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A Bit of History

• In the early 1950s, most programming was with assembly language
• Led to low programmer productivity and high cost of software development

• In 1954, John Backus proposed a program that translated high level 
expressions into native machine code for IBM 704 mainframe

• Fortran (Formula Translator) I project (1954-1957): The first compiler 
was released
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Impact of Fortran 

• Programmers were initially reluctant to use a high-level programming 
language for fear of lack of performance

• Fortran I compiler was the first optimizing compiler

• The Fortran compiler has had a huge impact on the field of 
programming languages and computer science
• Many advances in compilers were motivated by the need to generate efficient 

Fortran code

• Modern compilers preserve the basic structure of the Fortran I compiler!
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Executing Programs

• Programming languages are an abstraction for describing 
computations
• For e.g., control flow constructs and data abstraction

• Advantages of high-level programming language abstractions 
• Improved productivity, fast prototyping, improved readability, maintainability, and 

debugging

• The abstraction needs to be transferred to machine-executable form 
to be executed
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What is a Compiler?

• A compiler is a system software that translates a program in a source 
language to an equivalent program in a target language
• System software (e.g., OS and compilers) helps application software to run

• Typical “source” languages might be C, C++, or Java 

• The “target” language is usually the instruction set of some processor
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Important Features of a Compiler
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• Generate correct code
• Improve the code according to some metric
• Provide feedback to the user, point out errors and potential 

mistakes in the program



Source-Source Translators

• Produce a target program in another programming language rather 
than the assembly language of some processor
• Also known as transcompilers or transpilers

• TypeScript transpiles to JavaScript, and many research compilers generate C 
programs

• The output programs require further translation before they can  be 
executed 

• A typesetting program that produces PostScript can be considered a 
compiler
• Typesetting LaTeX to generate PDF is compilation
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Transpiler vs Compiler

Transpiler

• Converts between programming 
languages at approximately the 
same level of abstraction 

Compiler

• A “traditional” compiler 
translates a higher level 
programming language to a 
lower level language
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Interpreter

• An interpreter takes as input an executable specification and 
produces as output the result of executing the specification

• Scripting languages are often interpreted (e.g., Bash)
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Compilers vs Interpreters

Compilers

• Translates the whole program at 
once

• Memory requirement during 
compilation is more

• Error reports are congregated
• On an error, compilers try to fix the 

error and proceed past
• Examples: C, C++, and Java

Interpreters

• Executes the program one line at a 
time
• Compilation and execution happens 

at the same time

• Memory requirement is less, since 
there is less state to maintain

• Error reports are per line
• Stops translation on an error

• Examples: Bash and Python
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More about Interpreters and Compilers

• Whether a language is interpreted or compiled is an implementation-
level detail
• If all implementations are interpreters, we say the language is interpreted

• Python is compiled to bytecode, and the bytecode is interpreted 
(CPython is the reference implementation)
• Interpreting the bytecode is faster than interpreting a higher-level 

representation

• PyPy both interprets and just-in-time (JIT) compiles the bytecode to optimized 
machine code at runtime
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Hybrid Translation Schemes

• Translation process  for a few languages include both compilation and 
interpretation (e.g., Lisp)

• Java is compiled from source code into a form called bytecode 
(.class files)

• Java virtual machines (JVMs) start execution by interpreting the 
bytecode

• JVMs usually also include a just-in-time compiler that compiles 
frequently-used bytecode sequences into native code
• JIT compilation happens at runtime and is driven by profiling
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Compilation Flow in Java with Hotspot JVM

CS 335 Swarnendu Biswas

javac
compiler

.java
program

.class 
bytecode

output

C1 + C2 
compiler

Template 
interpreter

Hotspot
JVM

input



Language Processing

• Language processing is an important component of programming

• A large number of system software and application programs require 
structured input
• Command line interface in Operating Systems

• Query language processing in Databases

• Type setting systems like Latex
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A Language-Processing System
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Development Toolchain
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Goals of a Compiler

• A compiler must preserve the meaning of the program being 
compiled
• Proving a compiler correct is a challenging problem and an active area of 

research

• A compiler must improve the input program in some discernible way

• Compilation time and space required must be reasonable

• The engineering effort in building a compiler should be manageable
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Applications of a Compiler
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DO I = 1, N
DO J = 1, M
A(I,J+1) = A(I,J) + B

ENDDO
ENDDO



Applications of a Compiler

• Perform loop transformations to help with parallelization 
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DO I = 1, N
DO J = 1, M
A(I,J+1) = A(I,J) + B

ENDDO
ENDDO

DO J = 1, M
DO I = 1, N
A(I,J+1) = A(I,J) + B

ENDDO
ENDDO



Programming Language vs Natural Language

• Natural languages
• Interpretation of words or phrases evolve over time

• E.g., “awful” meant worthy of awe and “bachelor” meant an young knight

• Allow ambiguous interpretations
• “I saw someone on the hill with a telescope.” or “I went to the bank.”

• “Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo”

• Programming languages have well-defined structures and 
interpretations, and disallow ambiguity
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Constructing a Compiler

• A compiler is one of the most intricate software systems
• General-purpose compilers often involve more than a hundred thousand LoC

• Very practical demonstration of integration of theory and engineering

• Other practical issues such as concurrency and synchronization, and  
optimizations for the memory hierarchy and target processor
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Idea Implementation

Finite and push-down automata Lexical and syntax analysis

Greedy algorithms Register allocation

Fixed-point algorithms Dataflow analysis

… …



Structure of a Compiler
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Compiler Structure

• A compiler interfaces with both the source language and the target 
architecture
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Compiler Structure

• Front end is responsible for understanding the input program in a source 
language

• Back end is responsible for translating the input program to the target 
architecture 
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Intermediate Representation

• An intermediate representation (IR) is a data structure to encode 
information about the input program
• E.g., graphs, three address code, LLVM IR

• Different IRs may be used during different phases of compilation
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int f(int a, int b) {
return a + 2*b;

}

int main() {
return f(10, 20);

}

define i32 @f(i32 %a, i32 %b) {
; <label>:0

%1 = mul i32 2, %b
%2 = add i32 %a, %1
ret i32 %2

}

define i32 @main() {
; <label>:0

%1 = call i32 @f(i32 10, i32 20)
ret i32 %1

}

LLVM IR



Advantages of Two-Phased Compiler 
Structure
• Simplifies the process of writing or retargeting a compiler

• Retargeting is the task of adapting the compiler to generate code for a new 
processor
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Three-Phased View of a Compiler

• IR makes it possible to add more phases to compilation

• Optimizer is an IR→IR transformer that tries to improve the IR 
program in some way
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Three-Phased View of a Compiler

• Front end consists of two or three passes that handle the details of 
the input source-language program

• Optimization phase contains many passes to perform different 
optimizations 
• The IR is generated by the front end

• The number and purpose of these passes vary across compiler 
implementations

• The back end passes lower the IR representation closer to the target 
machine’s instruction set
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Visualizing the LLVM Compiler System
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https://blog.gopheracademy.com/advent-2018/llvm-ir-and-go/
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Implementation Choices

Monolithic structure

• Can potentially be more 
efficient, but is less flexible

Multipass structure

• Less complex and easier to 
debug

• Can incur compile time 
performance penalties
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Phases in a Compiler
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Translation in a Compiler

• Direct translation from a high-level language to machine code is 
difficult
• Mismatch in the abstraction level between source code and machine code

• Compare abstract data types and variables vs memory locations and registers

• Control flow constructs vs jump and returns

• Some languages are farther from machine code than others
• For example, languages supporting object-oriented paradigm
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Translation in a Compiler

• Translate in small steps, where each step handles a reasonably 
simple, logical, and well defined task

• Design a series of IRs to encode information across steps
• IR should be amenable to program manipulation of various kinds (e.g., type 

checking, optimization, and code generation)

• IR becomes more machine specific and less language specific as 
translation proceeds
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Different Phases in a Compiler
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Front End

• First step in translation is to compare the input program structure 
with the language definition
• Requires a formal definition of the language, in the form of regular 

expressions and context-free grammar

• Two separate passes in the front end, often called the scanner and the 
parser, determine whether or not the input code is a valid program defined 
by the grammar
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Lexical Analysis

• Reads characters in the source program and groups them into a 
stream of tokens (or words)
• Tokens represent a syntactic category

• Character sequence forming a token is called a lexeme

• Tokens can be augmented with the lexical value

• Tokens are ID, “=”, ID, “+”, ID, “*”, CONSTANT

CS 335 Swarnendu Biswas

position = initial + rate * 60



Challenges in Lexical Analysis

• Identify word separators
• The language must define rules for breaking a sentence into a sequence of 

words

• Normally white spaces and punctuations are word separators in languages

• In programming languages, a character from a different class may also be 
treated as a word separator
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Syntax Analysis

• Once words are formed, the next logical step is to understand the 
structure of the sentence
• This is called syntax analysis or parsing

• Syntax analysis imposes a hierarchical structure on the token stream
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Semantic Analysis

• Once the sentence is constructed, we need to interpret the meaning 
of the sentence

• This is a very challenging task for a compiler
• Programming languages define very strict rules to avoid ambiguities

• For e.g., scope of variable named JJ
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X saw someone on the hill with a telescope

JJ said JJ left JJ’s assignment at home



Semantic Analysis

• Compiler performs other checks like type checking and matching 
formal and actual arguments
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position = initial + “rate” * 60



Intermediate Representation

• Once all checks pass, the front end generates an IR form of the code
• IR is a program for an abstract machine
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id1 = id2 + id3 * 60 t1 = inttofloat(60)
t2 = id3 * t1
t3 = t2 + id2
id1 = t3



Code Optimization

• Attempts to improve the IR code according to some metric
• E.g., reduce the execution time, code size, or resource usage

• “Optimizing” compilers spend a significant amount of compilation 
time in this phase

• Most optimizations consist of an analysis and a transformation
• Analysis determines where the compiler can safely and profitably apply the 

technique
• Data flow analysis tries to statically trace the flow of values at run-time

• Dependence analysis tries to estimate the possible values of array subscript expressions
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Code Optimization

• Some common optimizations
• Common sub-expression elimination, copy propagation, dead code 

elimination, loop invariant code motion, strength reduction, and constant 
folding
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t1 = inttofloat(60)
t2 = id3 * t1
t3 = t2 + id2
id1 = t3

t1 = id3 * 60.0
id1 = t1 + id2



Challenges with Code Optimization

• All strategies may not work for all applications

• Compiler may need to adapt its strategies to fit specific programs
• Choice and order of optimizations

• Parameters that control decisions & transformations

• Active research on “autotuning” or “adaptive runtime”
• Compiler writer cannot predict a single answer for all possible programs

• Use learning, models, or search to find good strategies
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Steps in Code Generation

• Back end traverses the IR code and emits code for the target machine

• First stage is instruction selection
• Translate IR operations into target machine instructions

• Can take advantage of the feature set of the target machine

• Assumes infinite number of registers via virtual registers
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t1 = id3 * 60.0
id1 = t1 + id2

MOVF id3 -> r2
MULF #60.0, r2 -> r2 
MOVF id2 -> r1
ADDF r2, r1 -> r1 
MOVF r1 -> id1



Steps in Code Generation

• Register allocation
• Decide which values should occupy the limited set of architectural registers

• Instruction scheduling
• Reorder instructions to maximize utilization of hardware resources and 

minimize cycles
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Naïve Instruction Scheduling

LOAD  @ADDR1, @OFF1 -> R1
ADD   R1, R1 -> R1
LOAD  @ADDR2, @OFF2 -> R2
MUL   R1, R2 -> R1
LOAD  @ADDR3, @OFF3 -> R2
MUL   R1, R2 -> R1
STORE R1 -> @ADDR1, @OFF1
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LOAD/STORE take 3 cycles, MUL takes 
2 cycles, and ADD takes 1 cycle.



Improved Instruction Schedule

LOAD  @ADDR1, @OFF1 -> R1
ADD   R1, R1 -> R1
LOAD  @ADDR2, @OFF2 -> R2
MUL   R1, R2 -> R1
LOAD  @ADDR3, @OFF3 -> R2
MUL   R1, R2 -> R1
STORE R1 -> @ADDR1, @OFF1

LOAD  @ADDR1, @OFF1 -> R1
LOAD  @ADDR2, @OFF2 -> R2
LOAD  @ADDR3, @OFF3 -> R3
ADD   R1, R1 -> R1
MUL   R1, R2 -> R1
MUL   R1, R3 -> R1
STORE R1 -> @ADDR1, @OFF1
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LOAD/STORE take 3 cycles, MUL takes 
2 cycles, and ADD takes 1 cycle.
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