
CS 335: Lexical Analysis
Swarnendu Biswas

Semester 2022-2023-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

An Overview of Compilation

CS 335 Swarnendu Biswas

lexical analyzer

semantic analyzer

source program

syntax analyzer code optimizer

code generator

intermediate code
generator

target program

error handler

symbol table

Overview of Lexical Analysis

• First stage of a three-part frontend to help understand the source
program
• Processes every character in the input program

• If a word is valid, then it is assigned to a syntactic category
• This is similar to identifying the part of speech of an English word

CS 335 Swarnendu Biswas

Compilers are engineered objects.

noun verb adjective noun punctuation

Description of Lexical Analysis

• Input:
• A high level language (e.g., C++ and Java) program in the form of a sequence

of ASCII characters

• Output:
• A sequence of tokens along with attributes corresponding to different

syntactic categories that is forwarded to the parser for syntax analysis

• Functionality:
• Strips off blanks, tabs, newlines, and comments from the source program
• Keeps track of line numbers and associates error messages from various parts

of a compiler with line numbers
• Performs some preprocessor functions in languages like C

CS 335 Swarnendu Biswas

Recognizing Word “new”

c = getNextChar();
if (c == ‘n’)

c = getNextChar();
if (c == ‘e’)

c = getNextChar();
if (c == ‘w’)

report success;
else

// Other logic
else

// Other logic
else

// Other logic

CS 335 Swarnendu Biswas

S0

s1

s3

s2

n

e

w

Formalism for Scanners
Regular expressions, DFAs, and NFAs

CS 335 Swarnendu Biswas

Definitions

• An alphabet is a finite set of symbols
• Typical symbols are letters, digits, and punctuations

• ASCII and UNICODE are examples of alphabets

• A string over an alphabet is a finite sequence of symbols drawn from
that alphabet

• A language is any countable set of strings over a fixed alphabet

CS 335 Swarnendu Biswas

Finite State Automaton

• A finite state automaton (FSA) is a five-tuple or quintuple (𝑆, Σ, 𝛿, 𝑠0, 𝑆𝐹)
• 𝑆 is a finite set of states

• Σ is the alphabet or character set, is the union of all edge labels in the FSA, and is
finite

• 𝛿(𝑠, 𝑐) represents the transition from state 𝑠 on input 𝑐

• 𝑠0 ∈ S is the designated start state

• 𝑆𝐹 ⊆ 𝑆 is the set of final states

• A FSA accepts a string 𝑥 if and only if
i. FSA starts in 𝑠0
ii. Executes transitions for the sequence of characters in 𝑥

iii. Final state is an accepting state ∈ 𝑆𝐹 after 𝑥 has been consumed

CS 335 Swarnendu Biswas

FSA for recognizing “new”

• FSA = (𝑆, Σ, 𝛿, 𝑠0, 𝑆𝐹)
• 𝑆 = (𝑠0, 𝑠1, 𝑠2, 𝑠3)

• Σ = {𝑛, 𝑒, 𝑤}

• 𝛿 = {𝑠0՜
𝑛
𝑠1, 𝑠1՜

𝑒
𝑠2, 𝑠2՜

𝑤
𝑠3}

• 𝑠0 = 𝑠0
• 𝑆𝐹 = {𝑠3}

CS 335 Swarnendu Biswas

String is recognized in time proportional to the input

S0

s1

s3

s2

n

e

w

FSA for Unsigned Integers

char = getNextChar()

state = 𝑠0
while (char ≠ EOF and state ≠ 𝑠𝑒)

state = 𝛿(state,char)

char = getNextChar()

if (state ∈ 𝑆𝐹)

report success

else

report failure

• FSA = (𝑆, Σ, 𝛿, 𝑠0, 𝑆𝐹)
• 𝑆 = (𝑠0, 𝑠1, 𝑠2, 𝑠𝑒)

• Σ = {0,1,2,3,4,5,6,7,8,9}

• 𝛿 = {𝑠0՜
0
𝑠1, 𝑠0

1−9
𝑠2,

𝑠2
0−9

𝑠2, 𝑠1
0−9

𝑠𝑒}

• 𝑠0 = 𝑠0
• 𝑆𝐹 = {𝑠1, 𝑠2}

CS 335 Swarnendu Biswas

𝑠𝑒 is the
error state

Dealing with Erroneous Situations

• FSA is in state 𝑠, the next input character is 𝑐, and 𝛿(𝑠, 𝑐) is not
defined

• FSA processes the complete input and is still not in the final state
• Input string is a proper prefix for some word accepted by the FSA

CS 335 Swarnendu Biswas

Nondeterministic Finite Automaton

• NFA is a FSA that allows transitions on the empty string 𝜖 and can
have states that have multiple transitions on the same input character

• Simulating an NFA
• Always make the correct nondeterministic choice to follow transitions that

lead to accepting state(s) for the input string, if such transitions exist

• Try all nondeterministic choices in parallel to search the space of all possible
configurations

• Simulating a DFA is more efficient than an NFA

CS 335 Swarnendu Biswas

Regular Expressions

• The set of words accepted by an FSA 𝐹 is called its language 𝐿(𝐹)

• For any FSA 𝐹, we can also describe 𝐿(𝐹) using a notation called a
Regular Expressions (RE)

• The language described by a RE 𝑟 is called a regular language
(denoted by 𝐿(𝑟))

CS 335 Swarnendu Biswas

Regular Expressions

• 𝜖 is a RE, 𝐿 𝜖 = {𝜖}

• Let Σ be an alphabet. For each 𝑎 ∈ Σ, 𝑎 is a RE, and 𝐿 𝑎 = {𝑎}.

• Let 𝑟 and 𝑠 be REs denoting the languages 𝑅 and 𝑆, respectively
• Alternation (or union): (𝑟|𝑠) is a RE, 𝐿 𝑟 𝑠 = 𝑅|𝑆 = 𝑥 𝑥 ∈ 𝑅 or 𝑥 ∈ 𝑆 =
𝐿(𝑟) ∪ 𝐿(𝑠)

• Concatenation: (𝑟𝑠) is a RE, 𝐿 𝑟𝑠 = 𝑅. 𝑆 = 𝑥𝑦 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆}

• Closure: (𝑟∗) is an RE, 𝐿 𝑟∗ = 𝑅∗ = 𝑖=0ڂ
∞ 𝑅𝑖

• 𝐿∗ is called the Kleene closure or closure of 𝐿

CS 335 Swarnendu Biswas

Examples of Regular Expressions

𝐿 = set of all strings of 0′s and 1′s

𝑟 = (0 + 1)∗

𝐿 = 𝑤 ∈ 0,1 ∗ 𝑤 has two or three occurences of 1,

the first and second are not consecutive}

𝑟 = 0∗10∗010∗(10∗ + 𝜖)

𝐿 = 𝑤 𝑤 ∈ 𝑎, 𝑏 ∗ ∧ 𝑤 ends with 𝑎}

𝑟 = (𝑎 + 𝑏)∗𝑎

CS 335 Swarnendu Biswas

Examples of Regular Expressions

Unsigned real numbers with exponents
𝑟 = 0 1…9 0…9 ∗ . 0…9 ∗ 𝜖 𝐸(+| − |𝜖)(0|[1…9][0…9]∗)

𝐿 = 𝑤 ∈ 0,1 ∗ 𝑤 has no pair of consecutive zeros}

𝑟 = 1 + 01 ∗(0 + 𝜖)

CS 335 Swarnendu Biswas

Regular Expressions

• We can reduce the use of parentheses by introducing precedence and
associativity rules
• Binary operators, closure, concatenation, and alternation are left associative

• Precedence rule is

CS 335 Swarnendu Biswas

parentheses > closure > concatenation > alternation

Algebraic Rules for REs

Rule Description

𝑟|𝑠 = 𝑠|𝑟 | is commutative

𝑟| 𝑠 𝑡 = 𝑟 𝑠 |𝑡 | is associative

𝑟 𝑠𝑡 = 𝑟𝑠 𝑡 Concatenation is commutative

𝑟 𝑠 𝑡 = 𝑟𝑠|𝑟𝑡; 𝑠 𝑡 𝑟 = 𝑠𝑟|𝑡𝑟 Concatenation distributes over |

𝜖𝑟 = 𝑟𝜖 = 𝑟 𝜖 is the identity of concatenation

𝑟∗ = (𝑟|𝜖)∗ 𝜖 is guaranteed in a closure

𝑟∗∗ = 𝑟∗ ∗ is idempotent

CS 335 Swarnendu Biswas

Regular Definitions

• Let 𝑟𝑖 be a regular expression and 𝑑𝑖 be a distinct name

• Regular Definition is a sequence of definitions of the form
𝑑1 ՜ 𝑟1
𝑑2 ՜ 𝑟2
…
𝑑𝑛 ՜ 𝑟𝑛

• Each 𝑟𝑖 is a regular expression over the symbols Σ ∪ {𝑑1, 𝑑2, … , 𝑑𝑖−1}

• Each 𝑑𝑖 is a new symbol not in Σ

CS 335 Swarnendu Biswas

Example of Regular Definitions

• Unsigned numbers (e.g., 5280, 0.01234, 6.336E4, or 1.89E-4)

CS 335 Swarnendu Biswas

𝑑𝑖𝑔𝑖𝑡 = 0 1 2 3 4 5 6 7 8|9

𝑑𝑖𝑔𝑖𝑡𝑠 = 𝑑𝑖𝑔𝑖𝑡 𝑑𝑖𝑔𝑖𝑡∗

𝑜𝑝𝑡𝑓𝑟𝑎𝑐 = . 𝑑𝑖𝑔𝑖𝑡𝑠|𝜖

𝑜𝑝𝑡𝑒𝑥𝑝 = (𝐸 + − 𝜖 𝑑𝑖𝑔𝑖𝑡𝑠 |𝜖

𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑𝑛𝑢𝑚 = 𝑑𝑖𝑔𝑖𝑡𝑠 𝑜𝑝𝑡𝑓𝑟𝑎𝑐 𝑜𝑝𝑡𝑒𝑥𝑝

Extensions of Regular Expressions

“.” is any character other than “\n”

[𝑥𝑦𝑧] is 𝑥|𝑦|𝑧

[𝑎𝑏𝑔−𝑝𝑇−𝑌] is any character 𝑎, 𝑏, 𝑔, … , 𝑝, 𝑇, … , 𝑌

[^𝐺−𝑄] is not any one of 𝐺,𝐻,… , 𝑄

𝑟+ is one or more 𝑟’s

𝑟? is zero or one 𝑟

CS 335 Swarnendu Biswas

Example of Regular Definitions

• Unsigned numbers
• Example: 5280, 0.01234, 6.336E4, or 1.89E-4

CS 335 Swarnendu Biswas

𝑑𝑖𝑔𝑖𝑡 = 0 1 2 3 4 5 6 7 8|9

𝑑𝑖𝑔𝑖𝑡𝑠 = 𝑑𝑖𝑔𝑖𝑡 𝑑𝑖𝑔𝑖𝑡∗

𝑜𝑝𝑡𝑓𝑟𝑎𝑐 = . 𝑑𝑖𝑔𝑖𝑡𝑠|𝜖

𝑜𝑝𝑡𝑒𝑥𝑝 = (𝐸 + − 𝜖 𝑑𝑖𝑔𝑖𝑡𝑠 |𝜖

𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑𝑛𝑢𝑚 = 𝑑𝑖𝑔𝑖𝑡𝑠 𝑜𝑝𝑡𝑓𝑟𝑎𝑐 𝑜𝑝𝑡𝑒𝑥𝑝

𝑑𝑖𝑔𝑖𝑡𝑠 = [0−9]

𝑑𝑖𝑔𝑖𝑡𝑠 = 𝑑𝑖𝑔𝑖𝑡+

𝑢𝑛𝑠𝑖𝑔𝑛𝑒𝑑𝑛𝑢𝑚 = 𝑑𝑖𝑔𝑖𝑡𝑠 . 𝑑𝑖𝑔𝑖𝑡𝑠 ? 𝐸 +− ?𝑑𝑖𝑔𝑖𝑡𝑠 ?

Simpler to
write

Equivalence of RE and FSA

• There exists an NFA with 𝜖-transitions that accepts 𝐿(𝑟), where 𝑟 is a
RE

• If 𝐿 is accepted by a DFA, then 𝐿 is generated by a RE

• …

CS 335 Swarnendu Biswas

NFA
Thompson’s
Construction

RE DFA

Subset
Construction

DFA
Minimization

Kleene’s
Construction

code for a
scanner

DFAs are
easier to
simulate

Improve run time
and memory

overhead

NFA to DFA: Subset Construction

Subset Construction

𝑞0 = 𝜖-closure({𝑠0})
𝑄 = 𝑞0
WorkList = {𝑞0}
while (WorkList ≠ 𝜙) do

remove 𝑞 from WorkList
for each character 𝑐 ∈ Σ do

𝑡 = 𝜖-closure(𝛿(𝑞, 𝑐))
𝑇 𝑞, 𝑐 = 𝑡

if 𝑡 ∉ 𝑄 then
add 𝑡 to 𝑄 and to WorkList

𝜖-closure

for each state 𝑛 ∈ 𝑁 do
𝐸 𝑛 = {𝑛}

WorkList = 𝑁
while (WorkList ≠ 𝜙) do

remove 𝑛 from WorkList
𝑡 = {𝑛} ∪ ڂ

𝑛՜
𝜖
𝑝∈𝛿𝑁

𝐸(𝑝)

if 𝑡 ≠ 𝐸(𝑛)

𝐸 𝑛 = 𝑡

WorkList = WorkList ∪ {𝑚|𝑚՜
𝜖
𝑛 ∈ 𝛿𝑁}

CS 335 Swarnendu Biswas

NFA = (𝑁, Σ, 𝛿𝑁, 𝑛0, 𝑁𝐴)

DFA = (𝐷, Σ, 𝛿𝐷, 𝑑0, 𝐷𝐴)

DFA to Minimal DFA: Hopcroft’s Algorithm

• A DFA from Subset construction can have a large number of states
• Does not increase the time needed to scan a string

• Increases the space requirement of the scanner in memory
• Speed of accesses to main memory may turn out to be the bottleneck

• Smaller scanner has better chances of fitting in the processor cache

CS 335 Swarnendu Biswas

Splitting a Partition

CS 335 Swarnendu Biswas

𝑑𝑥

𝑑𝑦

𝑑𝑧

𝑝2

𝑑𝑖

𝑑𝑗

𝑑𝑘

𝑝1

𝑎

𝑎

𝑎

𝑎 does not split 𝑝1 𝑎 splits 𝑝3

𝑎

𝑎

𝑎

𝑑𝑦

𝑑𝑧

𝑝5

𝑑𝑖

𝑑𝑗

𝑑𝑘

𝑝3

𝑑𝑥

𝑝4

𝑑𝑦

𝑑𝑧

𝑝5

𝑎

𝑎

𝑑𝑗

𝑑𝑘

𝑝7

𝑎 𝑑𝑥

𝑝4

𝑑𝑖

𝑝6

Partitions after splitting on 𝑎

DFA to Minimal DFA: Hopcroft’s Algorithm

Minimization

𝑇 = 𝐷𝐴, 𝐷 − 𝐷𝐴

𝑃 = 𝜙

while(𝑃 ≠ 𝑇) do

𝑃 = 𝑇

𝑇 = 𝜙

for each set 𝑝 ∈ 𝑃 do

𝑇 = 𝑇 ∪ Split(𝑝)

Split(𝑺)

for each 𝑐 ∈ Σ do

if 𝑐 splits 𝑆 into 𝑠1 and 𝑠2
return {𝑠1, 𝑠2}

return 𝑆

CS 335 Swarnendu Biswas

Realizing Scanners

CS 335 Swarnendu Biswas

Tokens

• Token
• A string of characters which logically belong together in a syntactic category
• Sentences consist of a string of tokens (e.g., float, identifier, assign, minus,

intnum, semicolon)
• Tokens are treated as terminal symbols of the grammar specifying the source

language
• May have optional attributes

• Example of tokens in programming languages: Keywords, operators,
identifiers (names), constants, literal strings, punctuation symbols
(parentheses, brackets, commas, semicolons, and colons)

CS 335 Swarnendu Biswas

f l o a t a b s _ z e r o = - 2 7 3 ; / * K e l v i n * /

Patterns and Lexemes

• Pattern
• The rule describing the set of strings for which the same token is produced

• The pattern is said to match each string in the set

• float, letter(letter|digit|_)*, =, -, digit+, ;

• Lexeme
• The sequence of characters matched by a pattern to form the corresponding

token
• “float”, “abs_zero”, “=”, “-”, “273”, “;”

CS 335 Swarnendu Biswas

Attributes of Tokens

• An attribute of a token is a value that the scanner extracts from the
corresponding lexeme and supplies to the syntax analyzer

• Examples attributes for tokens
• identifier: the lexeme of the token, or a pointer into the symbol table where

the lexeme is stored by the LA

• intnum: the value of the integer (similarly for floatnum, etc.)

• Type of the identifier, location where first found

• The exact set of attributes are dependent on the compiler designer

CS 335 Swarnendu Biswas

Role of a Lexical Analyzer

• Identify tokens and corresponding lexemes

• Construct constants: for example, convert a number to token intnum
and pass the value as its attribute
• 31 becomes <intnum, 31>

• Recognize keyword and identifiers
• counter = counter + increment becomes id = id + id

• Check that id here is not a keyword

• Discard whatever does not contribute to parsing
• White spaces (blanks, tabs, newlines) and comments

CS 335 Swarnendu Biswas

Specifying and Recognizing Patterns and
Tokens
• Patterns are denoted with REs, and recognized with FSAs

• Regular definitions, a mechanism based on regular expressions, are
popular for specification of tokens

• Transition diagrams, a variant of FSAs, are used to implement regular
definitions and to recognize tokens
• Usually used to model LA before translating them to executable programs

CS 335 Swarnendu Biswas

Transition Diagrams

• Transition diagrams (TDs) are generalized DFAs with the following
differences
• Edges may be labelled by a symbol, a set of symbols, or a regular definition

• Few accepting states may be indicated as retracting states
• Indicates that the lexeme does not include the symbol that transitions to the accepting

state

• Each accepting state has an action attached to it
• Action is executed when the state is reached (e.g., return a token and its attribute value)

CS 335 Swarnendu Biswas

Examples of Transition Diagrams

• * indicates a retraction state

• get_token_code() searches a table to check if the name is a
reserved word and returns its integer code if so

• Otherwise, it returns the integer code of the IDENTIFIER token, with
name containing the string of characters forming the token
• Name is not relevant for reserved words

CS 335 Swarnendu Biswas

letterstart other
0 1 2

letter/digit

*

return(get_token_code(), name)

Identifiers and reserved words

𝑙𝑒𝑡𝑡𝑒𝑟 = 𝑎−𝑧𝐴−𝑍
𝑑𝑖𝑔𝑖𝑡 = [0−9]
𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 = 𝑙𝑒𝑡𝑡𝑒𝑟(𝑙𝑒𝑡𝑡𝑒𝑟|𝑑𝑖𝑔𝑖𝑡)∗

A Sample Specification

CS 335 Swarnendu Biswas

𝑠𝑡𝑚𝑡 ⟶ if 𝑒𝑥𝑝𝑟 then 𝑠𝑡𝑚𝑡
| if 𝑒𝑥𝑝𝑟 then 𝑠𝑡𝑚𝑡 else 𝑠𝑡𝑚𝑡
| 𝜖

𝑒𝑥𝑝𝑟 ⟶ 𝑡𝑒𝑟𝑚 relop 𝑡𝑒𝑟𝑚
| 𝑡𝑒𝑟𝑚

𝑡𝑒𝑟𝑚 ⟶ id
| number

𝑑𝑖𝑔𝑖𝑡 ⟶ [0−9]
𝑑𝑖𝑔𝑖𝑡𝑠 ⟶ 𝑑𝑖𝑔𝑖𝑡+

𝑛𝑢𝑚𝑏𝑒𝑟 ⟶ 𝑑𝑖𝑔𝑖𝑡𝑠 . 𝑑𝑖𝑔𝑖𝑡𝑠 ? 𝐸 +− ?𝑑𝑖𝑔𝑖𝑡𝑠 ?
𝑙𝑒𝑡𝑡𝑒𝑟 ⟶ [𝐴−𝑍𝑎 − 𝑧]
𝑖𝑑 ⟶ 𝑙𝑒𝑡𝑡𝑒𝑟 𝑙𝑒𝑡𝑡𝑒𝑟 𝑑𝑖𝑔𝑖𝑡)∗

𝑖𝑓 ⟶ if
𝑡ℎ𝑒𝑛 ⟶ then
𝑒𝑙𝑠𝑒 ⟶ else
𝑟𝑒𝑙𝑜𝑝 ⟶< | > <= >= | = | <>
𝑤𝑠 ⟶ blank tab | newline)+

Tokens, Lexemes, and Attributes
Lexemes Token Name Attribute Value

Any 𝑤𝑠 -- --

𝑖𝑓 if --

𝑡ℎ𝑒𝑛 then --

𝑒𝑙𝑠𝑒 else --

Any 𝑖𝑑 id Pointer to symbol table entry

Any 𝑛𝑢𝑚𝑏𝑒𝑟 number Pointer to symbol table entry

< relop LT

<= relop LE

= relop ASSGN

<> relop NE

> relop GT

>= relop GE

CS 335 Swarnendu Biswas

Transition Diagram for relop

CS 335 Swarnendu Biswas

return(relop, LE)

return(relop, NE)

return(relop, LT)

return(relop, GE)

return(relop, GT)

*

start
0 1 2

< =

3

4

7

8

>

5

6

return(relop, ASSGN)

=

*

Transition Diagrams for IDs and Keywords

CS 335 Swarnendu Biswas

letterstart other
9 10 11

letter/digit

*

return(get_token_code(), name)

IDs and Keywords

Whitespace

start

delim

delim other
22 23

*
24

Transition Diagram for Unsigned Numbers

CS 335 Swarnendu Biswas

. digit *

digitdigit

E +|-

digit

start digit digit
1312 14 15 16 17 18 19

other

*
2120

*

E digit

Combining Transition Diagrams to form a
Lexical Analyzer
• Different transition diagrams (TDs) must be combined appropriately

to yield a scanner

CS 335 Swarnendu Biswas

How do we do this?

Combining Transition Diagrams to form a
Lexical Analyzer
• Different transition diagrams (TDs) must be combined appropriately

to yield a scanner
• Try different transition diagrams one after another

• For example, TDs for reserved words, constants, identifiers, and operators could be tried
in that order

• However, this does not use the “longest match” characteristic
• thenext should be an identifier, and not reserved word then followed by identifier ext

• To find the longest match, all TDs must be tried and the longest match
must be used

CS 335 Swarnendu Biswas

Challenges in Lexical Analysis

• Certain languages like PL/I do not have any reserved words
• while, do, if, and else are reserved in C but not in PL/I

• Makes it difficult for the scanner to distinguish between keywords and user-
defined identifiers

CS 335 Swarnendu Biswas

if then then then = else else else = then

if if then then = then + 1

Challenges in Lexical Analysis

• Certain languages like PL/I do not have any reserved words
• while, do, if, and else are reserved in C but not in PL/I
• Makes it difficult for the scanner to distinguish between keywords and user-

defined identifiers

• PL/I declarations
• DECLARE(arg1,arg2,arg3,…,argn)
• Cannot tell whether DECLARE is a keyword with variable definitions or is a

procedure with arguments until after “)”

• Requires arbitrary lookahead and very large buffers
• Worse, the buffers may have to be reloaded in case of wrong inferences

CS 335 Swarnendu Biswas

Challenges in Lexical Analysis

• Is fi a typo or a function call?
• Remember, fi is a valid lexeme for IDENTIFIER

• Think of C++
• Template syntax: Foo<Bar>
• Stream syntax: cin >> var;
• Nested templates: Foo<Bar<Bazz>>

• Can these problems be resolved by lexical analysers alone? No, in some
cases parser needs to help.

CS 335 Swarnendu Biswas

fi (a == g(x)) …

Challenges in Lexical Analysis

• Consider a fixed-format language like Fortran
• 80 columns per line

• Column 1-5 for the statement number/label column

• Column 6 for continuation mark

• Column 7-72 for the program statements

• Column 73-80 Ignored (used for other purposes)

• Letter C in Column 1 meant the current line is a comment

CS 335 Swarnendu Biswas

Challenges in Lexical Analysis

• In fixed-format Fortran, some keywords are context-dependent
• In the statement, DO 10 I = 10.86, DO10I is an identifier, and DO is not a

keyword

• But in the statement, DO 10 I = 10, 86, DO is a keyword

• Blanks are not significant in Fortran and can appear in the midst of identifiers
• Variable “counter” is same as “count er”
• In Fortran, blanks are important only in literal strings

• Reading from left to right, one cannot distinguish between the two until the
“,” or “.” is reached
• Requires look ahead for resolution

CS 335 Swarnendu Biswas

Programming Languages vs Natural
Languages
• Meaning of words in natural languages is often context-sensitive

• An English word can be a noun or a verb (for e.g., “stress”)

• “are” is a verb, “art” is a noun, and “arz” is undefined

• Grammars are rigorously specified to provide meaning
• Words in a programming language are always lexically specified

• Any string in (1…9)(0…9)* is a positive integer

CS 335 Swarnendu Biswas

Why separate tokens and lexemes?

• Rules to govern the lexical structure of a programming language is
called its microsyntax

• Separating syntax and microsyntax allows for a simpler parser
• Parser only needs to deal with syntactic categories like IDENTIFIER

CS 335 Swarnendu Biswas

Lexical Analysis as a Separate Phase

1. Simplifies the compiler design: I/O issues are limited to only the
lexical analyzer, leading to better portability

2. Allows designing a more compact and faster parser
• Comments and whitespace need not be handled by the parser

• No rules for numbers, names, and comments are needed in the parser

• A parser is more complicated than a lexical analyzer and shrinking the
grammar makes the parser more efficient

3. Scanners based on finite automata are more efficient to implement
than stack-based pushdown automata used for parsing

CS 335 Swarnendu Biswas

Interfacing with Parser

• A unique integer representing the token is passed by LA to the parser

CS 335 Swarnendu Biswas

token

get next token

Lexical
Analyzer

source
program

Syntax
Analyzer

symbol table

to semantic
analysis

Error Handling in Lexical Analysis

• LA cannot catch any other errors except for simple errors such as
illegal symbols

• In such cases, LA skips characters in the input until a well-formed
token is found
• This is called “panic mode” recovery

• We can think of other possible recovery strategies
• Delete one character from the remaining input, or insert a missing character

• Replace a character, or transpose two adjacent characters

• Idea is to see if a single (or few) transformation(s) can repair the error

CS 335 Swarnendu Biswas

Other Uses of Lexical Analysis Concepts

• UNIX command line tools like grep, awk, and sed

• Search tools in editors

• Word-processing tools

CS 335 Swarnendu Biswas

Implementing Scanners

CS 335 Swarnendu Biswas

Implementing Scanners

1. Specify REs for each syntactic category in the PL

2. Construct an NFA for each RE

3. Join the NFAs with 𝜖-transitions

4. Create the equivalent DFA

5. Minimize the DFA

6. Generate code to implement the DFA

CS 335 Swarnendu Biswas

Implementation Considerations

• Speed is paramount for scanning
• Processes every character from a possibly large input source program

• Repeatedly read input characters and simulate the corresponding DFA
• Types of scanner implementations: table-driven, direct-coded, and hand-

coded

• Asymptotic complexity is the same, differs in run-time costs

CS 335 Swarnendu Biswas

High-Level Idea in Implementing Scanners

Read input characters one by one

Look up the transition based on the current state and the input character

Switch to the new state

Check for termination conditions, i.e., accept and error

Repeat

CS 335 Swarnendu Biswas

Table-Driven Scanner

• Register specification
• For example, r1 and r27

CS 335 Swarnendu Biswas

r [0…9]

[0…9]

s0 s1 s2

Tables

FSA
Interpreter

Scanner
Generator

Lexical
Patterns

Table-Driven Scanner

𝜹 R 0,1,…,9 other

𝒔𝟎 𝑠1 𝑠𝑒 𝑠𝑒

𝒔𝟏 𝑠𝑒 𝑠2 𝑠𝑒

𝒔𝟐 𝑠𝑒 𝑠2 𝑠𝑒

𝒔𝒆 𝑠𝑒 𝑠𝑒 𝑠𝑒

CS 335 Swarnendu Biswas

state = 𝑠0; lexeme = “”;
clear stack; push(bad);

// Model the DFA
while (state ≠ 𝑠𝑒)

char = getNextChar()
lexeme = lexeme + char
if state ∈ 𝑠𝐴

clear stack
push(state)
token = lookup(PATTERN)
state = 𝛿(state, token) involves two

table lookups

𝒓 𝟎, 𝟏, 𝟐, … , 𝟗 EOF Other

Register Digit EOF Other

Table-Driven Scanner

CS 335 Swarnendu Biswas

// Rollback

while (state ∉ 𝑠𝐴 and state ≠ bad)

state = pop()

truncate lexeme

rollback()

if state ∈ 𝑠𝐴

return token

else

return invalid

𝜹 R 0,1,…,9 other

𝒔𝟎 𝑠1 𝑠𝑒 𝑠𝑒

𝒔𝟏 𝑠𝑒 𝑠2 𝑠𝑒

𝒔𝟐 𝑠𝑒 𝑠2 𝑠𝑒

𝒔𝒆 𝑠𝑒 𝑠𝑒 𝑠𝑒

𝒓 𝟎, 𝟏, 𝟐, … , 𝟗 EOF Other

Register Digit EOF Other

Problem of Rollbacks

• A scanner’s aim is to recognize the
longest match but it can increase
rollbacks
• Consider the RE 𝑎𝑏 | (𝑎𝑏)∗𝑐, and

input 𝑎𝑏𝑎𝑏𝑎𝑏𝑎𝑏

• A scanner can avoid such
pathological quadratic expense by
remembering failed attempts
• Such scanners are called maximal

munch scanners

inputPos = 0

for each state 𝑠 ∈ DFA

for i = 1:|input stream|

Failed[state, i] = false

CS 335 Swarnendu Biswas

Address Excessive Rollbacks

state = 𝑠0; lexeme = “”;

clear stack; push(<bad, bad>);

while (state ≠ 𝑠𝑒)

char = getNextChar()

lexeme = lexeme + char

inputPos = inputPos + 1

if Failed[state, inputPos]

break

if state ∈ 𝑠𝐴

clear stack

push(<state, inputPos>)

token = lookup(PATTERN)

state = 𝛿(state, token)

// Rollback

while (state ∉ 𝑠𝐴 and state ≠ bad)

Failed[state, inputPos] = true

<state, inputPos> = pop()

truncate lexeme

rollback()

if state ∈ 𝑠𝐴

return token

else

return invalid

CS 335 Swarnendu Biswas

Overhead with Table Lookups

CS 335 Swarnendu Biswas

i

base

offset

w

Address1 = base +
offset * w

(i,j)

base w

c columns

Address2 = base +
(i*c + j) * w

The table-driven scanner performs two address computations and
two load operations for each character that it processes

Direct-Coded Scanner
lexeme = “”; clear stack;

push(bad); goto 𝑠0;

𝑠0: char = getNextChar()

lexeme = char

if state ∈ 𝑠𝐴

clear stack

push(𝑠0)

if (char == ‘r’)

goto 𝑠1

else

goto 𝑠𝑒

𝑠1: char = getNextChar()

lexeme = lexeme + char

if state ∈ 𝑠𝐴

clear stack

push(𝑠1)

if (‘0’ ≤ char ≤ ‘9’)

goto 𝑠2

else

goto 𝑠𝑒

CS 335 Swarnendu Biswas

Direct-Coded Scanner

𝑠2: char = getNextChar()

lexeme = lexeme + char

if state ∈ 𝑠𝐴

clear stack

push(𝑠2)

if (‘0’ ≤ char ≤ ‘9’)

goto 𝑠2

else

goto 𝑠𝑒

𝑠𝑒: while (state ∉ 𝑠𝐴 and

state ≠ bad)

state = pop()

truncate lexeme

rollback()

if state ∈ 𝑠𝐴

return token

else

return invalid

CS 335 Swarnendu Biswas

Hand-Coded Scanner

• Many real-world compilers use hand-coded scanners for further
efficiency
• For e.g., gcc 4.0 uses hand-coded scanners in several of its front ends

i. Fetching a character one-by-one from I/O is expensive; fetch a
number of characters in one go and store in a buffer

ii. Use double buffering to simplify lookahead and rollback

CS 335 Swarnendu Biswas

Reading Characters from Input

• A scanner reads the input character by character
• Reading the input will be very inefficient if it requires a system call for every

character read

• Input buffer
• OS reads a block of data, supplies scanner the required amount, and stores

the remaining portion in a buffer called buffer cache

• In subsequent calls, actual I/O does not take place as long as the data is
available in the buffer cache

• Scanner uses its own buffer since requesting OS for single character is also
costly due to context-switching overhead

CS 335 Swarnendu Biswas

Optimizing Reads from the Buffer

• A buffer at its end may contain an initial portion of a lexeme

• It creates problem in refilling the buffer, so a two-buffer scheme is
used where the two buffers are filled alternatively

CS 335 Swarnendu Biswas

E = M *

E = M*C**2

E = M * C * * 2 eof

lexBegin
forward

Optimizing Reads from the Buffer

• Read from buffer
• (1) Check for end of buffer, and (2) test the type of the input character

• If end of buffer, then reload the other buffer

CS 335 Swarnendu Biswas

E = M * C * * 2 eof

lexBegin
forward

Advance Forward Pointer

if (forward is at end of first buffer) {

reload second buffer

forward = beginning of second buffer

} else if (forward is at end of second buffer) {

reload first buffer

forward = beginning of first buffer

} else {

forward++

}

CS 335 Swarnendu Biswas

Optimizing Reads from the Buffer

• A sentinel character (say eof) is placed at the end of buffer to avoid
two comparisons

CS 335 Swarnendu Biswas

E = M eof * C * * 2 eof eof

lexBegin
forward

Optimizing Reads from the Buffer

switch (*forward++) {
case eof:

if (forward is at end of first buffer) {
reload second buffer
forward = beginning of second buffer

} else if (forward is at end of second buffer) {
reload first buffer
forward = beginning of first buffer

} else { // end of input
break

}
…
// case for other characters

}

CS 335 Swarnendu Biswas

Symbol Table

• Data structure that stores information for subsequent phases

• Symbol table interface
• insert(s, t): save lexeme s, token t, and return pointer

• lookup(s): return index of entry for lexeme s or 0 if s is not found

CS 335 Swarnendu Biswas

Implementation of Symbol Table

CS 335 Swarnendu Biswas

Fixed space for lexemes Other attributes Pointer to
lexemes

Other attributes

32 bytes
4 bytes

lexeme1 eos lexeme2 eos …

Fixed amount of space to store lexemes
might waste space

Handling Keywords

• Two choices: use separate REs or compare lexemes for ID token

• Consider token DIV and MOD with lexemes div and mod

• Initialize symbol table with insert(“div”, DIV) and
insert(“mod”, MOD) before beginning of scanning
• Any subsequent insert fails and any subsequent lookup returns the keyword

value

• These lexemes can no longer be used as an identifier

CS 335 Swarnendu Biswas

References

• A. Aho et al. Compilers: Principles, Techniques, and Tools, 2nd edition, Chapter 3.

• K. Cooper and L. Torczon. Engineering a Compiler, 2nd edition, Chapter 2.

CS 335 Swarnendu Biswas

