
CS 335: Register Allocation
Swarnendu Biswas

Semester 2022-2023-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Impact of Register Operands

• Instructions involving register
operands are faster than those
involving memory operands

• Code is often smaller and hence
is faster to fetch

• Efficient utilization of registers is
important
• Number of general-purpose

registers is limited
• E.g., ~16-32 64-bit general-

purpose registers

CS 335 Swarnendu Biswas

Goals in Register Allocation

• All variables are not used (or live) at the same time

• Register allocator in a compiler helps with decision making
• Which values will reside in registers?

• Which register will hold each of those values?

• At each program location, values stored in virtual registers in the IR are
mapped to physical registers

CS 335 Swarnendu Biswas

Register
Allocator

Input
program

Output
program

n registers m registers
n >> m

Goals in Register Allocation

• Programs spend most of their time in loops
• Natural to store values in innermost loops in registers

• Register pressure measures the availability of free registers
• High register pressure implies that a large fraction of registers are in use

• When no registers are available to store a computation, the contents
of one of the in-use registers must be stored into memory
• This is called register spilling, requires generating load and store instructions

• Spilling increases code size and execution time

• Goal in register allocation is thus to minimize the impact of spills
especially for performance-critical code

CS 335 Swarnendu Biswas

Register Allocation and Assignment

• Allocation
• Maps an unlimited name space onto the register set of the target machine

• Register-to-register model: map virtual registers to the physical register set
and spill values that do not fit in the physical register set

• Memory-to-memory model: map a subset of memory locations to a set of
physical registers

• Assignment
• Assumes that allocation has already been performed

• Maps an allocated name set to the physical registers of the target machine

CS 335 Swarnendu Biswas

Challenges in Register Allocation

• Architectures provide different register classes
• General purpose registers, floating-point registers, predicate and branch target

registers

• General-purpose registers may be used for floating-point register spills, which
implies an order for allocation

• Registers may be aliased, cannot use a register and its constituent registers at the
same time
• x86 has 32-bit registers whose lower halves are used as 16-bit or 8-bits registers

• Similar for vector registers like zmm, ymm, and xmm

• If different register classes overlap, the compiler must allocate them together

• Architecture calling conventions place more constraints on register usage
• E.g., PowerPC requires parameters to be passed in R3-R10 and the return is in R3

CS 335 Swarnendu Biswas

Register Allocation Problem

• General formulation of the problem is NP-Complete
• E.g., register allocation for a set of BBs, multiple control flow paths, multiple

data types, and non-uniform cost of memory access complicate the analysis

• Optimal allocation can be done in polynomial time for very restricted versions
with a single BB and with one data type

CS 335 Swarnendu Biswas

More about Register Allocation

• Types of allocation: local (over a BB), global (over a whole function),
or Interprocedural (across function boundaries traversed via call-
graph)

• Backend includes instruction selection, register allocation, and
instruction scheduling
• Performing allocation first restricts movement of code during scheduling, not

a good idea

• Scheduling instructions first cannot handle spill code introduced during
allocation

• Possible order: selection -> scheduling -> allocation -> scheduling

CS 335 Swarnendu Biswas

Local Register Allocation
Frequency count and Variable usage

CS 335 Swarnendu Biswas

Local Register Allocation
• Assumptions

• Considers only a single basic block

• Loads values from memory at the start of a BB and stores to memory at the
end of the BB

• IR makes use of many virtual registers

• Target machine has a uniform class of 𝑘 general-purpose registers

CS 335 Swarnendu Biswas

op1 𝑣𝑟11 , 𝑣𝑟12 ⇒ 𝑣𝑟13
op2 𝑣𝑟21 , 𝑣𝑟22 ⇒ 𝑣𝑟23

…
op𝑛 𝑣𝑟𝑛1 , 𝑣𝑟𝑛2 ⇒ 𝑣𝑟𝑛3

op1 ? , ? ⇒ ?
op2 ? , ? ⇒ ?

…
op𝑛 ? , ? ⇒ ?

Top-Down Allocation with Frequency Counts

• Idea
• Count the frequency of occurrence of virtual registers

• Map virtual registers to physical registers in descending order of frequency

• If the BB uses fewer than 𝑘 virtual registers, then mapping is trivial

• 𝐹 ≅ 2−4 registers are required to execute spill code

• Assign the top 𝑘 − 𝐹 virtual registers to physical registers

• Rewrite the code and replace virtual registers with physical registers

• For unassigned virtual registers, generate code sequence to spill code using
the 𝐹 reserved registers

CS 335 Swarnendu Biswas

Example of Top-Down Allocation

CS 335 Swarnendu Biswas

Usage Count

Ra = 4

Rb = 3

Rc = 2

Rd = 2

Re = 2

Rf = 2

Rg =2

Rh = 2

Liveness Information

LD Ra, 1028

Ra
MOV Rb, Ra

Ra Rb
MUL Rc, Ra, Rb

Ra Rb Rc
LD Rd, x // Spill Rc based on usage count

Ra Rb Rc Rd
SUB Re, Rd, Rb // Reuse Rb

Ra Rc Re
LD Rf, z // Reuse Rd

Ra Rc Re Rf
MUL Rg, Re, Rf // Reuse Re

Ra Rc Rg
SUB Rh, Rg, Rc // Restore Rc, reuse Rg

Ra
MOV Rh, Ra

Assume there are three
physical registers.

Example of Top-Down Allocation

CS 335 Swarnendu Biswas

LD Ra, 1028
MOV Rb, Ra

MUL Rc, Ra, Rb

LD Rd, x
SUB Re, Rd, Rb

LD Rf, z
MUL Rg, Rc, Rf

SUB Rh, Rg, Rc

MOV Ra, Rh

LD Ra, 1028
MOV Rb, Ra

MUL Rc, Ra, Rb

ST offc(RSP), Rc

LD Rd, x
SUB Re, Rd, Rb

LD Rf, z
MUL Rg, Re, Rf

LD Rc, offc(RSP)
SUB Rh, Rg, Rc

MOV Ra, Rh

LD R1, 1028
MOV R2, R1

MUL R3, R1, R2

ST offc(RSP), R3

LD R3, x
SUB R2, R3, R2

LD R3, z
MUL R2, R2, R3

LD R3, offc(RSP)
SUB R2, R2, R3

MOV R1, R2

register
assignment

spill
code

• Top-down local allocation allocates a physical register to one virtual register for the
entire BB

• Allocation can be suboptimal if variables show phased behavior (e.g., Ra)
• A variable that is heavily-used in the first half of the BB and not used in the second

half still stays in the physical register

Bottom-Up Allocation Based on Variable
Usage
• Iterates over the instructions in the BB and makes decisions based on

variable usage (not count)

• Assumes that the physical registers are initially empty and places
them on a free list

• Satisfies demand for registers from the free list until that list is
exhausted

• If the free list is empty, spill a variable to memory and reuse the
register
• Spill the variable whose next use is farthest in the future

CS 335 Swarnendu Biswas

Bottom-Up Allocation

• Assume that registers are grouped
in classes (e.g., general-purpose,
floating-point)
• Size: # of physical registers

• Name: virtual register name

• Next: distance to next reuse

• Free: flag to indicate whether
currently in use

• Stack: free physical registers

CS 335 Swarnendu Biswas

struct RegClass {
int Size;
int Name[Size];
int Next[Size];
int Free[Size];
int Stack[Size];
int StackTop;

}

Helper Functions in the Bottom-Up Algorithm

Ensure(𝑣𝑟, regClass)
if 𝑣𝑟 is already in regClass

reg = 𝑣𝑟’s physical register
else

reg = Allocate(𝑣𝑟, regClass)
emit code to move 𝑣𝑟 into reg

return reg

Free(pr, regClass)
// 0≤i<Size
regClass.Name[i] = null
regClass.Next[i] = -1
regClass.Free[i] = true
push(regClass, pr)

Allocate(𝑣𝑟, regClass)
if regClass.StackTop >= 0

// free register available
i = pop(regClass)

else
// Check for farthest use

i = j s.t. ∀𝑗∈𝑆𝑖𝑧𝑒 max(regClass. Next j)

// Emit spill code
store contents of j

regClass.Name[i] = 𝑣𝑟
regClass.Next[i] = -1
regClass.Free[i] = false
return i

CS 335 Swarnendu Biswas

Bottom-Up Algorithm

for each instruction 𝑖 = {1…𝑛} in BB

// Instruction 𝑖: op𝑖 𝑣𝑟𝑖1 , 𝑣𝑟𝑖2 ⇒ 𝑣𝑟𝑖3

𝑟𝑥 = Ensure(𝑣𝑟𝑖1, regClass(𝑣𝑟𝑖1))

𝑟𝑦 = Ensure(𝑣𝑟𝑖2, regClass(𝑣𝑟𝑖2))

if 𝑣𝑟𝑖1 is not needed after 𝑖

Free(𝑟𝑥, regClass(𝑟𝑥))

if 𝑣𝑟𝑖2 is not needed after 𝑖

Free(𝑟𝑦, regClass(𝑟𝑦))

𝑟𝑧 = Allocate(𝑣𝑟𝑖3, regClass(𝑣𝑟𝑖3))

rewrite 𝑖 as op𝑖 𝑟𝑥, 𝑟𝑦 ⇒ 𝑟𝑧

if 𝑣𝑟𝑖1 is needed after 𝑖

regClass.next[𝑟𝑥]= Dist(𝑣𝑟𝑖1)

if 𝑣𝑟𝑖2 is needed after 𝑖

regClass.next[𝑟𝑦]= Dist(𝑣𝑟𝑖2)

regClass.next[𝑟𝑧]= Dist(𝑣𝑟𝑖3)

CS 335 Swarnendu Biswas

Behaviour with Bottom-Up Allocation

CS 335 Swarnendu Biswas

Liveness Information

LD Ra, 1028

Ra
MOV Rb, Ra

Ra Rb
MUL Rc, Ra, Rb

Ra Rb Rc
LD Rd, x // Spill Ra based on farthest use

Ra Rb Rc Rd
SUB Re, Rd, Rb // Reuse Rb

Ra Rc Re
LD Rf, z // Reuse Rd

Ra Rc Re Rf
MUL Rg, Re, Rf // Reuse Re

Ra Rc Rg
SUB Rh, Rg, Rc // Restore Ra, reuse Rg

Ra
MOV Rh, Ra

Assume there are three
physical registers.

Challenges in Bottom-Up Allocation

• A store on a spill is unnecessary if the data is clean
• Register contains a constant value or a return from a load

• It seems a spill should be stored only if the data is dirty

• Assume a two-register machine: values 𝑥1 is clean and 𝑥2 is dirty

• Assume reference stream for the rest of the BB is 𝑥3𝑥1𝑥2

CS 335 Swarnendu Biswas

store 𝑥2
load 𝑥3
load 𝑥2

On spilling dirty values

load 𝑥3
load 𝑥1

overwrite
𝑥1

On spilling clean values

Challenges in Bottom-Up Allocation

• A store on a spill is unnecessary if the data is clean
• Register contains a constant value or a return from a load

• It seems a spill should be stored only if the data is dirty

• Assume a two-register machine: values 𝑥1 is clean and 𝑥2 is dirty

• Assume reference stream for the rest of the BB is 𝑥3𝑥1𝑥3𝑥1𝑥2

CS 335 Swarnendu Biswas

On spilling clean values

store 𝑥2
load 𝑥3
load 𝑥2

On spilling dirty values

load 𝑥3
load 𝑥1
load 𝑥3
load 𝑥1

Global Register Allocation
Usage count, live range, and graph coloring

CS 335 Swarnendu Biswas

Global Register Allocation

• Scope is either multiple BBs or a whole procedure

• Decision problem: Given an input program in IR form (e.g., CFG) and
a number 𝑘, is there an assignment of registers to program variables
such that no conflicting variables are assigned the same register, no
extra loads and stores are introduced, and at most 𝑘 registers are
used?

• Fundamentally a more complex problem than local register allocation
• Need to consider def-use across multiple blocks

• Cost of spilling may not be uniform since it depends on the execution
frequency of the block where a spill happens

CS 335 Swarnendu Biswas

Live Ranges

• A variable is live at a point 𝑝 in the CFG if there is a use of the variable
in the path from 𝑝 to the end of the CFG

• A live range for a variable is the smallest set of program points at
which it is live
• A variable’s live range starts at the point in the code where the variable

receives a value and ends where that value is used for the last time

• A single variable may be represented by many live ranges

• Two variables interfere or conflict if their live ranges intersect (i.e.,
both are live)

CS 335 Swarnendu Biswas

Example

CS 335 Swarnendu Biswas

if (cond) {
A = …

} else {
B = …

}
if (cond) {

… = A
} else {

… = B
}

F

F

B3B2

B4

B5 B6

T

if (cond)

A = … B = …

if (cond)

… = A … = B

B1

T

Both A and
B are live

Live range of A: B2, B4, B5
Live range of B: B3, B4, B6

Utility of Live Ranges

CS 335 Swarnendu Biswas

z = 1
x = 2 * x
y = 3 * z
w = x + y
print y + z
x = y * w

x y w z

x’s and w’s live ranges do not overlap!
They can therefore be assigned to the
same register.

R1 R2 R1 R3

Global Register Allocation Based on Usage
Counts
• Heuristic method to allocate registers for most frequently-used

variables

• Requires information about liveness of variables at the entry and exit
of each BB in the loop body

• Once a variable is computed into a register, it stays in that register
until the end of the BB

CS 335 Swarnendu Biswas

Global Register Allocation Based on Usage
Counts
• For every usage of a variable 𝑣 in a BB until it is first defined, do:

• savings(𝑣) = savings(𝑣) + 1

• After 𝑣 is defined, it stays in the register and all further references are
to that register

• For every variable 𝑣 computed in a BB, if it is live on exit from the BB,
• Count a savings of 2 because it is not necessary to store it at the end of the BB

• Total savings per variable 𝑣 is σblocks 𝐵 in 𝐿
𝑢𝑠𝑒 𝑣, 𝐵 + 2 ∗ 𝑙𝑖𝑣𝑒(𝑣, 𝐵)

• 𝑙𝑖𝑣𝑒(𝑣, 𝐵) is 1 or 0 depending on whether 𝑣 is live on exit from 𝐵
• Assume load/store instructions cost two units

• Estimate of savings is approximate since all BBs are not executed with
the same frequency

CS 335 Swarnendu Biswas

Example

CS 335 Swarnendu Biswas

bcf

acdeacdf

cdf

F

B3B2

B4

a = b*c
d = b-a
e = b/f

b = a-f
e = d+c f = e*a

b = c-d

B1

T

bcf

B1 B2 B3 B4 Sum

a (0+2) (1+0) (1+0) (0+0) 4

b (3+0) (0+0) (0+0) (0+2) 5

c (1+0) (1+0) (0+0) (1+0) 3

d (0+2) (1+0) (0+0) (1+0) 4

e (0+2) (0+0) (1+0) (0+0) 3

f (1+0) (1+0) (0+2) (0+0) 4

If there are 3 registers, they will be
allocated to b, and (say) a and d

live
variables

Global Register Allocation Based on Usage
Counts for Nested Loops
• Assign registers for inner loops first

before considering outer loops

• Let loop L1 nest L2

• For variables assigned registers in
L2 but not in L1,
• Load these variables on entry to L2

and store them on exit from L2

• For variables assigned registers in
L1 but not in L2,
• Store these variables on entry to L2

and load them on exit from L2

CS 335 Swarnendu Biswas

Body of
L2

L2
L1

Global Register Allocation Using
Graph Coloring
Chaitin’s Allocator

CS 335 Swarnendu Biswas

The Graph Coloring Problem

• For an arbitrary graph 𝐺, a coloring of
𝐺 assigns a color to each node in 𝐺 so
that no pair of adjacent nodes have the
same color

• A coloring that uses 𝑘 colors is termed
a 𝒌-coloring

• The smallest possible 𝑘 for a given
graph is called the graph’s chromatic
number

• Finding the chromatic number of a
graph is NP-complete

• Determining if a graph is 𝑘-colorable,
for some fixed k, is NP-complete

CS 335 Swarnendu Biswas

1

2 4

5

3

3

1

2 4

5

2-colorable

3-colorable

Global Register Allocation with Graph
Coloring
• Compilers model register allocation through 𝑘-coloring on an

interference graph where 𝑘 is the number of physical registers
available to the allocator
• Each color represents an available register

• Spill some values to memory and retry if 𝑘-coloring is not possible

• An interference graph models conflicts in live regions
• If variables 𝑎 and 𝑏 are active (live) at the same point, they cannot be

assigned to the same register

• Nodes in an interference graph represent live ranges (LR) for a variable, and
an edge (𝑖, 𝑗) indicates LRi and LRj cannot share a register

CS 335 Swarnendu Biswas

Identifying Global Live Ranges

• Requirement:
• Group all definitions that reach a single use

• Group all uses that a single definition can reach

• Assumption: Register allocation operates on the SSA form
• In SSA, each name is defined once, and each use refers to one definition

• 𝜙 functions are used at control flow merge points

CS 335 Swarnendu Biswas

Discovering Live Ranges Using SSA Form

CS 335 Swarnendu Biswas

…
𝑎0 ← ⋯

𝑏0 ← ⋯
… ← 𝑏0
𝑑0 ← ⋯

𝑐0 ← ⋯
…

𝑑1 ← 𝑐0

𝑑2 ← 𝜙(𝑑0, 𝑑1)
… ← 𝑎0
… ← 𝑑2

𝐵0

𝐵1 𝐵2

𝐵3

…
𝐿𝑅𝑎 ← ⋯

𝐿𝑅𝑏 ← ⋯
… ← 𝐿𝑅𝑏
𝐿𝑅𝑑 ← ⋯

𝐿𝑅𝑐 ← ⋯
…

𝐿𝑅𝑑 ← 𝐿𝑅𝑐

… ← 𝐿𝑅𝑎
… ← 𝐿𝑅𝑑

𝐵0

𝐵1 𝐵2

𝐵3𝐿𝑅𝑎 = {𝑎0}
𝐿𝑅𝑏 = {𝑏0}
𝐿𝑅𝑐 = {𝑐0}
𝐿𝑅𝑑 = {𝑑0, 𝑑1, 𝑑2}

Interferences and the Interference Graph
• If there is an operation during which both LRi and LRj are live, they

cannot reside in the same register

• Two live ranges LRi and LRj interfere if one is live at the definition of
the other and they have different values

CS 335 Swarnendu Biswas

…
𝐿𝑅𝑎 ← ⋯

𝐿𝑅𝑏 ← ⋯
… ← 𝐿𝑅𝑏
𝐿𝑅𝑑 ← ⋯

𝐿𝑅𝑐 ← ⋯
…

𝐿𝑅𝑑 ← 𝐿𝑅𝑐

… ← 𝐿𝑅𝑎
… ← 𝐿𝑅𝑑

𝐵0

𝐵1 𝐵2

𝐵3

𝐿𝑅𝑎

𝐿𝑅𝑏 𝐿𝑅𝑐

𝐿𝑅𝑑

Interferences and the Interference Graph

CS 335 Swarnendu Biswas

…
𝐿𝑅𝑎 ← ⋯

𝐿𝑅𝑏 ← ⋯
𝑳𝑹𝒅 ← ⋯
… ← 𝑳𝑹𝒃

𝐿𝑅𝑐 ← ⋯
…

𝐿𝑅𝑑 ← 𝐿𝑅𝑐

… ← 𝐿𝑅𝑎
… ← 𝐿𝑅𝑑

𝐵0

𝐵1 𝐵2

𝐵3

𝐿𝑅𝑎

𝐿𝑅𝑐 𝐿𝑅𝑏

𝐿𝑅𝑑

The allocator will need to spill either 𝐿𝑅𝑎 or 𝐿𝑅𝑏 if
only two registers are available.

swapped

Chaitin’s Algorithm: High-level Idea

• Choose an arbitrary node of degree less than 𝑘 and put it on the stack
• Remove that vertex and all its edges from the graph

• This may decrease the degree of some other nodes and cause some more
nodes to have degree less than 𝑘

• At some point, if all remaining vertices have degree greater than or
equal to 𝑘, some node has to be spilled

• If no vertex needs to be spilled, successively pop vertices off stack and
color them in a color not used by neighbors (reuse colors as far as
possible)

CS 335 Swarnendu Biswas

Chaitin’s Algorithm: Example 1

CS 335 Swarnendu Biswas

2

1

3

4 5

Assume three physical registers are
available

Stack

Chaitin’s Algorithm: Example 1

CS 335 Swarnendu Biswas

2

1

3

4 5

Assume three physical registers are
available

1

Stack

Only node with
degree < 𝑘

Chaitin’s Algorithm: Example 1

CS 335 Swarnendu Biswas

2

1

3

4 5

Assume three physical registers are
available

2

1

Stack

Chaitin’s Algorithm: Example 1

CS 335 Swarnendu Biswas

2

1

3

4 5

Assume three physical registers are
available

5

3

4

2

1

Stack

Chaitin’s Algorithm: Example 1

CS 335 Swarnendu Biswas

2

1

3

4 5

Assume three physical registers are
available

3

4

2

1

Stack

Chaitin’s Algorithm: Example 1

CS 335 Swarnendu Biswas

2

1

3

4 5

Assume three physical registers are
available

4

2

1

Stack
choose a

different color

Chaitin’s Algorithm: Example 1

CS 335 Swarnendu Biswas

2

1

3

4 5

Assume three physical registers are
available

Stack

Detailed Steps in Chaitin’s Algorithm

i. Renaming – find all distinct live ranges and
number them uniquely

ii. Build – construct the interference graph

iii. Coalesce – remove unnecessary copy or
move operations for non-interfering
variables

iv. Spill costs – estimate the dynamic cost of
spilling each live range

v. Simplify – construct an ordering of the
nodes in the interference graph

vi. Spill code – insert spill operations

vii. Select – assign a register to each variable

CS 335 Swarnendu Biswas

renumber

build

coalesce

spill costs

simplify

select

spill code

Example of Renaming Live Ranges

CS 335 Swarnendu Biswas

a = … a = …

… = a … = a

… = a

a = …

s1 = … s1 = …

… = s2 … = s2

… = s1

s2 = …

Example of Renaming

CS 335 Swarnendu Biswas

1. x = 2
2. y = 4
3. w = x + y
4. z = x + 1
5. u = x * y
6. x = z * 2

s1 = 2 // live range: 1-5
s2 = 4 // live range: 2-5
s3 = s1 + s2 // live range: 3-4
s4 = s1 + 1 // live range: 4-6
s5 = s1 * s2 // live range: 5-6
s6 = s4 * 2 // live range: 6-…

original code after renaming

s5 s3 s1

s6 s4 s2

How to model constraints on register usage? For
example, say s4 cannot live in register R1.
• Create nodes corresponding to the physical

registers in the interference graph
• Add edges between interfering nodes (e.g., s4

and R1)

Live Range and Interference Graph

CS 335 Swarnendu Biswas

x = …
y = …

… = x
… = y

… = x
x = …

y = …

x = …
… = y

… = x

w1: def of x in B2, def of x in B3, use of x
in B4, use of x in B5
w2: def of x in B5, use of x in B6
w3: def of y in B2, use of y in B4
w4: def of y in B1, use of y in B3

B2

B1

B4 B5

B6

B3

w1 w2

w3 w4

Coalescing

• Consider a copy instruction
b := e
• If the live ranges of b and e do

not overlap, then b and e can be
given the same register (i.e.,
color)
• The copy instruction can then be

removed from the final program

• Coalesce by merging b and e into
one node that contains edges of
both nodes

CS 335 Swarnendu Biswas

c

d

b

a

e f

c

d

be

a

f

Copy Subsumption or Coalescing

CS 335 Swarnendu Biswas

live range
of old b

live range
of new b

b=e

live range
of e

Copy subsumption is not possible,
live ranges of e and new def of b
interfere

live range
of old b

live range
of new b

b=e

live range
of e

Copy subsumption is possible, live
ranges of e and new def of b do
not interfere

Repeated Application of Copy Subsumption

CS 335 Swarnendu Biswas

live range
of new b

b=e

live range
of old b

live range
of e

Copy subsumption happens twice,
once between b and e, and second
between a and b. e, b, and a can all
be given the same register.a=b

live range
of a

Coalescing

• Coalesce all possible copy instructions

• Rebuild the interference graph
• May offer further opportunities for coalescing

• Build-coalesce phase is repeated till no further coalescing is possible

• Coalescing reduces the size of the interference graph and possibly
reduces spilling

CS 335 Swarnendu Biswas

Simplification and Estimating Spill Cost

• If a node 𝑛 in the interference graph has degree less than 𝑘, remove 𝑛
and all its edges from the graph and place 𝑛 on a stack

• We need to spill a node when no such nodes are available
• Implies loading a variable 𝑥 into a register before every use of 𝑥 and storing 𝑥

from register into memory at every definition of 𝑥

• Estimate of spill cost for a live range 𝑣:

where 𝑐 is the cost of the operation, 𝑑 is the loop nesting depth, and
10 is the average number of loop iterations (assumption)

• The node to be spilled is the one with min(𝑐𝑜𝑠𝑡(𝑣)/deg(𝑣))

CS 335 Swarnendu Biswas

𝑐𝑜𝑠𝑡 𝑣 = ෍all store or load
operations in 𝑣

𝑐 × 10𝑑

Effect of Spilling on Live Range

CS 335 Swarnendu Biswas

x = …
y = …

… = x
… = y

… = x
x = …

y = …

x = …
… = y

… = x

w1: def of x in B2, def of x in B3, use of x in
B4, use of x in B5
w2: def of x in B5, use of x in B6
w3: def of y in B2, use of y in B4
w4: def of y in B1, use of y in B3

B2

B1

B4 B5

B6

B3

w1 w2

w3 w4

Assume that x is spilled
in live range w1

Effect of Spilling on Live Range

CS 335 Swarnendu Biswas

x = …
ST x

y = …

LD x
… = x
… = y

LD x
… = x
x = …

y = …

x = …
ST x

… = y

… = x

w1: def of x in B2, ST of x in B2
w2: def of x in B3, ST of x in B3
w3: def of x in B5, use of x in B6
w4: def of y in B2, use of y in B4
w5: def of y in B1, use of y in B3
w6: LD of x in B4, use of x in B4
w7: LD of x in B5, use of x in B5

B2

B1

B4 B5

B6

B3

w5 w3

w1 w7w2w6

w4

creates many short
live ranges

Chaitin’s Algorithm: Example 2

CS 335 Swarnendu Biswas

1. t1=202
2. i=1
3. L1: t2=i>100
4. if t2 goto L2
5. t1=t1-2
6. t3=addr(a)
7. t4=t3-4
8. t5=4*i
9. t6=t4+t5
10. *t6=t1
11. i=i+1
12. goto L1
13. L2:

Variable Live Range

t1 1-10

i 2-11

t2 3-4

t3 6-7

t4 7-9

t5 8-9

t6 9-10

t6 t5

t1 i

t2 t3

t4

Chaitin’s Algorithm: Example 2

CS 335 Swarnendu Biswas

t6 t5

t1 i

t2 t3

t4

Assume there are three physical registers.

Nodes t6, t2, and t3 are pushed on to the stack
during graph reduction.

t5

t1 i

t4

cannot be reduced further,
spilling is necessary

Chaitin’s Algorithm: Example 2

CS 335 Swarnendu Biswas

t5

t1 i

t4

Node v Cost(v) deg(v) Cost(v)
/deg(v)

t1 1+(1+1+1)*10=31 3 10

i 1+(1+1+1+1)*10=41 3 14

t4 (1+1)*10=20 3 7

t5 (1+1)*10=20 3 7

Let us pick t5 for spilling

Chaitin’s Algorithm: Example 2

CS 335 Swarnendu Biswas

i

t1

t4

t3

t2

t6

t6 t5

t1 i

t2 t3

t4

spilled

1. R1=202
2. R2=1
3. L1: R3=R2>100
4. if R3 goto L2
5. R1=R1-2
6. R3=addr(a)
7. R3=R3-4
8. t5=4*R2
9. R3=R3+t5
10. *R3=R1
11. R2=R2+1
12. goto L1
13. L2:

R1 R2

R3

R3

R3

R3

Stack

Problem with Chaitin’s Algorithm

• Constructing and modifying the
interference graphs is very costly

• Careful coalescing
• Do not coalesce if coalescing

increases the degree of a node to
> 𝑘

CS 335 Swarnendu Biswas

There is a 3-coloring, but Chaitin's heuristic
does not find it

21

4 5

3

Brigg’s Optimistic Allocator

• Instead of spilling, Briggs pushes the
spill candidate on the stack, hoping
there will be a color available
• Spill a node only when it is popped and

there are no colors available

CS 335 Swarnendu Biswas

renumber

build

coalesce

spill costs

simplify

select

spill code

21

4 5

3

References

• A. Aho et al. Compilers: Principles, Techniques, and Tools, 1st edition, Chapter 9.7.

• A. Aho et al. Compilers: Principles, Techniques, and Tools, 2nd edition, Chapter 8.8.

• K. Cooper and L. Torczon. Engineering a Compiler, 2nd edition, Chapter 13.

• Register Allocation, Wikipedia. https://en.wikipedia.org/wiki/Register_allocation

• Christian Collberg. CSc 553: Register Allocation, University of Arizona.

• Y. N. Srikanth. NPTEL Course on Compiler Design: Global Register Allocation, IISc.

• Hugh Leather. Compiler Optimization: Register Allocation, University of Edinburgh.

• Preston Briggs. Register Allocation, University of Washington.

CS 335 Swarnendu Biswas

https://en.wikipedia.org/wiki/Register_allocation
https://www2.cs.arizona.edu/~collberg/Teaching/553/2011/Handouts/Handout-23.pdf
https://people.iith.ac.in/ramakrishna/fc5264/global-reg-allocation.pdf
https://www.inf.ed.ac.uk/teaching/courses/copt/lecture-7.pdf
https://courses.cs.washington.edu/courses/cse401/13wi/lectures/ra.pdf

