• E.g., passing arguments and return

values

• x86-64 calling convention
• First six integral (including pointers)

function arguments are passed in registers
%rdi, %rsi, %rdx, %rcx, %r8, and %r9

• Subsequent arguments are passed on the
stack in the reverse order (arg 7 is at the
top)

• The return value is passed in register %rax
• Floating point parameters are passed in
xmm0-xmm7

• If the function takes a variable number of
arguments (like printf), then %rax must
be set to the number of floating point
arguments

• The stack pointer register %rsp must be
aligned to 16-byte boundary before the call

• Complete set of rules (System V ABI) are
complex

CS 335 Swarnendu Biswas

MyFunc(a,b)

CS61: Assembly
System V Application Binary Interface

push a
push b
call MyFunc

push b
push a
call MyFunc

or

https://cs61.seas.harvard.edu/site/2022/Asm/#Calling-convention
https://www.intel.com/content/dam/develop/external/us/en/documents/mpx-linux64-abi.pdf

Example Procedure Call
void proc(long a1, long *a1p,

int a2, int *a2p,

short a3, short *a3p,

char a4, char *a4p) {

*a1p += a1;

*a2p += a2;

*a3p += a3;

*a4p += a4;

}

❯ gcc -S -m64 -fno-asynchronous-
unwind-tables -fno-exceptions proc-
call.c

…

CS 335 Swarnendu Biswas

…

saved RBP

return address

a4

a4p

…

RBP+8

RBP

RBP+16

RBP+247th arg

Example Procedure Call
void proc(long a1, long *a1p,

int a2, int *a2p,

short a3, short *a3p,

char a4, char *a4p) {

*a1p += a1;

*a2p += a2;

*a3p += a3;

*a4p += a4;

}

❯ gcc –O2 -S -m64 -fno-asynchronous-
unwind-tables -fno-exceptions proc-
call.c

…

; Fetch a4p, move 8 bytes

movq 16(%rsp), %rax

addq %rdi, (%rsi) ; *a1p += a1

addl %edx, (%rcx) ; *a2p += a2

; Fetch a4 to %dl

movl 8(%rsp), %edx

addw %r8w, (%r9) ; *a3p += a3

addb %dl, (%rax) ; *a4p += a4

ret

…

CS 335 Swarnendu Biswas

Register Saving Conventions
proc1:

…
movq $0x100, %rdx
call proc2
addq %rdx, %rax
…
ret

proc2:
…
subq $0x200, %rdx
…
ret

CS 335 Swarnendu Biswas

• Caller saved
• Caller saves temporary values in its frame (on the stack)

before the call
• Callee is then free to modify their values

• Callee saved
• Callee saves temporary values in its frame before using
• Callee restores them before returning to callee

• %rbx, %rbp, and %r12-%r15 are
callee-saved registers

• All other registers, excepting %rsp,
are caller-saved

• %rax holds the return value, so
implicitly caller saved

• %rsp is the stack pointer, so
implicitly callee saved

Use of Callee-Saved Registers
proc1: ; x is in %rdi, y is in %rsi

pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq %rdi, -24(%rbp)
movq %rsi, -32(%rbp)
movq -32(%rbp), %rax
movq %rax, %rdi
call proc2@PLT
movq %rax, -16(%rbp)
movq -24(%rbp), %rax
movq %rax, %rdi
call proc2@PLT
movq %rax, -8(%rbp)
movq -16(%rbp), %rdx
movq -8(%rbp), %rax
addq %rdx, %rax
leave
ret

CS 335 Swarnendu Biswas

❯ gcc -S -m64 -fno-asynchronous-
unwind-tables -fno-exceptions
callee-saved-regs.c

long proc2(long);

long proc1(long x, long y) {
long u = proc2(y);
long v = proc2(x);
return u+v;

}

Division of Tasks Between Caller and Callee

Return Sequence

• Callee places the return value next to the parameters

• Callee restores top_stack and other registers

• Callee branches to the return address that the caller placed in the
status field

• Caller copies return value into its activation record

CS 335 Swarnendu Biswas

Data Communication between Procedures

• Parameter binding maps the actual parameters at a call site to the
callee’s formal parameters

• Types of mapping conventions: call by value, call by reference, call by
name

CS 335 Swarnendu Biswas

Call by Value and Call by Reference

Call by Value

• Convention where the caller
evaluates the actual parameters
and passes their r-values to the
callee

• Formal parameter in the callee is
treated like a local name

• Any modification of a value
parameter in the callee is not
visible in the caller

Call by Reference

• Convention where the compiler
passes an address for the formal
parameter to the callee
• Any redefinition of a reference

formal parameter is reflected in
the corresponding actual

• A formal parameter requires an
extra indirection

CS 335 Swarnendu Biswas

Call by Name

• Reference to a formal parameter
behaves as if the actual parameter
had been textually substituted in
its place
• Renaming is used in case of clashes

• Can update the given parameters

• Actual parameters are evaluated
inside the called function

• Example: Algol-60

procedure double(x);

real x;

begin

x := x*2

end;

double(c[j]) c[j] := c[j]*2

CS 335 Swarnendu Biswas

Pass-By-Name Parameter Passing
What is "Call By Name"?

int f(int j) {
int k = j; // k = 0
i = 2; // modify global i
// a[i] is reevaluated, giving 2
k = j;

}
char array[3] = { 0, 1, 2 };
int i = 0;
f(a[i]);

https://www2.cs.sfu.ca/~cameron/Teaching/383/PassByName.html
https://stackoverflow.com/questions/2962987/what-is-call-by-name

Challenges with Call by Name

procedure swap(a, b)

integer a, b, temp;

begin

temp := a

a := b

b := temp

end;

What will happen when you call
swap(i, x[i])?

CS 335 Swarnendu Biswas

Pass-By-Name Parameter Passing

temp := i
i := x[i]
x[i] := temp

Before call i=2 x[2]=5

After call i=5 x[2]=5 x[5]=2

https://www2.cs.sfu.ca/~cameron/Teaching/383/PassByName.html

Name Spaces, and Lexical and Dynamic Scoping

• Scope is the part of a program to which a name declaration applies
• Scope rules provide control over access to data and names
• A variable that a procedure refers to and that is declared outside the procedure’s

own scope is called a free variable

• Lexical scope – a name refers to the definition that is lexically closest to the
use
• With lexical (a.k.a., static) scoping, a free variable is bound to the declaration for its

name that is lexically closest to the use

• With dynamic scoping, a free variable is bound to the variable most
recently created at run time (e.g., Common Lisp)

• Lexical scoping is more popular, dynamic scoping is relatively challenging to
implement
• Both are identical as far as local variables are concerned

CS 335 Swarnendu Biswas

Nested Lexical Scopes in Pascal

program Main0(inp, op);

var x1, y1, z1: integer;

procedure Fee1;

var x2: integer;

begin { Fee1 }

x2 := 1;

y1 := x2*2+1

end;

procedure Fie1;

var y2: real;

procedure Foe2;

var z3: real;

procedure Fum3;

var y4: real;

...

Scope x y z
Main <1,0> <1,4> <1,8>

Fee <2,0> <1,4> <1,8>

Fie <1,0> <2,0> <2,8>

Foe <1,0> <2,0> <3,0>

Fum <1,0> <4,0> <3,0>

CS 335 Swarnendu Biswas

• Compilers can use a static coordinate for a
name for lexically-scoped languages

• Consider a name 𝑥 declared in a scope 𝑠
• Static coordinate is a pair <𝑙, 𝑜> where 𝑙 is

the lexical nesting level of s and 𝑜 is the
offset where 𝑥 is stored in the scope’s data
area

Lexical and Dynamic Scope
int x = 1, y = 0;

int g(int z) {

return x + z;

}

int f(int y) {

int x;

x = y + 1;

return g(x * y);

}

int main() {

print(f(3));

}

• What is printed?
• With lexical scoping: 13

• With dynamic scoping: 16

CS 335 Swarnendu Biswas

free
variable

Static (Lexical) Scoping vs Dynamic Scoping (Pseudocode)

https://stackoverflow.com/questions/22394089/static-lexical-scoping-vs-dynamic-scoping-pseudocode

Lexical and Dynamic Scoping in Perl
$x = 10;
sub f
{

return $x;
}
sub g
{

If local is used, x uses dynamic scoping
If my is used, x uses lexical scoping
local $x = 20;
my $x = 20;
return f();

}
print g()."\n";

CS 335 Swarnendu Biswas

Dynamic scope

$ perl scope.pl
20

Lexical scope

$ perl scope.pl
10

Static (Lexical) Scoping vs Dynamic Scoping (Pseudocode)

https://stackoverflow.com/questions/22394089/static-lexical-scoping-vs-dynamic-scoping-pseudocode

Scoping Rules for C and Java Languages

CS 335 Swarnendu Biswas

Global scope
a, b, c, …

File scope
static names
x, y, z

foo
variables
parameters
labels

Block scope
variables
labels

File scope
static names
w, x, z

bar
variables
…

Block scope
variables

fee

Public classes

package p1

public class
A

fields
method f1

local variables
method f2

local variables

class B
fields
method f3

package p2
…

package p3
…

C Java

Allocating Activation Records

• Stack allocation
• Activation records follow LIFO ordering (e.g., Pascal, C, and Java)

• Heap allocation
• Needed when a procedure can outlive its caller (e.g., Implementations of

Scheme and ML)

• Garbage collection support eases complexity

• Static allocation
• Procedure 𝑃 cannot have multiple active invocations if it does not call other

procedures

• A leaf procedure makes no calls to other procedures

CS 335 Swarnendu Biswas

Variable Length Data on the Stack

• Data may be local to a procedure
but the size may not be known
at compile time
• For example, a local array whose

size depends upon a parameter

• Data may be allocated in the
heap but would require garbage
collection

• Possible to allocate variable-
sized local data on the stack

CS 335 Swarnendu Biswas

A
ct

iv
at

io
n

 r
ec

o
rd

 f
o

r
𝑃

top_stack

…
Control link

Links and saved status

…

Control link
Links and saved status

Pointer to 𝑏

…

Pointer to 𝑐

Pointer to 𝑎

…

…
Array 𝑎

Array 𝑏

Array 𝑐

A
ct

iv
at

io
n

 r
ec

o
rd

fo

r
𝑄

ca
lle

d
 f

ro
m
𝑃

Data Access without Nested Procedures

• Consider the C-family of languages

• Any name local to a procedure is non-local to other procedures

• Access rules
i. Global variables are in static storage

• Addresses are fixed and known at compile time, use the addresses in the code

ii. Any other name must be local to the activation at the top of the stack

CS 335 Swarnendu Biswas

Access to Non-local Data in Nested Procedures

• Suppose procedure 𝑝 at lexical level 𝑚 is nested in procedure 𝑞 at
level 𝑛, and 𝑥 is declared in 𝑞
• Our aim is to resolve a non-local name 𝑥 in 𝑝
• Finding the declaration for non-local 𝑥 in 𝑝 is a static decision

• Compiler models the reference by a static distance coordinate <𝑚 −
𝑛, 𝑜> where 𝑜 is 𝑥’s offset in the activation record for 𝑞
• Compiler needs to translate <𝑚 − 𝑛, 𝑜> into a runtime address

• Finding the relevant activation of 𝑞 from an activation of 𝑝 is a
dynamic decision
• We cannot use compile-time decisions since there could be many activation

records of 𝑝 and 𝑞 on the stack

• Two common strategies: access links and displays

CS 335 Swarnendu Biswas

Access Links

• Suppose procedure 𝑝 is nested immediately
within procedure 𝑞

• Access link in any activation of 𝑝 points to
the most recent activation of 𝑞

• Access links form a chain up the nesting
hierarchy
• All activations whose data and procedures are

accessible to the currently executing procedure

CS 335 Swarnendu Biswas

Access link

Actual parameters

Returned values

Control link

Saved machine
status

Local data

Temporaries

Nesting Depth

• Procedures not nested within other procedures have nesting depth 1
• For example, all functions in C have depth 1

• If 𝑝 is defined immediately within a procedure at depth 𝑖, then 𝑝 is at
depth 𝑖 + 1

CS 335 Swarnendu Biswas

Quicksort in ML using Nested Procedures

1) fun sort (inputFile, outputFile) =

let

2) val a = array(11,O);

3) fun readArray(inputFi1e) = ... ;

4) ...a... ; // use

5) fun exchange(i, j) =

6) ...a... ; // use

7) fun quicksort(m,n) =

let

8) val v= ... ; // pivot

9) fun partition(y,z) =

10) ...a...v...exchange... // use

in

11) ...a...v...partition...quicksort

end

in

12) ...a...readArray...quicksort...

end;

CS 335 Swarnendu Biswas

Procedure Nesting Depth

sort 1

readArray 2

exchange 2

quicksort 2

partition 3

How to find non-local 𝑥?

• Suppose procedure 𝑝 is at the top of the stack and has depth 𝑛𝑝, and
𝑞 is a procedure that surrounds 𝑝 and has depth 𝑛𝑞
• Usually 𝑛𝑞 < 𝑛𝑝; 𝑛𝑞 == 𝑛𝑝 only if 𝑝 and 𝑞 are the same

• Follow the access link (𝑛𝑝 − 𝑛𝑞) times to reach an activation record
for 𝑞
• That activation record for 𝑞 will contain a definition for local 𝑥

CS 335 Swarnendu Biswas

Example of Access Links

CS 335 Swarnendu Biswas

sort()

access link

𝑎

qsort(1,9)

𝑣

access link

Why?

Because sort() called quicksort()?

No, because sort is the most closely nested
function surrounding quicksort

sort()

access link

𝑎

qsort(1,9)

𝑣

access link

qsort(1,3)

𝑣

access link

Example of Access Links

CS 335 Swarnendu Biswas

sort()

access link

𝑎

qsort(1,9)

𝑣

access link

sort()

access link

𝑎

qsort(1,9)

𝑣

access link

qsort(1,3)

𝑣

access link

sort()

access link

𝑎

qsort(1,9)

𝑣

access link

qsort(1,3)

𝑣

access link

part(1,3)

access link

sort()

access link

𝑎

qsort(1,9)

𝑣

access link

qsort(1,3)

𝑣

access link

part(1,3)

access link

exchg(1,3)

access link

Manipulating Access Links

CS 335 Swarnendu Biswas

Coordinate Code

<2, 24> loadAI rarp, 24 ⇒ r2

<1, 12> loadAI rarp, -4 ⇒ r1

loadAI r1, 12 ⇒ r2

<0, 16> loadAI rarp, -4 ⇒ r1

loadAI r1, -4 ⇒ r1

loadAI r1, 16 ⇒ r2

ARP
Access link

Actual
parameters
Returned

values

Control link

Saved machine
status

Local data

Temporaries

Level 1

Access link

Actual
parameters
Returned

values

Control link

Saved machine
status

Local data

Temporaries

Level 2

Access link

Actual
parameters
Returned

values

Control link

Saved machine
status

Local data

Temporaries

Level 0

Manipulating Access Links

• Code to setup access links is part of the calling sequence

• Suppose procedure 𝑞 at depth 𝑛𝑞 calls procedure 𝑝 at depth 𝑛𝑝

• The code for setting up access links depends upon whether or not the
called procedure is nested within the caller

CS 335 Swarnendu Biswas

Manipulating Access Links

• Case 1: 𝑛𝑞 < 𝑛𝑝
• Called procedure 𝑝 is nested more deeply than 𝑞

• Therefore, 𝑝 must be declared in 𝑞, or the call by 𝑞 will not be within the
scope of 𝑝

• Access link in 𝑝 should point to the access link of the activation record of the
caller 𝑞

• E.g., sort() calls quicksort(), quicksort() calls partition()

• Case 2: 𝑛𝑝 == 𝑛𝑞
• Procedures are at the same nesting level (recursive call)

• Access link of called procedure 𝑝 is the same as 𝑞

• E.g., quicksort(1,9) calls quicksort(1,3)

CS 335 Swarnendu Biswas

Manipulating Access Links

• Case 3: 𝑛𝑞 > 𝑛𝑝
• For the call within 𝑞 to be in the scope of 𝑝, 𝑞 must

be nested within some procedure 𝑟, while 𝑝 is
defined immediately within 𝑟

• Top activation record for 𝑟 can be found by
following chain of access links for 𝑛𝑞 − (𝑛𝑝 − 1)
hops, starting in the activation record for 𝑞

• Access link for 𝑞 will go to the activation for 𝑟

• Example:
• Nesting depth of calling function partition is 3

• Nesting depth of called function exchange is 2

CS 335 Swarnendu Biswas

sort()

access link

𝑎

qsort(1,9)

𝑣

access link

qsort(1,3)

𝑣

access link

part(1,3)

access link

exchg(1,3)

access link

Displays

• Display is a global array to hold the activation record pointers for the
most recent activations of procedures at each lexical level

CS 335 Swarnendu Biswas

d[1]

d[2] sort()

qsort(1,9)

…

null

sort()

qsort(1,9)

…

null

qsort(1,3)

…

saved d[2]

d[1]

d[2]

Insight in Using Displays

• Suppose a procedure 𝑝 is executing and needs to access element 𝑥
belonging to procedure 𝑞

• The runtime only needs to search in activations from 𝑑[𝑖], where 𝑖 is
the nesting depth of 𝑞
• Follow the pointer 𝑑[𝑖] to the activation record for 𝑞, wherein 𝑥 should be

defined at a known offset

CS 335 Swarnendu Biswas

Displays

CS 335 Swarnendu Biswas

partn(1,3)

…

null

sort()

qsort(1,9)

…

null

qsort(1,3)

…

saved d[2]

d[1]

d[2]

d[3]

exchg(1,3)

…

saved d[2]

partn(1,3)

…

null

sort()

qsort(1,9)

…

null

qsort(1,3)

…

saved d[2]

d[1]

d[2]

d[3]

Access Links vs Displays

Access Links

• Cost of lookup varies
• Common case is cheap, but long

chains can be costly

• Cost of maintenance also is
variable

Displays

• Cost of lookup is constant

• Cost of maintenance is constant

CS 335 Swarnendu Biswas

Heap Management

CS 335 Swarnendu Biswas

Heap Management

• Heap is used for allocating space for objects created at run time that can
outlive the parent procedure

• Manage (either manual or automatic strategies) heap memory by
implementing mechanisms for allocation and deallocation
• Interface to the heap: allocate(size) and free(addr)
• Commonly-used interfaces: malloc()/free() in C or new/delete in C++
• Allocation and deallocation may be completely manual (C/C++), semi-automatic

(Java), or fully automatic (Lisp)

• Goals
• Space efficiency – minimize fragmentation
• Program efficiency – take advantage of locality of objects in memory and make the

program run faster
• Low overhead – allocation and deallocation must be efficient

CS 335 Swarnendu Biswas

First-fit Allocation
• Emphasizes speed over memory utilization

• Every block in the heap has a field for size

• allocate(k)
• Traverse the free list to find a block bi with size greater than k+1
• If found, remove bi from the free list and return pointer to the next word of bi

• If bi is larger than k, then split the extra space and add to the free list

• If not found, then request for more virtual memory, report error if request fails

• free(addr)
• Add bj to the head of the free list, efficient but leads to fragmentation

CS 335 Swarnendu Biswas

size

Allocated block

size
next

Free block

Reducing Fragmentation

• Merge free blocks if adjacent blocks are free
• Check the preceding end-of-block pointer when processing bj and merge if

both blocks are free

• Can also merge with successor block

• Other variants – best-fit and next-fit allocation strategy
• Best-fit strategy searches and picks the smallest (best) possible chunk that

satisfies the allocation request

• Next-fit strategy tries to allocate the object in the chunk that has been split
recently

CS 335 Swarnendu Biswas

Problems with Manual Deallocation

• Common problems
• Fail to delete data that is not required, called memory leak

• Critical for performance of long-running or server programs

• Reference deleted data, i.e., dangling pointer reference

• These problems are hard to debug

• Possible solution is support for implicit deallocation of objects that
reside on the runtime heap (a.k.a. garbage collection)

CS 335 Swarnendu Biswas

References

• A. Aho et al. Compilers: Principles, Techniques, and Tools, 1st edition, Chapter 7.

• A. Aho et al. Compilers: Principles, Techniques, and Tools, 2nd edition, Chapter 7.1-7.4.

• K. Cooper and L. Torczon. Engineering a Compiler, 2nd edition, Chapter 6, 7.1-7.2.

CS 335 Swarnendu Biswas

