
CS 335: An Overview of
Compilation

Swarnendu Biswas

Semester 2022-2023-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

A Bit of History

• In the early 1950s, most programming was with assembly language
• Led to low programmer productivity and high cost of software development

• In 1954, John Backus proposed a program that translated high level
expressions into native machine code for IBM 704 mainframe

• Fortran (Formula Translator) I project (1954-1957): The first compiler
was released

CS 335 Swarnendu Biswas

Impact of Fortran

• Programmers were initially reluctant to use a high-level programming
language for fear of lack of performance

• Fortran I compiler was the first optimizing compiler

• The Fortran compiler has had a huge impact on the field of
programming languages and computer science
• Many advances in compilers were motivated by the need to generate efficient

Fortran code

• Modern compilers preserve the basic structure of the Fortran I compiler!

CS 335 Swarnendu Biswas

Executing Programs

• Programming languages are an abstraction for describing
computations
• For e.g., control flow constructs and data abstraction

• Advantages of high-level programming language abstractions
• Improved productivity, fast prototyping, improved readability, maintainability, and

debugging

• The abstraction needs to be transferred to machine-executable form
to be executed

CS 335 Swarnendu Biswas

What is a Compiler?

• A compiler is a system software that translates a program in a source
language to an equivalent program in a target language
• System software (e.g., OS and compilers) helps application software to run

• Typical “source” languages might be C, C++, or Java

• The “target” language is usually the instruction set of some processor

CS 335 Swarnendu Biswas

Compilersource
program

target
program

Important Features of a Compiler

CS 335 Swarnendu Biswas

• Generate correct code
• Improve the code according to some metric
• Provide feedback to the user, point out errors and potential

mistakes in the program

Source-Source Translators

• Produce a target program in another programming language rather
than the assembly language of some processor
• Also known as transcompilers or transpilers

• TypeScript transpiles to JavaScript, and many research compilers generate C
programs

• The output programs require further translation before they can be
executed

• A typesetting program that produces PostScript can be considered a
compiler
• Typesetting LaTeX to generate PDF is compilation

CS 335 Swarnendu Biswas

Transpiler vs Compiler

Transpiler

• Converts between programming
languages at approximately the
same level of abstraction

Compiler

• A “traditional” compiler
translates a higher level
programming language to a
lower level language

CS 335 Swarnendu Biswas

Interpreter

• An interpreter takes as input an executable specification and
produces as output the result of executing the specification

• Scripting languages are often interpreted (e.g., Bash)

CS 335 Swarnendu Biswas

source
program

input

Interpreter output

Compilers vs Interpreters

Compilers

• Translates the whole program at
once

• Memory requirement during
compilation is more

• Error reports are congregated
• On an error, compilers try to fix the

error and proceed past
• Examples: C, C++, and Java

Interpreters

• Executes the program one line at a
time
• Compilation and execution happens

at the same time

• Memory requirement is less, since
there is less state to maintain

• Error reports are per line
• Stops translation on an error

• Examples: Bash and Python

CS 335 Swarnendu Biswas

More about Interpreters and Compilers

• Whether a language is interpreted or compiled is an implementation-
level detail
• If all implementations are interpreters, we say the language is interpreted

• Python is compiled to bytecode, and the bytecode is interpreted
(CPython is the reference implementation)
• Interpreting the bytecode is faster than interpreting a higher-level

representation

• PyPy both interprets and just-in-time (JIT) compiles the bytecode to optimized
machine code at runtime

CS 335 Swarnendu Biswas

https://stackoverflow.com/questions/6889747/is-python-interpreted-or-compiled-or-both

Hybrid Translation Schemes

• Translation process for a few languages include both compilation and
interpretation (e.g., Lisp)

• Java is compiled from source code into a form called bytecode
(.class files)

• Java virtual machines (JVMs) start execution by interpreting the
bytecode

• JVMs usually also include a just-in-time compiler that compiles
frequently-used bytecode sequences into native code
• JIT compilation happens at runtime and is driven by profiling

CS 335 Swarnendu Biswas

Compilation Flow in Java with Hotspot JVM

CS 335 Swarnendu Biswas

javac
compiler

.java
program

.class
bytecode

output

C1 + C2
compiler

Template
interpreter

Hotspot
JVM

input

Language Processing

• Language processing is an important component of programming

• A large number of system software and application programs require
structured input
• Command line interface in Operating Systems

• Query language processing in Databases

• Type setting systems like Latex

CS 335 Swarnendu Biswas

A Language-Processing System

CS 335 Swarnendu Biswas

library, relocatable
object files

relocatable machine codeassembler

target assembly program

compiler

source program

preprocessor

skeletal source program

linker/loader

absolute machine code

Development Toolchain

CS 335 Swarnendu Biswas

Debugger

Editor AssemblerCompiler

LinkerLoader

Programmer Source program

Object
code

Assembly code

Resolved machine
code

Executable machine
code

Programmer
fixes bugs

Controlled
execution with
debug information

Goals of a Compiler

• A compiler must preserve the meaning of the program being
compiled
• Proving a compiler correct is a challenging problem and an active area of

research

• A compiler must improve the input program in some discernible way

• Compilation time and space required must be reasonable

• The engineering effort in building a compiler should be manageable

CS 335 Swarnendu Biswas

Applications of a Compiler

CS 335 Swarnendu Biswas

DO I = 1, N
DO J = 1, M
A(I,J+1) = A(I,J) + B

ENDDO
ENDDO

Applications of a Compiler

• Perform loop transformations to help with parallelization

CS 335 Swarnendu Biswas

DO I = 1, N
DO J = 1, M
A(I,J+1) = A(I,J) + B

ENDDO
ENDDO

DO J = 1, M
DO I = 1, N
A(I,J+1) = A(I,J) + B

ENDDO
ENDDO

Programming Language vs Natural Language

• Natural languages
• Interpretation of words or phrases evolve over time

• E.g., “awful” meant worthy of awe and “bachelor” meant an young knight

• Allow ambiguous interpretations
• “I saw someone on the hill with a telescope.” or “I went to the bank.”

• “Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo”

• Programming languages have well-defined structures and
interpretations, and disallow ambiguity

CS 335 Swarnendu Biswas

https://en.wikipedia.org/wiki/Buffalo_buffalo_Buffalo_buffalo_buffalo_buffalo_Buffalo_buffalo

https://en.wikipedia.org/wiki/Buffalo_buffalo_Buffalo_buffalo_buffalo_buffalo_Buffalo_buffalo

Constructing a Compiler

• A compiler is one of the most intricate software systems
• General-purpose compilers often involve more than a hundred thousand LoC

• Very practical demonstration of integration of theory and engineering

• Other practical issues such as concurrency and synchronization, and
optimizations for the memory hierarchy and target processor

CS 335 Swarnendu Biswas

Idea Implementation

Finite and push-down automata Lexical and syntax analysis

Greedy algorithms Register allocation

Fixed-point algorithms Dataflow analysis

… …

Structure of a Compiler

CS 335 Swarnendu Biswas

Compiler Structure

• A compiler interfaces with both the source language and the target
architecture

CS 335 Swarnendu Biswas

target
program

Compiler

source
program

Front End Back End

intermediate
representation

Compiler Structure

• Front end is responsible for understanding the input program in a source
language

• Back end is responsible for translating the input program to the target
architecture

CS 335 Swarnendu Biswas

source
program

target
program

Front End Back End

intermediate
representation

Compiler

Intermediate Representation

• An intermediate representation (IR) is a data structure to encode
information about the input program
• E.g., graphs, three address code, LLVM IR

• Different IRs may be used during different phases of compilation

CS 335 Swarnendu Biswas

int f(int a, int b) {
return a + 2*b;

}

int main() {
return f(10, 20);

}

define i32 @f(i32 %a, i32 %b) {
; <label>:0

%1 = mul i32 2, %b
%2 = add i32 %a, %1
ret i32 %2

}

define i32 @main() {
; <label>:0

%1 = call i32 @f(i32 10, i32 20)
ret i32 %1

}

LLVM IR

Advantages of Two-Phased Compiler
Structure
• Simplifies the process of writing or retargeting a compiler

• Retargeting is the task of adapting the compiler to generate code for a new
processor

CS 335 Swarnendu Biswas

intermediate
representation

source
language 1

Front End
1

source
language n

Front End
n

Back End
1

Back End
n

Three-Phased View of a Compiler

• IR makes it possible to add more phases to compilation

• Optimizer is an IR→IR transformer that tries to improve the IR
program in some way

CS 335 Swarnendu Biswas

source
program

target
program

Compiler

OptimizerFront End Back End
IR IR

Three-Phased View of a Compiler

• Front end consists of two or three passes that handle the details of
the input source-language program

• Optimization phase contains many passes to perform different
optimizations
• The IR is generated by the front end

• The number and purpose of these passes vary across compiler
implementations

• The back end passes lower the IR representation closer to the target
machine’s instruction set

CS 335 Swarnendu Biswas

Visualizing the LLVM Compiler System

CS 335 Swarnendu Biswas

https://blog.gopheracademy.com/advent-2018/llvm-ir-and-go/

https://blog.gopheracademy.com/advent-2018/llvm-ir-and-go/

Implementation Choices

Monolithic structure

• Can potentially be more
efficient, but is less flexible

Multipass structure

• Less complex and easier to
debug

• Can incur compile time
performance penalties

CS 335 Swarnendu Biswas

Phases in a Compiler

CS 335 Swarnendu Biswas

Translation in a Compiler

• Direct translation from a high-level language to machine code is
difficult
• Mismatch in the abstraction level between source code and machine code

• Compare abstract data types and variables vs memory locations and registers

• Control flow constructs vs jump and returns

• Some languages are farther from machine code than others
• For example, languages supporting object-oriented paradigm

CS 335 Swarnendu Biswas

Translation in a Compiler

• Translate in small steps, where each step handles a reasonably
simple, logical, and well defined task

• Design a series of IRs to encode information across steps
• IR should be amenable to program manipulation of various kinds (e.g., type

checking, optimization, and code generation)

• IR becomes more machine specific and less language specific as
translation proceeds

CS 335 Swarnendu Biswas

Different Phases in a Compiler

CS 335 Swarnendu Biswas

lexical analyzer

semantic analyzer

source program

syntax analyzer code optimizer

code generator

intermediate code
generator

target program

error handler

symbol table

Front End

• First step in translation is to compare the input program structure
with the language definition
• Requires a formal definition of the language, in the form of regular

expressions and context-free grammar

• Two separate passes in the front end, often called the scanner and the
parser, determine whether or not the input code is a valid program defined
by the grammar

CS 335 Swarnendu Biswas

Lexical Analysis

• Reads characters in the source program and groups them into a
stream of tokens (or words)
• Tokens represent a syntactic category

• Character sequence forming a token is called a lexeme

• Tokens can be augmented with the lexical value

• Tokens are ID, “=”, ID, “+”, ID, “*”, CONSTANT

CS 335 Swarnendu Biswas

position = initial + rate * 60

Challenges in Lexical Analysis

• Identify word separators
• The language must define rules for breaking a sentence into a sequence of

words

• Normally white spaces and punctuations are word separators in languages

• In programming languages, a character from a different class may also be
treated as a word separator

CS 335 Swarnendu Biswas

Syntax Analysis

• Once words are formed, the next logical step is to understand the
structure of the sentence
• This is called syntax analysis or parsing

• Syntax analysis imposes a hierarchical structure on the token stream

CS 335 Swarnendu Biswas

*

id3 60

id2

=

id1 +
position = initial + rate * 60

Semantic Analysis

• Once the sentence is constructed, we need to interpret the meaning
of the sentence

• This is a very challenging task for a compiler
• Programming languages define very strict rules to avoid ambiguities

• For e.g., scope of variable named JJ

CS 335 Swarnendu Biswas

X saw someone on the hill with a telescope

JJ said JJ left JJ’s assignment at home

Semantic Analysis

• Compiler performs other checks like type checking and matching
formal and actual arguments

CS 335 Swarnendu Biswas

position = initial + “rate” * 60

Intermediate Representation

• Once all checks pass, the front end generates an IR form of the code
• IR is a program for an abstract machine

CS 335 Swarnendu Biswas

id1 = id2 + id3 * 60 t1 = inttofloat(60)
t2 = id3 * t1
t3 = t2 + id2
id1 = t3

Code Optimization

• Attempts to improve the IR code according to some metric
• E.g., reduce the execution time, code size, or resource usage

• “Optimizing” compilers spend a significant amount of compilation
time in this phase

• Most optimizations consist of an analysis and a transformation
• Analysis determines where the compiler can safely and profitably apply the

technique
• Data flow analysis tries to statically trace the flow of values at run-time

• Dependence analysis tries to estimate the possible values of array subscript expressions

CS 335 Swarnendu Biswas

Code Optimization

• Some common optimizations
• Common sub-expression elimination, copy propagation, dead code

elimination, loop invariant code motion, strength reduction, and constant
folding

CS 335 Swarnendu Biswas

t1 = inttofloat(60)
t2 = id3 * t1
t3 = t2 + id2
id1 = t3

t1 = id3 * 60.0
id1 = t1 + id2

Challenges with Code Optimization

• All strategies may not work for all applications

• Compiler may need to adapt its strategies to fit specific programs
• Choice and order of optimizations

• Parameters that control decisions & transformations

• Active research on “autotuning” or “adaptive runtime”
• Compiler writer cannot predict a single answer for all possible programs

• Use learning, models, or search to find good strategies

CS 335 Swarnendu Biswas

Steps in Code Generation

• Back end traverses the IR code and emits code for the target machine

• First stage is instruction selection
• Translate IR operations into target machine instructions

• Can take advantage of the feature set of the target machine

• Assumes infinite number of registers via virtual registers

CS 335 Swarnendu Biswas

t1 = id3 * 60.0
id1 = t1 + id2

MOVF id3 -> r2
MULF #60.0, r2 -> r2
MOVF id2 -> r1
ADDF r2, r1 -> r1
MOVF r1 -> id1

Steps in Code Generation

• Register allocation
• Decide which values should occupy the limited set of architectural registers

• Instruction scheduling
• Reorder instructions to maximize utilization of hardware resources and

minimize cycles

CS 335 Swarnendu Biswas

Naïve Instruction Scheduling

LOAD @ADDR1, @OFF1 -> R1
ADD R1, R1 -> R1
LOAD @ADDR2, @OFF2 -> R2
MUL R1, R2 -> R1
LOAD @ADDR3, @OFF3 -> R2
MUL R1, R2 -> R1
STORE R1 -> @ADDR1, @OFF1

CS 335 Swarnendu Biswas

LOAD/STORE take 3 cycles, MUL takes
2 cycles, and ADD takes 1 cycle.

Improved Instruction Schedule

LOAD @ADDR1, @OFF1 -> R1
ADD R1, R1 -> R1
LOAD @ADDR2, @OFF2 -> R2
MUL R1, R2 -> R1
LOAD @ADDR3, @OFF3 -> R2
MUL R1, R2 -> R1
STORE R1 -> @ADDR1, @OFF1

LOAD @ADDR1, @OFF1 -> R1
LOAD @ADDR2, @OFF2 -> R2
LOAD @ADDR3, @OFF3 -> R3
ADD R1, R1 -> R1
MUL R1, R2 -> R1
MUL R1, R3 -> R1
STORE R1 -> @ADDR1, @OFF1

CS 335 Swarnendu Biswas

LOAD/STORE take 3 cycles, MUL takes
2 cycles, and ADD takes 1 cycle.

References

• A. Aho et al. Compilers: Principles, Techniques, and Tools, 2nd edition.

• K. Cooper and L. Torczon. Engineering a Compiler, 2nd edition.

CS 335 Swarnendu Biswas

