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Code Generation

i. Generated output code must be correct

ii. Generated code must be of “good” quality
• Should make efficient use of resources on the target machine

• Notion of good can be vary

iii. Code generation should be efficient

• Generating optimal code is undecidable, compilers make use of well-
designed heuristics
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Code Generation

• Input
• Intermediate representation (IR) generated by the front end 

• Linear IRs like 3AC or stack machine representations 

• Graphical IRs also work 

• Symbol table information

• Assumptions
• Code generation does not bother with any error checking 

• Code generation assumes that types in the IR can be operated on by target 
machine instructions 
• For example, bits, integers, and floats
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Code Generation

• Output
• Absolute machine code

• Generated addresses are fixed and works when loaded at fixed locations in memory

• Efficient to execute, now primarily used in embedded systems

• Relocatable machine code
• Code can be broken down into separate sections and loaded anywhere in memory that 

meets size requirements

• Allows for separate compilation, but requires a separate linking and loading phase

• Assembly language
• Simplifies code generation, but requires assembling the generated code
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Steps in Code Generation

• Compiler backend performs three steps to translate IR to executable 
code
• Instruction selection – Choose appropriate target machine instructions while 

generating code

• Register allocation – Decide what values to keep in which registers

• Instruction scheduling – Decide in what order to schedule the execution of 
instructions

• Manage memory during execution
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Instruction Selection

• Complexity arises because each IR instruction can be translated in 
several ways, combinatorial problem

• Target ISA influences instruction selection
• Scalar RISC machine – simple mapping from IR to assembly

• CISC machine – may need to fuse multiple IR operations for effectively using 
CISC instructions

• Stack machine – need to translate implicit names and destructive instructions 
to assembly
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a = a + 1

1. LD R0, a
ADD R0, R0, #1
ST a, R0

2. INC a



Instruction Selection

• Possible idea
• Devise a target code skeleton for 

every 3AC IR instruction

• Replace every 3AC instruction with 
the skeleton

• Need a cost model and 
heuristics for selection
• Other factors are level of 

abstraction of the IR, speed of 
instructions, energy consumption, 
and space overhead
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x = y + z
LD R0, y
ADD R0, R0, z
ST x, R0

a = b + c

d = a + e

LD R0, b
ADD R0, R0, c
ST a, R0
LD R0, a
ADD R0, R0, e
ST d, R0

redundant



Register Allocation

• Instructions operating on register 
operands are more efficient 
• Register allocation – Choose which 

variables will reside in registers

• Register assignment – Choose which 
registers to assign to each variable

• Architectures may impose 
restrictions on usage of registers

• Finding an optimal assignment of 
registers to variables is NP-
complete

• Architectures such as IBM 370 may 
require register pairs to be used for 
some instructions
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MUL x, y

• x is in the even register, y is in the 
odd register

• Product occupies the entire 
even/odd register pair

DIV x, y

• 64-bit dividend occupies the 
even/odd register pair

• Even register holds the remainder, 
odd register the quotient



Instruction Scheduling

• Order of evaluating the instructions also affect the efficiency of the 
target code 

• Selecting the best order across inputs is a NP-complete problem
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Example Target Machine

• Efficient code generation requires good understanding of the target 
ISA

• Assumptions
• Three-address machine, byte-addressable with four-byte words

• n general-purpose registers
• OP dst, src1, src2; LD dst addr; ST dst, src; BR L; Bcondr L;
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Addressing Modes

• Specifies how to interpret the operands of an instruction
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Mode Form Address Example

absolute M M LD R0, M

register R R ADD R0, R1, R2

indexed c(R) c + contents(R) LD R1, 4(R0)

indirect register *R contents(R) LD R1, *R0

indirect indexed *c(R) contents(c + contents(R)) LD R1, *100(R0)

literal #c c LD R1, #1



Few Examples
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𝑥 = 𝑦 − 𝑧

LD 𝑅1, 𝑦
LD 𝑅2, 𝑧
SUB 𝑅1, 𝑅1, 𝑅2
ST 𝑥, 𝑅1

// R1 = y
// R2 = z
// R1 = R1 – R2 
//  x = R1

𝑏 = 𝑎[𝑖]

LD 𝑅1, 𝑖
MUL 𝑅1, 𝑅1, 8
LD 𝑅2, 𝑎(𝑅1)
ST 𝑏, 𝑅2

// R1 = i
// R1 = R1 * 8
// R2 = c(a + c(R1))

𝑎 𝑗 = 𝑐

LD 𝑅1, 𝑐
𝐿𝐷 𝑅2, 𝑗
MUL 𝑅2, 𝑅2, 8
ST 𝑎 𝑅2 , 𝑅1

// R1 = c
// R2 = j
// R2 = R2 * 8
// c(a + c(R2)) = R1

𝑥 =∗ 𝑝

LD 𝑅1, 𝑝
𝐿𝐷 𝑅2, 0(𝑅1)
ST 𝑥, 𝑅2

// R1 = p
// R2 = c(0+c(R1)
// x = R2

∗ 𝑝 = y

LD 𝑅1, 𝑝
𝐿𝐷 𝑅2, y
ST 0 𝑅1 , 𝑅2

// R1 = p
// R2 = y
// c(0+c(R1) = R2

if 𝑥 < 𝑦 goto 𝐿

LD 𝑅1, 𝑥
LD 𝑅2, 𝑦
SUB 𝑅1, 𝑅1, 𝑅2
BLTZ 𝑅1,𝑀

// R1 = x
// R2 = y
// R1 = R1 – R2
// if R1 < 0 JMP M



Runtime Storage Management

• Let us consider the following 3AC: call callee, return, halt, action

• Assume that the first location in the activation record (given by 
𝑠𝑡𝑎𝑡𝑖𝑐𝐴𝑟𝑒𝑎) of the callee stores the return address of the caller
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Static Allocation

ST 𝑐𝑎𝑙𝑙𝑒𝑒. 𝑠𝑡𝑎𝑡𝑖𝑐𝐴𝑟𝑒𝑎, #ℎ𝑒𝑟𝑒 + 20 Store return address in the first slot in the 
callee’s activation record, assume 2 opcodes 
and 3 constants are each of 4 bytes

BR 𝑐𝑎𝑙𝑙𝑒𝑒. 𝑐𝑜𝑑𝑒𝐴𝑟𝑒𝑎 Transfer control to callee

…

BR ∗𝑐𝑎𝑙𝑙𝑒𝑒. 𝑠𝑡𝑎𝑡𝑖𝑐𝐴𝑟𝑒𝑎 Return transfer to caller

…

return 
address



Determine Addresses in Target Code

• Need to generate code to manage activation records at runtime

CS 335 Swarnendu Biswas

return address

arr

i

j

return address

buf

n

// code for func c
action1
call p
action2
halt

// code for func p
action3
return

3AC

0:

4:

56:

60:

Activation record for c 
(64 Bytes)

0:

4:

84:

Activation record for p 
(88 Bytes)



Target Code for Static Allocation

// code for c 

100: ACTION1 // assume takes 20 bytes 

120: ST 364, #140 // save return address 140 

132: BR 200 // call p 

140: ACTION2

160: HALT // Terminate, return to OS

// code for p

200: ACTION3

220: BR *364 // return to address saved in
location 364 

// 300-363 hold activation 
record for c 

300: // return address 

304: // local data for c 

// 364-451 hold activation
record for p 

364: 140 // return address

368: // local data for p
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stack area with 
activation records

text area



Stack Allocation

CS 335 Swarnendu Biswas

// code for s
action1
call q
action2
halt

// code for p
action3
return

3AC

// code for q
action4
call p
action5
call q
action6
call q
return

Code for first procedure

LD SP, #𝑠𝑡𝑎𝑐𝑘𝑆𝑡𝑎𝑟𝑡
code
HALT

// initialize the stack

// terminate execution

Code for procedure call

ADD SP, SP, #𝑐𝑎𝑙𝑙𝑒𝑟. 𝑟𝑒𝑐𝑜𝑟𝑑𝑆𝑖𝑧𝑒
ST ∗SP, #ℎ𝑒𝑟𝑒 + 16

BR 𝑐𝑎𝑙𝑙𝑒𝑒. 𝑐𝑜𝑑𝑒𝐴𝑟𝑒𝑎

// increment stack pointer
// save return address in 
// callee’s frame
// jump to caller

Code for return sequence in the callee

BR ∗0(SP) // return to caller

Code for return sequence in the caller

SUB SP, SP, #𝑐𝑎𝑙𝑙𝑒𝑟. 𝑟𝑒𝑐𝑜𝑟𝑑𝑆𝑖𝑧𝑒 // decrement stack pointer



Target Code for Stack 
Allocation

// code for s 

100: LD SP, #600 // initialize the stack

108: ACTION1 // code for action1

128: ADD SP, SP, #ssize // call sequence begins

136: ST 0(SP), #152 // push return address

144: BR 300 // call q

152: SUB SP, SP, #ssize // restore SP

160: ACTION2

180: HALT

// code for p

200: ACTION3

220: BR *0(SP) // return to caller

// code for q 

300: ACTION4 // conditional jump to 456

320: ADD SP, SP, #qsize

328: ST 0(SP), #344 // push return address

336: BR 200 // call p 

344: SUB SP, SP, #qsize

352: ACTION5

372: ADD SP, SP, #qsize

380: ST 0(SP), #396 // push return address

388: BR 300 // call q

396: SUB SP, SP, #qsize

404: ACTION6

424: ADD SP, SP, #qsize

432: ST 0(SP), #448 // push return address

440: BR 300 // call q 

448: SUB SP, SP, #qsize

456: BR *0(SP) // return

600: // stack starts here
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Basic Blocks and Flow Graphs
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Basic Block

• Maximal sequence of consecutive statements in which flow of control 
enters at the beginning and leaves at the end
• Entry is to the start of the BB, and exit is from the end of the BB

• Only the start/leader instruction can be the target of a JUMP instruction 

• No jumps into the middle of the block

• No branch instructions other than the end
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t1 = a * a
t2 = a * b
t3 = 2 * t2
t4 = t1 + t3
t5 = b * b
t6 = t4 + t5



Identifying Basic Blocks (BBs)

• Input
• A sequence of 3AC

• Output
• List of BBs with each 3AC in exactly one BB

• Algorithm
• Identify the leaders which are the first statements in a BB

1. The first statement is a leader
2. Any statement that is the target of a conditional or unconditional goto is a leader
3. Any statement that immediately follows a conditional or unconditional goto is a leader

• For each leader, its BB consists of the leader and all instructions up to but not 
including the next leader or the end of the program
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Identifying BBs

for i from 1 to 10 do

for j from 1 to 10 do

a[i,j] = 0.0

for i from 1 to 10 do

a[i,i]=1.0
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(1) 𝒊 = 𝟏

(2) 𝒋 = 𝟏

(3) 𝒕𝟏 = 𝟏𝟎 × 𝒊

(4) 𝑡2 = 𝑡1 + 𝑗

(5) 𝑡3 = 8 × 𝑡2
(6) 𝑡4 = 𝑡3 − 88

(7) 𝑎 𝑡4 = 0.0

(8) 𝑗 = 𝑗 + 1

(9) if 𝑗 ≤ 10 goto (3)

(10) 𝒊 = 𝒊 + 𝟏

(11) if 𝑖 ≤ 10 goto (2)

(12) 𝒊 = 𝟏

(13) 𝒕𝟓 = 𝒊 − 𝟏

(14) 𝑡6 = 88 × 𝑡5
(15) 𝑎 𝑡6 = 1.0

(16) 𝑖 = 𝑖 + 1

(17) if 𝑖 ≤ 10 goto (13)

target

follows a 
conditionalStatements (1), (2), (3), (10), (12), and 

(13) are leaders
There are six BBs: (1), (2), (3)-(9), (10)-
(11), (12), (13)-(17)



Next Use and Liveness
• Knowing when the value of a variable will 

be used next is important for generating 
good code
• Remove variables from registers if not used

• Consider the 3AC instruction 𝐼: 𝑥 = 𝑦 + 𝑧; 
we say 𝐼 defines 𝑥 and uses 𝑦 and 𝑧

• Suppose a statement 𝐼 defines 𝑥. If a 
statement 𝐽 uses 𝑥 as an operand, and 
control can flow from 𝐼 to 𝐽 along a path 
where 𝑥 is not redefined, then 𝐽 uses the 
value of 𝑥 defined at 𝐼

• A name in a BB is live at a given point if its 
value is used after that point
• We say 𝑥 is live at statement 𝐼
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X = Y + Z
Z = Z * 5
t7 = Z + 1
Y = Z – t7
X = Z + Y

(5)  X = …

(no redefinition of X)

(15) … = … X …

(25) X = … 

X is live at (5), X’s next 
use at (5) is (15)

X is dead at (15) 
because there is no 
further use

no further 
use



Example of Next Use and Liveness

Intermediate Code Live/Dead Next use

x y z x y z

(1)  x=y+z L D D (2) - -

(2)  z=x*5 D L - (3)

(3)  y=z-7 L L (5) (5)

(4)  x=z+y D D D - - -
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Determining Next Use and Liveness Information
• Input

• A BB (say 𝐵) of 3AC 
• Assume symbol table shows all non-temporary variables in 𝐵 as live on exit and all 

temporaries are dead on exit

• Output
• Liveness and next use information for each statement 𝐼: 𝑥 = 𝑦 op 𝑧 in 𝐵

• Algorithm
i. Scan forward over 𝐵 to find the last statement.

• For each variable 𝑥 used in 𝐵, create fields 𝑥.live and 𝑥.next_use in the symbol table. Initialize 
𝑥.live = FALSE and 𝑥.next_use = NONE.

• Each tuple 𝐼: 𝑥 = 𝑦 op 𝑧 stores next use and liveness information. Initialize tuple.

ii. Scan backward over 𝐵. For each statement 𝐼: 𝑥 = 𝑦 op 𝑧 in 𝐵, do 
• Copy the next use and liveness information for 𝑥, 𝑦, and 𝑧 from the symbol table to tuple 𝐼
• Update 𝑥, 𝑦, and 𝑧’s symbol table entries. 

• Set 𝑥.live = FALSE, 𝑥.next_use = NONE 

• Set 𝑦.live=𝑧.live = TRUE and 𝑦.next_use = 𝑧.next_use = 𝐼
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Example Computation of Next Use and 
Liveness Information

Intermediate 
Code

Symbol Table Information Instruction Information

Live Next use Live Next use

x y z x y z x y z x y z

(1)  x=y+z F F F N N N F F F N N N

(2)  z=x*5 F F F N N N F F F N N N

(3)  y=z-7 F F F N N N F F F N N N

(4)  x=z+y F F F N N N F F F N N N
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after the 
forward pass



Example Computation of Next Use and 
Liveness Information

Intermediate 
Code

Symbol Table Information Instruction Information

Live Next use Live Next use

x y z x y z x y z x y z

(4)  x=z+y F T T N (4) (4) F F F N N N

(3)  y=z-7 F F T N N (3) F T T N (4) (4)

(2)  z=x*5 T F F (2) N N F F T N N (3)

(1)  x=y+z F T T N (1) (1) T F F (2) N N
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after the 
backward pass



Control Flow Graph (CFG)

• Graphical representation of control 
flow during execution
• Each node represents a statement or a BB

• An entry and an exit node are often 
added to a CFG for a function

• An edge represents possible transfer of 
control between nodes

• Used for compiler optimizations and 
static analysis (e.g., instruction 
scheduling and global register 
allocation)
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straight-line 
code

predicate loop iteration



Example of BBs and a CFG

int main() {
int marks = 63, grade = 0;
if (marks >= 80) 

grade = 10; 
else if (marks >= 60) 

grade = 8;
else if (marks >= 40) 

grade = 6;
else 

grade = 4;
printf(“Grade %d", grade);
return 0;

}
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Entry

int marks = 
63, grade = 0;
if (i >= 80) 

grade = 
10

grade = 
6

grade = 
4

grade = 
8

if (i >= 
60)

if (i >= 
40)

printf(“Grade 
%d", grade);

Exit

True

False

False

True

True

False



Example CFG Generated with 
LLVM
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Control Flow Graph generator for code in C++

int main() {
int marks = 63, grade = 0;
if (marks >= 80) 

grade = 10; 
else if (marks >= 60) 

grade = 8;
else if (marks >= 40) 

grade = 6;
else 

grade = 4;
printf(“Grade %d", grade);
return 0;

}

https://stackoverflow.com/questions/40563240/control-flow-graph-generator-for-code-in-c


Control Flow Graph (CFG)
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prod = 0
i = 1 B1

t1 = 4 * i
t2 = a[t1]
t3 = 4 * i
t4 = b[t3]
t5 = t2 * t4
t6 = prod + t5
prod = t6
t7 = i + 1
i = t7
if i <= 20 goto B2

B2

1. prod = 0

2. i = 1

3. t1 = 4 * i

4. t2 = a[t1]

5. t3 = 4 * i

6. t4 = b[t3]

7. t5 = t2 * t4

8. t6 = prod + t5

9. prod = t6

10. t7 = i + 1

11. i = t7

12. if i <= 20 goto (3)



Loops in a CFG

• A set of CFG nodes 𝐿 form a loop 
if that 𝐿 contains a node 𝑒 called 
loop entry such that 
• 𝑒 is not the Entry node,

• No node in 𝐿 besides 𝑒 has a 
predecessor outside 𝐿

• Every node in 𝐿 has a nonempty 
path to 𝑒 that is completely within 
𝐿
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B1

B2

prod = 0
i = 1

t1 = 4 * i
t2 = a[t1]
t3 = 4 * i
t4 = b[t3]
t5 = t2 * t4
t6 = prod + t5
prod = t6
t7 = i + 1
i = t7
if i <= 20 goto B2



Loops in a CFG

• There is a unique entry 
• Only way to reach a node in 𝐿

from outside the loop is through 𝑒

• All nodes in the group are 
strongly connected
• There is a path from any node in 

the loop to any other loop

• Path is wholly-contained within 
the loop
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B1

B2

prod = 0
i = 1

t1 = 4 * i
t2 = a[t1]
t3 = 4 * i
t4 = b[t3]
t5 = t2 * t4
t6 = prod + t5
prod = t6
t7 = i + 1
i = t7
if i <= 20 goto B2



Example CFG
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1) i = 1  // Leader
2) j= 1
3) t1 = 10 * i
4) t2 = t1 + j

5) t3 = 8 * t2

6) t4 = t3 – 88

7) a[t4] = 0.0

8) j = j + 1

9) if j <= 10 goto (3)

10) i = i + 1
11) if i <= 10 goto (2)

12) i = 1
13) t5 = i – 1
14) t6 = 88 * t5

15) a[t6] = 1.0

16) i = i + 1

17) if i <= 10 goto (13)

B3

i = 1

t5 = i – 1
t6 = 88 * t5
a[t6] = 1.0
i = i + 1
if i <= 10 goto (13)

Exit

t1 = 10 * i
t2 = t1 + j
t3 = 8 * t2
t4 = t3 – 88
a[t4] = 0.0
j = j + 1
if j <= 10 goto (3)

i = i + 1
if i <= 10 goto (2)

i = 1

j = 1

Entry

B1

B2

B4 B5

B6



Optimizing BBs
Local optimizations
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Optimization of BBs

• Code optimizations can lead to substantial improvement in running 
time and/or energy consumption

• Global optimization analyzes control and data flow among BBs
• E.g., performs control flow, data flow, and data dependence analysis

• Local or intra-BB optimizations can also provide significant 
improvements

• DAG is a useful data structure for implementing transformations on 
BBs
• Allows detecting common sub-expressions
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Intra-Block Transformations

• Expressions are values of names that are live on exit from a BB

• Two BBs are equivalent if they compute the same set of expressions

• Local transformations on BBs to improve code quality
• Structure-preserving and algebraic transformations

• Should not change the set of expressions computed by a block
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Structure-Preserving Transformations

i. Common subexpression elimination 
• Instructions compute a value that has been computed

ii. Dead code elimination
• Remove Instructions that define variables that are never used

iii. Renaming temporary variables
• Can always transform a BB into an equivalent block where each 

statement that defines a temporary uses a new name
• Such a BB is called a normal-form block

iv. Reordering of dependence-free statements
• Normal-form blocks permits statement interchanges without 

affecting the value of the block
• May improve latency of accesses and register usage
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a = b + c
b = a – d
c = b + c
d = a - d

a = b + c
b = a – d
c = b + c
d = b

t1 = b + c
t2 = x + y



Algebraic Transformations

• Apply algebraic laws to simplify computation

• Constant folding – evaluate constants during compilation
• E.g., 𝑖 = 2 ∗ 3.14 ∗ 300 ∗ 300;

• Relational operators can generate common sub-expressions (e.g., 𝑥 > 𝑦
and 𝑥 − 𝑦)
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𝑥 + 0 = 0 + 𝑥 = 𝑥
𝑥 × 1 = 1 × 𝑥 = 𝑥
𝑥 − 0 = 𝑥
𝑥 ÷ 1 = 1

Strength Reduction

Expensive Cheaper

𝑥2 𝑥 × 𝑥

2 × 𝑥 𝑥 + 𝑥

𝑥 ÷ 2 𝑥 ≫ 1



DAG Representation of BBs

(1)  t1 = 4 * i

(2)  t2 = a[t1]

(3)  t3 = 4 * i

(4)  t4 = b[t3]

(5)  t5 = t2 * t4
(6)  t6 = prod + t5
(7)  prod = t6
(8)  t7 = i + 1

(9)  i = t7
(10) if i <= 20 goto (1)
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Many optimizations are easier to perform on a DAG representation of 
BBs

prod0

a b 4 i0

20

1

*

+

+

<=

t6, prod

* t5

t7, it1, t3

=[] t4=[] t2=[] t2 (1)



Representing BBs with DAGs

• Rules on the DAG structure
• Leave nodes are labeled with variable names or constants

• Initial values for each variable is represented by a node

• A node 𝑁 is associated with each statement 𝑠 in a BB
• Children of 𝑁 correspond to statements that last define the operands used in 𝑠

• Inner nodes are labeled by an operator symbol
• Node 𝑁 is labeled by the operator applied at 𝑠

• Nodes optionally have a sequence of identifiers for labels

• Output nodes are those variables that are live on exit

• Each BB node in a CFG can be represented with a DAG
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Constructing a DAG

• Input
• A basic block (BB)

• Output
• A DAG for the BB with the following information

• a label for each node (id for leaf nodes and operator symbols for interior nodes)

• a list of identifiers (not constants) for each node

• Assumptions
• Three kinds of 3AC: (i) 𝑥 = 𝑦 op 𝑧, (ii) 𝑥 = op 𝑦, and (iii) 𝑥 = 𝑦

• Relational operators like “if 𝑖 ≤ 20 goto (1)” are treated like case (i)
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Constructing a DAG

• Steps
• For each statement in the BB,

1. If 𝑛𝑜𝑑𝑒(𝑦) is undefined, create a leaf labeled 𝑦 and set 𝑛𝑜𝑑𝑒(𝑦) to the new node

2. For case (i), check if there is a node in the DAG labeled op with left child 𝑛𝑜𝑑𝑒(𝑦) and 
right child 𝑛𝑜𝑑𝑒(𝑧). If not, then create a node (denoted by 𝑛).

3. For case (ii), check if there is a node labeled op with 𝑛𝑜𝑑𝑒(𝑦) as the only child. If not, 
then create a node (denoted by 𝑛).

4. Delete 𝑥 from the list of identifiers for 𝑛𝑜𝑑𝑒(𝑥). Append 𝑥 to the list of identifiers for 
the node and set 𝑛𝑜𝑑𝑒(𝑥) to 𝑛.
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DAG Representation of BBs

(1)  t1 = 4 * i

(2)  t2 = a[t1]

(3)  t3 = 4 * i

(4)  t4 = b[t3]

(5)  t5 = t2 * t4
(6)  t6 = prod + t5
(7)  prod = t6
(8)  t7 = i + 1

(9)  i = t7
(10) if i <= 20 goto (1)
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1 *

4 i0

t1
2

* t1

4 i0a

=[] t2

* t1 ,t3

4 i0a

=[] t2

3



Local Common Subexpressions
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a = b + c
b = a - d
c = b + c
d = a - d

a = b + c
b = b - d
c = c + d
e = b + c

+

b0 c0 d0

++ -a b c

e

b0 c0

a

b,d

d0+

-

+ c

DAG fails to capture that 
the 1st and 4th statements 
compute the same values



Dead Code Elimination

• Delete a root node from the DAG if it has no live variables
• Repeat till there are no such nodes

• Assume only a and b are live on exit
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a = b + c
b = b - d
c = c + d
e = b + c

+ e

++ -a b c

b0 c0 d0



Representing Array References
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x = a[i]
a[j] = y
z = a[i]

[]==[] x,z

a0 i0 j0 y0

?

[]==[] x

a0 i0 j0 y0

=[] z kills all nodes whose 
value depends on a0



Consider Other Sources of Possible Aliasing
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b = a + 12
x = b[i]
b[j] = y

[]=

+ b

a0 12 i0 j0

=[] x

y0

x = *p // Use of every possible variable
*q = y // Possible assignment to every variable

• =* must include all nodes for optimization 
analysis

• *= kills all other nodes
• Possible to use pointer analysis to be more 

precise

• Assume that procedures use variables 
attached to a node and kills that node



Code Generation Algorithm
Single Basic Blocks
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Code Generation Strategy

• Goal: Generate target code for a sequence of 3AC within a BB

• Assumptions
• Every 3AC operator has an equivalent operator in the target language
• Computed values can reside in registers and only needs to be saved when 

1. The register is required for another computation, or
2. Just before a procedure call, jump, or a labelled statement

• Implies every register must be saved before the end of a BB

• Steps: For each 3AC,
• Identify variables that need to be loaded into registers
• Load the variables into registers
• Generate code for the instruction
• Generate a store if the result needs to be saved into memory
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Challenges in Code Generation

Different Possibilities

a = b + c

ADD Rj, Ri b is in Ri, c is in Rj, b is no longer 
live on exit

ADD c, Ri b is in Ri, b is no longer live on exit

MOV c, Rj
ADD Rj, Ri

b is in Ri, b is no longer live on exit
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Usually there will be numerous cases to consider
• An efficient choice depends on a number of factors (e.g., frequency of use of b and 

c later)
• Properties of the operator (e.g., commutativity) can add to the complexity



A Simple Code Generator

• Treat each IR quadruple as a “macro”

• Replace the macro with pre-existing code templates

• Simple to implement but makes inefficient use of registers

• Goal: Track values in registers and reuse them
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a = b + c LD R1, b
LD R2, c
ADD R1, R2
ST A, R1

LD R1, b
ADD R1, c
ST A, R1

or



Register and Address Descriptors

Register descriptor

• Keeps track of what name is stored in each register, consulted whenever a new 
register is needed

• Each register holds the value of zero or more names at any time during execution

Address descriptor

• Keeps track of the location(s) where the current value of a name can be found at 
runtime

• Location can be a register, a stack location, a memory address, or some 
combination of these (data can get copied)

• Information can be stored in the symbol table
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Code Generation Algorithm

• For each 3AC instruction 𝐼 of the form 𝑥 = 𝑦 op 𝑧,
• Invoke function 𝑔𝑒𝑡𝑟𝑒𝑔(𝐼) to select registers 𝑅𝑥 , 𝑅𝑦, and 𝑅𝑧
• If 𝑦 is not in 𝑅𝑦 according to the address descriptor, then generate instruction 
LD 𝑅𝑦, 𝑦

′

• 𝑦′ is one of the memory locations for 𝑦

• Perform the same steps for 𝑧
• Generate the instruction OP 𝑅𝑥 , 𝑅𝑦, 𝑅𝑧

• For a 3AC copy instruction 𝑥 = 𝑦, 
• If 𝑦 is not in 𝑅𝑦 according to the address descriptor, then generate instruction 
LD 𝑅𝑦, 𝑦

′

• Adjust the register descriptor for 𝑅𝑦 to include 𝑥
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Managing Register and Address Descriptors

• For an instruction LD 𝑅, 𝑥,
• Change the register descriptor for 𝑅 so it holds only 𝑥

• Change the address descriptor for 𝑥 by adding register 𝑅 as an additional 
location

• For instruction ST 𝑥, 𝑅, change the address descriptor for 𝑥 to include 
its own memory location
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Managing Register and Address Descriptors

• For an instruction such as ADD 𝑅𝑥, 𝑅𝑦, 𝑅𝑧, implementing a 3AC 𝑥 =
𝑦 + 𝑧,
• Change the register descriptor for 𝑅𝑥 so that it holds only 𝑥

• Change the address descriptor for 𝑥 so that its only location is 𝑅𝑥
• The memory location for 𝑥 is no longer in the address descriptor for 𝑥

• Remove 𝑅𝑥 from the address descriptor of any variable other than 𝑥

• For a copy instruction 𝑥 = 𝑦, remember to 
• Process the load from 𝑦 into a register (if needed)

• Add 𝑥 to the register descriptor for 𝑅𝑦
• Change the address descriptor for 𝑥 so that its only location is 𝑅𝑦
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Usage of Registers

• Leave the computed result in a register for as long as possible

• Store the result only at the end of a BB or when the register is needed 
for another computation
• A variable is live at a point if it is used (possibly in later BBs) later, requires 

global dataflow analysis

• On exit from a BB, store only live variables which are not already in their 
memory locations (use address descriptors to identify)

• If liveness information is not available, then assume that all variables are live 
at all times
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Defining Function 𝑔𝑒𝑡𝑟𝑒𝑔()

• Input
• 3AC 𝐼: 𝑥 = 𝑦 op 𝑧

• Output
• Returns registers to hold the value of 𝑥, 𝑦, and 𝑧

• We assume that there is no global register allocation
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𝑔𝑒𝑡𝑟𝑒𝑔(): Choosing 𝑅𝑦 for 𝑦

i. If 𝑦 is in a register, then return the register containing 𝑦 as 𝑅𝑦
ii. If 𝑦 is not in a register, but there is an empty register available, then pick one 

such register as 𝑅𝑦
iii. If 𝑦 is not in a register and there are no empty registers, then

• Let 𝑅 be a candidate register and suppose 𝑣 is one of the variables stored in 𝑅
• Heuristic for candidate selection can be based on farthest references or fewest next use

• If the address descriptor for 𝑣 says that 𝑣 is somewhere else beside 𝑅, then choose 𝑅

• If 𝑣 is 𝑥, and 𝑥 is not an operand of 𝐼 (i.e., 𝑥 ≠ 𝑧), then choose 𝑅

• If 𝑣 is not used later, then choose 𝑅

• Else, generate ST 𝑣, 𝑅 (called a register spill)

• 𝑅 may hold several variables, so we need to repeat the previous steps for each variable
• Compute the number of store instructions generated for 𝑅 (i.e., score) for each variable 
• Pick the register with the lowest score

iv. Selecting 𝑅𝑧 for 𝑧 is similar 
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𝑔𝑒𝑡𝑟𝑒𝑔(): Choosing 𝑅𝑥 for 𝑥

• Consider selection of a register 𝑅𝑥 for 𝑥. In addition to the previous 
checks, try the following.
• A register that holds only 𝑥 is always an acceptable choice for 𝑅𝑥

• If 𝑦 is not used after instruction 𝐼, and 𝑅𝑦 holds only 𝑦 after being loaded, 
then 𝑅𝑦 can also be used for 𝑅𝑥

• Perform similar checks with 𝑅𝑧 if required

• If 𝐼 is a copy instruction, then always choose 𝑅𝑦
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Code Generation Example
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3AC Generated Code
Register 

Descriptor
Address Descriptor

R1 R2 R3 a b c d t u v

𝑎 𝑏 𝑐 𝑑

𝑡 = 𝑎 − 𝑏
LD 𝑅1, 𝑎
LD 𝑅2, 𝑏
SUB 𝑅2, 𝑅1, 𝑅2

𝑎 𝑡 𝑎, 𝑅1 𝑏 𝑐 𝑑 𝑅2

𝑢 = 𝑎 − 𝑐
LD 𝑅3, 𝑐
SUB 𝑅1 𝑅1, 𝑅3

𝑢 𝑡 𝑐 𝑎 𝑏 𝑐, 𝑅3 𝑑 𝑅2 𝑅1

𝑣 = 𝑡 + 𝑢 ADD 𝑅3, 𝑅2, 𝑅1

𝑢 𝑡 𝑣 𝑎 𝑏 𝑐 𝑑 𝑅2 𝑅1 𝑅3

𝑎 = 𝑑 LD 𝑅2, 𝑑

𝑢 𝑎, 𝑑 𝑣 𝑅2 𝑏 𝑐 𝑑, 𝑅2 𝑅1 𝑅3

temporaries, 
not live at the 

end of BBin memory, live 
at the end of BB

R2 is reused 
since there is no 

next use of b



Code Generation Example
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3AC Generated Code
Register 

Descriptor
Address Descriptor

R1 R2 R3 a b c d t u v

𝑢 𝑎, 𝑑 𝑣 𝑅2 𝑏 𝑐 𝑑, 𝑅2 𝑅1 𝑅3

𝑑 = 𝑣 + 𝑢 ADD 𝑅1, 𝑅3, 𝑅1

𝑑 𝑎 𝑣 𝑅2 𝑏 𝑐 𝑅1 𝑅3

exit
ST 𝑎, 𝑅2
ST 𝑑, 𝑅1

𝑑 𝑎 𝑣 𝑎, 𝑅2 𝑏 𝑐 𝑑, 𝑅1 𝑅3



Code Sequences for Indexed and Pointer 
Assignments

3AC 𝒊 in register 𝑹𝒊 𝒊 in memory 𝑴𝒊 𝒊 in Stack

𝑎 = 𝑏[𝑖] MOV 𝑏 𝑅𝑖 , 𝑅 MOV 𝑀𝑖, 𝑅
MOV 𝑏 𝑅 , 𝑅

MOV 𝑆𝑖 𝐴 , 𝑅
MOV 𝑏 𝑅 , 𝑅

𝑎 𝑖 = 𝑏 MOV 𝑏, 𝑎(𝑅𝑖) MOV 𝑀𝑖, 𝑅
MOV 𝑏, 𝑎(𝑅)

MOV 𝑆𝑖 𝐴 , 𝑅
MOV 𝑏, 𝑎(𝑅)

CS 335 Swarnendu Biswas

3AC 𝒑 in register 𝑹𝒑 𝒑 in memory 𝑴𝒑 𝒑 in Stack

𝑎 = ∗𝑝 MOV ∗𝑅𝑝, 𝑎 MOV 𝑀𝑝, 𝑅
MOV ∗𝑅, 𝑅

MOV 𝑆𝑝 𝐴 , 𝑅
MOV ∗𝑅, 𝑅

∗𝑝 = 𝑏 MOV 𝑎, ∗𝑅𝑝 MOV 𝑀𝑝, 𝑅
MOV 𝑎, ∗𝑅

MOV 𝑎, 𝑅
MOV 𝑅, ∗𝑆𝑝(𝐴)



Instruction Selection by Tree 
Rewriting
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Tree Representation

• Consider the statement

𝑎 𝑖 = 𝑏 + 1
• Assume 𝑏 is in memory location 
𝑀𝑏

• Array of chars 𝑎 is a local and is 
stored on the stack

• SP points to the beginning of the 
current activation record

• Addresses of locals 𝑎 and 𝑖 are 
given as constant offsets 𝐶𝑎 and 𝐶𝑖
from the SP
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+

𝑀𝑏 𝐶1

=

ind

+

𝐶𝑎 𝑅𝑆𝑃

+ ind

𝐶𝑖

+

𝑅𝑆𝑃

ind operator 
denotes 

indirection



Tree Rewriting

• Target code can be generated by applying a sequence of tree-
rewriting rules to reduce the input tree to a single node

• Each rewrite rule is of the form 

𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 ← 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 { 𝑎𝑐𝑡𝑖𝑜𝑛 }

where 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 is a single node, 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 is a tree, and 𝑎𝑐𝑡𝑖𝑜𝑛 is 
a code fragment like in a SDT

• A set of tree rewriting rules is called a tree-translation scheme
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𝑅𝑖

+

𝑅𝑗

←𝑅𝑖 { ADD 𝑅𝑖 , 𝑅𝑖 , 𝑅𝑗 }

tiling of the 
subtree

←



Tree Rewriting Rules
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𝐶𝑎←𝑅𝑖 { LD 𝑅𝑖 , #𝑎 } 𝑀𝑥←𝑅𝑖 { LD 𝑅𝑖 , 𝑥 }

𝑀𝑥

=

𝑅𝑖

←𝑀 { ST 𝑥, 𝑅𝑖 }

𝑅𝑗

=←𝑀 { ST ∗𝑅𝑖 , 𝑅𝑖 }

𝑅𝑖

ind

1 2

3 4



Tree Rewriting Rules
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ind←𝑅𝑖 { LD 𝑅𝑖 , 𝑎(𝑅𝑗) }

𝑅𝑗𝐶𝑎

+

{ ADD 𝑅𝑖 , 𝑅𝑖 , 𝑎 𝑅𝑗 }

ind

+←𝑅𝑖

𝑅𝑖

𝑅𝑗𝐶𝑎

+

𝑅𝑖

+

𝑅𝑗

←𝑅𝑖 { ADD 𝑅𝑖 , 𝑅𝑖 , 𝑅𝑗 }

𝑅𝑖

+

𝐶1

←𝑅𝑖 { INC 𝑅𝑖 }

5 65 6

7 8

6



Code Generation by Tiling an Input Tree

• High-level steps in a tree-translation scheme
• Given an input tree, the templates in the tree-rewriting rules are applied to 

tile its subtrees

• If a template matches, replace the matching subtree with the replacement 
node of the rule
• Execute the action associated with the rule

• If the action contains a sequence of instructions, the instructions are emitted 

• Repeat the above steps until the tree is reduced to a single node, or until no 
more templates match

• Output of the tree-translation scheme is the instruction sequence 
generated as the input tree is reduced to a single node
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Example of Code Generation with Tree 
Rewriting
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+

𝑀𝑏 𝐶1

=

ind

+

𝐶𝑎 𝑅𝑆𝑃

+ ind

𝐶𝑖

+

𝑅𝑆𝑃

? ?



Example of Code Generation with Tree 
Rewriting
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+

𝑀𝑏 𝐶1

=

ind

+

𝐶𝑎 𝑅𝑆𝑃

+ ind

𝐶𝑖

+

𝑅𝑆𝑃

+

𝑀𝑏 𝐶1

=

ind

+

𝑅0 𝑅𝑆𝑃

+ ind

𝐶𝑖

+

𝑅𝑆𝑃
Rule 1



Example of Code Generation with Tree 
Rewriting
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+

𝑀𝑏 𝐶1

=

ind

+

𝑅0 𝑅𝑆𝑃

+ ind

𝐶𝑖

+

𝑅𝑆𝑃

+

𝑀𝑏 𝐶1

=

ind

+

𝑅0 ind

𝐶𝑖

+

𝑅𝑆𝑃
Rule 7



Example of Code Generation with Tree 
Rewriting
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+

𝑀𝑏 𝐶1

=

ind

+

𝑅0 ind

𝐶𝑖

+

𝑅𝑆𝑃

+

𝑀𝑏 𝐶1

=

ind

𝑅0

Rule 6

+

𝑅1 𝐶1

=

ind

𝑅0

Rule 2

Rule 5 
or 6?



Example of Code Generation with Tree 
Rewriting
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Rule 8

+

𝑅1 𝐶1

=

ind

𝑅0

Rule 4

𝑅1

=

ind

𝑅0

𝑀



Example of Code Generation with Tree 
Rewriting
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+

𝑀𝑏 𝐶1

=

ind

+

𝐶𝑎 𝑅𝑆𝑃

+ ind

𝐶𝑖

+

𝑅𝑆𝑃

LD 𝑅0, #𝑎
ADD 𝑅0, 𝑅0, SP
ADD 𝑅0, 𝑅0, 𝑖(SP)
LD 𝑅1, 𝑏
INC 𝑅1
ST ∗𝑅0, 𝑅1



Considerations during Tree Reduction

i. Performance of tree matching impacts the efficiency of code 
generation at compile time

ii. Multiple templates may match during code generation

iii. Different match sequences of templates will lead to different code 
being generated which can impact efficiency

iv. If no template matches, then the code-generation process blocks
• Assume each operator in the intermediate code can be implemented by one 

or more target-machine instructions

• Assume there are sufficient registers to compute each tree node by itself
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Pattern Matching with LR Parsing

• Idea
• Convert the input tree to a string 

using prefix form for comparison

• Use a parsing mechanism for pattern 
matching

• Come up with a syntax-directed 
translation (SDT) as an alternate for 
tree rewriting rules
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+

𝑀𝑏 𝐶1

=

ind

+

𝐶𝑎 𝑅𝑆𝑃

+ ind

𝐶𝑖

+

𝑅𝑆𝑃
Prefix representation 

= ind + + 𝐶𝑎𝑅𝑆𝑃 ind + 𝐶𝑖𝑅𝑆𝑃 +𝑀𝑏𝐶1



SDT for Tree Rewriting Production Semantic Action

𝑅𝑖 → c𝑎 { LD 𝑅𝑖 , #𝑎 }

𝑅𝑖 → 𝑀𝑥 { LD 𝑅𝑖 , 𝑥 }

𝑀 →= 𝑀𝑥𝑅𝑖 { ST 𝑥, 𝑅𝑖 }

𝑀 →= ind 𝑅𝑖𝑅𝑗 { ST ∗𝑅𝑖 , 𝑅𝑗 }

𝑅𝑖 → ind+ c𝑎𝑅𝑗 { LD 𝑅𝑖 , 𝑎 𝑅𝑗 }

𝑅𝑖 → +𝑅𝑖 ind+
c𝑎𝑅𝑗

{ ADD 𝑅𝑖 , 𝑅𝑖 , 𝑎 𝑅𝑗 }

𝑅𝑖 → + 𝑅𝑖𝑅𝑗 { ADD 𝑅𝑖 , 𝑅𝑖 , 𝑅𝑗 }

𝑅𝑖 → + 𝑅𝑖c1 { INC 𝑅𝑖 }

𝑅 → sp

𝑀 → m
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• Terminal m represents a memory 
location 

• Terminal sp represents register SP
• Terminal c represents a constant

• Design a code generator for a 
different architecture by rewriting 
the grammar

• Resolve conflicts using estimates of 
instruction costs, favoring larger 
reductions, and favoring shifts over 
reductions 



Dynamic Programming Based 
Optimal Code Generation
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Code Generation from DAGs

• Optimal code generation for 
DAGs is NP-complete

• So, DAGs are divided into 
trees and processed
• An alternative is to replicate 

shared trees in DAGs but it 
increases the code size
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10 11

7 8 9

1

2 3

4 5 6

evaluate 
subtree second

9 8

10 11

7 8

10 11

9

10 11

1

2 3

4 5 56

8

evaluate 
subtree first

evaluate rest 
of the tree last



Expression Trees

• A syntax tree for an expression
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(a-b)+e*(c/d)

t1 = a – b
t2 = c / d
t3 = e * t2
t4 = t1 + t3

a b e /

c d

-

+

*



Dynamic Programming Based Optimal Code 
Generation
• Generates optimal code from an expression tree for a BB

• Optimality is in terms of number of instructions generated

• Machine model – register machines with complex instruction sets
• Assume there are 𝑟 interchangeable registers 𝑅0, …, 𝑅𝑟−1
• Instructions are of form: 𝑅𝑖 = 𝐸

• If 𝐸 involves registers, then 𝑅𝑖 must be one of them (i.e., 2-address instructions)

• Variants: 𝑅𝑖 = 𝑀𝑗, 𝑅𝑖 = 𝑅𝑖 op 𝑅𝑗, 𝑅𝑖 = 𝑅𝑖 op 𝑀𝑗

• Other variants: 𝑅𝑖 = 𝑅𝑗 , 𝑀𝑖 = 𝑅𝑗
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Contiguous Evaluation
• The optimality criterion requires 

contiguous evaluation of an expression 
tree
• No higher costs and no more registers

• A program 𝑃 evaluates a tree 𝑇
contiguously if
• it first evaluates those subtrees of 𝑇 that 

need to be computed into memory,
• it then evaluates 𝑇1, 𝑇2, and then root, in 

order, or 𝑇2, 𝑇1, and then root, in order

• Evaluating part of 𝑇1 leaving the result 
in a register, evaluating 𝑇2, and then 
evaluating rest of 𝑇1 is not contiguous 
evaluation

Assume 𝐸 is 𝐸1 + 𝐸2
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syntax tree for 𝐸

op

𝑇1 𝑇2

tree 
for 𝐸2



Dynamic Programming Algorithm

• Assumption: target has 𝑟 registers
1. Compute bottom-up for each node 𝑛 of the expression tree 𝑇 an array 𝐶

of costs
• 𝐶[𝑖] is the minimum cost of computing the subtree 𝑆 rooted at 𝑛 into a register, 

assuming 𝑖 registers are available for the computation, for 1 < 𝑖 < 𝑟
• The cost of computing a node 𝑛 includes the count of loads and stores necessary to 

evaluate 𝑆 in the given number of registers plus the cost of computing the operator 
at the root of 𝑆

2. Traverse 𝑇, using the cost vectors to determine which subtrees of 𝑇 must 
be computed into memory

3. Traverse each tree using the cost vectors and associated instructions to 
generate the final target code 
• Code for the subtrees computed into memory locations is generated first, then code 

for other subtrees, and then code for the root
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Example
• Consider a machine having two 

registers 𝑅0 and 𝑅1
• Assume the available instructions 

are  

• Furthermore, assume all instructions 
are of unit cost
• Can be extended to cases where 

instructions have varying costs
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LD 𝑅𝑖 , 𝑀𝑗

op 𝑅𝑖 , 𝑅𝑖 , 𝑅𝑗

op 𝑅𝑖 , 𝑅𝑖 , 𝑀𝑗

LD 𝑅𝑖 , 𝑅𝑗

ST M𝑖 , 𝑅𝑗

a b c /

d e

-

+

*

Expression tree



Expression Tree with Cost Vectors
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𝐶𝑎[0] = 0 Cost of computing 𝑎 in memory

𝐶𝑎 1 = 1 Cost of computing 𝑎 in a register

𝐶𝑎 2 = 1 Cost of computing 𝑎 in a register, 
with two registers available

• 𝐶− 1 = 𝐶𝑎 1 + 𝐶𝑏 0 + 1 = 1 + 0 + 1 = 2

• 𝐶− 2 = min

𝐶𝑎 2 + 𝐶𝑏 1 + 1,

𝐶𝑎 2 + 𝐶𝑏 0 + 1,

𝐶𝑎 1 + 𝐶𝑏 2 + 1,

𝐶𝑎 1 + 𝐶𝑏 1 + 1,

𝐶𝑎 1 + 𝐶𝑏 0 + 1
= min 3,2,3,3,2 = 2

• 𝐶− 0 = 𝐶− 2 + 1 = 3

(0,1,1) (0,1,1)

a b c /

d e

-

+

*

cost vector 
= (0,1,1)

(0,1,1) (0,1,1)

op 𝑅0, 𝑅0, 𝑅1
op 𝑅1, 𝑅1, 𝑅0
op 𝑅0, 𝑅0, 𝑀
op 𝑅1, 𝑅1, 𝑀

(3,2,2)

(3,2,2)

LD 𝑅0, 𝑎
ADD 𝑅0, 𝑅0, 𝑏



Expression Tree with Cost Vectors
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• 𝐶∗ 1 = 𝐶𝑐 1 + 𝐶/ 0 + 1 = 1 + 3 + 1 = 5

• 𝐶∗ 2 = min

𝐶𝑐 2 + 𝐶/ 1 + 1,

𝐶𝑐 2 + 𝐶/ 0 + 1,

𝐶𝑐 1 + 𝐶/ 2 + 1,

𝐶𝑐 1 + 𝐶/ 1 + 1,

𝐶𝑐 1 + 𝐶/ 0 + 1

= min 4,5,4,4,5 = 4
• 𝐶∗ 0 = 𝐶∗ 2 + 1 = 5

(0,1,1) (0,1,1)

a b c /

d e

-

+

*

(0,1,1) (0,1,1)

(3,2,2)

(3,2,2)

(5,5,4)

(8,8,7)

(0,1,1)

• 𝐶+ 1 = 𝐶− 1 + 𝐶∗ 0 + 1 = 2 + 5 + 1 = 8

• 𝐶+ 2 = min

𝐶− 2 + 𝐶∗ 1 + 1,

𝐶− 2 + 𝐶∗ 0 + 1,

𝐶− 1 + 𝐶∗ 2 + 1,

𝐶− 1 + 𝐶∗ 1 + 1,

𝐶− 1 + 𝐶∗ 0 + 1
= min 8,8,7,8,8 = 7

• 𝐶+ 0 = 𝐶+ 2 + 1 = 8



Tree Traversal to Generate Code

• Min cost at node + is 7, which implies right 
subtree (RST) is computed with 2 registers in 
𝑅0 and left subtree (LST) is computed with 1 
register into 𝑅1

• For node ∗, compute RST with one register in 
𝑅1 and LST in 𝑅0

• For node 𝑐, emit LD 𝑅0, 𝑐

• For node /, compute RST in memory and 
compute LST in 𝑅1

• For node 𝑑, emit LD 𝑅1, 𝑑

• For node −, compute RST in memory and 
compute LST in 𝑅1

• For node 𝑎, emit LD 𝑅1, 𝑎
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⇒ DIV 𝑅1, 𝑅1, 𝑒

(3,2,2)

(5,5,4)

(8,8,7)

⇒ MUL 𝑅0, 𝑅0, 𝑅1

(0,1,1) (0,1,1)

a b c /

d e

-

+

*

(0,1,1) (0,1,1)

(3,2,2)

(0,1,1)

⇒ ADD 𝑅1, 𝑅1, 𝑅0

⇒ SUB 𝑅1, 𝑅1, 𝑏

LD 𝑅0, 𝑐
LD 𝑅1, 𝑑
DIV 𝑅1, 𝑅1, 𝑒
MUL 𝑅0, 𝑅0, 𝑅1
LD 𝑅1, 𝑎
SUB 𝑅1, 𝑅1, 𝑏
ADD 𝑅1, 𝑅1, 𝑅0

evaluate RST 
first, why?



Instruction Selection via 
Peephole Optimization
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Peephole Optimization

• Insight: Find local optimizations by examining short sequences of 
adjacent operations
• The sliding window, or the peephole, moves over code

• Code in a peephole need not be contiguous

• Goal is to identify code patterns that can be improved

• Rewrite code patterns with improved sequence
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LD 𝑎, 𝑅0
ST 𝑅0, 𝑎

LD 𝑎, 𝑅0
ADD 𝑅7, 𝑅0, 0
MUL 𝑅10, 𝑅4, 𝑅7

MUL 𝑅10, 𝑅4, 𝑅0

ST 𝑎, 𝑅0
LD 𝑅3, 𝑎

ST 𝑎, 𝑅0
MOV 𝑅3, 𝑅0

1

2

3



Examples of Peephole Optimizations

• Eliminate redundant instructions

• Eliminate unreachable code

• Eliminate jump over jumps

• Algebraic simplification

• Strength reduction

• Use of machine idioms
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…
LD R0, x
{no modifications 

to x or R0}
ST R0, x
…

B
B

…
if print == 1

goto L1
goto L2

L1: print …
L2: …

…
if print != 1

goto L2
print …

L2: …

…
goto L1
…

L1: goto L2
…

…
goto L2
…

L1: goto L2
…

…
goto L2
…
…
…

no jumps
to L1

BB beginning at L1: 
… can be removed if 
it is preceded by an 
unconditional jump



Peephole Optimization based Code 
Generation
• A naïve optimization strategy can use exhaustive search to match the 

patterns and rewrite code
• Can work if number of patterns and the window size are small
• Does not work for modern complex ISAs

• Workflow in a modern peephole optimizer

• In an optimizer, the input and output languages are the same

• With a different output language (e.g., ASM), the optimizer can be used for 
code generation
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Expander
IR → LLIR

Simplifier
LLIR → LLIR

Matcher
LLIR → ASM

IR LLIR LLIR ASM



Peephole Optimization based Code 
Generation
• Expander rewrites the IR to represent all the direct effects of an 

operation
• If OP 𝑅0, 𝑅1, 𝑅2 sets a condition code, then the LLIR should include an explicit 

operation to set the condition code

• Simplifier performs limited local optimization on the LLIR in the 
window

• Matcher compares the simplified LLIR against the pattern library
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Example
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Op Arg1 Arg2 Result

× 2 𝑐 𝑡1

− 𝑏 𝑡1 𝑎

𝑟𝐴𝑅𝑃 −16 @𝐺 12

+ +

ind

ind 2 ind

×

−+

←

𝑟𝐴𝑅𝑃 4

AST computes 𝑎 = 𝑏 − 2 × 𝑐
• 𝑎 is stored at offset 4 in the local AR 
• b stored as a call-by-reference parameter 

whose pointer is stored at offset – 16 from 
the ARP

• 𝑐 is at offset 12 from the label @𝐺



Example
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Op Arg1 Arg2 Result

× 2 𝑐 𝑡1

− 𝑏 𝑡1 𝑎

𝑟10 ← 2
𝑟11 ← @𝐺
𝑟12 ← 12
𝑟13 ← 𝑟11 + 𝑟12
𝑟14 ← 𝑀(𝑟13)
𝑟15 ← 𝑟10 × 𝑟14
𝑟16 ← −16
𝑟17 ← 𝑟𝐴𝑅𝑃 + 𝑟16
𝑟18 ← 𝑀(𝑟17)
𝑟19 ← 𝑀(𝑟18)
𝑟20 ← 𝑟19 − 𝑟15
𝑟21 ← 4
𝑟22 ← 𝑟𝐴𝑅𝑃 + 𝑟21
𝑀(𝑟22) ← 𝑟20

𝑟𝐴𝑅𝑃 −16 @𝐺 12

+ +

ind

ind 2 ind

×

−+

←

𝑟𝐴𝑅𝑃 4

Expand



Example
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Op Arg1 Arg2 Result

× 2 𝑐 𝑡1

− 𝑏 𝑡1 𝑎

𝑟10 ← 2
𝑟11 ← @𝐺
𝑟12 ← 12
𝑟13 ← 𝑟11 + 𝑟12
𝑟14 ← 𝑀(𝑟13)
𝑟15 ← 𝑟10 × 𝑟14
𝑟16 ← −16
𝑟17 ← 𝑟𝐴𝑅𝑃 + 𝑟16
𝑟18 ← 𝑀(𝑟17)
𝑟19 ← 𝑀(𝑟18)
𝑟20 ← 𝑟19 − 𝑟15
𝑟21 ← 4
𝑟22 ← 𝑟𝐴𝑅𝑃 + 𝑟21
𝑀(𝑟22) ← 𝑟20

𝑟𝐴𝑅𝑃 −16 @𝐺 12

+ +

ind

ind 2 ind

×

−+

←

𝑟𝐴𝑅𝑃 4

𝑟10 ← 2
𝑟11 ← @𝐺
𝑟14 ← 𝑀(𝑟11 + 12)
𝑟15 ← 𝑟10 × 𝑟14
𝑟18 ← 𝑀(𝑟𝐴𝑅𝑃 − 16)
𝑟19 ← 𝑀 𝑟18
𝑟20 ← 𝑟19 − 𝑟15
𝑀(𝑟𝐴𝑅𝑃 + 4) ← 𝑟20

Expand
Simplify

Assume a 
sliding window 

of size 3

fewer 
instructions and 

registers



Sequences Produced by the Simplifier
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𝑟10 ← 2
𝑟11 ← @𝐺
𝑟12 ← 12

𝑟11 ← @𝐺
𝑟12 ← 12
𝑟13 ← 𝑟11 + 𝑟12

𝑟11 ← @𝐺
𝑟13 ← 𝑟11 + 12
𝑟14 ← 𝑀(𝑟13)

𝑟11 ← @𝐺
𝑟14 ← 𝑀(𝑟11 + 12)
𝑟15 ← 𝑟10 × 𝑟14

𝑟14 ← 𝑀(𝑟11 + 12)
𝑟15 ← 𝑟10 × 𝑟14
𝑟16 ← −16

𝑟15 ← 𝑟10 × 𝑟14
𝑟16 ← −16
𝑟17 ← 𝑟𝐴𝑅𝑃 + 𝑟16

Sequence 1

Sequence 2

Sequence 3

Sequence 4

Sequence 5

Sequence 6

𝑟10 ← 2
𝑟11 ← @𝐺
𝑟12 ← 12
𝑟13 ← 𝑟11 + 𝑟12
𝑟14 ← 𝑀(𝑟13)
𝑟15 ← 𝑟10 × 𝑟14
𝑟16 ← −16
𝑟17 ← 𝑟𝐴𝑅𝑃 + 𝑟16
𝑟18 ← 𝑀(𝑟17)
𝑟19 ← 𝑀(𝑟18)
𝑟20 ← 𝑟19 − 𝑟15
𝑟21 ← 4
𝑟22 ← 𝑟𝐴𝑅𝑃 + 𝑟21
𝑀(𝑟22) ← 𝑟20

𝑟15 ← 𝑟10 × 𝑟14
𝑟17 ← 𝑟𝐴𝑅𝑃 − 16
𝑟18 ← 𝑀(𝑟17)

𝑟15 ← 𝑟10 × 𝑟14
𝑟18 ← 𝑀(𝑟𝐴𝑅𝑃 − 16)
𝑟19 ← 𝑀(𝑟18)

𝑟18 ← 𝑀(𝑟𝐴𝑅𝑃 − 16)
𝑟19 ← 𝑀(𝑟18)
𝑟20 ← 𝑟19 − 𝑟15

Sequence 7

Sequence 8

Sequence 9



Sequences Produced by the Simplifier
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𝑟19 ← 𝑀(𝑟18)
𝑟20 ← 𝑟19 − 𝑟15
𝑟21 ← 4

𝑟20 ← 𝑟19 − 𝑟15
𝑟21 ← 4
𝑟22 ← 𝑟𝐴𝑅𝑃 + 𝑟21

𝑟20 ← 𝑟19 − 𝑟15
𝑟22 ← 𝑟𝐴𝑅𝑃 + 4
𝑀(𝑟22) ← 𝑟20

Sequence 10

Sequence 11

Sequence 12

𝑟10 ← 2
𝑟11 ← @𝐺
𝑟12 ← 12
𝑟13 ← 𝑟11 + 𝑟12
𝑟14 ← 𝑀(𝑟13)
𝑟15 ← 𝑟10 × 𝑟14
𝑟16 ← −16
𝑟17 ← 𝑟𝐴𝑅𝑃 + 𝑟16
𝑟18 ← 𝑀(𝑟17)
𝑟19 ← 𝑀(𝑟18)
𝑟20 ← 𝑟19 − 𝑟15
𝑟21 ← 4
𝑟22 ← 𝑟𝐴𝑅𝑃 + 𝑟21
𝑀(𝑟22) ← 𝑟20

𝑟20 ← 𝑟19 − 𝑟15
𝑀(𝑟𝐴𝑅𝑃 + 4) ← 𝑟20

Sequence 13



Example
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Op Arg1 Arg2 Result

× 2 𝑐 𝑡1

− 𝑏 𝑡1 𝑎

𝑟10 ← 2
𝑟11 ← @𝐺
𝑟12 ← 12
𝑟13 ← 𝑟11 + 𝑟12
𝑟14 ← 𝑀(𝑟13)
𝑟15 ← 𝑟10 × 𝑟14
𝑟16 ← −16
𝑟17 ← 𝑟𝐴𝑅𝑃 + 𝑟16
𝑟18 ← 𝑀(𝑟17)
𝑟19 ← 𝑀(𝑟18)
𝑟20 ← 𝑟19 − 𝑟15
𝑟21 ← 4
𝑟22 ← 𝑟𝐴𝑅𝑃 + 𝑟21
𝑀(𝑟22) ← 𝑟20

𝑟𝐴𝑅𝑃 −16 @𝐺 12

+ +

ind

ind 2 ind

×

−+

←

𝑟𝐴𝑅𝑃 4

𝑟10 ← 2
𝑟11 ← @𝐺
𝑟14 ← 𝑀(𝑟11 + 12)
𝑟15 ← 𝑟10 × 𝑟14
𝑟18 ← 𝑀(𝑟𝐴𝑅𝑃 − 16)
𝑟19 ← 𝑀 𝑟18
𝑟20 ← 𝑟19 − 𝑟15
𝑀(𝑟𝐴𝑅𝑃 + 4) ← 𝑟20

Simplify

LD 𝑟10, 2
LD 𝑟11, @𝐺
LD 𝑟14, 12(𝑟11)
MUL 𝑟15, 𝑟10, 𝑟14
LD 𝑟18, −16(𝑟𝐴𝑅𝑃)
LD 𝑟19, 𝑟18
SUB 𝑟20, 𝑟19, 𝑟15
ST 4 𝑟𝐴𝑅𝑃 , 𝑟20

M
at

ch

Expand



Example
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Op Arg1 Arg2 Result

× 2 𝑐 𝑡1

− 𝑏 𝑡1 𝑎

𝑟10 ← 2
𝑟11 ← @𝐺
𝑟12 ← 12
𝑟13 ← 𝑟11 + 𝑟12
𝑟14 ← 𝑀(𝑟13)
𝑟15 ← 𝑟10 × 𝑟14
𝑟16 ← −16
𝑟17 ← 𝑟𝐴𝑅𝑃 + 𝑟16
𝑟18 ← 𝑀(𝑟17)
𝑟19 ← 𝑀(𝑟18)
𝑟20 ← 𝑟19 − 𝑟15
𝑟21 ← 4
𝑟22 ← 𝑟𝐴𝑅𝑃 + 𝑟21
𝑀(𝑟22) ← 𝑟20

𝑟10 ← 2
𝑟11 ← @𝐺
𝑟14 ← 𝑀(𝑟11 + 12)
𝑟15 ← 𝑟10 × 𝑟14
𝑟18 ← 𝑀(𝑟𝐴𝑅𝑃 − 16)
𝑟19 ← 𝑀 𝑟18
𝑟20 ← 𝑟19 − 𝑟15
𝑀(𝑟𝐴𝑅𝑃 + 4) ← 𝑟20

Simplify

LD 𝑟10, 2
LD 𝑟11, @𝐺
LD 𝑟14, 12(𝑟11)
MUL 𝑟15, 𝒓𝟏𝟎, 𝑟14
LD 𝑟18, −16(𝑟𝐴𝑅𝑃)
LD 𝑟19, 𝑟18
SUB 𝑟20, 𝑟19, 𝑟15
ST 4 𝑟𝐴𝑅𝑃 , 𝑟20

M
at

ch

Expand

• Correctly identifying dead values, presence of control flow,  and 
window size limit the effectiveness of peephole optimizations

• Can use logical instead based on data flow instead of physical 
windows 



Current State in Code Generation

• Modern peephole systems automatically generates a matcher from a 
description of a target machine’s instruction set

• Eases the work in retargeting the backend
i. Provide a new appropriate machine description to the pattern generator to 

produce a new instruction selector
ii. Change the LLIR sequences to match the new ISA
iii. Modify the instruction scheduler and register allocator to reflect the 

characteristics of the new ISA

• GCC uses a low-level IR Register-Transfer Language (RTL) for 
optimization and for code generation 
• The backend uses a peephole scheme to convert RTL into assembly code
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