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Impact of Register Operands

• Instructions involving register 
operands are faster than those 
involving memory operands

• Code is often smaller and hence 
is faster to fetch

• Efficient utilization of registers is 
important
• Number of general-purpose 

registers is limited
• E.g., ~16-32 64-bit general-

purpose registers
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Goals in Register Allocation

• All variables are not used (or live) at the same time

• Register allocator in a compiler helps with decision making
• Which values will reside in registers?

• Which register will hold each of those values?

• At each program location, values stored in virtual registers in the IR are 
mapped to physical registers
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Goals in Register Allocation

• Programs spend most of their time in loops 
• Natural to store values in innermost loops in registers

• Register pressure measures the availability of free registers
• High register pressure implies that a large fraction of registers are in use

• When no registers are available to store a computation, the contents 
of one of the in-use registers must be stored into memory
• This is called register spilling, requires generating load and store instructions 

• Spilling increases code size and execution time

• Goal in register allocation is thus to minimize the impact of spills 
especially for performance-critical code
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Register Allocation and Assignment

• Allocation
• Maps an unlimited name space onto the register set of the target machine

• Register-to-register model: map virtual registers to the physical register set 
and spill values that do not fit in the physical register set

• Memory-to-memory model: map a subset of memory locations to a set of 
physical registers

• Assignment
• Assumes that allocation has already been performed

• Maps an allocated name set to the physical registers of the target machine

CS 335 Swarnendu Biswas



Challenges in Register Allocation

• Architectures provide different register classes
• General purpose registers, floating-point registers, predicate and branch target 

registers

• General-purpose registers may be used for floating-point register spills, which 
implies an order for allocation

• Registers may be aliased, cannot use a register and its constituent registers at the 
same time
• x86 has 32-bit registers whose lower halves are used as 16-bit or 8-bits registers

• Similar for vector registers like zmm, ymm, and xmm

• If different register classes overlap, the compiler must allocate them together

• Architecture calling conventions place more constraints on register usage
• E.g., PowerPC requires parameters to be passed in R3-R10 and the return is in R3
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Register Allocation Problem

• General formulation of the problem is NP-Complete
• E.g., register allocation for a set of BBs, multiple control flow paths, multiple 

data types, and non-uniform cost of memory access complicate the analysis

• Optimal allocation can be done in polynomial time for very restricted versions 
with a single BB and with one data type
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More about Register Allocation

• Types of allocation: local (over a BB), global (over a whole function), 
or Interprocedural (across function boundaries traversed via call-
graph) 

• Backend includes instruction selection, register allocation, and
instruction scheduling
• Performing allocation first restricts movement of code during scheduling, not 

a good idea

• Scheduling instructions first cannot handle spill code introduced during 
allocation

• Possible order: selection -> scheduling -> allocation -> scheduling
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Local Register Allocation
Frequency count and Variable usage
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Local Register Allocation
• Assumptions

• Considers only a single basic block 

• Loads values from memory at the start of a BB and stores to memory at the 
end of the BB

• IR makes use of many virtual registers

• Target machine has a uniform class of 𝑘 general-purpose registers
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op1 𝑣𝑟11 , 𝑣𝑟12 ⇒ 𝑣𝑟13
op2 𝑣𝑟21 , 𝑣𝑟22 ⇒ 𝑣𝑟23

…
op𝑛 𝑣𝑟𝑛1 , 𝑣𝑟𝑛2 ⇒ 𝑣𝑟𝑛3

op1 ? , ? ⇒ ?
op2 ? , ? ⇒ ?

…
op𝑛 ? , ? ⇒ ?



Top-Down Allocation with Frequency Counts

• Idea
• Count the frequency of occurrence of virtual registers 

• Map virtual registers to physical registers in descending order of frequency

• If the BB uses fewer than 𝑘 virtual registers, then mapping is trivial

• 𝐹 ≅ 2−4 registers are required to execute spill code

• Assign the top 𝑘 − 𝐹 virtual registers to physical registers 

• Rewrite the code and replace virtual registers with physical registers

• For unassigned virtual registers, generate code sequence to spill code using 
the 𝐹 reserved registers
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Example of Top-Down Allocation 
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Usage Count

Ra = 4

Rb = 3

Rc = 2

Rd = 2

Re = 2

Rf = 2

Rg =2

Rh = 2

Liveness Information

LD Ra, 1028

Ra
MOV Rb, Ra

Ra Rb
MUL Rc, Ra, Rb

Ra Rb Rc
LD Rd, x // Spill Rc based on usage count

Ra Rb Rc Rd
SUB Re, Rd, Rb // Reuse Rb

Ra Rc Re
LD Rf, z // Reuse Rd

Ra Rc Re Rf
MUL Rg, Re, Rf // Reuse Re

Ra Rc Rg
SUB Rh, Rg, Rc // Restore Rc, reuse Rg

Ra
MOV Rh, Ra

Assume there are three 
physical registers.



Example of Top-Down Allocation 
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LD Ra, 1028
MOV Rb, Ra

MUL Rc, Ra, Rb

LD Rd, x
SUB Re, Rd, Rb

LD Rf, z
MUL Rg, Rc, Rf

SUB Rh, Rg, Rc

MOV Ra, Rh

LD Ra, 1028
MOV Rb, Ra

MUL Rc, Ra, Rb

ST offc(RSP), Rc

LD Rd, x
SUB Re, Rd, Rb

LD Rf, z
MUL Rg, Re, Rf

LD Rc, offc(RSP)
SUB Rh, Rg, Rc

MOV Ra, Rh

LD R1, 1028
MOV R2, R1

MUL R3, R1, R2

ST offc(RSP), R3

LD R3, x
SUB R2, R3, R2

LD R3, z
MUL R2, R2, R3

LD R3, offc(RSP)
SUB R2, R2, R3

MOV R1, R2

register
assignment

spill 
code

• Top-down local allocation allocates a physical register to one virtual register for the 
entire BB

• Allocation can be suboptimal if variables show phased behavior (e.g., Ra)
• A variable that is heavily-used in the first half of the BB and not used in the second 

half still stays in the physical register



Bottom-Up Allocation Based on Variable 
Usage
• Iterates over the instructions in the BB and makes decisions based on 

variable usage (not count)

• Assumes that the physical registers are initially empty and places 
them on a free list

• Satisfies demand for registers from the free list until that list is 
exhausted

• If the free list is empty, spill a variable to memory and reuse the 
register 
• Spill the variable whose next use is farthest in the future
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Bottom-Up Allocation

• Assume that registers are grouped 
in classes (e.g., general-purpose, 
floating-point)
• Size: # of physical registers

• Name: virtual register name

• Next: distance to next reuse

• Free: flag to indicate whether 
currently in use

• Stack: free physical registers 
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struct RegClass { 
int Size;
int Name[Size];
int Next[Size]; 
int Free[Size];
int Stack[Size];
int StackTop;

}



Helper Functions in the Bottom-Up Algorithm

Ensure(𝑣𝑟, regClass)
if 𝑣𝑟 is already in regClass

reg = 𝑣𝑟’s physical register
else 

reg = Allocate(𝑣𝑟, regClass)
emit code to move 𝑣𝑟 into reg

return reg

Free(pr, regClass)
// 0≤i<Size
regClass.Name[i] = null
regClass.Next[i] = -1
regClass.Free[i] = true
push(regClass, pr)

Allocate(𝑣𝑟, regClass)
if regClass.StackTop >= 0

// free register available
i = pop(regClass)

else 
// Check for farthest use

i = j s.t. ∀𝑗∈𝑆𝑖𝑧𝑒 max(regClass. Next j )

// Emit spill code
store contents of j

regClass.Name[i] = 𝑣𝑟
regClass.Next[i] = -1
regClass.Free[i] = false
return i
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Bottom-Up Algorithm

for each instruction 𝑖 = {1…𝑛} in BB

// Instruction 𝑖: op𝑖 𝑣𝑟𝑖1 , 𝑣𝑟𝑖2 ⇒ 𝑣𝑟𝑖3

𝑟𝑥 = Ensure(𝑣𝑟𝑖1, regClass(𝑣𝑟𝑖1))

𝑟𝑦 = Ensure(𝑣𝑟𝑖2, regClass(𝑣𝑟𝑖2))

if 𝑣𝑟𝑖1 is not needed after 𝑖

Free(𝑟𝑥, regClass(𝑟𝑥))

if 𝑣𝑟𝑖2 is not needed after 𝑖

Free(𝑟𝑦, regClass(𝑟𝑦))

𝑟𝑧 = Allocate(𝑣𝑟𝑖3, regClass(𝑣𝑟𝑖3))

rewrite 𝑖 as op𝑖 𝑟𝑥, 𝑟𝑦 ⇒ 𝑟𝑧

if 𝑣𝑟𝑖1 is needed after 𝑖

regClass.next[𝑟𝑥]= Dist(𝑣𝑟𝑖1)

if 𝑣𝑟𝑖2 is needed after 𝑖

regClass.next[𝑟𝑦]= Dist(𝑣𝑟𝑖2)

regClass.next[𝑟𝑧]= Dist(𝑣𝑟𝑖3)

CS 335 Swarnendu Biswas



Behaviour with Bottom-Up Allocation 
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Liveness Information

LD Ra, 1028

Ra
MOV Rb, Ra

Ra Rb
MUL Rc, Ra, Rb

Ra Rb Rc
LD Rd, x // Spill Ra based on farthest use

Ra Rb Rc Rd
SUB Re, Rd, Rb // Reuse Rb

Ra Rc Re
LD Rf, z // Reuse Rd

Ra Rc Re Rf
MUL Rg, Re, Rf // Reuse Re

Ra Rc Rg
SUB Rh, Rg, Rc // Restore Ra, reuse Rg

Ra
MOV Rh, Ra

Assume there are three 
physical registers.



Challenges in Bottom-Up Allocation

• A store on a spill is unnecessary if the data is clean
• Register contains a constant value or a return from a load

• It seems a spill should be stored only if the data is dirty

• Assume a two-register machine: values 𝑥1 is clean and 𝑥2 is dirty

• Assume reference stream for the rest of the BB is 𝑥3𝑥1𝑥2
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store 𝑥2
load 𝑥3
load 𝑥2

On spilling dirty values

load 𝑥3
load 𝑥1

overwrite 
𝑥1

On spilling clean values



Challenges in Bottom-Up Allocation

• A store on a spill is unnecessary if the data is clean
• Register contains a constant value or a return from a load

• It seems a spill should be stored only if the data is dirty

• Assume a two-register machine: values 𝑥1 is clean and 𝑥2 is dirty

• Assume reference stream for the rest of the BB is 𝑥3𝑥1𝑥3𝑥1𝑥2
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On spilling clean values

store 𝑥2
load 𝑥3
load 𝑥2

On spilling dirty values

load 𝑥3
load 𝑥1
load 𝑥3
load 𝑥1



Global Register Allocation
Usage count, live range, and graph coloring
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Global Register Allocation

• Scope is either multiple BBs or a whole procedure

• Decision problem: Given an input program in IR form (e.g., CFG) and 
a number 𝑘, is there an assignment of registers to program variables 
such that no conflicting variables are assigned the same register, no 
extra loads and stores are introduced, and at most 𝑘 registers are 
used?

• Fundamentally a more complex problem than local register allocation
• Need to consider def-use across multiple blocks

• Cost of spilling may not be uniform since it depends on the execution 
frequency of the block where a spill happens
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Live Ranges

• A variable is live at a point 𝑝 in the CFG if there is a use of the variable 
in the path from 𝑝 to the end of the CFG

• A live range for a variable is the smallest set of program points at 
which it is live
• A variable’s live range starts at the point in the code where the variable 

receives a value and ends where that value is used for the last time

• A single variable may be represented by many live ranges

• Two variables interfere or conflict if their live ranges intersect (i.e., 
both are live)
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Example
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if (cond) {
A = …

} else {
B = …

}
if (cond) {

… = A
} else {

… = B
}

F

F

B3B2

B4

B5 B6

T

if (cond)

A = … B = …

if (cond)

… = A … = B

B1

T

Both A and 
B are live

Live range of A: B2, B4, B5
Live range of B: B3, B4, B6



Utility of Live Ranges
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z = 1
x = 2 * x
y = 3 * z
w = x + y
print y + z
x = y * w

x y w z

x’s and w’s live ranges do not overlap! 
They can therefore be assigned to the 
same register.

R1 R2 R1 R3



Global Register Allocation Based on Usage 
Counts
• Heuristic method to allocate registers for most frequently-used 

variables

• Requires information about liveness of variables at the entry and exit 
of each BB in the loop body

• Once a variable is computed into a register, it stays in that register 
until the end of the BB 
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Global Register Allocation Based on Usage 
Counts
• For every usage of a variable 𝑣 in a BB until it is first defined, do:

• savings(𝑣) = savings(𝑣) + 1

• After 𝑣 is defined, it stays in the register and all further references are 
to that register

• For every variable 𝑣 computed in a BB, if it is live on exit from the BB,
• Count a savings of 2 because it is not necessary to store it at the end of the BB

• Total savings per variable 𝑣 is σblocks 𝐵 in 𝐿
𝑢𝑠𝑒 𝑣, 𝐵 + 2 ∗ 𝑙𝑖𝑣𝑒(𝑣, 𝐵)

• 𝑙𝑖𝑣𝑒(𝑣, 𝐵) is 1 or 0 depending on whether 𝑣 is live on exit from 𝐵
• Assume load/store instructions cost two units

• Estimate of savings is approximate since all BBs are not executed with 
the same frequency
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Example
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bcf

acdeacdf

cdf

F

B3B2

B4

a = b*c
d = b-a
e = b/f

b = a-f
e = d+c f = e*a

b = c-d

B1

T

bcf

B1 B2 B3 B4 Sum

a (0+2) (1+0) (1+0) (0+0) 4

b (3+0) (0+0) (0+0) (0+2) 5

c (1+0) (1+0) (0+0) (1+0) 3

d (0+2) (1+0) (0+0) (1+0) 4

e (0+2) (0+0) (1+0) (0+0) 3

f (1+0) (1+0) (0+2) (0+0) 4

If there are 3 registers, they will be 
allocated to b, and (say) a and d

live 
variables



Global Register Allocation Based on Usage 
Counts for Nested Loops
• Assign registers for inner loops first 

before considering outer loops

• Let loop L1 nest L2

• For variables assigned registers in 
L2 but not in L1, 
• Load these variables on entry to L2 

and store them on exit from L2

• For variables assigned registers in 
L1 but not in L2, 
• Store these variables on entry to L2 

and load them on exit from L2
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Body of 
L2

L2
L1



Global Register Allocation Using 
Graph Coloring
Chaitin’s Allocator
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The Graph Coloring Problem

• For an arbitrary graph 𝐺, a coloring of 
𝐺 assigns a color to each node in 𝐺 so 
that no pair of adjacent nodes have the 
same color 

• A coloring that uses 𝑘 colors is termed 
a 𝒌-coloring 

• The smallest possible 𝑘 for a given 
graph is called the graph’s chromatic
number

• Finding the chromatic number of a 
graph is NP-complete 

• Determining if a graph is 𝑘-colorable,  
for some fixed k, is NP-complete
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1

2 4

5

3

3

1

2 4

5

2-colorable

3-colorable



Global Register Allocation with Graph 
Coloring
• Compilers model register allocation through 𝑘-coloring on an 

interference graph where 𝑘 is the number of physical registers 
available to the allocator
• Each color represents an available register

• Spill some values to memory and retry if 𝑘-coloring is not possible

• An interference graph models conflicts in live regions
• If variables 𝑎 and 𝑏 are active (live) at the same point, they cannot be 

assigned to the same register 

• Nodes in an interference graph represent live ranges (LR) for a variable, and 
an edge (𝑖, 𝑗) indicates LRi and LRj cannot share a register
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Identifying Global Live Ranges

• Requirement: 
• Group all definitions that reach a single use

• Group all uses that a single definition can reach

• Assumption: Register allocation operates on the SSA form
• In SSA, each name is defined once, and each use refers to one definition

• 𝜙 functions are used at control flow merge points
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Discovering Live Ranges Using SSA Form
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…
𝑎0 ← ⋯

𝑏0 ← ⋯
… ← 𝑏0
𝑑0 ← ⋯

𝑐0 ← ⋯
…

𝑑1 ← 𝑐0

𝑑2 ← 𝜙(𝑑0, 𝑑1)
… ← 𝑎0
… ← 𝑑2

𝐵0

𝐵1 𝐵2

𝐵3

…
𝐿𝑅𝑎 ← ⋯

𝐿𝑅𝑏 ← ⋯
… ← 𝐿𝑅𝑏
𝐿𝑅𝑑 ← ⋯

𝐿𝑅𝑐 ← ⋯
…

𝐿𝑅𝑑 ← 𝐿𝑅𝑐

… ← 𝐿𝑅𝑎
… ← 𝐿𝑅𝑑

𝐵0

𝐵1 𝐵2

𝐵3𝐿𝑅𝑎 = {𝑎0}
𝐿𝑅𝑏 = {𝑏0}
𝐿𝑅𝑐 = {𝑐0}
𝐿𝑅𝑑 = {𝑑0, 𝑑1, 𝑑2}



Interferences and the Interference Graph
• If there is an operation during which both LRi and LRj are live, they 

cannot reside in the same register

• Two live ranges LRi and LRj interfere if one is live at the definition of 
the other and they have different values
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…
𝐿𝑅𝑎 ← ⋯

𝐿𝑅𝑏 ← ⋯
… ← 𝐿𝑅𝑏
𝐿𝑅𝑑 ← ⋯

𝐿𝑅𝑐 ← ⋯
…

𝐿𝑅𝑑 ← 𝐿𝑅𝑐

… ← 𝐿𝑅𝑎
… ← 𝐿𝑅𝑑

𝐵0

𝐵1 𝐵2

𝐵3

𝐿𝑅𝑎

𝐿𝑅𝑏 𝐿𝑅𝑐

𝐿𝑅𝑑



Interferences and the Interference Graph
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…
𝐿𝑅𝑎 ← ⋯

𝐿𝑅𝑏 ← ⋯
𝑳𝑹𝒅 ← ⋯
… ← 𝑳𝑹𝒃

𝐿𝑅𝑐 ← ⋯
…

𝐿𝑅𝑑 ← 𝐿𝑅𝑐

… ← 𝐿𝑅𝑎
… ← 𝐿𝑅𝑑

𝐵0

𝐵1 𝐵2

𝐵3

𝐿𝑅𝑎

𝐿𝑅𝑐 𝐿𝑅𝑏

𝐿𝑅𝑑

The allocator will need to spill either 𝐿𝑅𝑎 or 𝐿𝑅𝑏 if 
only two registers are available.

swapped



Chaitin’s Algorithm: High-level Idea

• Choose an arbitrary node of degree less than 𝑘 and put it on the stack
• Remove that vertex and all its edges from the graph 

• This may decrease the degree of some other nodes and cause some more 
nodes to have degree less than 𝑘

• At some point, if all remaining vertices have degree greater than or 
equal to 𝑘, some node has to be spilled

• If no vertex needs to be spilled, successively pop vertices off stack and 
color them in a color not used by neighbors (reuse colors as far as 
possible)
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Chaitin’s Algorithm: Example 1
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2

1

3

4 5

Assume three physical registers are 
available

Stack



Chaitin’s Algorithm: Example 1
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2

1

3

4 5

Assume three physical registers are 
available

1

Stack

Only node with 
degree < 𝑘



Chaitin’s Algorithm: Example 1
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2

1

3

4 5

Assume three physical registers are 
available

2

1

Stack



Chaitin’s Algorithm: Example 1
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2

1

3

4 5

Assume three physical registers are 
available

5

3

4

2

1

Stack



Chaitin’s Algorithm: Example 1
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2

1

3

4 5

Assume three physical registers are 
available

3

4

2

1

Stack



Chaitin’s Algorithm: Example 1

CS 335 Swarnendu Biswas

2

1

3

4 5

Assume three physical registers are 
available

4

2

1

Stack
choose a 

different color



Chaitin’s Algorithm: Example 1
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2

1

3

4 5

Assume three physical registers are 
available

Stack



Detailed Steps in Chaitin’s Algorithm

i. Renaming – find all distinct live ranges and 
number them uniquely

ii. Build – construct the  interference graph

iii. Coalesce – remove unnecessary copy or 
move operations for non-interfering 
variables

iv. Spill costs – estimate the dynamic cost of 
spilling each live range

v. Simplify – construct an ordering of the 
nodes in the interference graph

vi. Spill code – insert spill operations

vii. Select – assign a register to each variable
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renumber

build

coalesce

spill costs

simplify

select

spill code



Example of Renaming Live Ranges
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a = … a = …

… = a … = a

… = a

a = …

s1 = … s1 = …

… = s2 … = s2

… = s1

s2 = …



Example of Renaming

CS 335 Swarnendu Biswas

1. x = 2
2. y = 4
3. w = x + y
4. z = x + 1
5. u = x * y
6. x = z * 2

s1 = 2 // live range: 1-5
s2 = 4 // live range: 2-5
s3 = s1 + s2 // live range: 3-4
s4 = s1 + 1 // live range: 4-6
s5 = s1 * s2 // live range: 5-6
s6 = s4 * 2 // live range: 6-…

original code after renaming

s5 s3 s1

s6 s4 s2

How to model constraints on register usage? For 
example, say s4 cannot live in register R1.
• Create nodes corresponding to the physical 

registers in the interference graph
• Add edges between interfering nodes (e.g., s4 

and R1)



Live Range and Interference Graph
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x = …
y = …

… = x
… = y

… = x
x = …

y = …

x = …
… = y

… = x

w1: def of x in B2, def of x in B3, use of x 
in B4, use of x in B5
w2: def of x in B5, use of x in B6
w3: def of y in B2, use of y in B4
w4: def of y in B1, use of y in B3

B2

B1

B4 B5

B6

B3

w1 w2

w3 w4



Coalescing

• Consider a copy instruction 
b := e
• If the live ranges of b and e do 

not overlap, then b and e can be 
given the same register (i.e., 
color)
• The copy instruction can then be 

removed from the final program

• Coalesce by merging b and e into 
one node that contains edges of 
both nodes
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c

d

b

a

e f

c

d

be

a

f



Copy Subsumption or Coalescing
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live range 
of old b

live range 
of new b

b=e

live range 
of e

Copy subsumption is not possible, 
live ranges of e and new def of b 
interfere

live range 
of old b

live range 
of new b

b=e

live range 
of e

Copy subsumption is possible, live 
ranges of e and new def of b do 
not interfere



Repeated Application of Copy Subsumption
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live range 
of new b

b=e

live range 
of old b

live range 
of e

Copy subsumption happens twice, 
once between b and e, and second 
between a and b. e, b, and a can all 
be given the same register.a=b

live range 
of a



Coalescing

• Coalesce all possible copy instructions

• Rebuild the interference graph
• May offer further opportunities for coalescing

• Build-coalesce phase is repeated till no further coalescing is possible

• Coalescing reduces the size of the interference graph and possibly 
reduces spilling
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Simplification and Estimating Spill Cost

• If a node 𝑛 in the interference graph has degree less than 𝑘, remove 𝑛
and all its edges from the graph and place 𝑛 on a stack

• We need to spill a node when no such nodes are available
• Implies loading a variable 𝑥 into a register before every use of 𝑥 and storing 𝑥

from register into memory at every definition of 𝑥

• Estimate of spill cost for a live range 𝑣:

where 𝑐 is the cost of the operation, 𝑑 is the loop nesting depth, and 
10 is the average number of loop iterations (assumption)

• The node to be spilled is the one with min(𝑐𝑜𝑠𝑡(𝑣)/deg(𝑣))
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𝑐𝑜𝑠𝑡 𝑣 = ෍all store or load
operations in 𝑣

𝑐 × 10𝑑



Effect of Spilling on Live Range
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x = …
y = …

… = x
… = y

… = x
x = …

y = …

x = …
… = y

… = x

w1: def of x in B2, def of x in B3, use of x in 
B4, use of x in B5
w2: def of x in B5, use of x in B6
w3: def of y in B2, use of y in B4
w4: def of y in B1, use of y in B3

B2

B1

B4 B5

B6

B3

w1 w2

w3 w4

Assume that x is spilled 
in live range w1



Effect of Spilling on Live Range
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x = …
ST x

y = …

LD x
… = x
… = y

LD x
… = x
x = …

y = …

x = …
ST x

… = y

… = x

w1: def of x in B2, ST of x in B2
w2: def of x in B3, ST of x in B3
w3: def of x in B5, use of x in B6
w4: def of y in B2, use of y in B4
w5: def of y in B1, use of y in B3
w6: LD of x in B4, use of x in B4
w7: LD of x in B5, use of x in B5 

B2

B1

B4 B5

B6

B3

w5 w3

w1 w7w2w6

w4

creates many short 
live ranges



Chaitin’s Algorithm: Example 2
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1. t1=202
2. i=1
3. L1: t2=i>100
4. if t2 goto L2
5. t1=t1-2
6. t3=addr(a)
7. t4=t3-4
8. t5=4*i
9. t6=t4+t5
10. *t6=t1
11. i=i+1
12. goto L1
13. L2:

Variable Live Range

t1 1-10

i 2-11

t2 3-4

t3 6-7

t4 7-9

t5 8-9

t6 9-10

t6 t5

t1 i

t2 t3

t4



Chaitin’s Algorithm: Example 2
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t6 t5

t1 i

t2 t3

t4

Assume there are three physical registers. 

Nodes t6, t2, and t3 are pushed on to the stack 
during graph reduction.

t5

t1 i

t4

cannot be reduced further, 
spilling is necessary



Chaitin’s Algorithm: Example 2

CS 335 Swarnendu Biswas

t5

t1 i

t4

Node v Cost(v) deg(v) Cost(v)
/deg(v)

t1 1+(1+1+1)*10=31 3 10

i 1+(1+1+1+1)*10=41 3 14

t4 (1+1)*10=20 3 7

t5 (1+1)*10=20 3 7

Let us pick t5 for spilling



Chaitin’s Algorithm: Example 2
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i

t1

t4

t3

t2

t6

t6 t5

t1 i

t2 t3

t4

spilled

1. R1=202
2. R2=1
3. L1: R3=R2>100
4. if R3 goto L2
5. R1=R1-2
6. R3=addr(a)
7. R3=R3-4
8. t5=4*R2
9. R3=R3+t5
10. *R3=R1
11. R2=R2+1
12. goto L1
13. L2:

R1 R2

R3

R3

R3

R3

Stack



Problem with Chaitin’s Algorithm

• Constructing and modifying the 
interference graphs is very costly

• Careful coalescing
• Do not coalesce if coalescing 

increases the degree of a node to 
> 𝑘
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There is a 3-coloring, but Chaitin's heuristic 
does not find it

21

4 5

3



Brigg’s Optimistic Allocator

• Instead of spilling, Briggs pushes the 
spill candidate on the stack, hoping 
there will be a color available
• Spill a node only when it is popped and 

there are no colors available
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renumber

build

coalesce

spill costs

simplify

select

spill code

21

4 5

3
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