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Overview of Lexical Analysis

• First stage of a three-part frontend to help understand the source 
program
• Processes every character in the input program

• If a word is valid, then it is assigned to a syntactic category
• This is similar to identifying the part of speech of an English word
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Compilers are engineered objects.

noun verb adjective noun punctuation



Description of Lexical Analysis

• Input:
• A high level language (e.g., C++ and Java) program in the form of a sequence 

of ASCII characters

• Output:
• A sequence of tokens along with attributes corresponding to different 

syntactic categories that is forwarded to the parser for syntax analysis

• Functionality:
• Strips off blanks, tabs, newlines, and comments from the source program
• Keeps track of line numbers and associates error messages from various parts 

of a compiler with line numbers
• Performs some preprocessor functions in languages like C
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Recognizing Word “new”

c = getNextChar();
if (c == ‘n’)

c = getNextChar();
if (c == ‘e’)

c = getNextChar();
if (c == ‘w’)

report success;
else 

// Other logic
else

// Other logic
else

// Other logic
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Formalism for Scanners
Regular expressions, DFAs, and NFAs
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Definitions

• An alphabet is a finite set of symbols
• Typical symbols are letters, digits, and punctuations

• ASCII and UNICODE are examples of alphabets

• A string over an alphabet is a finite sequence of symbols drawn from 
that alphabet 

• A language is any countable set of strings over a fixed alphabet
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Finite State Automaton

• A finite state automaton (FSA) is a five-tuple or quintuple (𝑆, Σ, 𝛿, 𝑠0, 𝑆𝐹)
• 𝑆 is a finite set of states

• Σ is the alphabet or character set, is the union of all edge labels in the FSA, and is 
finite

• 𝛿(𝑠, 𝑐) represents the transition from state 𝑠 on input 𝑐

• 𝑠0 ∈ S is the designated start state

• 𝑆𝐹 ⊆ 𝑆 is the set of final states

• A FSA accepts a string 𝑥 if and only if 
i. FSA starts in 𝑠0
ii. Executes transitions for the sequence of characters in 𝑥

iii. Final state is an accepting state ∈ 𝑆𝐹 after 𝑥 has been consumed
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FSA for recognizing “new”

• FSA = (𝑆, Σ, 𝛿, 𝑠0, 𝑆𝐹)
• 𝑆 = (𝑠0, 𝑠1, 𝑠2, 𝑠3)

• Σ = {𝑛, 𝑒, 𝑤}

• 𝛿 = {𝑠0՜
𝑛
𝑠1, 𝑠1՜

𝑒
𝑠2, 𝑠2՜

𝑤
𝑠3}

• 𝑠0 = 𝑠0
• 𝑆𝐹 = {𝑠3}
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String is recognized in time proportional to the input
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FSA for Unsigned Integers

char = getNextChar( )

state = 𝑠0
while (char ≠ EOF and state ≠ 𝑠𝑒) 

state = 𝛿(state,char)

char = getNextChar()

if (state ∈ 𝑆𝐹)

report success

else 

report failure

• FSA = (𝑆, Σ, 𝛿, 𝑠0, 𝑆𝐹)
• 𝑆 = (𝑠0, 𝑠1, 𝑠2, 𝑠𝑒)

• Σ = {0,1,2,3,4,5,6,7,8,9}

• 𝛿 = {𝑠0՜
0
𝑠1, 𝑠0

1−9
𝑠2,

𝑠2
0−9

𝑠2, 𝑠1
0−9

𝑠𝑒}

• 𝑠0 = 𝑠0
• 𝑆𝐹 = {𝑠1, 𝑠2}
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𝑠𝑒 is the 
error state



Dealing with Erroneous Situations 

• FSA is in state 𝑠, the next input character is 𝑐, and 𝛿(𝑠, 𝑐) is not 
defined

• FSA processes the complete input and is still not in the final state
• Input string is a proper prefix for some word accepted by the FSA
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Nondeterministic Finite Automaton

• NFA is a FSA that allows transitions on the empty string 𝜖 and can 
have states that have multiple transitions on the same input character

• Simulating an NFA
• Always make the correct nondeterministic choice to follow transitions that 

lead to accepting state(s) for the input string, if such transitions exist

• Try all nondeterministic choices in parallel to search the space of all possible 
configurations 

• Simulating a DFA is more efficient than an NFA
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Regular Expressions

• The set of words accepted by an FSA 𝐹 is called its language 𝐿(𝐹)

• For any FSA 𝐹, we can also describe 𝐿(𝐹) using a notation called a 
Regular Expressions (RE)

• The language described by a RE 𝑟 is called a regular language 
(denoted by 𝐿(𝑟))
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Regular Expressions

• 𝜖 is a RE, 𝐿 𝜖 = {𝜖}

• Let Σ be an alphabet. For each 𝑎 ∈ Σ, 𝑎 is a RE, and 𝐿 𝑎 = {𝑎}.

• Let 𝑟 and 𝑠 be REs denoting the languages 𝑅 and 𝑆, respectively
• Alternation (or union): (𝑟|𝑠) is a RE, 𝐿 𝑟 𝑠 = 𝑅|𝑆 = 𝑥 𝑥 ∈ 𝑅 or 𝑥 ∈ 𝑆 =
𝐿(𝑟) ∪ 𝐿(𝑠)

• Concatenation: (𝑟𝑠) is a RE, 𝐿 𝑟𝑠 = 𝑅. 𝑆 = 𝑥𝑦 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆}

• Closure: (𝑟∗) is an RE, 𝐿 𝑟∗ = 𝑅∗ = 𝑖=0ڂ
∞ 𝑅𝑖

• 𝐿∗ is called the Kleene closure or closure of 𝐿
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Examples of Regular Expressions

𝐿 = set of all strings of 0′s and 1′s

𝑟 = (0 + 1)∗

𝐿 = 𝑤 ∈ 0,1 ∗ 𝑤 has two or three occurences of 1,

the first and second are not consecutive}

𝑟 = 0∗10∗010∗(10∗ + 𝜖)

𝐿 = 𝑤 𝑤 ∈ 𝑎, 𝑏 ∗ ∧ 𝑤 ends with 𝑎}

𝑟 = (𝑎 + 𝑏)∗𝑎
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Examples of Regular Expressions

Unsigned real numbers with exponents
𝑟 = 0 1…9 0…9 ∗ . 0…9 ∗ 𝜖 𝐸(+| − |𝜖)(0|[1…9][0…9]∗)

𝐿 = 𝑤 ∈ 0,1 ∗ 𝑤 has no pair of consecutive zeros}

𝑟 = 1 + 01 ∗(0 + 𝜖)
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Regular Expressions

• We can reduce the use of parentheses by introducing precedence and 
associativity rules
• Binary operators, closure, concatenation, and alternation are left associative

• Precedence rule is
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parentheses > closure > concatenation > alternation



Algebraic Rules for REs

Rule Description

𝑟|𝑠 = 𝑠|𝑟 | is commutative

𝑟| 𝑠 𝑡 = 𝑟 𝑠 |𝑡 | is associative

𝑟 𝑠𝑡 = 𝑟𝑠 𝑡 Concatenation is commutative

𝑟 𝑠 𝑡 = 𝑟𝑠|𝑟𝑡; 𝑠 𝑡 𝑟 = 𝑠𝑟|𝑡𝑟 Concatenation distributes over |

𝜖𝑟 = 𝑟𝜖 = 𝑟 𝜖 is the identity of concatenation

𝑟∗ = (𝑟|𝜖)∗ 𝜖 is guaranteed in a closure

𝑟∗∗ = 𝑟∗ ∗ is idempotent
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Regular Definitions

• Let 𝑟𝑖 be a regular expression and 𝑑𝑖 be a distinct name

• Regular Definition is a sequence of definitions of the form
𝑑1 ՜ 𝑟1
𝑑2 ՜ 𝑟2
… 
𝑑𝑛 ՜ 𝑟𝑛

• Each 𝑟𝑖 is a regular expression over the symbols Σ ∪ {𝑑1, 𝑑2, … , 𝑑𝑖−1}

• Each 𝑑𝑖 is a new symbol not in Σ
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Example of Regular Definitions

• Unsigned numbers (e.g., 5280, 0.01234, 6.336E4, or 1.89E-4)
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𝑑𝑖𝑔𝑖𝑡 = 0 1 2 3 4 5 6 7 8|9

𝑑𝑖𝑔𝑖𝑡𝑠 = 𝑑𝑖𝑔𝑖𝑡 𝑑𝑖𝑔𝑖𝑡∗

𝑜𝑝𝑡𝑓𝑟𝑎𝑐 = . 𝑑𝑖𝑔𝑖𝑡𝑠|𝜖

𝑜𝑝𝑡𝑒𝑥𝑝 = (𝐸 + − 𝜖 𝑑𝑖𝑔𝑖𝑡𝑠 |𝜖

𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑𝑛𝑢𝑚 = 𝑑𝑖𝑔𝑖𝑡𝑠 𝑜𝑝𝑡𝑓𝑟𝑎𝑐 𝑜𝑝𝑡𝑒𝑥𝑝



Extensions of Regular Expressions

“.” is any character other than “\n”

[𝑥𝑦𝑧] is 𝑥|𝑦|𝑧

[𝑎𝑏𝑔−𝑝𝑇−𝑌] is any character 𝑎, 𝑏, 𝑔, … , 𝑝, 𝑇, … , 𝑌

[^𝐺−𝑄] is not any one of 𝐺,𝐻,… , 𝑄

𝑟+ is one or more 𝑟’s

𝑟? is zero or one 𝑟
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Example of Regular Definitions

• Unsigned numbers
• Example: 5280, 0.01234, 6.336E4, or 1.89E-4
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𝑑𝑖𝑔𝑖𝑡 = 0 1 2 3 4 5 6 7 8|9

𝑑𝑖𝑔𝑖𝑡𝑠 = 𝑑𝑖𝑔𝑖𝑡 𝑑𝑖𝑔𝑖𝑡∗

𝑜𝑝𝑡𝑓𝑟𝑎𝑐 = . 𝑑𝑖𝑔𝑖𝑡𝑠|𝜖

𝑜𝑝𝑡𝑒𝑥𝑝 = (𝐸 + − 𝜖 𝑑𝑖𝑔𝑖𝑡𝑠 |𝜖

𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑𝑛𝑢𝑚 = 𝑑𝑖𝑔𝑖𝑡𝑠 𝑜𝑝𝑡𝑓𝑟𝑎𝑐 𝑜𝑝𝑡𝑒𝑥𝑝

𝑑𝑖𝑔𝑖𝑡𝑠 = [0−9]

𝑑𝑖𝑔𝑖𝑡𝑠 = 𝑑𝑖𝑔𝑖𝑡+

𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑𝑛𝑢𝑚 = 𝑑𝑖𝑔𝑖𝑡𝑠 . 𝑑𝑖𝑔𝑖𝑡𝑠 ? 𝐸 +− ?𝑑𝑖𝑔𝑖𝑡𝑠 ?

Simpler to 
write



Equivalence of RE and FSA

• There exists an NFA with 𝜖-transitions that accepts 𝐿(𝑟), where 𝑟 is a 
RE

• If 𝐿 is accepted by a DFA, then 𝐿 is generated by a RE

• …
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NFA to DFA: Subset Construction

Subset Construction

𝑞0 = 𝜖-closure({𝑠0})
𝑄 = 𝑞0
WorkList = {𝑞0}
while (WorkList ≠ 𝜙) do

remove 𝑞 from WorkList
for each character 𝑐 ∈ Σ do

𝑡 = 𝜖-closure(𝛿(𝑞, 𝑐))
𝑇 𝑞, 𝑐 = 𝑡

if 𝑡 ∉ 𝑄 then
add 𝑡 to 𝑄 and to WorkList

𝜖-closure

for each state 𝑛 ∈ 𝑁 do
𝐸 𝑛 = {𝑛}

WorkList = 𝑁
while (WorkList ≠ 𝜙) do

remove 𝑛 from WorkList
𝑡 = {𝑛} ∪ ڂ

𝑛՜
𝜖
𝑝∈𝛿𝑁

𝐸(𝑝)

if 𝑡 ≠ 𝐸(𝑛)

𝐸 𝑛 = 𝑡

WorkList = WorkList ∪ {𝑚|𝑚՜
𝜖
𝑛 ∈ 𝛿𝑁}
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NFA = (𝑁, Σ, 𝛿𝑁, 𝑛0, 𝑁𝐴)

DFA = (𝐷, Σ, 𝛿𝐷, 𝑑0, 𝐷𝐴)



DFA to Minimal DFA: Hopcroft’s Algorithm

• A DFA from Subset construction can have a large number of states 
• Does not increase the time needed to scan a string

• Increases the space requirement of the scanner in memory
• Speed of accesses to main memory may turn out to be the bottleneck

• Smaller scanner has better chances of fitting in the processor cache
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Splitting a Partition
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𝑑𝑥

𝑑𝑦

𝑑𝑧

𝑝2

𝑑𝑖

𝑑𝑗

𝑑𝑘

𝑝1

𝑎

𝑎

𝑎
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𝑎

𝑎
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𝑎

𝑎
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𝑑𝑘

𝑝7

𝑎 𝑑𝑥

𝑝4

𝑑𝑖

𝑝6

Partitions after splitting on 𝑎



DFA to Minimal DFA: Hopcroft’s Algorithm

Minimization

𝑇 = 𝐷𝐴, 𝐷 − 𝐷𝐴

𝑃 = 𝜙

while(𝑃 ≠ 𝑇) do

𝑃 = 𝑇

𝑇 = 𝜙

for each set 𝑝 ∈ 𝑃 do

𝑇 = 𝑇 ∪ Split(𝑝)

Split(𝑺)

for each 𝑐 ∈ Σ do

if 𝑐 splits 𝑆 into 𝑠1 and 𝑠2
return {𝑠1, 𝑠2}

return 𝑆
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Realizing Scanners
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Tokens

• Token
• A string of characters which logically belong together in a syntactic category
• Sentences consist of a string of tokens (e.g., float, identifier, assign, minus, 

intnum, semicolon)
• Tokens are treated as terminal symbols of the grammar specifying the source 

language
• May have optional attributes

• Example of tokens in programming languages: Keywords, operators, 
identifiers (names), constants, literal strings, punctuation symbols 
(parentheses, brackets, commas, semicolons, and colons)
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Patterns and Lexemes

• Pattern
• The rule describing the set of strings for which the same token is produced

• The pattern is said to match each string in the set

• float, letter(letter|digit|_)*, =, -, digit+, ;

• Lexeme
• The sequence of characters matched by a pattern to form the corresponding 

token
• “float”, “abs_zero”, “=”, “-”, “273”, “;”
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Attributes of Tokens

• An attribute of a token is a value that the scanner extracts from the 
corresponding lexeme and supplies to the syntax analyzer

• Examples attributes for tokens
• identifier: the lexeme of the token, or a pointer into the symbol table where 

the lexeme is stored by the LA

• intnum: the value of the integer (similarly for floatnum, etc.)

• Type of the identifier, location where first found

• The exact set of attributes are dependent on the compiler designer
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Role of a Lexical Analyzer

• Identify tokens and corresponding lexemes

• Construct constants: for example, convert a number to token intnum
and pass the value as its attribute
• 31 becomes <intnum, 31>

• Recognize keyword and identifiers
• counter = counter + increment becomes id = id + id

• Check that id here is not a keyword

• Discard whatever does not contribute to parsing
• White spaces (blanks, tabs, newlines) and comments
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Specifying and Recognizing Patterns and 
Tokens
• Patterns are denoted with REs, and recognized with FSAs

• Regular definitions, a mechanism based on regular expressions, are 
popular for specification of tokens

• Transition diagrams, a variant of FSAs, are used to implement regular 
definitions and to recognize tokens
• Usually used to model LA before translating them to executable programs

CS 335 Swarnendu Biswas



Transition Diagrams

• Transition diagrams (TDs) are generalized DFAs with the following 
differences
• Edges may be labelled by a symbol, a set of symbols, or a regular definition

• Few accepting states may be indicated as retracting states
• Indicates that the lexeme does not include the symbol that transitions to the accepting 

state

• Each accepting state has an action attached to it 
• Action is executed when the state is reached (e.g., return a token and its attribute value)
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Examples of Transition Diagrams

• * indicates a retraction state

• get_token_code() searches a table to check if the name is a 
reserved word and returns its integer code if so

• Otherwise, it returns the integer code of the IDENTIFIER token, with 
name containing the string of characters forming the token 
• Name is not relevant for reserved words
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letterstart other
0 1 2

letter/digit

*

return(get_token_code(), name)

Identifiers and reserved words

𝑙𝑒𝑡𝑡𝑒𝑟 = 𝑎−𝑧𝐴−𝑍
𝑑𝑖𝑔𝑖𝑡 = [0−9]
𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 = 𝑙𝑒𝑡𝑡𝑒𝑟(𝑙𝑒𝑡𝑡𝑒𝑟|𝑑𝑖𝑔𝑖𝑡)∗



A Sample Specification
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𝑠𝑡𝑚𝑡 ⟶ if 𝑒𝑥𝑝𝑟 then 𝑠𝑡𝑚𝑡
| if 𝑒𝑥𝑝𝑟 then 𝑠𝑡𝑚𝑡 else 𝑠𝑡𝑚𝑡
| 𝜖

𝑒𝑥𝑝𝑟 ⟶ 𝑡𝑒𝑟𝑚 relop 𝑡𝑒𝑟𝑚
| 𝑡𝑒𝑟𝑚

𝑡𝑒𝑟𝑚 ⟶ id
| number

𝑑𝑖𝑔𝑖𝑡 ⟶ [0−9]
𝑑𝑖𝑔𝑖𝑡𝑠 ⟶ 𝑑𝑖𝑔𝑖𝑡+

𝑛𝑢𝑚𝑏𝑒𝑟 ⟶ 𝑑𝑖𝑔𝑖𝑡𝑠 . 𝑑𝑖𝑔𝑖𝑡𝑠 ? 𝐸 +− ?𝑑𝑖𝑔𝑖𝑡𝑠 ?
𝑙𝑒𝑡𝑡𝑒𝑟 ⟶ [𝐴−𝑍𝑎 − 𝑧]
𝑖𝑑 ⟶ 𝑙𝑒𝑡𝑡𝑒𝑟 𝑙𝑒𝑡𝑡𝑒𝑟 𝑑𝑖𝑔𝑖𝑡)∗

𝑖𝑓 ⟶ if
𝑡ℎ𝑒𝑛 ⟶ then
𝑒𝑙𝑠𝑒 ⟶ else
𝑟𝑒𝑙𝑜𝑝 ⟶< | > <= >= | = | <>
𝑤𝑠 ⟶ blank tab | newline)+



Tokens, Lexemes, and Attributes
Lexemes Token Name Attribute Value

Any 𝑤𝑠 -- --

𝑖𝑓 if --

𝑡ℎ𝑒𝑛 then --

𝑒𝑙𝑠𝑒 else --

Any 𝑖𝑑 id Pointer to symbol table entry

Any 𝑛𝑢𝑚𝑏𝑒𝑟 number Pointer to symbol table entry

< relop LT

<= relop LE

= relop ASSGN

<> relop NE

> relop GT

>= relop GE
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Transition Diagram for relop
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return(relop, LE)

return(relop, NE)

return(relop, LT)

return(relop, GE)

return(relop, GT)

*

start
0 1 2

< =

3

4

7

8

>

5

6

return(relop, ASSGN)

=

*



Transition Diagrams for IDs and Keywords
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letterstart other
9 10 11

letter/digit

*

return(get_token_code(), name)

IDs and Keywords

Whitespace

start

delim

delim other
22 23

*
24



Transition Diagram for Unsigned Numbers
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. digit *

digitdigit

E +|-

digit

start digit digit
1312 14 15 16 17 18 19

other

*
2120

*

E digit



Combining Transition Diagrams to form a 
Lexical Analyzer
• Different transition diagrams (TDs) must be combined appropriately 

to yield a scanner
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How do we do this?



Combining Transition Diagrams to form a 
Lexical Analyzer
• Different transition diagrams (TDs) must be combined appropriately 

to yield a scanner
• Try different transition diagrams one after another

• For example, TDs for reserved words, constants, identifiers, and operators could be tried 
in that order

• However, this does not use the “longest match” characteristic 
• thenext should be an identifier, and not reserved word then followed by identifier ext

• To find the longest match, all TDs must be tried and the longest match 
must be used
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Challenges in Lexical Analysis

• Certain languages like PL/I do not have any reserved words 
• while, do, if, and else are reserved in C but not in PL/I

• Makes it difficult for the scanner to distinguish between keywords and user-
defined identifiers
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if then then then = else else else = then

if if then then = then + 1



Challenges in Lexical Analysis

• Certain languages like PL/I do not have any reserved words 
• while, do, if, and else are reserved in C but not in PL/I
• Makes it difficult for the scanner to distinguish between keywords and user-

defined identifiers

• PL/I declarations
• DECLARE(arg1,arg2,arg3,…,argn)
• Cannot tell whether DECLARE is a keyword with variable definitions or is a 

procedure with arguments until after “)”

• Requires arbitrary lookahead and very large buffers
• Worse, the buffers may have to be reloaded in case of wrong inferences
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Challenges in Lexical Analysis

• Is fi a typo or a function call?
• Remember, fi is a valid lexeme for IDENTIFIER

• Think of C++ 
• Template syntax: Foo<Bar>
• Stream syntax: cin >> var;
• Nested templates: Foo<Bar<Bazz>>

• Can these problems be resolved by lexical analysers alone? No, in some 
cases parser needs to help.
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fi (a == g(x)) …



Challenges in Lexical Analysis

• Consider a fixed-format language like Fortran
• 80 columns per line

• Column 1-5 for the statement number/label column

• Column 6 for continuation mark 

• Column 7-72 for the program statements

• Column 73-80 Ignored (used for other purposes)

• Letter C in Column 1 meant the current line is a comment
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Challenges in Lexical Analysis

• In fixed-format Fortran, some keywords are context-dependent
• In the statement, DO 10 I = 10.86,  DO10I is an identifier, and DO is not a 

keyword

• But in the statement, DO 10 I = 10, 86, DO is a keyword

• Blanks are not significant in Fortran and can appear in the midst of identifiers
• Variable “counter” is same as “count er”
• In Fortran, blanks are important only in literal strings

• Reading from left to right, one cannot distinguish between the two until the 
“,” or “.” is reached
• Requires look ahead for resolution
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Programming Languages vs Natural 
Languages
• Meaning of words in natural languages is often context-sensitive

• An English word can be a noun or a verb (for e.g., “stress”)

• “are” is a verb, “art” is a noun, and “arz” is undefined

• Grammars are rigorously specified to provide meaning 
• Words in a programming language are always lexically specified

• Any string in (1…9)(0…9)* is a positive integer
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Why separate tokens and lexemes?

• Rules to govern the lexical structure of a programming language is 
called its microsyntax

• Separating syntax and microsyntax allows for a simpler parser
• Parser only needs to deal with syntactic categories like IDENTIFIER
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Lexical Analysis as a Separate Phase

1. Simplifies the compiler design: I/O issues are limited to only the 
lexical analyzer, leading to better portability

2. Allows designing a more compact and faster parser
• Comments and whitespace need not be handled by the parser

• No rules for numbers, names, and comments are needed in the parser

• A parser is more complicated than a lexical analyzer and shrinking the 
grammar makes the parser more efficient

3. Scanners based on finite automata are more efficient to implement 
than stack-based pushdown automata used for parsing
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Interfacing with Parser

• A unique integer representing the token is passed by LA to the parser
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Error Handling in Lexical Analysis

• LA cannot catch any other errors except for simple errors such as 
illegal symbols

• In such cases, LA skips characters in the input until a well-formed 
token is found
• This is called “panic mode” recovery

• We can think of other possible recovery strategies
• Delete one character from the remaining input, or insert a missing character

• Replace a character, or transpose two adjacent characters

• Idea is to see if a single (or few) transformation(s) can repair the error
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Other Uses of Lexical Analysis Concepts

• UNIX command line tools like grep, awk, and sed

• Search tools in editors

• Word-processing tools
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Implementing Scanners
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Implementing Scanners

1. Specify REs for each syntactic category in the PL 

2. Construct an NFA for each RE

3. Join the NFAs with 𝜖-transitions

4. Create the equivalent DFA

5. Minimize the DFA

6. Generate code to implement the DFA
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Implementation Considerations

• Speed is paramount for scanning
• Processes every character from a possibly large input source program

• Repeatedly read input characters and simulate the corresponding DFA
• Types of scanner implementations: table-driven, direct-coded, and hand-

coded

• Asymptotic complexity is the same, differs in run-time costs
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High-Level Idea in Implementing Scanners

Read input characters one by one

Look up the transition based on the current state and the input character

Switch to the new state

Check for termination conditions, i.e., accept and error

Repeat
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Table-Driven Scanner

• Register specification
• For example, r1 and r27

CS 335 Swarnendu Biswas

r [0…9]

[0…9]

s0 s1 s2

Tables

FSA 
Interpreter

Scanner 
Generator

Lexical
Patterns



Table-Driven Scanner

𝜹 R 0,1,…,9 other

𝒔𝟎 𝑠1 𝑠𝑒 𝑠𝑒

𝒔𝟏 𝑠𝑒 𝑠2 𝑠𝑒

𝒔𝟐 𝑠𝑒 𝑠2 𝑠𝑒

𝒔𝒆 𝑠𝑒 𝑠𝑒 𝑠𝑒
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state = 𝑠0; lexeme = “”;
clear stack; push(bad);

// Model the DFA
while (state ≠ 𝑠𝑒) 

char = getNextChar()
lexeme = lexeme + char
if state ∈ 𝑠𝐴

clear stack
push(state)
token = lookup(PATTERN)
state = 𝛿(state, token) involves two 

table lookups

𝒓 𝟎, 𝟏, 𝟐, … , 𝟗 EOF Other

Register Digit EOF Other



Table-Driven Scanner
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// Rollback

while (state ∉ 𝑠𝐴 and state ≠ bad) 

state = pop()

truncate lexeme

rollback()

if state ∈ 𝑠𝐴

return token

else 

return invalid

𝜹 R 0,1,…,9 other

𝒔𝟎 𝑠1 𝑠𝑒 𝑠𝑒

𝒔𝟏 𝑠𝑒 𝑠2 𝑠𝑒

𝒔𝟐 𝑠𝑒 𝑠2 𝑠𝑒

𝒔𝒆 𝑠𝑒 𝑠𝑒 𝑠𝑒

𝒓 𝟎, 𝟏, 𝟐, … , 𝟗 EOF Other

Register Digit EOF Other



Problem of Rollbacks

• A scanner’s aim is to recognize the 
longest match but it can increase 
rollbacks
• Consider the RE 𝑎𝑏 | (𝑎𝑏)∗𝑐, and 

input 𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏

• A scanner can avoid such 
pathological quadratic expense by 
remembering failed attempts
• Such scanners are called maximal 

munch scanners

inputPos = 0

for each state 𝑠 ∈ DFA

for i = 1:|input stream|

Failed[state, i] = false
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Address Excessive Rollbacks

state = 𝑠0; lexeme = “”;

clear stack; push(<bad, bad>);

while (state ≠ 𝑠𝑒) 

char = getNextChar()

lexeme = lexeme + char

inputPos = inputPos + 1

if Failed[state, inputPos]

break

if state ∈ 𝑠𝐴

clear stack

push(<state, inputPos>)

token = lookup(PATTERN)

state = 𝛿(state, token)

// Rollback

while (state ∉ 𝑠𝐴 and state ≠ bad) 

Failed[state, inputPos] = true

<state, inputPos> = pop()

truncate lexeme

rollback()

if state ∈ 𝑠𝐴

return token

else 

return invalid
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Overhead with Table Lookups

CS 335 Swarnendu Biswas

i

base

offset

w

Address1 = base + 
offset * w

(i,j)

base w

c columns

Address2 = base + 
(i*c + j) * w

The table-driven scanner performs two address computations and 
two load operations for each character that it processes



Direct-Coded Scanner
lexeme = “”; clear stack; 

push(bad); goto 𝑠0;

𝑠0: char = getNextChar()

lexeme = char

if state ∈ 𝑠𝐴

clear stack

push(𝑠0)

if (char == ‘r’)

goto 𝑠1

else 

goto 𝑠𝑒

𝑠1:  char = getNextChar()

lexeme = lexeme + char

if state ∈ 𝑠𝐴

clear stack

push(𝑠1)

if (‘0’ ≤ char ≤ ‘9’)

goto 𝑠2

else 

goto 𝑠𝑒
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Direct-Coded Scanner

𝑠2:  char = getNextChar()

lexeme = lexeme + char

if state ∈ 𝑠𝐴

clear stack

push(𝑠2)

if (‘0’ ≤ char ≤ ‘9’)

goto 𝑠2

else 

goto 𝑠𝑒

𝑠𝑒:  while (state ∉ 𝑠𝐴 and 

state ≠ bad)

state = pop()

truncate lexeme

rollback()

if state ∈ 𝑠𝐴

return token

else 

return invalid
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Hand-Coded Scanner

• Many real-world compilers use hand-coded scanners for further 
efficiency
• For e.g., gcc 4.0 uses hand-coded scanners in several of its front ends

i. Fetching a character one-by-one from I/O is expensive; fetch a 
number of characters in one go and store in a buffer

ii. Use double buffering to simplify lookahead and rollback
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Reading Characters from Input

• A scanner reads the input character by character
• Reading the input will be very inefficient if it requires a system call for every 

character read

• Input buffer
• OS reads a block of data, supplies scanner the required amount, and stores 

the remaining portion in a buffer called buffer cache 

• In subsequent calls, actual I/O does not take place as long as the data is 
available in the buffer cache

• Scanner uses its own buffer since requesting OS for single character is also 
costly due to context-switching overhead 
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Optimizing Reads from the Buffer

• A buffer at its end may contain an initial portion of a lexeme 

• It creates problem in refilling the buffer, so a two-buffer scheme is 
used where the two buffers are filled alternatively
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E = M *

E = M*C**2

E = M * C * * 2 eof

lexBegin
forward



Optimizing Reads from the Buffer

• Read from buffer 
• (1) Check for end of buffer, and (2) test the type of the input character

• If end of buffer, then reload the other buffer
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E = M * C * * 2 eof

lexBegin
forward



Advance Forward Pointer

if (forward is at end of first buffer) {

reload second buffer

forward = beginning of second buffer

} else if (forward is at end of second buffer) {

reload first buffer

forward = beginning of first buffer

} else {

forward++

}
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Optimizing Reads from the Buffer

• A sentinel character (say eof) is placed at the end of buffer to avoid 
two comparisons
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E = M eof * C * * 2 eof eof

lexBegin
forward



Optimizing Reads from the Buffer

switch (*forward++) {
case eof:

if (forward is at end of first buffer) {
reload second buffer
forward = beginning of second buffer

} else if (forward is at end of second buffer) {
reload first buffer
forward = beginning of first buffer

} else {  // end of input
break

}
…
// case for other characters

}
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Symbol Table

• Data structure that stores information for subsequent phases

• Symbol table interface
• insert(s, t): save lexeme s, token t, and return pointer

• lookup(s): return index of entry for lexeme s or 0 if s is not found
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Implementation of Symbol Table
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Fixed space for lexemes Other attributes Pointer to 
lexemes

Other attributes

32 bytes
4 bytes

lexeme1 eos lexeme2 eos …

Fixed amount of space to store lexemes 
might waste space



Handling Keywords

• Two choices: use separate REs or compare lexemes for ID token

• Consider token DIV and MOD with lexemes div and mod

• Initialize symbol table with insert(“div”, DIV) and 
insert(“mod”, MOD) before beginning of scanning
• Any subsequent insert fails and any subsequent lookup returns the keyword

value 

• These lexemes can no longer be used as an identifier
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